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ABSTRACT. Let FG be the group algebra of the group G over the field F having
characteristic p > 0 and g = p™ elements and % (FG) be the unit group of FG.
In this paper, we are proceeding to determine the structure of unit group of
group algebra of all four non isomorphic abelian groups and one non abelian

group C3 X A4 of order 36, for any prime p > 0.
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1. Introduction

The study of a group of units is one of the classical topics in group rings because
of their topological applications and then again, after the description of simple
groups as special finite p-groups. It started with the papers of Higman [7,8] and
later the study of the unit group of modular group algebras was reported in the
papers of S. A. Jennings [9]. In general, group of units are involved in the study
of homological algebra and algebraic number theory. Recently, we have found their
applications in algebraic coding theory. Therefore, the study of group of units
provide a topic where many branches of algebra have a rich interplay. For arbitrary
primes p, A. Bovdi and Szakacs [3] provided a technique for finding the generators
for the Sylow-p subgroup of the unitary units of F,,G where G is an abelian group.
Later, this technique was used to find a generating set of the unitary units and

hence to generate codes.

2. Preliminaries

Let FG be the group algebra of group G over field F and % (FG) be the mul-
tiplicative group of all invertible elements of the group algebra FG. The ring
homomorphism € : FG — F is defined by e(gggrg g) = gggrg is known as aug-
mentation mapping of FG and its kernel is called augmentation ideal, denoted by
w(G). The Annihilator of w is defined as Ann(w) = {a € FG| aw = wa = 0}. Let
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V(FG) be the normalized unit group and J(FG) be the Jacobson radical of FG
then, V = 14 J(FG). For other basic details see [13]. In recent years, we have
seen a lot of papers that characterize the structure of unit groups of group algebras
and can be easily found in [2,5,6,12,14,17,18,19,20].

Most recently, Sahai and Ansari, in [1,16] completely characterized the unit
groups of group algebras of group of order 16 and 20. In this paper, we will
determine the structure of unit groups of group algebras of all four non-isomorphic
abelian group Csg,C2,Co x C13,C3 x C12 and one non abelian group C3 x A4 of
order 36. Our notations are same as in [2,16].

Following are the useful results that we use repeatedly in our proof.

Lemma 2.1. [13] Let G be a group and R be a commutative ring. Then the set of
all finite class sums forms an R-basis of Z(RG), the center of RG.

Lemma 2.2. [13] Let FG be a semisimple group algebra. If G' denotes the com-

mutator subgroup of G, then
]:g - ]:geg/ 5% A(gag/)u

where FG.,, = F(G/G") is the sum of all commutative simple components of FG
and A(G,G’) is the sum of all the others.

Lemma 2.3. [10, Lemma 1.17] Let G be a locally finite p-group and let F be a field
of characteristic p. Then J(FG) = w(FG).

Theorem 2.4. [11] Let N be a normal subgroup of G such that G/N is p-solvable.
If |G/N| = np® where (n,p) = 1, then

J(FG C FG.J(FN) C J(FG),

where F is a field of characteristic p > 0. In particular, if G is p-solvable of order
np® where (n,p) =1, then J(]—'g)pa = 0.

3. Main results

This section provides the structure of unit groups of group algebras of all four
non isomorphic abelian groups and one non abelian group C3 x A4 over the finite
field F of positive characteristics p > 0. Theorem 3.1 contains the structure of
U (FC3g) for both the semisimple (when p > 3) and non-semisimple (when p = 2
and 3) cases. Again, Theorem 3.2, Theorem 3.3 and Theorem 3.4 provides the
structure of % (FCZ), % (F[Ca x C15]) and % (F[C3 x C2]), respectively. Theorem

3.5 gives the structure of % (F[C3 x A4]) for both semisimple and non-semisimple
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cases. We have characterized the unit group structure by finding the cyclotomic
F-classes Sr(vy) of g € G in semisimple cases (p { 0o(G)) and for non-semisimple
cases (p‘o(g)), we have determined the Jacobson radical J(FG) for the structure
of normalised unit group V(FG), which gives the structure of % (FG) by using the
result % (FG) 2 V(FG) x F*.

Theorem 3.1. Let G = Css and F be a finite field of characteristic p > 0 having

q = p" elements.

(1) If p=2, then

CI" x CI" x C9_4, ifg =1 (mod9);
CY" x O x Con_y x Chy -, ifg = —1 (mod 9);
%(]:.g) ~ 2 4 2n—1 22n._1 fq ( )
C29n X an X CQn,l X 02271,_1 X CQBn_l, qu = 2, —4 (mod 9),
CP" x CI" x C3p_y x C2y 4, ifg = —2,4 (mod 9).

(2) If p=3, then

Ci6n x C8" x C%._4, ifg =1 (mod 4);
Cin x C8" x C2,_, x Cs2n_q, ifg = —1 (mod 4).
(3) If p> 3, then

w(FG) =

Ct_y, ifg =1 (mod 36);
an—1 X C’;Zn_l, ifg = =1 (mod 36);
Cpn_y X C’;fz,_l X C;LMA, ifg = 5,—7 (mod 36);
w(FG) ~ Cln_y X 032"71 X Cﬁsn,l X Cifmfl, ifg = —5,7 (mod 36);
Ch 1 x C§3n_1, ifg = —11,13  (mod 36);
an_l X C;’zn_l X Cz‘@”_l, ifg = 11,—13  (mod 36);
Cpny X Cl8_ 1, ifg = 17 (mod 36);
Cl 1 x C§2n_1, ifg = —17 (mod 36).

Proof. Let C3 =< 2|23 =1 > .

(1) Let CharF = 2 with |F| = 2" elements. Since Cy =< z:2* =1 >isa
normal subgroup of G, therefore G/Cy = Cy and |G : Cy| #0in F. As Cy
is a 2-group, therefore by Lemma 2.3 and [15, Theorem 7.2.7] , J(FCs6) =
w(Cy). So, FCs34/T(FCs6) = FC9. Hence, from the ring epimorphism
FCss — FCy, we have a group epimorphism 6 : % (FCss) — % (FCy)
with Kerf = H = 1+ w(Cy). Also, we have a group homomorphism
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¢ U (FCo) — U (FC36). It can be easily seen that 0op = 1y (pcy). Thus,
U (FCs) is a split extension of % (FCy) by H and hence,

02/(]:036) ~ H x %(]:CQ)

Now,

w(Cy) = {a =32 x| 30 agisj = 0,5 =0,1,2,3,4,5,6,7,8; a; € F}

and a* = 0 for any a € w(Cy). It is clear that dimzJ(FCss) = 27 and
exp(H) = 4. Thus, [H| = 2™ and H =2 C5* x C2. So, 251 x 4k2 = 220
Next, we will calculate k1 and ko. Set

S ={a € w(Cy):a?=0 and there exists 8 € w(Cy) such thata = 5%}.

By direct computation, we have
S = {3 jan(x% + 2'8%%) ay; € F}. Therefore, |S| = 2°" which
implies that k2 = 9n and then k; = 9n. Hence H = C9" x CJ" and

OZ/(]:CSG) = an X Cg" X %(]:Cg)

and for the structure of % (FCy) see, [16].

Let Char(F) = 3 with |F| = 3" elements. Let Cy =< z : 2° = 1 >
be a normal subgroup of G such that G/Cy = Cy and |G : Cy| # 0 in F.
Since Cy is a 3-group, therefore by Lemma 2.3 and [15, Theorem 7.2.7],
J(FCs6) = w(Cy). So, FCs6/T(FCs6) = FC4 and hence

%(.7:036) ~ H x %(.7:04),

where H =1+ w(Cy). Also, we have

w(Cy) = {a = Z?io a;x’| Z?:o asir; =0,j=0,1,2,3;a; € F}
and o = 0 for any a € w(Cy). It is clear that dimzJ(FCss) = 32 and
exp(H) = 9. Thus, |H| = 332", H = C5* x CF? and 351 x 9¥2 = 3327 | Set

S = {a e w(Cy): a® =0 and there exists 8 € w(Cy) such thatw = #3}.
By direct computation, we have

g — {Z?:o asi (2% + 22443 4 ago (212 + 22) + ag5 (215 + 227) + ars (S +
%) + ag1 (@ + 23%); ag; € F}.

Therefore, |S| = 3% which implies that ks = 8n and then k; = 16n. Hence,

H = C3%" x C§™ and

%(]:036) = C?}Gn X an X %(.7:04)
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and the structure of % (FCy) follows from [16].

(3) Since p > 3, therefore by Maschke’s theorem FG is semisimple as p does
not divide |G|. Tt is clear that all elements are p-regular and m = 36. Now

we have the cases:

(a) If ¢ =1 (mod 36), then 7" = {1} (mod 36). Thus, |Sr(v,e)| = 1 for

every g € G. Thus by [4, Proposition 1.2 and Theorem 1.3],
FCz6 2 F3.

(b) If g=—1 (mod 36), then T'= {1, —1} (mod 36). Thus, |Sr(ve)| =1
for g = 1,28 |Sx(y,)| = 2 for g = 21 < i < 17. Thus by [4,
Proposition 1.2 and Theorem 1.3],

FCs6 = F2 @ F).
(¢) Ifg=5,—7 (mod 36), then T = {1,5,13,17,25,29} (mod 36). Thus,

[SF(vg)| = 1 for g = 1,2*9,2'%; |Sx(yy)| = 2 for g = 273,221
and |Sx(v,)| = 6 for g = 21, 2%, 2. Thus by [4, Proposition 1.2 and
Theorem 1.3],

FC3 = Flra Fy & F.

(d) If g=7,-5 (mod 36), then T'= {1,7,13,19,25,31} (mod 36). Thus,
1SE(vg)| = 1 for g = 1,256, 212 218, |Sx(v,)| = 2 for g = 2*3,27;
|S7(74)| = 3 for g = 2*8, 210 and |Sx(v,)| = 6 for g = 21, Hence,

FCs = FO & Fy o Fi & F§.
(e) Ifg=—-11,13 (mod 36), then T' = {1,13,25} (mod 36). Thus, |Sx(yy)| =

18. 1
1 fOTg — 17$i3,$i6,1’i97$i12,$i15,QL’ 8’ |S]:( + 71.127

z**, %5 Hence,

vg)| =3forg ==z

FCs¢ = leEBfg.

(f) If ¢ =11,-13 (mod 36), then T = {1,11,13,23,25,35} (mod 36).

Thus, [Sx(vg)| = 1for g = 1,2'8; |Sx(vy)| = 2 for g = 23,25, 29, 212, 215,

‘SF(’YQH =6 for g =z, 22, x4, 2%, Hence,

FC36 = F? & F5 & F§.
(g) If ¢ =17 (mod 36), then T = {1,17} (mod 36). Thus, |[Sr(yy)| =1
for g = 1,29 218, |Sx(v,)| = 2 for g = 2F1, 2F3 2*5 2F7

2 .4 ,.6 ..8 .10 ,.12 .14
) )

22, xt, 28, 28 210 212 214 216, Hence,

FCs¢ = F D .7:216
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(h) If g =—17 (mod 36), then T' = {1,19} (mod 36). Thus, |Sr(y,)| =1
for g = 1’ x:l:27 a:i4, w:ﬁ:G, :Zfis, x:l:lO’ l.:l:127 x:ﬁ:147 x:l:l(i’ 118’ |S]-‘(’Yg)| =9
F1 pE3 %5 ET 29 Hence

.7'-03(5%.7:18@]:3. O

forg==x

Theorem 3.2. Let G = C2 and F be a finite field of characteristic p > 0 having

q = p" elements.

(1)

(2)

3)

Proof.

(1)

If p=2, then
CZ™ x Cdn_y, ifg =1 (mod 3);
U (FG) =~ 2 1 fq ( )
C3™ x Coyn_1 x Cs,_,, ifg = —1 (mod 3).
Ifp=3, then % (FG) = C32" x C4._;.

If p > 3, then
2 (FG) = iy, ifg =1 (mod 6);
Cpn 1 X C;g_l, ifg = =1 (mod 6).
Let C2 =< z,y|25=9° = 1,2y = ya > .

Let Char(F) = 2 with |F| = 2" elements and G = C2 = C3 x C3 x K4. Let
K4 be a normal subgroup of G such that G/K4 = C3 x C3 and |G : Ky4| #
0 € F. Since Ky is 2-group, therefore by Lemma 2.3 and [15, Theorem
7.2.7), J(FCZ) = w(Ky). So, FCZ/J(FCZ) = FC? and hence,

U(FC2) = H x % (FC3)

where H = 1 + w(Ky). It is clear that o? = 0 for any a € w(K4) and
dimzJ(FG) = 27. So, exponent of H is 2. Thus, |[H| = 22™ and H =

C3™. Hence,
U (FG) = C3™ x U(FC3)

and the structure of % (FC3%) is given in [16, Theorem 3.7].

Let Char(F) = 3 with |F| = 3" elements and G = Cs x Cg = C5 X C5 X Ky.
Let C2 be a normal subgroup of G such that G/C% =2 Cy x Cy and |G : C3| #
0 € F. Since C% is 3-group, therefore by Lemma 2.3 and [15, Theorem
7.2.7), J(FCZ) = w(C2). So, FC2/J(FC?) = FC3 and hence,

U(FC2) = H x % (FC?)
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where H = 1 + w(C%). It is clear that a® = 0 for any o € w(C%) and
dimzJ(FG) = 32, so the exponent of H is 3. Thus, |H| = 332" and

H = C3?". Hence,
U(FG) = C3" x 9 (FC3)

and the structure of % (FC3) is given in [16, Theorem 3.2].

(3) Since p > 3, then FG is semisimple as p does not divide |G|. It is clear all

elements are p-regular and m = 6. Now we have the cases:

(a) If g =1 (mod 6), then T'= {1} (mod 6). Thus, [Sr(vy)| = 1 for all
g € G. Thus by [4, Proposition 1.2 and Theorem 1.3],
F(Cs x Cg) = F36.
(b) If g =—1 (mod 6), then T'= {1, -1} (mod 6). Thus, |Sx(v,)| =1 for

aug = 1,1'3; yS’ (xy)S and |S.7:(79)| = 2 for aug = QC,ZL'Q, y,yQ,:L.y:tl’x2y:t2
7$yi27$y3,$2yi1,$2y37x3y7x3y2. Hence,
F(Cs x Cg) = F* & F3S. 0

Theorem 3.3. Let G = Cy x Cig and F be a finite field of characteristic p > 0

having g = p™ elements.

(1) If p=2, then

C2™M x C9_4, ifg =1 (mod 9);
C2™ x Con_q1 x Chy 1, ifg = =1 (mod 9);
%(]__g) ~ 2 2n—1 22n_q fq ( )
C§7n X CQn_l X 022n,1 X CQGn,]_, qu = 2, —4 (mod 9),
C3™m x C3n_y x C24p 4, ifg = —2,4 (mod 9).

(2) If p=3, then
U (FG) = Ci" x C§" x C4._.

(3) If p > 3, then

C’Sg_l, ifg =1 (mod 18);
Cpny X Cl0_y, ifg = —1 (mod 18);
Cpn_q X C;fzn,,l X C;lﬁnfl? 5,—7 (mod 18);
Cpi 1 X Clsn_y, ifg = —5,7 (mod 18).

1%

U (FG)

<
Q
I



Proof.

(1)

HARISH CHANDRA AND SHIVANGANI MISHRA

Let Oy x C1g =< z,y|2?2 =y =1, 2y = yz > .

Let Char(F) = 2 with |F| = 2™ elements and G = Cy x C13 =2 Cy x Ky. Let
K, be a normal subgroup of G such that G/K4 = Cy and |G : K4| #0 € F.
Since K, is 2-group, therefore by Lemma 2.3 and [15, Theorem 7.2.7],
J(FG) =w(Ky). So, FG/T(FG) = FCy and hence,

U(FG) = H x % (FCy)

where H = 1 + w(Ky). It is clear that a? = 0 for any @ € w(K,) and
dimzJ(FG) = 27; so, exponent of H is 2. Thus, |H| = 22™ and H = C3™.
Hence,

U (FG) = C3™ x U (FCy),
and the structure of % (FCy) is given in [16, Theorem 3.6].

Let Char(F) = 3 with |F| = 3" elements. Let Cy be a normal subgroup
of G such that G/Cy = C% and |G : Cy| # 0 € F. Since Cy is 3-group,
therefore by Lemma 2.3 and [15, Theorem 7.2.7], J(FG) = w(Cy). So,
FG/JT(FG) = FC3? and hence,

U (F(Cy x Cig)) = H x % (FC3)

where H = 1+ w(Cy). Now,

w(C’g) = {Oé = Z;:O Zzlio a18j+ixjyi| Z?:O Agitj = 0,] = 0, 1, 2,3; a; €

F}

and o® = 0 for any a € w(Cy). It is clear that dimzJ(FG) = 32 and
exp(H) = 9. Thus |H| = 332" and H = Ci* x CF?; so, 3F1 x 9k2 = 3321,
Set

S ={a €w(Cy): a® =0 and there exists 8 € w(Cy) such thatw = #3}.

By direct computation, we have

5= { S22 oz (Y3 + 2y0) + ara(y'? + xy®) + ars (v + 2y°) + ars(x +

y'?) + agi (vy? + 2y*®), for alla; € ]:}.

Therefore, |S| = 38" which implies that ko = 8n and then k; = 16n. Hence,
H = %" x 8" and

U (F(Cy x C1g)) =2 Ca6" x C§"™ x % (FC2),

and the structure of % (FC2) is given in [16, Theorem 3.2].
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(3) Let p > 3, then FG is semisimple as p does not divide |G|. Tt is clear that

all elements are p-regular and m = 18. Now we have the cases:

(a) If g =1 (mod 18), then T'= {1} (mod 18). Thus, |Sr(y,)| = 1 for all

g € G. Thus by [4, Proposition 1.2 and Theorem 1.3],
F(Cy x Crg) = F36.

(b) If ¢ =—1 (mod 18),, then T = {1,5,7,11,13,17} (mod 18). Thus,
|SE(vy)| =1 for g =1,2,y° 2y® and |Sr(v,)| =2 for g = y', ay’; 1 <
i < 8. Hence,

F(Cy x C1g) =2 F*ra FiS.

(c) If g=5,—7 (mod 18), then T' = {1, —1} (mod 18). Thus, |Sr(v,)| =
1 for g = 1,2,y 2y |Sx(vg)| = 2 for ¢ = y2, 2y, y5 2y and
1S7(7g)| = 6 for g =y, zy,y zy®. Hence,

F(Cy x O13) = Fro Fy @ Fg.
(d) If¢g=7,-5 (mod 18), then T' = {1, 7,13} (mod 18). Thus, |Sr(v4)| =

1 for g = 1,2,y%3

g=y oyt Y

L y*0, 4%, oyt ay*0, 2y?, and |Sr(vy,)| = 3 for
ry*2. Hence,
F(Cy x Cg) = F2 @ F§. 0

Theorem 3.4. Let G = C3 x C19 and F be a finite field of characteristic p > 0

having ¢ = p" elements.

(1) If p=2, then

W (FG) = CI" x C" x CF_4, ifg =1 (mod 3);
CI" x O™ x Cgn_q % 032"—17 ifg = —1 (mod 3).
(2) If p=3, then
2 (FG) ~ C32n x C_4, ifg =1 (mod 4);

C3* x 02, _; x Cy2n_y, ifqg = —1 (mod 4).
(3) If p > 3, then
Cey, ifg =1 (mod 12);
C’gn_l X C’;Zn_l, ifg = =1 (mod 12);
Cpoy x Cl2._y, ifg =5 (mod 12);
Cpn_1 X Chn 4, ifq

I

% (F9))

-5 (mod 12).

Proof. Let C3 x O =< z,y|2® = y2 = 1,2y = ya > .



10

(1)

HARISH CHANDRA AND SHIVANGANI MISHRA

Let Char(F) = 2 with |F| = 2™ elements and G = C3 x C12 = C3 x C3 X Cy.
Let Cy4 be a normal subgroup of G such that G/Cy = C2 and |G : Cy| # 0 €
F. Since Cy is 2-group, therefore by Lemma 2.3 and [15, Theorem 7.2.7],
J(FG) = w(Cy). So, FG/J(FG) = FC3. Now,

w(Cy) = {a= Z?:o Yoito a2ty Yoig avitj = 0,5 =
07172a374775a67778; a; € f}

and a? = 0 for any o € w(Cy). It is clear that dimzJ(FG) = 27 and
exp(H) = 4. Thus, |[H| = 227 and H = CN¥ x CF2 50 2F1 x 4k> = 227 et

S = {a €w(Cy): a* =0 and there exists 8 € w(Cy) such that o = §2}.
By direct computation, we have

S = {ao(1+zy5) + az(y® + 2®) + as(y* + zy'°) + ag (2 + y°) + as(2?y* +
y®) + aro(z?y* + 1) + a1z (x + 22y8) + a4 (zy? + 22y8) + a16 (zy* + 2%9y10);
for alla; € .7:}.

Therefore, |S| = 2°® which implies that ks = 9n and then k; = 9n. Hence,
H = C9" x C{" and
%(f(cg X 012)) = an X an X %(]:Cg),

and the structure of % (FC?%) follows from [16, Lemma 3.3].

Let char(F) = 3 with |F| = 3" elements and G = C3 X C12 & C5 x C5 x Cy.
Let C? be a normal subgroup of G such that G/C3% =2 Cy and |G : C3| # 0 €
F. Since C? is 3-group, therefore by Lemma 2.3 and [15, Theorem 7.2.7] ,
J(FG) = w(C3). So, FG/T(FG) = FCy. Now, a3 = 0 for any o € w(C3)
and dimpJ(FG) = 32 (modify notation of F and G). Thus, exponent of H
is 3 and |H| = 3%?" and H = C§?>". Hence,

WU(FG) =2 CPn x % (FCy),

and the structure of % (FCy) is given in [16, Theorem 3.1].

Since p > 3, then FG is semisimple as p does not divide |G|. It is clear all

elements are p-regular and m = 12. Now we have the cases:

(a) If g =1 (mod 12), then T' = {1} (mod 12). Thus, |Sr(v,)| = 1 for
all g € G. Thus by [4, Proposition 1.2 and Theorem 1.3],
F(C3 x Cra) = F36.
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(b) If g =—1 (mod 12), then T' = {1, —1} (mod 12). Thus, [Sr(y,)| =1
for g = 1,y% and |Sx(yy)| = 2 for g = z,2y%, ¢, 2Ty’ 1 < i < 5.
Hence,

F(Csx Cip) = F2a Fy'.

(c) If g =5 (mod 12), then T'= {1,5} (mod 12). Thus, |Sr(v,)| =1 for
9="11%y* and [Sz(yy)| = 2 for g =z, y*, ™",

L=ty = y?, 2~ 'y*. Hence,

F(Cs x C1p) = F* o Fy.
(d) If ¢ =—5 (mod 12), then T = {1,7} (mod 12). Thus, |Sr(v,)| =1

+4 .41 6 +4 -1, +4 .—1,6 ,+2
y LT, XY, XY, YT, T YL, YT,

zy*t ay?, ay®3 ayt, 2yS, (vy)”

for g =1,4°y
e~y ay™? and [SE(yy)| = 2 for g = y,y°,y°, 2y, 2y’ 2y®,
x ty, x93 27 1y°. Hence,

F(Cs x Crp) = F¥ @ F. O

Theorem 3.5. Let G =2 C3 x Ay and F be a finite field of characteristic p > 0

T

having q = p" elements.

(1) If p=2, then
VxCS g, ifg=1 (mod 3);
VxConqxChp_y, ifg=—1 (mod 3).

U (F(C5 x Ay)) =

where V. = 1 + J(FG), is a 2-group of order 22" of ewxponent 4 and
U (F(Cs x Ay)) is non metabelian group.

(2) Ifp=3, then Vi = 14+ J(FG), where J(FG) denotes the Jacobson radical
of the group algebra FG. Then,

(a) LA = 0y, x GL(3, F).
(b) V1 is S-group of order 3*°™ and exponent 9.
(¢) Nilpotency class of Vi is 4.

(3) If p > 3, then

Con_y x GL(3, F)?, ifg =1 (mod 6);

U (F(C3xAy)) =
Cp'rL,l X C?)z"—l X GL(?),.F) X GL(S,.FQ), qu = -1 (mOd 6)

Proof. Let G = C3 x Ay =< a,b,c,d|a® = b* = 2 = d® = 1,ab = ba,ac =
ca,ad = da,dbd™" = bc = cb,ded™' = b > .
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TABLE 1. Conjugacy class Description of C5 x Ay

Symbolic Elements in the class Order of the elements
%o {1} 1
© {a} 3
6 {a=1} 3
€3 {b,¢c,bc} 2
6 {ab, ac, abc} 6
65 {a71b,a"te,a=the} 6
% {d, cd, bd, bed} 3
% (d=Y,bed ™", bd~", ed 1} 3
4 {ad, abd, abcd, acd} 3
G {a=Yd,a Yed, a=tbed, a=bd} 3
%10 {acd=,abd=!, abed™t, ad~1} 3
11 {a=ted™ a7 od™ a=td= Y a= thed 1} 3

(1) Let p = 2. We define w= sum of all p elements including 1. Clearly,
w=1+b+c+bc. Let a = Z?io aigi, 9i € G € Annrg(w). We rewrite
o= Zzio a; such that supp(ay;) C 6 for i =0,1,2,...,11. i.e.,

ap = ag, a1 = a1a, o = asa”t, ag = asb + asc + asbe,
ay = agab + arac + agabe, as = aga”'b + ajpa" e+ ajrathe,
ag = ajod + aizcd + a14bd + ay5bed,
a7 = a16d" 1 + ar7bed™t + a1gbd ™t + ajged 1,
ag = agpad + asyabd + assabed + aszacd,

g = agaa"td 4 assa"ted + asgaT bed + asralbd,

g = asgacdt + asgabd ™! + asgabed ™ + aziad™,
a1 = aspa ted ! 4+ agzatbd™! 4+ agsa1d™! + azsatbed L.

Since aw = 0, hence we have
ap+ az +ayg +as = 0;
a1+ ag + a7 +ag = 0;
az + ag + ajo + aip = 0;

3
> asy; =0, for i=3,4,56,T.
j=0

Thus, Annzg(w) = {(co + c1a + coa™)(1 + be) + (c3 + csa + cra™ 1) (b +
be) + (cq + coa + cga™t) (e + be) + [co(1 + be) + cro(e + be) + c11(b + be)]d +
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[c12(1+¢) + c13(c+be) + cra(b+e)]d™ + e15[(1+¢) + c16(b+ ¢) + cr7(be +
c)ld + c18[(1 +b) + c19(c+ b) + ca20(be + b)|la™td + co1[(1 + ¢) + co2(1 + b) +
ca3(1 + be)ad™t + cogl(c + be) + cas(b + be) + ca6(1 + be)]a=1d 1}

Obviously, 8182 = B2031, for every 31, B2 € Annzg(w) and Annzg(w)* =
0, which gives Annzg(w) C J(FG). Hence, by [20, Lemma 2.2], it is clear
that J (FG) = Annrg(w) and dimpJ (FG) = 27. Hence dimz(FG/ T (FG)) =
9. We determine the structure of 7G/J(FG). The conjugacy classes {1},
{a}, {a=1}, {d, cd, bd,bed}, {d=, bedt, bd ™1,
cd'}, {ad, abd, abcd, acd}, {a=td,a " ed, atbed, a=tbd}, {acd™t, abd 1,
abed™1,adt} and {a"ted a7 tbd™ a7 d™t, a~thed ™1} are 2-regular and
m=3.

If g=1 (mod 3), then T = {1} (mod 3). By [4, Proposition 1.2 and
Theorem 1.3], FG/J(FG) = F°. Hence

U (F(Cy x Ag)) 2V xCHh_y.

If g= —1 (mod 3), then T'= {—1,1} (mod 3). So 2-regular F—conjugacy
classes are {1}, {a,a™1}, {d, cd, bd, bed,d™ !,

bed=t,bd=t, cd=1}, {ad, abd, abed, acd,a"ted=t, a"tbd~t a"1d 7L,
a"tbed='}, {a7td,a " ed, a"tbed, atbd, acdt, abd 1, abed™1, ad~1}. Thus
the number of 2-regular F—conjugacy classes are 5, consequently by [4,
Proposition 1.2 and Theorem 1.3], 7G/J(FG) = F & F5. Hence

%(F(Og X A4)) 2V x CQn_l X 051271,_1.

Since dimpJ(FG) = 27, therefore V is a 2-group of order 22™ and
by Theorem 2.4, exponent of V is 4. Now from [18, pp. 4], we have
U (F(C5 x Ay)) is either isomorphic to % (FA4)? or % (FAy) x U (FaAys)
and it follows that % (F(Cs x Ay4)) is non metabelian group as % (FAy) is
non metabelian.

If p = 3, then we have the following cases:

(a) As %o and €3 are the only 3-regular conjugacy classes, so m = 2 and
this gives two F conjugacy classes for any ¢q. Therefore by [4, Theorem 1.3],
we have two components in the Wedderburn decomposition of FG/7(FG).
As dimp(J(FG)) = 26 and dimz(FG/J(FG)) = 10. Thus,

FG)T(FG) = F & M(3,F).

(b) As Vi =1+ J(FG) and dimp(J(FG)) = 26, hence V; is a 3-group
and |V;| = 3%". Now by Theorem 2.4, we have J° = 0 and V;? = 1. Hence
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exponent of V; is 9.

(c) Now we compute the nilpotency class of V;. Let uy = (1 + u, 1+ v),
where u,v € J(FG), then uy = 1+ vu((u,v) — 1) (mod J3). Now if
ug = (u1,1+v), then ug = 1+ v2u(u,v)((u1,v) — 1) (mod J°) and if uz =
(ug, 14+ v), then uz = 14+ v3u(u, v)((u1,v) —1)((uz,v) —1) (mod J7). Now
ug = 1 (mod J°). It can be easily seen that J° = 0. Hence v5(V;) = 1,
thus the nilpotency class of V1 is 4.

(3) Let CharF = p > 3. Since, ]-'(g) >~ F(C5 x Cs), thus by [Lemma 2.2 ],

FG = F(Cs x C3) ® (D;_y M(ni, Fy))
where each F; is a finite extension of F. Now, we have the following cases:

Case 1. If g =1 (mod 6). Then by [16, Theorem 3.3], F(C5 x C3) = F°. Thus,
FG=F o (@ M(n:, F))
i=1

and by Lemma 2.1, dimz(Z(FG)) = 12 and hence > ._,[F; : F] = 3. Now,
S ¥ n2dimp(F;) = 36 which implies Y37, n2dimz(F;) = 36 —9 = 27 and
T = {1} (mod 6). Therefore, the number of F conjugacy classes are conjugacy
classes of G. Let s be the number of F conjugacy classes. So, s = 12 and r = 3.

By dimension constraints, n; = 3, 1 < ¢ < 3. Therefore,
FG=F'a M(3,F)3.

Case 2. If g = —1 (mod 6). Then by [16, Theorem 3.3], F(C3 x C3) = F @ F3.
Thus,

FG2FaFia (@,_, M(ni, 7))

and by Lemma 2.1, dimr(Z(FG)) = 12 and hence Y., ,[F; : F] = 3. Now
S n2dimy(F;) = 36, which implies 20_, n2dimz(F;) = 36 — 9 = 27 and
T = {1,—-1} (mod 6). Thus, |Sr(yy)| = 1 for g = 1; [Sr(vg)| = 2 for g = a;
|S£(vg)| = 3 for g = b; [Sx(v,)| = 6 for g = ab; and |Sx(7y,)| = 8 for g = d, ad, a*d.

So, s =7 and r = 2. By dimension constraints n; = 3, 1 < ¢ < 2. Therefore,
FGEF®Fy®M(3,F)® M3, Fs).

This completes the proof. O



THE GROUP OF UNITS OF ABELIAN GROUPS OF ORDER 36 AND C3 x Ay 15

4. Conclusions

We have characterized the unit group structure of the five groups of order 36

including one non-abelian group namely C3 x A4. Based on our work in this paper

some interesting problems will arise in near future such as the characterization of the

unit group structure of other non-abelin groups of order 36 up to an isomorphism.

Using the results in this paper, we can deal with the normal complement problems

of group algebras.
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