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Abstract. Let FG be the group algebra of the group G over the field F having

characteristic p > 0 and q = pn elements and U (FG) be the unit group of FG.

In this paper, we are proceeding to determine the structure of unit group of

group algebra of all four non isomorphic abelian groups and one non abelian

group C3 ×A4 of order 36, for any prime p > 0.
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1. Introduction

The study of a group of units is one of the classical topics in group rings because

of their topological applications and then again, after the description of simple

groups as special finite p-groups. It started with the papers of Higman [7,8] and

later the study of the unit group of modular group algebras was reported in the

papers of S. A. Jennings [9]. In general, group of units are involved in the study

of homological algebra and algebraic number theory. Recently, we have found their

applications in algebraic coding theory. Therefore, the study of group of units

provide a topic where many branches of algebra have a rich interplay. For arbitrary

primes p, A. Bovdi and Szakacs [3] provided a technique for finding the generators

for the Sylow-p subgroup of the unitary units of FpG where G is an abelian group.

Later, this technique was used to find a generating set of the unitary units and

hence to generate codes.

2. Preliminaries

Let FG be the group algebra of group G over field F and U (FG) be the mul-

tiplicative group of all invertible elements of the group algebra FG. The ring

homomorphism ε : FG → F is defined by ε( Σ
g∈G

rg g ) = Σ
g∈G

rg is known as aug-

mentation mapping of FG and its kernel is called augmentation ideal, denoted by

ω(G). The Annihilator of w is defined as Ann(w) = {α ∈ FG| αw = wα = 0}. Let



2 HARISH CHANDRA AND SHIVANGANI MISHRA

V (FG) be the normalized unit group and J (FG) be the Jacobson radical of FG
then, V = 1 + J (FG). For other basic details see [13]. In recent years, we have

seen a lot of papers that characterize the structure of unit groups of group algebras

and can be easily found in [2,5,6,12,14,17,18,19,20].

Most recently, Sahai and Ansari, in [1,16] completely characterized the unit

groups of group algebras of group of order 16 and 20. In this paper, we will

determine the structure of unit groups of group algebras of all four non-isomorphic

abelian group C36, C
2
6 , C2 × C18, C3 × C12 and one non abelian group C3 × A4 of

order 36. Our notations are same as in [2,16].

Following are the useful results that we use repeatedly in our proof.

Lemma 2.1. [13] Let G be a group and R be a commutative ring. Then the set of

all finite class sums forms an R-basis of Z(RG), the center of RG.

Lemma 2.2. [13] Let FG be a semisimple group algebra. If G′ denotes the com-

mutator subgroup of G, then

FG = FGeG′ ⊕∆(G,G′),

where FGeG′
∼= F(G/G′) is the sum of all commutative simple components of FG

and ∆(G,G′) is the sum of all the others.

Lemma 2.3. [10, Lemma 1.17] Let G be a locally finite p-group and let F be a field

of characteristic p. Then J (FG) = ω(FG).

Theorem 2.4. [11] Let N be a normal subgroup of G such that G/N is p-solvable.

If |G/N | = npa where (n, p) = 1, then

J (FG)
pa

⊆ FG.J (FN) ⊆ J (FG),

where F is a field of characteristic p > 0. In particular, if G is p-solvable of order

npa where (n, p) = 1, then J (FG)
pa

= 0.

3. Main results

This section provides the structure of unit groups of group algebras of all four

non isomorphic abelian groups and one non abelian group C3 × A4 over the finite

field F of positive characteristics p > 0. Theorem 3.1 contains the structure of

U (FC36) for both the semisimple (when p > 3) and non-semisimple (when p = 2

and 3) cases. Again, Theorem 3.2, Theorem 3.3 and Theorem 3.4 provides the

structure of U (FC2
6 ), U (F [C2×C18]) and U (F [C3×C12]), respectively. Theorem

3.5 gives the structure of U (F [C3 × A4]) for both semisimple and non-semisimple
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cases. We have characterized the unit group structure by finding the cyclotomic

F-classes SF (γg) of g ∈ G in semisimple cases (p - o(G)) and for non-semisimple

cases (p
∣∣o(G)), we have determined the Jacobson radical J (FG) for the structure

of normalised unit group V (FG), which gives the structure of U (FG) by using the

result U (FG) ∼= V (FG)×F∗.

Theorem 3.1. Let G ∼= C36 and F be a finite field of characteristic p > 0 having

q = pn elements.

(1) If p = 2, then

U (FG) ∼=



C9n
2 × C9n

4 × C9
2n−1, if q ≡ 1 (mod 9);

C9n
2 × C9n

4 × C2n−1 × C4
22n−1, if q ≡ −1 (mod 9);

C9n
2 × C9n

4 × C2n−1 × C22n−1 × C26n−1, if q ≡ 2,−4 (mod 9);

C9n
2 × C9n

4 × C3
2n−1 × C2

23n−1, if q ≡ −2, 4 (mod 9).

(2) If p = 3, then

U (FG) ∼=

C16n
3 × C8n

9 × C4
3n−1, if q ≡ 1 (mod 4);

C16n
3 × C8n

9 × C2
3n−1 × C32n−1, if q ≡ −1 (mod 4).

(3) If p > 3, then

U (FG) ∼=



C36
pn−1, if q ≡ 1 (mod 36);

C2
pn−1 × C17

p2n−1, if q ≡ −1 (mod 36);

C4
pn−1 × C4

p2n−1 × C4
p6n−1, if q ≡ 5,−7 (mod 36);

C6
pn−1 × C3

p2n−1 × C4
p3n−1 × C2

p6n−1, if q ≡ −5, 7 (mod 36);

C12
pn−1 × C8

p3n−1, if q ≡ −11, 13 (mod 36);

C2
pn−1 × C5

p2n−1 × C4
p6n−1, if q ≡ 11,−13 (mod 36);

C4
pn−1 × C16

p2n−1, if q ≡ 17 (mod 36);

C18
pn−1 × C9

p2n−1, if q ≡ −17 (mod 36).

Proof. Let C36 =< x |x36 = 1 > .

(1) Let CharF = 2 with |F| = 2n elements. Since C4 =< x : x4 = 1 > is a

normal subgroup of G, therefore G/C4
∼= C9 and |G : C4| 6= 0 in F . As C4

is a 2-group, therefore by Lemma 2.3 and [15, Theorem 7.2.7] , J (FC36) =

ω(C4). So, FC36/J (FC36) ∼= FC9. Hence, from the ring epimorphism

FC36 → FC9, we have a group epimorphism θ : U (FC36) → U (FC9)

with Kerθ = H = 1 + ω(C4). Also, we have a group homomorphism
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φ : U (FC9)→ U (FC36). It can be easily seen that θoφ = 1U(FC9). Thus,

U (FC36) is a split extension of U (FC9) by H and hence,

U (FC36) ∼= H ×U (FC9).

Now,

ω(C4) =
{
α =

∑35
i=0 aix

i|
∑3

i=0 a9i+j = 0, j = 0, 1, 2, 3, 4, 5, 6, 7, 8; ai ∈ F
}

and α4 = 0 for any α ∈ ω(C4). It is clear that dimFJ (FC36) = 27 and

exp(H) = 4. Thus, |H| = 227n and H ∼= Ck1
2 × C

k2
4 . So, 2k1 × 4k2 = 227n.

Next, we will calculate k1 and k2. Set

S =
{
α ∈ ω(C4) : α2 = 0 and there existsβ ∈ ω(C4) such thatα = β2

}
.

By direct computation, we have

S =
{∑8

i=0 a2i(x
2i + x18+2i), a2i ∈ F

}
. Therefore, |S| = 29n which

implies that k2 = 9n and then k1 = 9n. Hence H ∼= C9n
2 × C9n

4 and

U (FC36) ∼= C9n
2 × C9n

4 ×U (FC9)

and for the structure of U (FC9) see, [16].

(2) Let Char(F) = 3 with |F| = 3n elements. Let C9 =< x : x9 = 1 >

be a normal subgroup of G such that G/C9
∼= C4 and |G : C9| 6= 0 in F .

Since C9 is a 3-group, therefore by Lemma 2.3 and [15, Theorem 7.2.7],

J (FC36) = ω(C9). So, FC36/J (FC36) ∼= FC4 and hence

U (FC36) ∼= H ×U (FC4),

where H = 1 + ω(C9). Also, we have

ω(C9) =
{
α =

∑35
i=0 aix

i|
∑8

i=0 a4i+j = 0, j = 0, 1, 2, 3; ai ∈ F
}

and α9 = 0 for any α ∈ ω(C9). It is clear that dimFJ (FC36) = 32 and

exp(H) = 9. Thus, |H| = 332n, H ∼= Ck1
3 × C

k2
9 and 3k1 × 9k2 = 332n . Set

S =
{
α ∈ ω(C9) : α3 = 0 and there existsβ ∈ ω(C9) such thatα = β3

}
.

By direct computation, we have

S =
{∑3

i=0 a3i(x
3i + x24+3i) + a12(x12 + x24) + a15(x15 + x27) + a18(x18 +

x30) + a21(x21 + x33); a3i ∈ F
}
.

Therefore, |S| = 38n which implies that k2 = 8n and then k1 = 16n. Hence,

H ∼= C16n
3 × C8n

9 and

U (FC36) ∼= C16n
3 × C8n

9 ×U (FC4)
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and the structure of U (FC4) follows from [16].

(3) Since p > 3, therefore by Maschke’s theorem FG is semisimple as p does

not divide |G|. It is clear that all elements are p-regular and m = 36. Now

we have the cases:

(a) If q ≡ 1 (mod 36), then T = {1} (mod 36). Thus, |SF (γg)| = 1 for

every g ∈ G. Thus by [4, Proposition 1.2 and Theorem 1.3],

FC36
∼= F36.

(b) If q ≡−1 (mod 36), then T = {1,−1} (mod 36). Thus, |SF (γg)| = 1

for g = 1, x18; |SF (γg)| = 2 for g = xi; 1 ≤ i ≤ 17. Thus by [4,

Proposition 1.2 and Theorem 1.3],

FC36
∼= F2 ⊕F17

2 .

(c) If q ≡ 5,−7 (mod 36), then T = {1, 5, 13, 17, 25, 29} (mod 36). Thus,

|SF (γg)| = 1 for g = 1, x±9, x18; |SF (γg)| = 2 for g = x±3, x6, x12

and |SF (γg)| = 6 for g = x±1, x2, x4. Thus by [4, Proposition 1.2 and

Theorem 1.3],

FC36
∼= F4 ⊕F4

2 ⊕F4
6 .

(d) If q ≡ 7,−5 (mod 36), then T = {1, 7, 13, 19, 25, 31} (mod 36). Thus,

|SF (γg)| = 1 for g = 1, x±6, x±12, x18; |SF (γg)| = 2 for g = x±3, x9;

|SF (γg)| = 3 for g = x±8, x±10 and |SF (γg)| = 6 for g = x±1. Hence,

FC36
∼= F6 ⊕F3

2 ⊕F4
3 ⊕F2

6 .

(e) If q ≡−11, 13 (mod 36), then T = {1, 13, 25} (mod 36). Thus, |SF (γg)| =
1 for g = 1, x±3, x±6, x±9, x±12, x±15, x18; |SF (γg)| = 3 for g = x±1, x±2,

x±4, x±5. Hence,

FC36
∼= F12 ⊕F8

3 .

(f) If q ≡ 11,−13 (mod 36) , then T = {1, 11, 13, 23, 25, 35} (mod 36).

Thus, |SF (γg)| = 1 for g = 1, x18; |SF (γg)| = 2 for g = x3, x6, x9, x12, x15;

|SF (γg)| = 6 for g = x, x2, x4, x5. Hence,

FC36
∼= F2 ⊕F5

2 ⊕F4
6 .

(g) If q ≡ 17 (mod 36) , then T = {1, 17} (mod 36). Thus, |SF (γg)| = 1

for g = 1, x±9, x18; |SF (γg)| = 2 for g = x±1, x±3, x±5, x±7,

x2, x4, x6, x8, x10, x12, x14, x16. Hence,

FC36
∼= F4 ⊕F16

2 .
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(h) If q ≡−17 (mod 36), then T = {1, 19} (mod 36). Thus, |SF (γg)| = 1

for g = 1, x±2, x±4, x±6, x±8, x±10, x±12, x±14, x±16, x18, |SF (γg)| = 2

for g = x±1, x±3, x±5, x±7, x9. Hence,

FC36
∼= F18 ⊕F9

2 . �

Theorem 3.2. Let G ∼= C2
6 and F be a finite field of characteristic p > 0 having

q = pn elements.

(1) If p = 2, then

U (FG) ∼=

C27n
2 × C9

2n−1, if q ≡ 1 (mod 3);

C27n
2 × C2n−1 × C4

22n−1, if q ≡ −1 (mod 3).

(2) If p = 3, then U (FG) ∼= C32n
3 × C4

3n−1.

(3) If p > 3, then

U (FG) ∼=

C36
pn−1, if q ≡ 1 (mod 6);

C4
pn−1 × C16

p2n−1, if q ≡ −1 (mod 6).

Proof. Let C2
6 =< x, y |x6 = y6 = 1, xy = yx > .

(1) Let Char(F) = 2 with |F| = 2n elements and G ∼= C2
6
∼= C3×C3×K4. Let

K4 be a normal subgroup of G such that G/K4
∼= C3 × C3 and |G : K4| 6=

0 ∈ F . Since K4 is 2-group, therefore by Lemma 2.3 and [15, Theorem

7.2.7], J (FC2
6 ) = ω(K4). So, FC2

6/J (FC2
6 ) ∼= FC2

3 and hence,

U (FC2
6 ) ∼= H ×U (FC2

3 )

where H = 1 + ω(K4). It is clear that α2 = 0 for any α ∈ ω(K4) and

dimFJ (FG) = 27. So, exponent of H is 2. Thus, |H| = 227n and H ∼=
C27n

2 . Hence,

U (FG) ∼= C27n
2 × U(FC2

3 )

and the structure of U (FC2
3 ) is given in [16, Theorem 3.7].

(2) Let Char(F) = 3 with |F| = 3n elements and G ∼= C6×C6
∼= C3×C3×K4.

Let C2
3 be a normal subgroup of G such that G/C2

3
∼= C2×C2 and |G : C2

3 | 6=
0 ∈ F . Since C2

3 is 3-group, therefore by Lemma 2.3 and [15, Theorem

7.2.7], J (FC2
6 ) = ω(C2

3 ). So, FC2
6/J (FC2

6 ) ∼= FC2
2 and hence,

U (FC2
6 ) ∼= H ×U (FC2

2 )
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where H = 1 + ω(C2
3 ). It is clear that α3 = 0 for any α ∈ ω(C2

3 ) and

dimFJ (FG) = 32, so the exponent of H is 3. Thus, |H| = 332n and

H ∼= C32n
3 . Hence,

U (FG) ∼= C32n
3 ×U (FC2

2 )

and the structure of U (FC2
2 ) is given in [16, Theorem 3.2].

(3) Since p > 3, then FG is semisimple as p does not divide |G|. It is clear all

elements are p-regular and m = 6. Now we have the cases:

(a) If q ≡ 1 (mod 6), then T = {1} (mod 6). Thus, |SF (γg)| = 1 for all

g ∈ G. Thus by [4, Proposition 1.2 and Theorem 1.3],

F(C6 × C6) ∼= F36.

(b) If q ≡−1 (mod 6), then T = {1,−1} (mod 6). Thus, |SF (γg)| = 1 for

all g = 1, x3, y3, (xy)3 and |SF (γg)| = 2 for all g = x, x2, y, y2, xy±1, x2y±2

, xy±2, xy3, x2y±1, x2y3, x3y, x3y2. Hence,

F(C6 × C6) ∼= F4 ⊕F16
2 . �

Theorem 3.3. Let G ∼= C2 × C18 and F be a finite field of characteristic p > 0

having q = pn elements.

(1) If p = 2, then

U (FG) ∼=



C27n
2 × C9

2n−1, if q ≡ 1 (mod 9);

C27n
2 × C2n−1 × C4

22n−1, if q ≡ −1 (mod 9);

C27n
2 × C2n−1 × C22n−1 × C26n−1, if q ≡ 2,−4 (mod 9);

C27n
2 × C3

2n−1 × C2
23n−1, if q ≡ −2, 4 (mod 9).

(2) If p = 3, then

U (FG) ∼= C16n
3 × C8n

9 × C4
3n−1.

(3) If p > 3, then

U (FG) ∼=



C36
pn−1, if q ≡ 1 (mod 18);

C4
pn−1 × C16

p2n−1, if q ≡ −1 (mod 18);

C4
pn−1 × C4

p2n−1 × C4
p6n−1, if q ≡ 5,−7 (mod 18);

C12
pn−1 × C8

p3n−1, if q ≡ −5, 7 (mod 18).
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Proof. Let C2 × C18 =< x, y |x2 = y18 = 1, xy = yx > .

(1) Let Char(F) = 2 with |F| = 2n elements and G ∼= C2×C18
∼= C9×K4. Let

K4 be a normal subgroup of G such that G/K4
∼= C9 and |G : K4| 6= 0 ∈ F .

Since K4 is 2-group, therefore by Lemma 2.3 and [15, Theorem 7.2.7],

J (FG) = ω(K4). So, FG/J (FG) ∼= FC9 and hence,

U (FG) ∼= H ×U (FC9)

where H = 1 + ω(K4). It is clear that α2 = 0 for any α ∈ ω(K4) and

dimFJ (FG) = 27; so, exponent of H is 2. Thus, |H| = 227n and H ∼= C27n
2 .

Hence,

U (FG) ∼= C27n
2 ×U (FC9),

and the structure of U (FC9) is given in [16, Theorem 3.6].

(2) Let Char(F) = 3 with |F| = 3n elements. Let C9 be a normal subgroup

of G such that G/C9
∼= C2

2 and |G : C9| 6= 0 ∈ F . Since C9 is 3-group,

therefore by Lemma 2.3 and [15, Theorem 7.2.7], J (FG) = ω(C9). So,

FG/J (FG) ∼= FC2
2 and hence,

U (F(C2 × C18)) ∼= H ×U (FC2
2 )

where H = 1 + ω(C9). Now,

ω(C9) =
{
α =

∑1
j=0

∑17
i=0 a18j+ix

jyi|
∑8

i=0 a4i+j = 0, j = 0, 1, 2, 3; ai ∈
F
}

and α9 = 0 for any α ∈ ω(C9). It is clear that dimFJ (FG) = 32 and

exp(H) = 9. Thus |H| = 332n and H ∼= Ck1
3 × C

k2
9 ; so, 3k1 × 9k2 = 332n.

Set

S =
{
α ∈ ω(C9) : α3 = 0 and there existsβ ∈ ω(C9) such thatα = β3

}
.

By direct computation, we have

S =

{∑3
i=0 a3i(y

3i + xy3i+6) + a12(y12 + xy6) + a15(y15 + xy9) + a18(x+

xy12) + a21(xy3 + xy15), for all ai ∈ F
}
.

Therefore, |S| = 38n which implies that k2 = 8n and then k1 = 16n. Hence,

H ∼= C16n
3 × C8n

9 and

U (F(C2 × C18)) ∼= C16n
3 × C8n

9 ×U (FC2
2 ),

and the structure of U (FC2
2 ) is given in [16, Theorem 3.2].
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(3) Let p > 3, then FG is semisimple as p does not divide |G|. It is clear that

all elements are p-regular and m = 18. Now we have the cases:

(a) If q ≡ 1 (mod 18), then T = {1} (mod 18). Thus, |SF (γg)| = 1 for all

g ∈ G. Thus by [4, Proposition 1.2 and Theorem 1.3],

F(C2 × C18) ∼= F36.

(b) If q ≡−1 (mod 18),, then T = {1, 5, 7, 11, 13, 17} (mod 18). Thus,

|SF (γg)| = 1 for g = 1, x, y9, xy9 and |SF (γg)| = 2 for g = yi, xyi; 1 ≤
i ≤ 8. Hence,

F(C2 × C18) ∼= F4 ⊕F16
2 .

(c) If q ≡ 5,−7 (mod 18), then T = {1,−1} (mod 18). Thus, |SF (γg)| =
1 for g = 1, x, y9, xy9; |SF (γg)| = 2 for g = y3, xy3, y6, xy6 and

|SF (γg)| = 6 for g = y, xy, y2, xy2. Hence,

F(C2 × C18) ∼= F4 ⊕F4
2 ⊕F4

6 .

(d) If q ≡ 7,−5 (mod 18), then T = {1, 7, 13} (mod 18). Thus, |SF (γg)| =
1 for g = 1, x, y±3, y±6, y9, xy±3, xy±6, xy9, and |SF (γg)| = 3 for

g = y±1, xy±1, y±2, xy±2. Hence,

F(C2 × C18) ∼= F12 ⊕F8
3 . �

Theorem 3.4. Let G ∼= C3 × C12 and F be a finite field of characteristic p > 0

having q = pn elements.

(1) If p = 2, then

U (FG) ∼=

C9n
2 × C9n

4 × C9
2n−1, if q ≡ 1 (mod 3);

C9n
2 × C9n

4 × C2n−1 × C4
22n−1, if q ≡ −1 (mod 3).

(2) If p = 3, then

U (FG) ∼=

C32n
3 × C4

3n−1, if q ≡ 1 (mod 4);

C32n
3 × C2

3n−1 × C32n−1, if q ≡ −1 (mod 4).

(3) If p > 3, then

U ((FG)) ∼=



C36
pn−1, if q ≡ 1 (mod 12);

C2
pn−1 × C17

p2n−1, if q ≡ −1 (mod 12);

C4
pn−1 × C16

p2n−1, if q ≡ 5 (mod 12);

C18
pn−1 × C9

p2n−1, if q ≡ −5 (mod 12).

Proof. Let C3 × C12 =< x, y |x3 = y12 = 1, xy = yx > .
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(1) Let Char(F) = 2 with |F| = 2n elements and G ∼= C3×C12
∼= C3×C3×C4.

Let C4 be a normal subgroup of G such that G/C4
∼= C2

3 and |G : C4| 6= 0 ∈
F . Since C4 is 2-group, therefore by Lemma 2.3 and [15, Theorem 7.2.7],

J (FG) = ω(C4). So, FG/J (FG) ∼= FC2
3 . Now,

ω(C4) =
{
α =

∑2
j=0

∑11
i=0 a12j+ix

jyi|
∑3

i=0 a9i+j = 0, j =

0, 1, 2, 3, 4, , 5, 6, 7, 8; ai ∈ F
}

and α4 = 0 for any α ∈ ω(C4). It is clear that dimFJ (FG) = 27 and

exp(H) = 4. Thus, |H| = 227n and H ∼= Ck1
2 ×C

k2
4 so 2k1 ×4k2 = 227n. Set

S =
{
α ∈ ω(C4) : α2 = 0 and there existsβ ∈ ω(C4) such thatα = β2

}
.

By direct computation, we have

S =
{
a0(1 + xy6) + a2(y2 + xy8) + a4(y4 + xy10) + a6(x2 + y6) + a8(x2y2 +

y8) +a10(x2y4 + y10) +a12(x+x2y6) +a14(xy2 +x2y8) +a16(xy4 +x2y10);

for all ai ∈ F
}
.

Therefore, |S| = 29n which implies that k2 = 9n and then k1 = 9n. Hence,

H ∼= C9n
2 × C9n

4 and

U (F(C3 × C12)) ∼= C9n
2 × C9n

4 ×U (FC2
3 ),

and the structure of U (FC2
3 ) follows from [16, Lemma 3.3].

(2) Let char(F) = 3 with |F| = 3n elements and G ∼= C3×C12
∼= C3×C3×C4.

Let C2
3 be a normal subgroup of G such that G/C2

3
∼= C4 and |G : C2

3 | 6= 0 ∈
F . Since C2

3 is 3-group, therefore by Lemma 2.3 and [15, Theorem 7.2.7] ,

J (FG) = ω(C2
3 ). So, FG/J (FG) ∼= FC4. Now, α3 = 0 for any α ∈ ω(C2

3 )

and dimFJ(FG) = 32 (modify notation of F and G). Thus, exponent of H

is 3 and |H| = 332n and H ∼= C32n
3 . Hence,

U (FG) ∼= C32n
3 ×U (FC4),

and the structure of U (FC4) is given in [16, Theorem 3.1].

(3) Since p > 3, then FG is semisimple as p does not divide |G|. It is clear all

elements are p-regular and m = 12. Now we have the cases:

(a) If q ≡ 1 (mod 12) , then T = {1} (mod 12). Thus, |SF (γg)| = 1 for

all g ∈ G. Thus by [4, Proposition 1.2 and Theorem 1.3],

F(C3 × C12) ∼= F36.
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(b) If q ≡−1 (mod 12), then T = {1,−1} (mod 12). Thus, |SF (γg)| = 1

for g = 1, y6 and |SF (γg)| = 2 for g = x, xy6, yi, x±1yi; 1 ≤ i ≤ 5.

Hence,

F(C3 × C12) ∼= F2 ⊕F17
2 .

(c) If q ≡ 5 (mod 12), then T = {1, 5} (mod 12). Thus, |SF (γg)| = 1 for

g = 1, y6, y±3 and |SF (γg)| = 2 for g = x, y2, y4, y±1,

xy±1, xy2, xy±3, xy4, xy6, (xy)−1, x−1y, x−1y2, x−1y4. Hence,

F(C3 × C12) ∼= F4 ⊕F16
2 .

(d) If q ≡−5 (mod 12), then T = {1, 7} (mod 12). Thus, |SF (γg)| = 1

for g = 1, y6, y±4, x±1, xy6, xy±4, x−1y±4, x−1y6, y±2,

x−1y±2, xy±2 and |SF (γg)| = 2 for g = y, y3, y5, xy, xy3, xy5,

x−1y, x−1y3, x−1y5. Hence,

F(C3 × C12) ∼= F18 ⊕F9
2 . �

Theorem 3.5. Let G ∼= C3 × A4 and F be a finite field of characteristic p > 0

having q = pn elements.

(1) If p = 2, then

U (F(C3 ×A4)) ∼=

V o C9
2n−1, if q ≡ 1 (mod 3);

V o C2n−1 × C4
22n−1, if q ≡ −1 (mod 3).

where V = 1 + J (FG), is a 2-group of order 227n of exponent 4 and

U (F(C3 ×A4)) is non metabelian group.

(2) If p = 3, then V1 = 1 +J (FG), where J (FG) denotes the Jacobson radical

of the group algebra FG. Then,

(a) U (F(C3×A4))
V1

∼= C2n−1 ×GL(3,F).

(b) V1 is 3-group of order 326n and exponent 9.

(c) Nilpotency class of V1 is 4.

(3) If p > 3, then

U (F(C3×A4)) ∼=

C9
pn−1 ×GL(3,F)3, if q ≡ 1 (mod 6);

Cpn−1 × C4
p2n−1 ×GL(3,F)×GL(3,F2), if q ≡ −1 (mod 6).

Proof. Let G ∼= C3 × A4 =< a, b, c, d | a3 = b2 = c2 = d3 = 1, ab = ba, ac =

ca, ad = da, dbd−1 = bc = cb, dcd−1 = b > .
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Table 1. Conjugacy class Description of C3 ×A4

Symbolic Elements in the class Order of the elements

C0 {1} 1

C1 {a} 3

C2 {a−1} 3

C3 {b, c, bc} 2

C4 {ab, ac, abc} 6

C5 {a−1b, a−1c, a−1bc} 6

C6 {d, cd, bd, bcd} 3

C7 {d−1, bcd−1, bd−1, cd−1} 3

C8 {ad, abd, abcd, acd} 3

C9 {a−1d, a−1cd, a−1bcd, a−1bd} 3

C10 {acd−1, abd−1, abcd−1, ad−1} 3

C11 {a−1cd−1, a−1bd−1, a−1d−1, a−1bcd−1} 3

(1) Let p = 2. We define w= sum of all p elements including 1. Clearly,

w= 1 + b + c + bc. Let α =
∑35

i=0 aigi, gi ∈ G ∈ AnnFG(w). We rewrite

α =
∑11

i=0 αi such that supp(αi) ⊆ Ci for i = 0, 1, 2, . . . , 11. i.e.,

α0 = a0, α1 = a1a, α2 = a2a
−1, α3 = a3b+ a4c+ a5bc,

α4 = a6ab+ a7ac+ a8abc, α5 = a9a
−1b+ a10a

−1c+ a11a
−1bc,

α6 = a12d+ a13cd+ a14bd+ a15bcd,

α7 = a16d
−1 + a17bcd

−1 + a18bd
−1 + a19cd

−1,

α8 = a20ad+ a21abd+ a22abcd+ a23acd,

α9 = a24a
−1d+ a25a

−1cd+ a26a
−1bcd+ a27a

−1bd,

α10 = a28acd
−1 + a29abd

−1 + a30abcd
−1 + a31ad

−1,

α11 = a32a
−1cd−1 + a33a

−1bd−1 + a34a
−1d−1 + a35a

−1bcd−1.

Since αw = 0, hence we have

a0 + a3 + a4 + a5 = 0;

a1 + a6 + a7 + a8 = 0;

a2 + a9 + a10 + a11 = 0;

3∑
j=0

a4i+j = 0, for i = 3, 4, 5, 6, 7.

Thus, AnnFG(w) = {(c0 + c1a + c2a
−1)(1 + bc) + (c3 + c5a + c7a

−1)(b +

bc) + (c4 + c6a+ c8a
−1)(c+ bc) + [c9(1 + bc) + c10(c+ bc) + c11(b+ bc)]d+
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[c12(1 + c) + c13(c+ bc) + c14(b+ c)]d−1 + c15[(1 + c) + c16(b+ c) + c17(bc+

c)]d+ c18[(1 + b) + c19(c+ b) + c20(bc+ b)]a−1d+ c21[(1 + c) + c22(1 + b) +

c23(1 + bc)]ad−1 + c24[(c+ bc) + c25(b+ bc) + c26(1 + bc)]a−1d−1}.
Obviously, β1β2 = β2β1, for every β1, β2 ∈ AnnFG(w) and AnnFG(w)4 =

0, which gives AnnFG(w) ⊆ J (FG). Hence, by [20, Lemma 2.2], it is clear

that J (FG) = AnnFG(w) and dimFJ (FG) = 27. Hence dimF
(
FG/J (FG)

)
=

9. We determine the structure of FG/J (FG). The conjugacy classes {1},
{a}, {a−1}, {d, cd, bd, bcd}, {d−1, bcd−1, bd−1,
cd−1}, {ad, abd, abcd, acd}, {a−1d, a−1cd, a−1bcd, a−1bd}, {acd−1, abd−1,
abcd−1, ad−1} and {a−1cd−1, a−1bd−1, a−1d−1, a−1bcd−1} are 2-regular and

m = 3.

If q ≡ 1 (mod 3), then T = {1} (mod 3). By [4, Proposition 1.2 and

Theorem 1.3], FG/J (FG) ∼= F9. Hence

U (F(C3 ×A4)) ∼= V o C9
2n−1.

If q ≡ −1 (mod 3), then T = {−1, 1} (mod 3). So 2-regular F−conjugacy

classes are {1}, {a, a−1}, {d, cd, bd, bcd, d−1,
bcd−1, bd−1, cd−1}, {ad, abd, abcd, acd, a−1cd−1, a−1bd−1, a−1d−1,
a−1bcd−1}, {a−1d, a−1cd, a−1bcd, a−1bd, acd−1, abd−1, abcd−1, ad−1}. Thus

the number of 2-regular F−conjugacy classes are 5, consequently by [4,

Proposition 1.2 and Theorem 1.3], FG/J (FG) ∼= F ⊕ F4
2 . Hence

U (F(C3 ×A4)) ∼= V o C2n−1 × C4
22n−1.

Since dimFJ (FG) = 27, therefore V is a 2-group of order 227n and

by Theorem 2.4, exponent of V is 4. Now from [18, pp. 4], we have

U (F(C3 ×A4)) is either isomorphic to U (FA4)3 or U (FA4)×U (F2A4)

and it follows that U (F(C3 ×A4)) is non metabelian group as U (FA4) is

non metabelian.

(2) If p = 3, then we have the following cases:

(a) As C0 and C3 are the only 3-regular conjugacy classes, so m = 2 and

this gives two F conjugacy classes for any q. Therefore by [4, Theorem 1.3],

we have two components in the Wedderburn decomposition of FG/J (FG).

As dimF (J (FG)) = 26 and dimF (FG/J (FG)) = 10. Thus,

FG/J (FG) ∼= F ⊕M(3,F).

(b) As V1 = 1 + J (FG) and dimF (J (FG)) = 26, hence V1 is a 3-group

and |V1| = 326n. Now by Theorem 2.4, we have J 9 = 0 and V 9
1 = 1. Hence
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exponent of V1 is 9.

(c) Now we compute the nilpotency class of V1. Let u1 = (1 + u, 1 + v),

where u, v ∈ J (FG), then u1 ≡ 1 + vu((u, v) − 1) (mod J 3). Now if

u2 = (u1, 1 + v), then u2 ≡ 1 + v2u(u, v)((u1, v)− 1) (mod J 5) and if u3 =

(u2, 1+v), then u3 ≡ 1+v3u(u, v)((u1, v)−1)((u2, v)−1) (mod J 7). Now

u4 ≡ 1 (mod J 9). It can be easily seen that J 9 = 0. Hence γ5(V1) = 1,

thus the nilpotency class of V1 is 4.

(3) Let CharF = p > 3. Since, F
( G
G′

) ∼= F(C3 × C3), thus by [Lemma 2.2 ],

FG ∼= F(C3 × C3)⊕ (
⊕r

i=1M(ni,Fi))

where each Fi is a finite extension of F . Now, we have the following cases:

Case 1. If q ≡ 1 (mod 6). Then by [16, Theorem 3.3], F(C3 × C3) ∼= F9. Thus,

FG ∼= F9 ⊕ (

r⊕
i=1

M(ni,Fi))

and by Lemma 2.1, dimF (Z(FG)) = 12 and hence
∑r

i=1[Fi : F ] = 3. Now,∑k
i=1 n

2
i dimF (Fi) = 36 which implies

∑r
i=1 n

2
i dimF (Fi) = 36 − 9 = 27 and

T = {1} (mod 6). Therefore, the number of F conjugacy classes are conjugacy

classes of G. Let s be the number of F conjugacy classes. So, s = 12 and r = 3.

By dimension constraints, ni = 3, 1 ≤ i ≤ 3. Therefore,

FG ∼= F9 ⊕M(3,F)3.

Case 2. If q ≡ −1 (mod 6). Then by [16, Theorem 3.3], F(C3×C3) ∼= F⊕F4
2 .

Thus,

FG ∼= F ⊕ F4
2 ⊕ (

⊕r
i=1M(ni,Fi))

and by Lemma 2.1, dimF (Z(FG)) = 12 and hence
∑r

i=1[Fi : F ] = 3. Now∑k
i=1 n

2
i dimF (Fi) = 36, which implies

∑r
i=1 n

2
i dimF (Fi) = 36 − 9 = 27 and

T = {1,−1} (mod 6). Thus, |SF (γg)| = 1 for g = 1; |SF (γg)| = 2 for g = a;

|SF (γg)| = 3 for g = b; |SF (γg)| = 6 for g = ab; and |SF (γg)| = 8 for g = d, ad, a2d.

So, s = 7 and r = 2. By dimension constraints ni = 3, 1 ≤ i ≤ 2. Therefore,

FG ∼= F ⊕ F4
2 ⊕M(3,F)⊕M(3,F2).

This completes the proof. �
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4. Conclusions

We have characterized the unit group structure of the five groups of order 36

including one non-abelian group namely C3×A4. Based on our work in this paper

some interesting problems will arise in near future such as the characterization of the

unit group structure of other non-abelin groups of order 36 up to an isomorphism.

Using the results in this paper, we can deal with the normal complement problems

of group algebras.
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