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Abstract. In an arbitrary ring, the equation in the title defines the left

strongly regular elements. Elements that are both left and right strongly regu-

lar are simply called strongly regular. If all elements of a ring are left strongly

regular, then they are, in fact, strongly regular and this is the definition of

strongly regular rings.

We provide a characterization of when a left strongly regular element is

indeed strongly regular, based on an intrinsic condition. While we show that

it is not possible to give 2× 2 non-examples over Z or in certain matrix rings

over Zn for n ∈ {8, 9, 16}, we present two examples by George Bergman: a left

strongly regular element that is not regular and a regular, left strongly regular

element that is not strongly regular.

Further, we prove results for left strongly regular (square) matrices over

various types of rings and propose a conjecture, strongly supported by compu-

tational evidence: over commutative rings, left strongly regular matrices are

strongly regular.
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1. Introduction

An element a of a ring R is called left (respectively, right) strongly regular if

a ∈ a2R (respectively, a ∈ Ra2). It is called strongly regular if it is both left and

right strongly regular. Notably, if a is strongly regular, meaning a = a2c = da2 for

some c, d ∈ R, then one can choose b = ac2 and by an argument of Azumaya [2,

Lemma 1], it follows that a = a2b = ba2. Therefore, a ∈ R is strongly regular if

and only if there exists b ∈ R such that a = a2b = ba2. The properties of strongly

regular elements are summarized in [8].

The concept of strongly (von Neumann) regular rings dates back to Arens and

Kaplansky in 1948 (see [1]), where such rings were defined as those in which, for

every element a ∈ R, there exists b ∈ R such that a = a2b (i.e., a ∈ a2R). In the
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same paper, a biregular ring was defined as a ring in which every principal two-

sided ideal is generated by a central idempotent. It was shown that this definition

is actually left-right symmetric, and that strong regularity implies both regularity

and biregularity.

In fact, in the seminal Arens-Kaplansky paper, using a global argument involving

prime ideals and semiprime rings, the authors demonstrate that if all elements in

a ring are left strongly regular, then the ring is reduced, Abelian, Dedekind finite,

and all elements are strongly regular.

The original goal of this note was to provide examples of elements a in certain

rings such that there exists b ∈ R with a2b = a, but a is not regular, ab 6= ba, and

neither of these elements are idempotents. Initially, the ring M2(Z) (which is not

regular) seemed like a promising candidate, but we discovered that such examples

cannot be found there (see Theorem 3.4). Further attempts to find such examples

in M2(Zn) for n ∈ {8, 9, 16} were also unsuccessful (see Proposition 3.9).

General results on left strongly regular elements are presented in Section 2.

According to the definition, if a2b = a, to verify whether a is strongly regular, we

must find an element c ∈ R such that ca2 = a. For a left strongly regular element a

with a = a2b, we provide an intrinsic characterization for a to be strongly regular:

ab2a = ab (see Theorem 2.3).

The left strongly regular matrices are discussed in Section 3. We characterize the

left strongly regular 2×2 matrices over commutative Bézout domains (see Theorem

3.2) and we show that the only (left) strongly regular 2 × 2 integral matrices are

the units, the idempotents and the minus idempotents (see Theorem 3.4).

Among other results, we state a conjecture - strongly supported by computer

verifications - that for a matrix A over a (say, commutative) ring R, if there exists

a matrix B such that A2B = A, then there also exists a matrix C such that

A2C = A and AC = CA.

Finally, Section 4 provides several examples, including two constructed by George

Bergman as valuable applications of his Diamond Lemma (see [3]), with his kind

permission. One example (GB1) features a left strongly regular element that is not

regular, while the other (GB2) showcases a regular, left strongly regular element

that is not strongly regular.

For any positive integer n, Eij denotes the n × n matrix with all zero entries

except for the (i, j) entry, which equals 1. For a ring R, U(R) denotes the set

of units of R, and N(R) denotes the set of nilpotents of R. GLn(R) denotes the

general linear group of all invertible n × n matrices over R, and for a finite set
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X, |X| denotes the number of elements in X. An element a of a ring R is called

periodic if an = a for some positive integer n ≥ 2. If n = 3 such an element is

called a tripotent.

2. General results and characterizations

We start with some simple examples.

Lemma 2.1. (i) If a is (left or right) strongly regular, so is −a.

(ii) Periodic elements and minus periodic elements are strongly regular. In

particular, tripotents, idempotents and minus idempotents, all are strongly

regular (see [5]).

The next result (directly) shows how from the definition of strongly regular

elements, follow the conclusions (for rings) from [1].

Lemma 2.2. (i) If a = a2b = ba2, then ab = ba (and a = aba). Conversely,

ab = ba implies a2b = ba2.

(ii) If a = a2b and ab = ba, then ab is an idempotent and a is (strongly) regular.

(iii) Conversely, if a is regular (= aba), then ab and ba are idempotents, which

may not be equal. Moreover, a2b and a may not be equal.

Proof. For (i), multiplying a = ba2 by b on the right gives ab = b(a2b) = ba.

The converse is obvious. For (ii), (ab)2 = a(ba)b = a(ab)b = ab. Finally, a(ba) =

a(ab) = a. (iii) The positive statement is obvious. Nonexamples are given in the

last section (see Subsection 4.2, example 1 and Subsection 4.4, example 1). �

As our first main result, we prove an intrinsic characterization of left strongly

regular elements.

Theorem 2.3. In an arbitrary ring R suppose a2b = a for some a, b ∈ R (i.e., a

is left strongly regular). Then a is strongly regular if and only if ab2a = ab.

Proof. Suppose a2b = a and consider c = ab2. Then

(i) a2c = a2(ab2) = a(a2b)b = a2b = a;

(ii) ac = a2b2 = (a2b)b = ab.

Since ca = ab2a, according to (ii), ca = ac is equivalent to ab = ab2a.

Moreover ca2 = a is equivalent to ca = ac. Indeed, one way (⇒) follows by right

multiplication with c, the other way (⇐) follows by right multiplication with a.

Both ways we use (i) (i.e., a2c = a). Therefore, if ab2a = ab, it follows a = a2c = ca2

and so a is strongly regular.
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Conversely, suppose a is strongly regular and a = a2d = da2 for some d ∈ R.

Moreover, suppose a2b = a.

First, by Lemma 2.2, ad = da and a = ada (so a is regular and ad = da

is idempotent). Secondly, ab = da2b = da = ad and so aba = ada. Finally

ab2a = (ab)ba = adba = d(aba) = d(ada) = da = ad = ab. �

Remark 2.4. (1) If a2b = a, then the condition ba2 = a is obviously sufficient

for a to be strongly regular. Indeed, also directly, ba2 = a implies ab = ab2a,

as follows. According to the previous lemma, a2b = a = ba2 implies ab = ba

and a = aba. Hence ab2a = (ab)2 = ab. Examples show, this condition is

not necessary (see Subsection 4.2, example 1). Moreover, also directly, if

a2b = a, then ab2a = ab implies by left multiplication with a that aba = a

(a is regular).

(2) The condition ab2a = ab for some a, b, does not imply a2b = a. For ex-

ample, take A =

[
3 2

0 0

]
and B =

[
11 2

0 0

]
over Z12. Then AB2A =[

9 6

0 0

]
= AB but A2B =

[
3 6

0 0

]
6= A. Actually, since 9y+6w = 2 has

no solutions over Z12, A is not left strongly regular in M2(Z12). However,

it is unit-regular:

[
3 2

0 0

][
1 0

11 1

][
3 2

0 0

]
=

[
3 2

0 0

]
.

(3) A symmetric characterization holds for the right strongly regular elements

which are strongly regular.

For the sake of completeness, we record some special (well-known) results on left

strongly regular elements.

Proposition 2.5. No nonzero nilpotent element is left strongly regular.

Proof. From a2b = a, we deduce a3b2 = a2b = a and also anbn−1 = · · · = a. Hence

if an = 0, then a = 0. �

Proposition 2.6. In any reduced ring, left strongly regular elements are unit-

regular.

Proof. Suppose a = a2b. Then (a − aba)2 = a2 + aba2ba − a2ba − aba2 = a2 +

aba2−a2−aba2 = 0, so a = aba, since R is reduced (i.e., has no nonzero nilpotents).

Since reduced rings are Abelian (i.e., have only central idempotents), e := ab is a

central idempotent.

Consider u = eb+e, v = ea+e, where we denote by e = 1−e, the complementary

idempotent. Then (since ea = ae) vu = eaeb + e2 = e2ab + e = e + e = 1. Since
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reduced rings are also Dedekind finite (i.e., one-sided invertible elements are two-

sided invertible), uv = 1 and so u = v−1 ∈ U(R). Finally, from a = a2b = ae, we

get ae = 0, so now aua = a(eb+ e)a = aba = a, as desired. �

Proposition 2.7. Let R be a Dedekind finite ring and a ∈ R such that a2b = a =

aba for some b ∈ R. Then a is unit-regular.

Proof (See Ehrlich [7]). Denote by e the idempotent ab and consider its comple-

mentary idempotent e. Then

(1) eaeebe = abaababbab = abaabbab = ababab = eee = e;

(2) (eae + e)(ebe + e) = e + (e)2 = 1, that is, u = eae + e has a right inverse;

as the ring is Dedekind finite, u is a unit;

(3) a = aba = ea = ea2b = eae;

(4) eu = e(eae+ e) = eae = a, whence e = au−1 and a = ea = au−1a. �

Remark 2.8. (1) We can remove the Dedekind finite hypothesis if

ebeeae = abbababaab = (ab)(ba)3 = e4 = e,

for example if e = ab = ba, or else, if ab2a = ab, the condition in the above

characterization of left strongly regular elements that are strongly regular.

(2) We could wonder whether a regular, left strongly regular element actually

is strongly regular, or even more restricted: if a2b = a = aba, must a be

strongly regular? George Bergman’s example answers this question in the

negative (see GB2, last section).

3. General results on left strongly regular matrices

In this section we consider nonzero matrices over commutative rings. We first

gather some easy properties related to the equality A2B = A, some of which hold

for n × n matrices, for any positive integer n, others only for 2 × 2 matrices. To

simplify the writing, the elements of a finite subset of a ring are called coprime if

there is a linear combination of these which equals 1.

Lemma 3.1. (i) If A is left strongly regular, so is −A.

(ii) No nonzero nilpotent matrix is left strongly regular.

(iii) For n = 2, if det(A) = 0, A2B = A is equivalent to Tr(A)AB = A.

Over commutative domains

(iv) if A is left strongly regular, then A is a unit or det(A) = 0.

(v) if A is left strongly regular and n = 2, then the entries of A are coprime,

and Tr(A) is a unit.
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(vi) if A is left strongly regular and n = 2, then AB is idempotent.

Proof. (i) See Lemma 2.1, in general.

(ii) See Proposition 2.5, in general.

(iii) We just use Cayley-Hamilton Theorem for A2 = Tr(A)A.

(iv) Taking determinants, A2B = A implies det2(A) divides det(A). As of course

det(A) | det2(A), it follows that det(A) and det2(A) are associated in divisibility

(i.e., det2(A) = det(A)u for some unit u). By cancellation, if det(A) 6= 0, then

det(A) is a unit. Therefore the possible cases are det(A) = 0 or else A is a unit. If

A is a unit, then B = A−1, obviously unique and so the pairs (A,B) are just all

the pairs (A,A−1).

(v) By (iii), start with Tr(A)AB = A and take the traces on both sides. We

obtain Tr(A)(Tr(AB)− 1) = 0. Restricting to 2× 2 matrices, as already noticed,

if A 6= 02, Tr(A) 6= 0 since otherwise (by Cayley-Hamilton Theorem, A2 = 02) A is

nilpotent and does not satisfy A2B = A (by (ii)). Therefore denoting A =

[
a b

c d

]

and B =

[
x y

z w

]
, by cancellation, we get Tr(AB) = ax + bz + cy + dw = 1.

Equivalently, A must have coprime entries.

Back to Tr(A)AB = A, it follows that Tr(A) divides the entries of A, whence

Tr(A) is a unit.

(vi) As noticed in (v), Tr(AB) = 1. Since det(AB) = det(A) det(B) = 0, it

follows (again by Cayley-Hamilton Theorem) that AB is idempotent. �

Among the zero determinant matrices, the idempotent matrices A are obviously

paired (for A2B = A) with B = In or B = A, but, as examples show (see Subsection

4.2, example 2), not only with these.

A commutative domain is called Bézout if the sum of two principal ideals is

also a principal ideal. This means that Bézout’s identity holds for every pair of

elements, and that every finitely generated ideal is principal. Bézout domains are

GCD (greatest common divisors exist).

As our second main result, over Bézout (commutative) domains we characterize

the left strongly regular matrices 2× 2 matrices.

Theorem 3.2. Let A =

[
a b

c d

]
∈M2(D) for a Bézout domain D. Then A is left

strongly regular if and only if A is a unit or else det(A) = 0 and gcd(a2+bc, b(a+d))

divides a and b.
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Proof. As already mentioned (see Lemma 3.1(iv)), the left strongly regular ma-

trices are the invertible matrices A characterized by det(A) ∈ U(D) paired (only)

with B = A−1, and some of the singular matrices A (with det(A) = 0). Searching

for all matrices A =

[
a b

c d

]
with ad − bc = 0 such that A2B = A for some

B =

[
x y

z w

]
reduces to the following two linear systems:

{
(a2 + bc)x + b(a+ d)z = a

c(a+ d)x + (bc+ d2)z = c

and {
(a2 + bc)y + b(a+ d)w = b

c(a+ d)y + (bc+ d2)w = d.

Both systems have the same system matrix which is M =

[
a2 + bc b(a+ d)

c(a+ d) bc+ d2

]
.

Clearly, det(M) = det2(A) = 0 for the singular matrices we deal with, that is, the

system matrices have rank 1 (we suppose A 6= 02).

It is well-known (see [4]) that a necessary condition for such linear systems to be

solvable is that the (corresponding) augmented matrices also have rank 1. These are[
a2 + bc b(a+ d) a

c(a+ d) bc+ d2 c

]
and

[
a2 + bc b(a+ d) b

c(a+ d) bc+ d2 d

]
and so for the solvability

of the systems, the vanishing of 4 minors is necessary:

det

[
a2 + bc a

c(a+ d) c

]
, det

[
b(a+ d) a

bc+ d2 c

]
, det

[
a2 + bc b

c(a+ d) d

]
, det

[
b(a+ d) b

bc+ d2 d

]
.

Since, if ad − bc = 0, all these minors are also zero, the augmented matrices have

also rank 1 and for solutions it suffices to choose the equations (say) (a2 + bc)x +

b(a+ d)z = a for x and z, and (a2 + bc)y+ b(a+ d)w = b for y and w. Over Bézout

domains, these are linear Diophantine equations, which, as it is well-known, are

solvable if and only if gcd(a2 + bc, b(a+ d)) divides a and b. �

A similar result (gcd(a2 + bc, c(a + d)) divides a and c) holds for right strongly

regular matrices.

Example 3.3. (over integers) (1) Let n be any nonzero integer. The matrix A =[
1 n

n n2

]
has det(A) = 0 but gcd(a2 + bc, b(a + d)) = 1 + n2 does not divide

1 nor n. Hence the equation A2B = A has no integer solutions and so A is not
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left strongly regular. However, it is regular (take for example B = E11) and even

unit-regular (take for example B =

[
1 1

−1 0

]
).

Actually, as det(A) = 0, ABA = Tr(AB)A (see [6]) and (with the notations of

the previous proof) Tr(AB) = x+ nz + ny + n2z, whence Tr(AB) = 1 suffices for

the (unit-)regularity of A (x = 1, y = z = w = 0 for the first B, x = y = 1, z =

−1, w = 0 for the second B).

(2) As a positive example, take the idempotent A =

[
2 2

−1 −1

]
. Here gcd(a2+

bc, b(a + d)) = 2 divides both a and b. The corresponding Diophantine equations

are now 2x + 2z = 2 and 2y + 2w = 2, with infinitely many solutions: B =[
x y

1− x 1− y

]
for any integers x, y.

As already mentioned in the Abstract, surprisingly, it turns out that, for 2 × 2

integral matrices, (only) the equality A2B = A suffices in order to determine the

strongly regular matrices. More, these are precisely the units, the idempotents or

else the minus idempotents and this is our third main result.

Theorem 3.4. For any matrix A ∈M2(Z), the following conditions are equivalent.

(i) A is left strongly regular, i.e., there exists B ∈M2(Z) such that A2B = A;

(ii) A is strongly regular, i.e., there exists B ∈ M2(Z) such that A2B = A =

BA2;

(iii) A is a unit or an idempotent or a minus idempotent.

Proof. As (iii) ⇒ (ii) ⇒ (i) are obvious, it just remains to show that (i) ⇒ (iii).

According to Lemma 3.1(ii), it remains to show that if det(A) = 0 and A2B = A

for some B, then A = ±E for some nontrivial idempotent E = E2 (i.e., not 02 nor

I2). Equivalently, it suffices to show that Tr(A) ∈ {±1}. This follows from Lemma

3.1(v). �

We were not able to find a reference for the following two propositions.

Proposition 3.5. Over any commutative ring R, let A be a left strongly regular

2× 2 matrix. If Tr(A) is a unit, then A is unit-regular.

Proof. By Lemma 3.1(iii), A2B = A is equivalent to Tr(A)AB = A and so AB =

Tr−1(A)A (is independent of B). Hence A = A2B = Tr−1(A)A2 = ABA (i.e., A is

regular). Now the conclusion follows from Proposition 2.7, since matrix rings over

commutative rings are Dedekind finite. �
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Recall the following well-known result: all nonunits of a ring R are nilpotents

(i.e., R = U(R)∪N(R)) if and only if R is a local ring with nil Jacobson radical.

Then we can prove another result of the same sort.

Proposition 3.6. Let R be a commutative local ring with nil Jacobson radical and

A ∈M2(R). If A is left strongly regular, then A is unit-regular.

Proof. Suppose A2B = A for some A,B ∈ M2(R). The ring being local with nil

radical, det(A) is a unit or is nilpotent. If det(A) is a unit, so is A. Hence we

assume det(A) ∈ N(R) and let n be its degree of nilpotence. Taking determinants

in A2B = A, we get det2(A) divides det(A). Hence d := det(A) = 0 (indeed,

d = d2r implies dn−1 = dnr for any positive integer n), so we have to show that A

is unit-regular just in this case. We can suppose A 6= 02.

As det(A) = 0, by Cayley-Hamilton Theorem, A2 = Tr(A)A and so Tr(A)AB =

A. Taking traces we get Tr(A)(Tr(AB)− 1) = 0.

Case 1. Tr(A) is a unit. Then by Proposition 3.5, A is unit-regular.

Case 2. Tr(A) is nilpotent. As A2 = Tr(A)A implies An+1 = Trn(A)A, it

follows that A is nilpotent too, a contradiction (see Proposition 2.5). �

Strongly supported by computer, at least for matrices over Zn with n ∈ {8, 9, 16}
and partly over Z (but completely verified by Theorem 3.4) we state the following

Conjecture 3.7. Let A be a square matrix over a commutative ring R. If A is left

strongly regular, then A is strongly regular.

According to Lemma 2.2(ii), the following claim would suffice for a proof: if

there exists B ∈ M2(R) such that A2B = A, then there exists C ∈ M2(R) such

that A2C = A and AC = CA.

Hint. As seen in the proof of Theorem 2.3, if A2B = A, a possible candidate

for C is AB2 (which equals A for tripotents - including the ± idempotents).

Remark 3.8. As a final example in our paper shows (see GB1), the conjecture

fails in general (a left strongly regular element may not be regular). However it

holds (in general) for units u or tripotents t (including ± idempotents). Indeed,

u2b = u ⇒ b = u−1 ⇒ ub2u = 1 = ub;

t3 = t and t2b = t imply tb = t2 ⇒ tb2t = t2bt = t2 = tb.

Verifications by computer (see some details below) show that for the commutative

local rings R ∈ {Z8,Z9,Z16}, any left strongly regular matrix of M2(R), actually

is strongly regular, and left strongly regular matrices turned out to be units or

tripotents. Summarizing
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Proposition 3.9. Over Z8, the left strongly regular 2 × 2 matrices are all the

invertible matrices (that is, 1536 including 176 invertible matrices of order two

which are also tripotents) or else 384 tripotents with zero determinant (excluding

the 176 invertible matrices of order two).

Indeed, there are |GL2(Z8)| = (22−1)(22−2)44 = 1536 invertible 2×2 matrices

over Z8. The remaining 384 tripotents A have:

4096 B-s (all the matrices over Z8, that is 84) if A = 02, and 64 B-s each, if A is

any zero determinant tripotent.

The results over Z9 or Z16 are similar.

We chose only local rings Zn, as every Zn is a finite direct sum of local rings,

matrix rings over finite direct sums of rings are isomorphic to finite direct sums of

matrix rings and an element of a finite direct sum of rings is left strongly regular if

and only if so are all its components.

It would be interesting to see to what extent this fact (the only left strongly

regular matrices are units or tripotents) can be generalized, at least for 2 × 2

matrices over (more) general rings. A partial attempt over commutative local rings

was made in the above Proposition 3.6.

4. Examples of left strongly regular matrices

4.1. Special integral matrices.

(i) Diagonal integral matrices A = diag(a, b) paired with B ∈ M2(Z). There

are 4 units, namely ±I2 and A = ±

[
1 0

0 −1

]
. As for zero determinant matrices,

a = 0 or/and b = 0 so these are of form 02, aE11, bE22. Again a2 | a or b2 |
b, respectively, whence a ∈ {±1} or else b ∈ {±1} (that is A = ±E11 or A =

±E22). The corresponding matrices are paired with B =

[
±1 0

∗ ∗

]
or with B =[

∗ ∗
0 ±1

]
respectively, with any integers ∗.

(ii) Upper triangular matrices A = diag(a, c) + bE12 =

[
a b

0 c

]
paired with

B ∈ M2(Z). There are infinitely many units with diagonal as in (i) and arbitrary

b ∈ Z, that is, ±I2 +bE12 or else ±

[
1 b

0 −1

]
. As in case (i), units are only paired

with their inverses.
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As for zero determinant matrices, excepting the nilpotent matrices bE12 (which

as already mentioned, if nonzero, cannot be left strongly regular), a = 0 or c = 0

so these are of form aE11 + bE12 (with a 6= 0) or else bE12 + cE22 (with c 6= 0).

4.2. Examples over Z6.

Since Z6 is unit-regular, Mn(Z6) is regular, so we don’t expect to have not regular

examples.

1) Consider A =

[
1 2

2 4

]
over Z6, which is a tripotent (so strongly regular)

with coprime entries.

As det(A) = 0, by Cayley-Hamilton Theorem, it follows that A2B = A is equiv-

alent to Tr(A)AB = A and BA2 = A is equivalent to Tr(A)BA = A. Since

Tr(A) = 5 is an order 2 unit, i.e., 52 = 1, AB = Tr−1(A)A =

[
5 4

4 2

]
= 5A for

all B. Actually, by computer, there exist 36 matrices B satisfying A2B = A and

only 6 of these satisfy BA = AB = Tr−1(A)A, or equivalently BA2 = A. There-

fore, for any of the other 30 matrices B, we have BA 6= AB and BA2 6= A. As a

sample, for B =

[
1 0

2 2

]
, BA =

[
1 2

0 0

]
6= AB and BA2 =

[
5 4

0 0

]
6= A.

Remark 4.1. (i) This supports our Conjecture 3.7 for matrices: if there exists

B such that A2B = A, then there also exists C such A2C = A and AC =

CA. As observed in the proof of Theorem 2.3, the possible candidate for C

is AB2. Indeed, for the previous example, C = AB2 = (AB)B = 5AB =

52A = A.

(ii) It was already mentioned that over integral domains, Tr(A)(Tr(AB) −
1) = 0 for A 6= 02 implies Tr(AB) = 1 and so (as det(AB) = 0), AB is

idempotent. In order to have Tr(AB) 6= 1, zero divisors are needed. That’s

why we chose Z6. However, all AB and BA, in the previous example have

trace = 1, so are (possibly different) idempotents. This also follows since

for every regular element, a = aba, both ab and ba are idempotents.

(iii) If A2B = A and AB = A2 (independent of B), then A3 = A, that is, A is

tripotent, so strongly regular.

2) Consider A =

[
2 4

4 2

]
= 2

[
1 2

2 1

]
where 2 is a tripotent in Z6 and[

1 2

2 1

]
is a tripotent in M2(Z6) (so A is also a tripotent in M2(Z6)).
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Hence A is strongly regular, but with not coprime entries and Tr(A) = 4 is

a nontrivial idempotent (so not a unit) of Z6. Surprisingly, A turns out to be

an idempotent (by computation A2 = A). Again, as det(A) = 0, from Cayley-

Hamilton’s Theorem, A2 = Tr(A)A = 4A, so A2B = A is equivalent to 4AB = A.

Now (again by computer) for all the 144 Bs, we have AB = A (again independent

of B) and only three possible BA (again AB 6= BA may happen): BA = A or

BA =

[
0 0

2 4

]
or BA =

[
4 2

0 0

]
(each in 144 : 3 = 48 cases). Actually, if

A2B = A and AB = A, then A2 = A, A is idempotent.

4.3. Upper triangular matrix rings.

It is well-known that the ring of upper triangular n× n matrices Tn(R), for any

n ≥ 2, is not regular (it contains a nilpotent ideal).

For R ∈ {Z8,Z9,Z16} and n = 2, the computer has verified that if A2B =

A, then AB2A = AB for A,B ∈ T2(R), that is, according to Theorem 2.3, left

strongly regular matrices are strongly regular. This way, again the Conjecture 3.7

is supported by computer verifications.

The situation is similar to Proposition 3.9. Over Z8, there are 193 regular upper

triangular matrices. These are precisely 129 tripotents (incl. the units of order

two) and 64 units (not of order two).

4.4. Some special examples. In this subsection, we provide examples of some

left strongly regular elements which satisfy only some or none of the properties of

strongly regular elements.

Over Z12 take A = diag(3, 4) =

[
3 0

0 4

]
and B = diag(3, 1) + 3E21 =[

3 0

3 1

]
. Then A2B = diag(9, 4)B = diag(3, 4) = A and AB = A2 = diag(9, 4) =[

9 0

0 4

]
6=

[
9 0

9 4

]
= diag(9, 4) + 9E21 = BA.

Both AB, BA are different idempotents, and none is central (these are not scalar,

i.e., of form nI2). However, A = AUA for unit U =

[
3 2

1 1

]
, so A is unit-regular.

Note that A is a tripotent of M2(Z12), so it is strongly regular.

Supporting our Conjecture, there exists C such that A2C = CA2 = A and

obviously C = A.
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Remark 4.2. Observe that in general (see Lemma 2.2), if a2b = a and ab 6= ba,

then ba2 6= a. However this does not guarantee that a is not regular (see Subsection

4.2, example 1 or the previous example).

In closing, we present

GB1. George Bergman’s example of left strongly regular element that is not

regular.

Let R be the algebra over any commutative ring k (e.g., a field) presented by

two generators a and b, and the relation

(1) a2b = a.

By the Diamond Lemma (see [3]), applied to the single reduction

(2) aab 7−→ a,

we get that

(3) a k-basis for R is given by the set of words in a and b which do not contain

the substring aab.

Since the set of such words is closed under multiplication on the right by a, we see

that

(4) Right multiplication by a gives a k-module isomorphism R ∼= Ra.

Also, since the reduction (2) does not have on the right-hand side any occurrence

of the empty monomial 1, we see that when we multiply a nonempty monomial by

any monomial, we get a nonempty monomial, so

(5) The span of the set of all monomials other than 1 forms a 2-sided ideal I of

R.

Since right multiplication by a increases the length of any monomial, we have

(6) a /∈ Ia.

Now since a ∈ I, we have aR ⊆ I, so (6) gives

(7) a /∈ aRa,

which, combined with (1), gives the example desired.

Summarizing, the Diamond Lemma applied to (2) shows (3), from which we get

(7).

GB2. Somehow similar to the example above, here is an example of regular, left

strongly regular element which is not strongly regular (actually more: elements a

and b in a ring, with a2b = a and aba = a, such that a is not strongly regular), also

constructed by George Bergman.

Consider the algebra S presented by generators a and b, and the two relations

a2b = a and aba = a. It turns out that a is again non-strongly regular in S.

The argument is as follows.
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Applying the Diamond Lemma to the pair of reductions

(8) aab 7−→ a, aba 7−→ a,

one finds that

(9) a k-basis for S is given by the set of words in a and b which do not admit

application of either of the reductions of (8), i.e., which do not contain either of the

substrings aab, aba.

It is easy to see that

(10) if a word in a and b ends in m (for a nonnegative integer m) a’s, then the

word one gets on reducing it using (8) ends in at least m a’s.

Hence,

(11) There is no word u in a and b such that ua2 = a.

Hence, since reducing a word always gives a word (not a linear combination of

words),

(12) there is no element c ∈ S such that ca2 = a.

It is also easy to check that the algebra R of the previous example has no element

c satisfying aca = a; so we could say that the elements a of R and S have differing

degrees of “closeness to” strong regularity.
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Babeş-Bolyai University

400084 Cluj-Napoca, Romania

e-mail: horia.pop@ubbcluj.ro


