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1. Introduction

Baer-ideals were first introduced in [28] for commutative Baer rings, where they

were defined as the kernels of Baer ring homomorphisms. Subsequently, in [19], the

study of Baer ideals was extended to semiprime commutative rings. In [10], the

concept of such ideals was generalized to any commutative ring and termed “B-

ideals”. The term “d-ideal” in rings, not necessarily commutative, was introduced

in [22], with the terminology adapted from the series of papers [17,18,25] focusing

on d-ideals of Riesz spaces. Furthermore, in [5], a study was conducted on some

properties of d-ideals in rings C(X), referred to as z0-ideals. Also, d-ideals have

been examined for reduced rings under the same name in [6].

The initial effort to extend d-ideals to “d-elements” in lattices was undertaken in

[21] for frames, once again borrowing terminology from [17]. Subsequent research

on d-elements can be found in [15] and [9], where the second focused on maximal

d-elements. It was in [4] where d-elements were further extended to encompass

more general types of multiplicative lattices, not necessarily frames and labelled

Baer elements.

Since the introduction of Baer elements in [4] for multiplicative lattices, several

studies have been conducted on d-ideals in rings and d-elements in frames, as can

be seen above. All of these studies may warrant scrutiny for further extensions to
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multiplicative lattices in the sense of [4]. Furthermore, there are several properties

of d-ideals of rings studied in earlier literature that have not been fully captured in

their extended form in [4]. Our modest aim in this paper is to extend some of those

results to Baer elements. Moreover, we shall include some aspects of Baer elements

that, to the best of our knowledge, have not even been studied for d-ideals in rings

per se.

Let us now briefly describe the content of this paper. In Section 2, we gather

the multiplicative lattice theoretic machinery needed throughout this paper. All of

the material presented is standard, with references including [2,3,11,12,29,30].

In Section 3, we present various equivalent characterizations and basic properties

of Baer elements. We provide a necessary and sufficient condition for the closedness

of Baer elements under finite products (Theorem 3.7), characterize lattices where

every Baer element is a z-element (Theorem 3.14), characterize domains (Theo-

rem 3.17) and discuss several relations between prime, maximal and Baer elements

(Proposition 3.18). We also give a sufficient condition for the contraction of Baer

elements under a multiplicative lattice homomorphism (Theorem 3.12).

In Section 4, we introduce Baer closures and discuss some properties of them

(Proposition 4.2). We provide some equivalent criteria on closedness of Baer ele-

ments under joins (Proposition 4.4). We view Baer closures as nuclei of various

types and apply them in studying some distinguished classes of Baer elements,

namely maximal, prime, semiprime and meet-irreducible.

2. Preliminaries

From [12], recall that a multiplicative lattice is a complete lattice (L,⩽, 0, 1)

endowed with an associative, commutative multiplication (denoted by ·), which

distributes over arbitrary joins and has 1 as multiplicative identity. Note that in

the sense of [23], a multiplicative lattice is a commutative, unital quantale. For

brevity, we shall write xy for x · y and xn for x · · · · · x (repeated n times). We say

x is strictly below y, denoted by x < y, whenever x ⩽ y and x ̸= y. Recall that a

map ϕ : L → L′ is said to be a multiplicative lattice homomorphism if ϕ preserves

⩽, binary joins, binary meets and multiplication.

For our later purposes, in the following lemma, we collect some elementary prop-

erties of multiplication of multiplicative lattices.

Lemma 2.1. In a multiplicative lattice L, the following hold.

(1) xy ⩽ x for all x, y ∈ L.
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(2) xy ⩽ x ∧ y for all x, y ∈ L.

(3) x0 = 0 for all x ∈ L.

(4) If x ⩽ y, then xz ⩽ yz for all x, y, z ∈ L.

(5) If x ⩽ y and u ⩽ v, then xu ⩽ yv for all x, y, u, v ∈ L.

Let us now recall a few definitions. Given an element a in L, an element b in

L is called minimal above a if a ⩽ b and for any element c ∈ L with the property

a ⩽ c ⩽ b implies that c = b. An element a in L is called nilpotent if we have

an = 0 for some n ∈ N+ (where N+ is the set of positive natural numbers ) and L

is said to be reduced if 0 is the only nilpotent element in L. An element c in L is

called compact, if whenever {xλ}λ∈Λ ⊆ L and c ⩽
∨

λ∈Λ xλ, we have c ⩽
∨n

i=1 xλi

for some n ∈ N+ and L is said to be compactly generated if every element of L is

the join of compact elements in L. We shall denote by C(L) the set of compact

elements in L.

Let us pause with the recollection of our definitions in order to declare our

underlying assumptions on lattices. For the rest of the paper, we will only work

with reduced, compactly generated multiplicative lattices where 1 is compact and

every finite product of compact elements is compact.

An element x in L is called proper if x < 1. A proper element m in L is said

to be maximal if, whenever x ∈ L, m ⩽ x and x < 1, we have m = x. We shall

denote by M(L) the set of all maximal elements in L. The following well-known

result confirms that M(L) is nonempty.

Lemma 2.2. In a multiplicative lattice L, if the top element 1 in L is compact,

then for every proper element a in L, there exists an m ∈ M(L) such that a ⩽ m.

A proper element p in L is called prime if, whenever x, y ∈ L, xy ⩽ p, we have

either x ⩽ p or y ⩽ p. We shall denote by P(L) the set of prime elements in L. An

element p in L is called a minimal prime if there is no prime element q in L with

q < p. An element q in L is said to be semiprime if, whenever x ∈ L and x2 ⩽ q,

we have x ⩽ q.

Let us recall that an element s in L is called meet-irreducible if, whenever x,

y ∈ L and x ∧ y ⩽ s, we have either x ⩽ s or y ⩽ s. An element x in L is said to

be a zero divisor if there exists a non-zero element y in L such that xy = 0 and L

is said to be a domain if L does not have any non-zero zero divisor.

According to [1], the radical of an element x in L is defined as

√
x :=

∨{
y ∈ L | y is compact, yn ⩽ x for some n ∈ N+

}
.
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It is then shown that

√
x =

∧
{p ∈ P(L) | p is prime over x} (†)

=
∧

{p ∈ P(L) | p is minimal prime over x}

and x is called a radical element whenever x =
√
x. The Jacobson radical of a

multiplicative lattice L is defined as

jL :=
∧

{m | m ∈ M(L)}

and L is said to be semisimple if jL = 0. Recall that for any two elements a and b

in L, the residual of a by b is defined as

(a : b) :=
∨

{x ∈ L | xb ⩽ a}

and the annihilator of an element a in L is defined as

a⊥ :=
∨

{x ∈ L | xa = 0} .

To denote the annihilator of the annihilator a⊥ of an element a, instead of (a⊥)⊥, we

shall use the notation a⊥⊥. Let us record some well-known properties of annihilators

of elements in multiplicative lattices that will be useful in sequel.

Lemma 2.3. Suppose L is a multiplicative lattice and a, b, c are elements in L.

Then the following hold.

(1) If a ⩽ b, then b⊥ ⩽ a⊥.

(2) a ⩽ a⊥⊥.

(3) a⊥⊥⊥ = a⊥.

(4) a⊥⊥ ∧ b⊥⊥ = (ab)⊥⊥.

(5) If a⊥ ⩽ b⊥, then (ac)⊥ ⩽ (bc)⊥.

We shall denote by A(L) the set of all annihilators of L. That is,

A(L) = {x⊥ | x ∈ L} = {y⊥⊥ | y ∈ L}.

It is proper to comment that, as in frames, with the partial order inherited from L,

A(L) is a Boolean algebra.



REVISITING BAER ELEMENTS 5

3. Baer elements

According to [4, Definition 1], an element a in a multiplicative lattice L is called

a Baer element if, whenever c ∈ C(L) and c ⩽ a, we have c⊥⊥ ⩽ a. We shall denote

by B(L) the set of all Baer elements in L.

In the next proposition, we gather some elementary results on Baer elements.

Proposition 3.1. In a multiplicative lattice L, then the following hold.

(1) An element b in L is a Baer element if and only if whenever u, v ∈ C(L),

u⊥ = v⊥ and u ⩽ b, we have v ⩽ b.

(2) Every Baer element in L is a radical element.

(3) If b is a Baer element in L, then so is every minimal prime element above

b.

(4) Every Baer element in L is the meet of all prime Baer elements above it.

(5) Both 0 and 1 in L are Baer elements.

(6) If {xλ}λ∈Λ is a family of Baer elements in L, then so is
∧

λ∈Λ xλ.

Proof. (1)–(4) See [4].

(5) For any elements u, v ∈ C(L), let us suppose that u⊥ = v⊥ and u ⩽ 0. This

implies that u = 0 and hence 0⊥ = 1 = v⊥. Therefore v = 0. The proof of 1 is a

Baer element is trivial.

(6) Assume that {xλ}λ∈Λ is a family of Baer elements of L. Let us suppose a,

b ∈ C(L) with a⊥ = b⊥ and b ⩽
∧

λ∈Λ xλ. Since
∧

λ∈Λ xλ ⩽ xλ and xλ ∈ B(L) for

all λ ∈ Λ, we have a ⩽ xλ for all λ ∈ Λ and hence a ⩽
∧

λ∈Λ xλ, implying that∧
λ∈Λ xλ ∈ B(L). □

Remark 3.2. Note that in the proof of Proposition 3.1(4), the assumption that L

is reduced was utilized. Therefore, in particular, this assumption will be employed

whenever we apply Proposition 3.1(4).

In Proposition 3.1(1), we have seen an alternative definition of a Baer element.

In the next result we shall provide another one.

Proposition 3.3. An element x in a multiplicative lattice L is a Baer element if

and only if whenever u, v ∈ C(L), u⊥ ⩽ v⊥ and u ⩽ x, we have v ⩽ x.

Proof. Let x be a Baer element in L. Suppose that u, v ∈ C(L), u⊥ ⩽ v⊥ and

u ⩽ x. Since x is a Baer element and u compact, u⊥⊥ ⩽ x. Using this, (1) and (2)

from Lemma 2.3, we obtain

v ⩽ v⊥⊥ ⩽ u⊥⊥ ⩽ x.
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Thanks to Proposition 3.1(1), the converse is obvious. □

In the context of frames, there is another well-known definition of a d-element

(see [21, Definition and Remarks 5.1.]), which can also be extended to a Baer

element in a multiplicative lattice. Furthermore, this definition coincides to one of

the (equivalent) definitions mentioned earlier. We summarize all these facts in the

following proposition.

Proposition 3.4. The following are equivalent for an element d in a multiplicative

lattice L.

(1) d is a Baer element.

(2) d =
∨
{c⊥⊥ | c ⩽ d, c ∈ C(L)}.

Proof. (1)⇒(2): Since L is compactly generated, d =
∨
{c ∈ C(L) | c ⩽ d}. Now

if d is a Baer element, then v⊥⊥ ⩽ d, whenever v ∈ C(L) and v ⩽ d. Thus, since

w ⩽ w⊥⊥ for all w ∈ L,

d =
∨

{c ∈ C(L) | c ⩽ d} ⩽
∨

{c⊥⊥ | c ⩽ d, c ∈ C(L)} ⩽ d,

which proves that d =
∨
{c⊥⊥ | c ⩽ d, c ∈ C(L)}.

(2)⇒(1): Let us suppose that d =
∨
{c⊥⊥ | c ⩽ d, c ∈ C(L)}. Then, whenever

v ∈ C(L) and v ⩽ d, we have v⊥⊥ ⩽ d, which implies d is a Baer element. □

Remark 3.5. Let us collect all the characterizations of Baer elements that we have

so far. In a multiplicative lattice L, the following are equivalent for an element

b ∈ L:

• b ∈ B(L).

• Whenever u, v ∈ C(L), u⊥ = v⊥ and u ⩽ b, we have v ⩽ b.

• Whenever u, v ∈ C(L), u⊥ ⩽ v⊥ and u ⩽ b, we have v ⩽ b.

• b =
∨
{c⊥⊥ | c ⩽ b, c ∈ C(L)}.

Later on, in Proposition 4.2(2), we shall see one more (equivalent) characterization

of a Baer element.

In Proposition 3.1(6), we have shown that Baer elements are closed under arbi-

trary meets. The next result will give us a partial converse of that and extend [26,

Proposition 2.14].

Proposition 3.6. Let {ai}ni=1 be a set of elements in a multiplicative lattice L with

the property that ai ∨ aj = 1 whenever i ̸= j. If
∧n

i=1 ai is a Baer element in L,

then each ai (1 ⩽ i ⩽ n) is also a Baer element in L.
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Proof. Suppose u and v are compact elements in L, u⊥ ⩽ v⊥ and u ⩽ aj for some

j ∈ {1, . . . , n}. It is easy to see that aj ∨
∧n

k=1, k ̸=j ak = 1, from which we obtain

vaj ∨
n∧

k=1, k ̸=j

vak = v.

Observe that u⊥ ⩽ v⊥ implies (uak)
⊥ ⩽ (vak)

⊥, for any k ̸= j. Since uak ⩽∧n
k=1 ak and

∧n
k=1 ak ∈ B(L),

n∧
k=1, k ̸=j

vak ⩽
n∧

i=1

ak,

and hence
∧n

k=1, k ̸=j vak ⩽ aj . Obviously vaj ⩽ aj . Therefore v ⩽ aj , proving that

aj ∈ B(L). □

We shall now inquire when Baer elements are closed under finite products and

the following theorem provides us with a necessary and sufficient condition for that.

Theorem 3.7. The product of two Baer elements in a multiplicative lattice L is a

Baer element if and only if c⊥⊥c⊥⊥ = c⊥⊥ for all compact elements c in L.

Proof. If L has no non-zero Baer elements, then L = {0} (cf. Proposition 3.1(5)).

Let us suppose that a and b are two Baer elements in L. Suppose c ⩽ ab for some

compact element c in L. This implies that c ⩽ a and c ⩽ b. Since a and b are Baer

elements, we have c⊥⊥ ⩽ a and c⊥⊥ ⩽ b. Applying the hypothesis and Lemma 2.1,

we obtain

c⊥⊥ = c⊥⊥c⊥⊥ ⩽ ab,

implying ab is a Baer element. Conversely, let us suppose that c be a compact

element in L. Since c ⩽ c⊥⊥, we have c2 ⩽ (c⊥⊥)2. Moreover, (c⊥⊥)2 is a Baer

element by our assumption. Using all these and Lemma 2.3(4), we have the desired

identity from the following:

c⊥⊥ = c⊥⊥ ∧ c⊥⊥ = (cc)⊥⊥ ⩽ (c⊥⊥)2 = c⊥⊥c⊥⊥ ⩽ c⊥⊥. □

Definition 3.8. We shall say a multiplicative lattice L is a B-multiplicative lattice

if (c⊥⊥)2 = c⊥⊥ holds for all compact elements c in L.

Our next goal is to obtain some examples of Baer elements using residuals.

Proposition 3.9. In a multiplicative lattice L, the following hold.

(1) If a is a Baer element in L, then so is (a : b) for any element b in L.

(2) For every element a in L, the element a⊥ is a Baer element.
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(3) If b, {bi}i∈I , c are elements in L and a, {aj}j∈J are Baer elements in

L, then ((a : b) : c), (a : bc), ((a : c) : b), (
∧

j∈J aj : b),
∧

j∈J(aj : b),

(a :
∨

i∈I bi), and
∧

i∈I(a : bi) are Baer elements in L.

Proof. (1) Let us suppose u and v are compact elements in L, u⊥ ⩽ v⊥ and

u ⩽ (a : b). This implies that

bu ⩽ (a : b)b ⩽ a.

Since (bu)⊥ ⩽ (bv)⊥ by Lemma 2.3(5) and a ∈ B(L), we have bv ⩽ a, which implies

that v ⩽ (a : b).

(2) Although the proof follows from (1) and Proposition 3.1(5), however, we give

another proof. Suppose v ∈ C(L) and v ⩽ a⊥. Applying (1) and (3) from Lemma

2.3, we have v⊥⊥ ⩽ a⊥. Hence a⊥ ∈ B(L).

(3) Follows from (1). □

We next wish to show that certain types of multiplicative lattice homomorphisms

“contract” Baer elements to Baer elements. Since we are going to impose certain

conditions on the homomorphisms, we first show by a simple example that the

conditions we will impose are not so stringent as to make them isomorphisms.

Example 3.10. Let 2 be the two-element chain {0, 1} and 3 = {0,m, 1} be the

three-element chain; both viewed as multiplicative lattices with product given by ∧.
Let ϕ : 2 → 3 be the unique homomorphism. Then ϕ has the following properties:

• ϕ maps compact elements to compact elements.

• ϕ is injective, but not an isomorphism.

• For any compact c in the domain of ϕ, ϕ(c⊥) = ϕ(c)⊥.

Definition 3.11. We call a multiplicative lattice homomorphism ϕ : L → M strong

if it is injective, it maps compact elements to compact elements and it commutes

with annihilation of compact elements in the sense that for any compact c ∈ L, we

have ϕ(c⊥) = ϕ(c)⊥.

Theorem 3.12. If ϕ : L → M is a strong homomorphism, then ϕ−1[B(M)] ⊆
B(L).

Proof. Let x ∈ ϕ−1[B(M)] and consider any compact elements c and d in L with

c⊥ = d⊥ and c ⩽ x. We aim to show that d ⩽ x, which, by Proposition 3.1(1), will

prove that x is a Baer element. Since ϕ is strong, ϕ(c) and ϕ(d) are compact element

of M . Moreoever, ϕ(c) ⩽ ϕ(x). Since x ∈ ϕ−1[B(M)], we have ϕ(x) ∈ B(M). It
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follows that ϕ(d) ⩽ ϕ(x), whence d ⩽ x since ϕ is injective. Thus, x ∈ B(L), as

desired. □

In terms of similarity, one of the closest classes of elements to Baer elements is

that of z-elements. To define a z-element, we need the confirmation of existence of

maximal elements in multiplicative lattices, which follows from Lemma 2.2. For an

a in L, let us define

Ma := {m ∈ M(L) | a ⩽ m} and ma :=
∧

Ma.

According to [20], an element x in L is called a z-element if, whenever a, b ∈ L,

Ma = Mb and b ⩽ x, we have a ⩽ x.

Remark 3.13. It can be shown (see [20, Lemma 2.10]) that the following three

statements are equivalent in a multiplicative lattice L (cf. Remark 3.5):

• An element x is a z-element in L.

• Whenever a, b ∈ L, Ma ⊇ Mb and b ⩽ x, we have a ⩽ x.

• Whenever a, b ∈ L, mb ⩽ ma and a ⩽ x, we have b ⩽ x.

In the next theorem, we shall characterize those multiplicative lattices in which

every Baer element is a z-element. This result is well-known in rings (e.g., see [26,

Proposition 2.9]).

Theorem 3.14. In a multiplicative lattice L, every Baer element is a z-element if

and only if L is semisimple.

Proof. Let x be a Baer element in a semisimple multiplicative lattice L. Let us

suppose that mb ⩽ ma and a ⩽ x. We claim that a⊥ ⩽ b⊥. For c ∈ C(L) with

ca = 0 implies that c ⩽ a⊥. Now from [20, Lemma 2.6] and the hypothesis, it

follows that

mbc ⩽ mac = m0 = jL = 0.

Therefore bc = 0 and hence c ⩽ b⊥. Since x ∈ B(L), we have b ⩽ x and hence x

is a z-element in L. Conversely, let us suppose that every Baer element in L is a

z-element. From Proposition 3.1(5) it follows that 0 is a z-element. Now if a ∈ jL,

then we have ma = m0 = 0, which implies that a = 0. □

Corollary 3.15. In an algebraic frame, every d-element is a z-element.

Remark 3.16. For the ring RL of continuous functions over a frame L, the notions

of d-ideals and z-ideals are introduced in [13, Definition 4.10], and it is not hard to
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see that every d-ideal in RL is a z-ideal. Therefore, our Theorem 3.14 also extends

this result to multiplicative lattices.

We shall now obtain a characterization of domains by the absence of non-trivial

Baer elements in them and the next result extends [26, Lemma 2.11].

Theorem 3.17. A multiplicative lattice L is a domain if and only if L has no

non-zero Baer element.

Proof. Let us suppose that a is a Baer element in a domain L. This implies

a⊥⊥ = 0 and since a ⩽ a⊥⊥ by Lemma 2.3(2), a = 0. Conversely, suppose a is

an element in L such that ax = 0 for some x ∈ L. This implies that x ⩽ a⊥.

By Proposition 3.1(2), a⊥ is a Baer element and by hypothesis a⊥ = 0. Therefore

x = 0, implying that L is a domain. □

Our next proposition is on establishing some relations between Baer, prime and

maximal elements in multiplicative lattices and first three of them extend [26,

Proposition 3.1].

Proposition 3.18. In a multiplicative lattice L, the following hold.

(1) If x ∈ L, p ∈ P(L) and x ∧ p ∈ B(L), then either x ∈ B(L) or p ∈ B(L).

(2) If p, q ∈ P(L) which do not belong to a chain and p ∧ q ∈ B(L), then both

p, q ∈ B(L).

(3) If x ∈ L, m ∈ M(L) with x ⩽̸ m and x ∧m ∈ B(L), then x, m ∈ B(L).

(4) If p is a prime element in L, then either p is a Baer element or the maximal

Baer elements that are below p are prime Baer elements.

Proof. (1) Let us consider the case: x ⩽ p. Then by hypothesis, x∧ p = x ∈ B(L)

and we are done. So, let x ⩽̸ p. Then there exists an y ∈ L with y ⩽ x and

y ⩽̸ p. Suppose u and v are two compact elements in L with u⊥ ⩽ v⊥ and u ⩽ p.

From Lemma 2.3(5), we have (uy)⊥ ⩽ (vy)⊥. Since uy ⩽ x ∧ p and by hypothesis,

x ∧ p ∈ B(L), we have vy ⩽ x ∧ p and hence vy ⩽ p. Since p is prime and y ⩽̸ p,

v ⩽ p. Therefore p is a Baer element in L.

(2) Let us suppose that x ⩽ q and x ⩽̸ p. Suppose u, v ∈ C(L), u⊥ ⩽ v⊥ and

u ⩽ p. By Lemma 2.3(5), (ux)⊥ ⩽ (vx)⊥. Since ux ⩽ p ∧ q and p ∧ q ∈ B(L), we

have

vx ⩽ p ∧ q ⩽ p.

Since p is prime and x ⩽̸ p, we must have v ⩽ p implying that p is a Baer element

in L. Similarly, we can show that q is also a Baer element in L.
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(3) Since x ⩽̸ m, x ∨m = 1 and hence by Proposition 3.6 we have the desired

claim.

(4) Let us define a set

S := {x ∈ B(L) | x ⩽ p} .

Since 0 ∈ S by Proposition 3.1(5), the set S must be nonempty. Therefore, by

Zorn’s lemma, S has a maximal element, say m. Now, m = p if and only if p is a

prime Baer element. If m < p, then there exists a prime element q which is minimal

with respect to above m and below p. By Proposition 3.1(3), q is a Baer element

and hence q ̸= p. This implies either q = m, hence m is a prime element, or m < q,

contradicting maximality of m. □

4. Baer closures and their applications

We shall now introduce a closure on a multiplicative lattice that will assign a

unique Baer element to each element of the lattice and will give another alternative

definition of a Baer element. Furthermore, using these closures, we shall study

some distinguished classes of Baer elements in due course.

Definition 4.1. The Baer closure on a multiplicative lattice L is the map c : L → L

defined as

c(a) :=
∧

{x ∈ B(L) | a ⩽ x} .

In the next proposition, we shall establish some essential properties of Baer

closures.

Proposition 4.2. Suppose a and b are elements in a multiplicative lattice L. Then

the following hold.

(1) c(a) is the smallest Baer element such that a ⩽ c(a).

(2) c(a) = a if and only if a is a Baer element.

(3) c(a) = 1 if and only if a = 1.

(4) c(0) = 0.

(5) If a ⩽ b, then c(a) ⩽ c(b).

(6) c(c(a)) = c(a).

(7)
√
a ⩽ c(a).

(8) c(a) = c(
√
a).

(9) c(a) ∨ c(b) ⩽ c(a ∨ b) = c(c(a) ∨ c(b)).

(10) c(ab) = c(a ∧ b) = c(a) ∧ c(b).
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(11) If L is a B-multiplicative lattice, then c(ab) = c(a) c(b).

(12) c(an) = c(a), for any n ∈ N+.

Proof. (1) From Definition 4.1 it follows that a ⩽ c(a). By Proposition 3.1(6), we

know that c(a) is a Baer element in L. Now suppose y is a Baer element with the

property a ⩽ y. Then from Definition 4.1, c(a) ⩽ y.

(2) If a is a Baer element, then by Definition 4.1, we have c(a) = a. Conversely,

if the identity holds, then a is a Baer element by (1).

(3) Since 1 is a Baer element by Proposition 3.1(5), the claim c(1) = 1 follows

by (2). The converse is obvious.

(4) Follows from Proposition 3.1(5) and (2).

(5) Let us suppose that x ∈ B(L) with b ⩽ x. Then a ⩽ x and hence c(a) ⩽ x.

Since x was an arbitrary Baer element with the property b ⩽ x, we must have

c(a) ⩽ c(b).

(6) By (1), we have c(a) ⩽ c(c(a)). Now suppose that x ∈ B(L) with c(a) ⩽ x.

Since by definition, c(c(a)) is the infimum of all such x ∈ B(L), we must have

c(c(a)) ⩽ c(a).

(7) Let us suppose that SpecB(L) denotes the set of all prime Baer elements of

L. Now by applying (1), (†) and Proposition 3.1(4), we have

√
a =

∧
{p ∈ P(L) | a ⩽ p}

⩽
∧

{p ∈ SpecB(L) | a ⩽ p}

⩽
∧

{p ∈ SpecB(L) | c(a) ⩽ p} = c(a).

(8) Applying (5), (7) and (6), we have c(
√
a) ⩽ c(a). On the other hand, applying

(5) on a ⩽
√
a, we get c(a) ⩽ c(

√
a).

(9) Applying (1) and (5), we obtain c(a ∨ b) ⩽ c(c(a) ∨ c(b)), whereas applying

(5), we have c(a) ∨ c(b) ⩽ c(a ∨ b) and applying (6) on it gives

c(c(a) ∨ c(b)) ⩽ c(c(a ∨ b)) = c(a ∨ b).

(10) Since by Lemma 2.1, we have ab ⩽ a and ab ⩽ b, applying Lemma 2.1,

Proposition 3.1(6) and (5), we obtain

c(ab) ⩽ c(a ∧ b) ⩽ c(a) ∧ c(b) ∈ B(L).

Therefore, by (1), to obtain the desired equalities, it suffices to show that c(a)∧c(b)

is the smallest Baer element that is above ab. Let us suppose that x is a Baer
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element in L with ab ⩽ x. We shall show that

c(a) ∧ c(b) ⩽ x.

By MinL(x), let us denote the set of all minimal prime elements in L that are

above x. By Proposition 3.1(3), if p ∈ MinL(x), then p is a Baer element in L. By

Proposition 3.1(4), we have

x =
∧

{p | p ∈ MinL(x)} .

Now if p ∈ MinL(x), then ab ⩽ p and hence, either a ⩽ p or b ⩽ p. Since p is a

Baer element, c(a) ∧ c(b) ⩽ p. From this, c(a) ∧ c(b) ⩽ x, as required.

(11) The proof is similar to (10).

(12) Follows from (10). □

Remark 4.3. In the context of algebraic frames in which the meet of any two com-

pact elements is compact, there is another “closure operation” (see [21, Definition

and Remarks 5.1.]) which is well-known for d-elements (that is, Baer elements in

our context). To recall, for any x in a such an algebraic frame L, the d-closure of

x is defined as the element

d(x) :=
∨

{c⊥⊥ | c ⩽ x, c ∈ C(L)}.

It then turns out that d(x) is a d-element and, in fact, the smallest d-element above

x. Since c(x) is the smallest d-element that is above x (see Proposition 4.2(1)),

we have c(x) = d(x). It is worthy of note that, whereas Mart́ınez and Zenk [21]

construct the d-closure “from below” by taking joins, we have constructed it “from

above” by taking meets. Without going into details, let us comment that this brings

to mind the socle of a commutative ring A with identity, Soc(A), since it can be

built from below and also from above because

Soc(A) =
∑

{J ⊆ A | J is a minimal ideal of A}

=
⋂

{E ⊆ A | E is an essential ideal of A}.

In Section 3, we have studied closedness properties of Baer elements under meets

and products. The following proposition gives some equivalent criteria on closedness

of Baer elements under joins.

Proposition 4.4. In a multiplicative lattice L, the following are equivalent.

(1) If a and b are Baer elements in L, then so is a ∨ b.

(2) Whenever a, b ∈ L, we have c(a ∨ b) = c(a) ∨ c(b).
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(3) If {aλ}λ∈Λ ⊆ B(L), then
∨

λ∈Λ aλ ∈ B(L).

(4) If {aλ}λ∈Λ ⊆ L, then c
(∨

λ∈Λ aλ
)
=

∨
λ∈Λ c(aλ).

Proof. We shall only show (1)⇒(3). The rest of the implications are straightfor-

ward. Suppose u, v ∈ C(L), u⊥ ⩽ v⊥ and u ⩽
∨

λ∈Λ aλ. Since L is compactly

generated, there exists a finite subset {λ1, . . . , λn} of Λ such that u ⩽
∨n

i=1 aλi
.

Since by hypothesis
∨n

i=1 aλi
is a Baer element, we have

v ⩽
n∨

i=1

aλi
⩽

∨
λ∈Λ

aλ,

implying that
∨

λ∈Λ aλ ∈ B(L). □

Remark 4.5. The equivalence of (1) and (3) in Proposition 4.4, extends the cor-

responsing result on d-ideals in rings (see [14, Remark 3.2]).

We now view Baer closures as nuclei of various types. Recall from [24, p. 218]

that a map ϕ : L → L is called a quantic nucleus if, whenever a, b ∈ L, we have

a ⩽ ϕ(a), ϕ(ϕ(a)) = ϕ(a) and ϕ(ab) = ϕ(a)ϕ(b).

Proposition 4.6. If L is a B-multiplicative lattice, then every Baer closure is a

quantic nucleus.

Proof. Follows from (1), (6) and (11) of Proposition 4.2. □

According to [27, Definition 1], the map ϕ is called a nucleus if it satisfies a ⩽

ϕ(a), ϕ(ϕ(a)) = ϕ(a) and ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b), for all a, b in L. By [8, Definition

1.1], the map ϕ is said to be a multiplicative nucleus if it satisfies ϕ(a) = 1 if and

only if a = 1 and ϕ(ab) = ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b) for all a, b ∈ L.

Proposition 4.7. Every Baer closure on a multiplicative lattice is a nucleus and

a multiplicative nucleus.

Proof. The first claim follows from (1), (6) and (10) of Proposition 4.2, whereas

the second follows from (3) and (10) of Proposition 4.2. □

Here we shall gather a few results on Baer closures. The proofs of these state-

ments are either identical or similar to those presented in [24] and [8].

Proposition 4.8. If L is a B-multiplicative lattice, then every Baer closure as a

quantic nucleus satisfies the following identities:

c(ab) = c(a c(b)) = c(c(a)b) = c(c(a) c(b)),

for all a, b ∈ L.
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Defining the join in B(L) by
∨′

i∈I ai := c
(∨

i∈I ai
)
, we obtain the following (cf.

[24, Theorem 2.1]).

Theorem 4.9. If c is a quantic nucleus, then B(L) is a multiplicative lattice via

a⊙b = c(ab); and c : L → B(L) is a multiplicative lattice homomorphism. Moreover,

every surjective multiplicative lattice homomorphism arises (up to isomorphism) in

this manner.

Since c satisfies the property: c(ab) = c(a) ∧ c(b) (see Proposition 4.2(10)), it

follows that B(L) is a frame with ⊙ := ∧ and c is called a localic nucleus (see [24,

p. 219] and [7]). Since c is a multiplicative nucleus, in fact, we get more (cf. [8,

Lemma 1.2]).

Theorem 4.10. B(L) is a compact frame.

It is well-known that to check the primeness of an element in an algebraic frame,

we need only to verify the prime condition with respect to compact elements. With

the applications of Baer closures, we shall now show that in multiplicative lattices,

Baer elements, which need to be shown as maximal, prime, semiprime, or meet-

irreducible elements, enjoy similar privileges with respect to Baer elements.

Proposition 4.11. Suppose L is a multiplicative lattice. A Baer element m in L

is maximal if and only if m is maximal among all Baer elements in L.

Proof. The ‘only if’ part is obvious. Therefore, suppose that m is a maximal

element among all Baer elements in L and let m < a < 1, for some a /∈ B(L). We

need to show that m is a maximal element in L. Now we have

m = c(m) < a < c(a) < c(1) = 1,

where the first and last equalities follow respectively from Proposition 4.2(2) and

Proposition 4.2(3) and the middle strict inclusion follows from Proposition 4.2(2)

and the assumption that a /∈ B(L). Since m is a maximal element in B(L) and

c(a) ∈ B(L), we have a contradiction. Thus, m is a maximal element in L. □

The following corollary extends the second part of [9, Theorem 3.4].

Corollary 4.12. Every maximal Baer element in a multiplicative lattice is prime.

We shall now aim to obtain a similar result for prime Baer elements and semiprime

Baer elements, but for B-multiplicative lattices. It is not known to us whether this

restriction on lattices are also necessary.
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Proposition 4.13. Suppose L is a B-multiplicative lattice. Then the following

hold.

(1) A Baer element p in L is prime if and only if whenever x, y ∈ B(L) and

xy ⩽ p, we have either x ⩽ p or y ⩽ p.

(2) A Baer element q in L is semiprime if and only if whenever x ∈ B(L) and

x2 ⩽ q, we have x ⩽ q.

Proof. (1) Let us suppose that p is a Baer element satisfying the hypothesis. Now

suppose x, y ∈ L and xy ⩽ p. Then we obtain

c(x) c(y) ⩽ c(xy) ⩽ c(p)) = p,

where the first inequality follows from Proposition 4.2(11), whereas the second

inequality holds due to Proposition 4.2(5) and finally, the equality is due to the

fact that p is a Baer element (see Proposition 4.2(2)). By hypothesis, x ⩽ c(x) ⩽ p

or y ⩽ c(y) ⩽ p. Hence p is a prime element in L. Once again, the ‘only if’ part is

obvious.

(2) Similar to (1). □

We conclude the paper with a similar result as above, but for meet-irreducible

elements. Thanks to Proposition 4.2(10), however, we do not need any further

restriction (as in Proposition 4.13) on our lattices.

Proposition 4.14. A Baer element s in a multiplicative lattice L is meet-irreducible

if and only if whenever x, y ∈ B(L) and x ∧ y ⩽ s, we have x ⩽ s or y ⩽ s.

Proof. Let us suppose that s is a Baer element in L satisfying the hypothesis. Let

b, b′ ∈ L and b ∧ b′ ⩽ s. Applying (10) and (5) from Proposition 4.2, we obtain

c(b) ∧ c(b′) = c(b ∧ b′) ⩽ c(s) = s.

By hypothesis, this implies that c(b) ⩽ s or c(b′) ⩽ s. Finally, by Proposition

4.2(1), we have the desired claim. The proof of the converse is trivial. □

Concluding Remarks 4.15. We conclude the paper with the following remarks

regarding future research on Baer elements:

• Although Baer elements are closed under arbitrary meets, we are not aware

of an explicit characterization of multiplicative lattices in which Baer ele-

ments are closed under joins.

• It would be interesting to find a necessary and sufficient condition for the

contraction of Baer elements (cf. Theorem 3.12).
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• In the statement of Proposition 4.13, we have assumed L is aB-multiplicative

lattice. We do not know whether this assumption is also necessary.

• Finally, thanks to the referee, we have the following two questions:

– It would be interesting to see how the results presented here are applied

to other particular algebraic structures. For example, for a bounded

distributive lattice L we can define three notions of Baer element: Baer

ideal, Baer filter and Baer congruence of L. What is the relationship

between these three notions?

– Suppose that A is an algebra in a congruence modular variety and

Con(A) the complete lattice of its congruences. By means of com-

mutator operation [·], Con(A) becomes a multiplicative lattice, in a

larger sense (see [16]). It is clear that one can define the notion of

Baer congruence of A. What properties are preserved for them?
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