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Abstract. The main result of this article is that the multiplicative semigroup

of an m-domain ring is a strong semilattice of certain subsemigroups, each of

which turns out to be a right-cancellative monoid, and that this presentation

of the semigroup as a strong semilattice of right-cancellative semigroups is

essentially unique. As a consequence, it is shown that, given an m-domain

ring ⟨R,+, ·⟩ with the unary operation ◦ mapping every element to its mini-

mal idempotent duplicator (in the sense of N.V. Subrahmanyam), the algebra

⟨R, ·,◦⟩ is a strong semilattice of right-cancellative D-semigroups (in the sense

of T. Stokes), also essentially unique. Implications for reduced Rickart rings,

which can be seen as a subclass of m-domain rings, are also described.
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1. Introduction

In 1960, N. V. Subrahmanyam introduced a class of rings with a special unary

operation ◦ which he called m-domain rings in [16]. They were a generalization of

associate rings as defined by I. Sussman in [17].

Rickart rings have been investigated since the middle of the 20th century. They

are also called PP-rings. In the early 70s, the class of commutative Rickart rings

(a subclass of reduced Rickart rings) was studied independently by W. Cornish

in [5] and by T.P. Speed in a series of papers (see, for example, [14]). Janowitz

proved in 1976 in [10] that a reduced Rickart ring with the so-called Abian order

is a semi-Boolean algebra (i.e., a meet semilattice in which every principal ideal is

a Boolean algebra). Some necessary and sufficient conditions for a Rickart ring to

be reduced were given later in [8] by J. A. Fraser and W. K. Nicholson.

In [3], it was proved that a ring is a reduced Rickart ring if and only if it is

isomorphic to an associate ring in the sense of Sussman. We will see that the class

of reduced Rickart rings is essentially the subclass of m-domain rings consisting of

those rings which have the multiplicative identity.
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In 1975, Penning [11] introduced minimal duplicator rings as a generalization

of, among others, m-domain rings. Later they were called C-rings by Cornish (see,

for example, [6]). Of course, every reduced Rickart ring is a C-ring, because every

m-domain ring is a C-ring.

In [15], a semigroup equipped with a unary operation ◦ satisfying three particular

identities is called a D-semigroup, and a ring whose multiplicative semigroup is a D-

semigroup is called D-ring. C-rings (and therefore also m-domain rings and reduced

Rickart rings) are a subclass of D-rings.

The multiplicative semigroup of any m-domain ring can be decomposed into

mutually disjoint semigroups which are called m-domains in [16] (following [17]).

Every idempotent of an m-domain ring R is the identity of some m-domain. In par-

ticular, the multiplicative semigroup of a reduced Rickart ring can be decomposed

in this way.

An important subclass of D-semigroups are D-abundant D-semigroups. It was

also shown in [15] that a D-ring with unity is D-abundant if and only if it is a left

Rickart ring. We will see that also the operation ◦ on an m-domain ring satisfies

the necessary conditions to make ⟨R, ·,◦⟩ a D-abundant D-semigroup as defined in

[15].

A reduced Rickart ring admits a particular unary operation ′ which we call a

focal operation following [2] and [3]. Also C-rings, m-domain rings and D-rings are

equipped with some special unary operations. These unary operations correspond

to the ”double” focal operation ◦ defined by a◦ = (a′)′ in the reduced Rickart ring.

Since Rickart rings are a far more common research field than m-domain rings,

the focus of this article is on reduced Rickart rings. However, the main results

of this paper (Theorems 4.1 and 8.1) hold even for the slightly more general m-

domain rings. The proofs are very similar and not longer, but since there are some

differences in the details, it seemed that it would not be enough to prove everything

for reduced Rickart rings and then claim without proof that similar results hold for

m-domain rings. Therefore, we prove all the results for m-domain rings and then

derive their reduced Rickart ring versions as corollaries.

Strong semilattices of semigroups are a well-known structure in semigroup theory

(see, for example, [9]). In this article, we will equip the family of the m-domains

M of an m-domain ring R with a set of semigroup homomorphisms Φ such that

⟨M,Φ⟩ is an inverse system over the semilattice of idempotents of the ring. The

strong semilattice of m-domains which we obtain from this inverse system turns

out to be the multiplicative semigroup of the ring R.
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Unlike in the case of multiplication, the m-domains are not closed under sums.

They are, however, closed under the operation ◦. Therefore, our focus will be on

strong semilattice constructions involving the multiplication and the operation ◦

(which, in the special case of a reduced Rickart ring, can be derived from the focal

operation (see [3])).

In Section 2, we first define reduced Rickart rings and m-domain rings and state

some preliminary results about them. Then we prove that a ring is a reduced

Rickart ring if and only if it is an m-domain ring with multiplicative identity.

In Section 3, we deal with inverse systems and strong semilattices of semigroups,

and we show as an example that the m-domains of an m-domain ring (with suitably

chosen homomorphisms) form an inverse system of semigroups.

In Section 4, we prove that the multiplicative semigroup of an m-domain ring is

the strong semilattice induced by this inverse system of m-domains. In the opposite

direction, we show that, if the strong semilattice induced by a particular inverse

system ⟨A,H⟩ of right-cancellative semigroups happens to be the multiplicative

semigroup of some m-domain ring, then the inverse system ⟨A,H⟩ essentially equals

the inverse system of m-domains of the ring.

The results of Section 4 give rise to the question of whether it is possible to

obtain similar results which are not only about the ring multiplication, but also

include the unary operation ◦. To answer this question, instead of dealing with

inverse systems of semigroups, we need to deal with inverse systems of algebras

having two operations (multiplication and ◦). Therefore, in Section 5, we recall the

definition and basic properties of D-semigroups, which are suitable for this purpose.

We also recall D-rings and prove that every m-domain ring is a D-abundant D-ring.

In Section 6, we equip the m-domains with an additional unary operation which

turns them into D-semigroups (or D-monoids, if we include also the multiplicative

identities into the signatures) in order to obtain an inverse system ⟨M,Φ⟩ of D-

semigroups (or of D-monoids) in an m-domain ring.

In Section 7, we define in a standard way strong semilattices of D-semigroups

and D-monoids analogously to the definition of strong semilattices of semigroups.

Finally, in Section 8, we obtain D-semigroup analogues of the results of Sec-

tion 4. That is, we show that the strong semilattice of D-semigroups induced by

the inverse system of D-semigroups of an m-domain ring equals the D-semigroup

reduct of the ring. Moreover, if an inverse system of right-cancellative D-semigroups

with identities ⟨A◦,H⟩ over a lower semilattice induces a strong semilattice of D-

semigroups that happens to be the D-semigroup reduct of some m-domain ring,

then the ⟨A◦,H⟩ is the inverse system of D-semigroups of the ring. In the case of a
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reduced Rickart ring, the multiplicative identity is also included into the construc-

tions, i.e., the D-monoid reduct of a reduced Rickart ring is a strong semilattice

induced by its inverse system of D-monoids.

2. Reduced Rickart rings and m-domain rings

In this section, we first define reduced Rickart rings and state some of their basic

properties (Section 2.1), then we define m-domain rings and also state some of their

basic properties in Section 2.2. In Section 2.3, we prove that a ring is a reduced

Rickart ring if and only if it is an m-domain ring with multiplicative identity.

2.1. Reduced Rickart rings. This subsection is a short summary of the most

important preliminaries from [3]. For more details on Rickart rings and reduced

Rickart rings in particular, see Sections 2 and 3 of that article.

A ring is called reduced if it has no nonzero nilpotent elements, i.e., xn = 0

implies x = 0. It is known that a ring R is reduced if and only if, for all x ∈ R,

x2 = 0 implies x = 0. Moreover, every reduced ring is commutative at zero, i.e.,

for all elements x, y of a reduced ring R, xy = 0 if and only if yx = 0 (because from

xy = 0 follows (yx)2 = y(xy)x = 0, whence yx = 0).

We will use the following fact which is well-known and easy to prove.

Proposition 2.1. All idempotents of a reduced ring are central.

It is well-known that the set of idempotents E of a semigroup A is ordered by

e ≤ f iff ef = e = fe. (1)

In the set of central idempotents, this reduces to e ≤ f iff ef = e. This order turns

the set of central idempotents of a semigroup into a lower semilattice with

e ∧ f = ef. (2)

In a unital reduced ring, the set of idempotents (all of which are central, because

of reducedness) E with the natural order of idempotents given by Equation (1)

is not only a lower semilattice but even a Boolean algebra with the meet as in

Equation (2), the join e ∨ f = e + f − ef and the complementation e⊥ = 1 − e.

Following [3], we define a Rickart ring in the following way.

Definition 2.2. A ring R is called a Rickart ring if it admits unary operations ′

and ‵ such that for every a ∈ R, the elements a′ and a‵ are idempotents such that,

for all x ∈ R,

ax = 0 iff a′x = x, (3)

xa = 0 iff xa‵ = x. (4)
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The operations ′ and ‵ are called focal operations.

See also [2] for the focal operations and [1, page 65] for a more standard definition

of Rickart ring (which differs from the preceding one only by technical details). It

can be easily verified that any Rickart ring is unital.

If a Rickart ring R is reduced and a, a′, a‵ are as in Definition 2.2, then the

operations ′ and ‵ are uniquely determined and a′ = a‵ for all a ∈ R (see, for

example, [3]). Hence, a reduced Rickart ring has only one focal operation, which

we will denote by ′.

The most simple example of a reduced Rickart ring is an arbitrary Boolean ring

R with the focal operation defined as a′ = 1 − a for every element a ∈ R. More

general examples include certain subdirect products of (possibly non-commutative)

domains (see [3] for the details).

In this paper we will use some properties of the focal operation, which we state

in the following proposition.

Proposition 2.3. Let R be a reduced Rickart ring and ′ its focal operation. For

all a, b ∈ R

(a) aa′′ = a,

(b) if e ∈ R is idempotent, then e′ = 1 − e

(c) a′′ is an idempotent such that ax = 0 ⇔ a′′x = 0 for all x ∈ R,

(d) (ab)′′ = a′′b′′,

(e) a′′′ = a′.

Proof. See [3] (Proposition 2.4 (h) for (a), p. 381 for (b), Equation (2.2) for (c),

Proposition 3.8 (g) for (d) and Proposition 2.4 (e) for (e)). □

In [3], Theorem 6.5, reduced Rickart rings are characterised using another unary

operation which is closely related to the focal operation. Unfortunately, there is a

mistake in that theorem. The correct version of it (see [4]) is as follows:

Lemma 2.4. A ring with unity is a reduced Rickart ring if and only if it admits a

unary operation ◦ such that

(a) xx◦ = x = x◦x,

(b) (xy)◦ = x◦y◦,

(c) 0◦ = 0.

In this case, the focal operation of the ring is given by x′ := 1 − x◦.

Note that x◦ is always an idempotent, because x◦ = 1 − x′ = x′′ by Proposi-

tion 2.3(b).
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In the sequel, for a reduced Rickart ring ⟨R,+, ·, 1⟩ with the operation ◦ from

Lemma 2.4, we will call the algebra ⟨R,+, ·,◦ , 1⟩ enriched reduced Rickart ring.

2.2. M-domain rings. Cancellative (from both sides) semigroups are sometimes

called multiplicative domains. In [17], associate rings in the sense of Sussman were

decomposed into such semigroups, which were called m-domains in that paper.

This was generalized for a class of rings which was therefore named m-domain

rings in [16].

In Section 2.3 we will see that every reduced Rickart ring is a unital m-domain

ring and vice-versa, which will enable us to apply the properties mentioned in this

subsection to reduced Rickart rings.

Definition 2.5. [16] A ring R is called a multiplicative domain ring, or shorter, an

m-domain ring if, for every a ∈ R, there exists a central idempotent a◦ such that,

for all a, b ∈ R,

(a) aa◦ = a,

(b) if e ∈ R is idempotent and ea = ae = a, then a◦e = a◦,

(c) (ab)◦ = a◦b◦.

It is easy to check that for an element a of an m-domain ring, the central idempo-

tent a◦ is unique. Therefore we treat ◦ as an operation on the m-domain ring. We

use the same symbol ◦ as for the operation in Lemma 2.4, because, as we will see in

the next subsection, the operation in Lemma 2.4 is a special case of the operation
◦ on an m-domain ring. As for reduced Rickart rings, the algebra ⟨R,+, ·,◦⟩ will

be called an enriched m-domain ring if ⟨R,+, ·⟩ is an m-domain ring and ◦ is the

operation from Definition 2.5.

Remark 2.6. Let e be an idempotent in an m-domain ring. From Definition 2.5(b)

it follows that e◦e = e◦ (taking a = e). Since e◦ is central, this yields ee◦ = e◦.

But then, from Definition 2.5(a), we obtain e◦ = e. So the operation ◦ maps

every idempotent on itself. In particular, every idempotent in an m-domain ring is

central.

Observe that

a◦ = 0 iff a = 0 (5)

holds in every m-domain ring (one direction follows immediately from Definition 2.5(a),

the other one is obtained by chosing a = e = 0 in Definition 2.5(b)).

Lemma 2.7. [16, Theorem XIV] Let R be an m-domain ring and for an idempotent

e, let Me denote the set {x ∈ R |x◦ = e}. Then the following statements hold.



DECOMPOSITIONS OF MULTIPLICATIVE SEMIGROUPS OF M-DOMAIN RINGS 7

(a) For every idempotent e ∈ R, Me is a cancellative subsemigroup of the mul-

tiplicative semigroup of the ring, and e is the identity of this subsemigroup.

(b) The sets Me are distinct and form a partition of R.

Observe that the partition mentioned in Lemma 2.7(b) corresponds to the kernel

equivalence of the operation ◦. It is obvious from Equation (5) that M0 = {0}.

Since according to Lemma 2.7(a), the semigroups Me are multiplicative domains

(recall that this is just another word for cancellative semigroups), we follow the

terminology of [17] by using an abbreviated version of this term for the sets Me.

Definition 2.8. For an idempotent e in an m-domain ring R, the set Me is called

an m-domain.

We will use the term not only for the set Me, but also for the semigroup ⟨Me, ·⟩,
the monoid ⟨Me, ·, e⟩, etc.

Remark 2.9. Obviously, an m-domain Me is always closed under the operation
◦ from Definition 2.5, since e ∈ Me for every idempotent e and x◦ = e for every

x ∈ Me by Lemma 2.7.

2.3. Relations between reduced Rickart rings and m-domain rings. After

introducing m-domain rings and reduced Rickart rings, we are now able to connect

them by the following result.

Theorem 2.10. A ring is a reduced Rickart ring if and only if it is a unital m-

domain ring. The unary operation from Definition 2.5 coincides with the operation

from Lemma 2.4 (both are denoted ◦), and they are connected to the focal operation
′ by x◦ = x′′.

Proof. Let R be a unital m-domain ring and let ◦ be the unary operation from Def-

inition 2.5. By Lemma 2.4 and Definition 2.5, the ring R is a reduced Rickart ring,

because the operation ◦ satisfies the identities of Lemma 2.4 (the first condition of

Lemma 2.4 follows from Remark 2.6; the third condition follows from Equation (5)).

Lemma 2.4 also yields the identity x◦ = 1− x′. By Proposition 2.3(b), this implies

x◦ = x′′, since x′ is idempotent.

Now let R be a reduced Rickart ring and let ′ be its focal operation. Recall

that every Rickart ring is unital. We consider the operation ◦ given in Lemma 2.4.

As x◦ = 1 − x′ = x′′ by Lemma 2.4 and Proposition 2.3(b), the element x◦ is

idempotent for all x ∈ R (and hence also central by Proposition 2.1). Let e be

an idempotent such that ea = ae = a. Proposition 2.3(b) yields e′′ = e. Now

Proposition 2.3(d) yields a′′ = (ae)′′ = a′′e′′ = a′′e, i.e., a◦ = a◦e. Hence, R is an

m-domain ring. □
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Remark 2.11. It is obvious from Remark 2.9 and Theorem 2.10 that the m-

domains Me of a reduced Rickart ring are closed under the operation ◦ from

Lemma 2.4.

3. Inverse systems and strong semilattices

The aim of this section is to recall strong semilattices of semigroups and to settle

the corresponding terminology and notation. To state the definition of a strong

semilattice of semigroups, it is useful first to define inverse systems of semigroups.

At the end of the section, we show as an example that the multiplicative semigroup

of a reduced Rickart ring is a strong semilattice of semigroups, and that these

semigroups are its m-domains.

The construction which is dual to the strong semilattice is also known as a P lonka

sum (see [12]).

Definition 3.1. [13] Let ⟨S,≤⟩ be a poset and let A = {As|s ∈ S} be a family

of algebras of the same type. Let H = {ht
s|s, t ∈ S and s ≤ t} be a family of

homomorphisms ht
s : At → As. Suppose that for all r, s, t ∈ S

(a) the homomorphism ht
t is the identity map

(b) if r ≤ s ≤ t, then hs
rh

t
s = ht

r.

Then the pair ⟨A,H⟩ is called an inverse system of the algebras As and the

homomorphisms ht
s (over the carrier S).

Some authors require the poset ⟨S,≤⟩ to be (upwards) directed, but for our

work this is not necessary. In the sequel, ⟨S,≤⟩ will always be a lower semilattice

(thus downwards directed). Later it will have to be a lower semilattice which has

a greatest element (and thus it will be directed in both directions).

It is also common to define an inverse system as a triple ⟨S,A,H⟩. However,

we do not include the carrier ⟨S,≤⟩ into the signature, because it is determined by

⟨A,H⟩ up to order isomorphism.

When dealing with inverse systems of monoids, it is sometimes necessary to

clarify whether the identities of the monoids are included into their signatures

or not. In the first case, we will speak of inverse systems of monoids, while in

the latter case, we will say inverse system of semigroups with identities. I.e., an

inverse system of monoids consists of a family of monoids and a family of monoid

homomorphisms, while an inverse system of semigroups with identities consists of

a family of semigroups that happen to have identities and a family of semigroup

homomorphisms.
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Example 3.2. Let R be an m-domain ring and let ⟨E,≤⟩ be its semilattice of

idempotents. We are going to demonstrate that the family of m-domains together

with a suitably chosen family of maps is an inverse system of semigroups over E.

For every idempotent e, let ·e be the restriction of the ring multiplication to

the m-domain Me (recall that by Lemma 2.7 the m-domains are closed with re-

spect to multiplication). Let M be the family of all the m-domains ⟨Me, ·e⟩ (by

Lemma 2.7(b), the family is disjoint).

For each pair e, f ∈ E such that e ≤ f , let ϕf
e be the map

ϕf
e : Mf → Me

x 7→ xe. (6)

This map is well-defined, because, for x ∈ Mf and e ≤ f , we have (xe)◦ = x◦e◦ =

fe = e by Definition 2.5(c), so indeed xe ∈ Me by the definition of Me in Lemma 2.7.

Moreover, the maps ϕf
e are semigroup homomorphisms (by Equation (6), centrality

of idempotents and the definition of ·e and ·f as restrictions of the ring multiplica-

tion).

Now let Φ be the set of all the maps ϕf
e . To demonstrate that ⟨M,Φ⟩ is an

inverse system of semigroups and semigroup homomorphisms, it remains to show

that the two conditions on homomorphisms given in Definition 3.1 are satisfied.

(a) If x ∈ Me for some e ∈ E, then x◦ = e (from Lemma 2.7), and therefore

ϕe
e(x) = xe = xx◦ = x by Definition 2.5(a). Thus, ϕe

e is the identity map.

(b) Suppose e ≤ f ≤ g. The definition of the homomorphisms in (6) and the

assumption e ≤ f (i.e., ef = e = fe) yield ϕf
e (ϕg

f (x)) = ϕf
e (xf) = (xf)e =

xe.

Hence, ⟨M,Φ⟩ is indeed an inverse system of semigroups.

Since every m-domain Me is a right-cancellative monoid (see Lemma 2.7), the

result of the construction described in this example is very similar to the result of

a construction on PP-monoids which can be found in [7].

Definition 3.3. The inverse system ⟨M,Φ⟩ from Example 3.2 will be denoted

sysR. We will call it the inverse system (of semigroups) of the m-domain ring R.

Given an inverse system of semigroups over a lower semilattice, the following

definition provides a semigroup which contains all the semigroups from the inverse

system as subsemigroups.

Definition 3.4. Let ⟨S,∧⟩ be a lower semilattice and let ⟨A,H⟩ be an inverse

system of pairwise disjoint semigroups over ⟨S,∧⟩.
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On the union A =
⋃

s∈S As of all the semigroups, we define an operation • in

the following way. If x ∈ As and y ∈ At, and ·s∧t denotes the multiplication on the

semigroup As∧t, then

x • y := hs
s∧t(x) ·s∧t h

t
s∧t(y). (7)

Then we write A = S⟨A,H⟩ and call the semigroup ⟨A, •⟩ (the operation • is

known to be associative, see e.g. [9]) a strong semilattice of semigroups.

In order to keep the notation simple, we will write S⟨A,H⟩ for both the set A

and the semigroup ⟨A, •⟩.
In general, the strong semilattice of semigroups obtained from an inverse system

of monoids is itself not a monoid. However, under certain conditions it is, and its

identity can be obtained from the inverse system of monoids. We will deal with this

situation in Section 7, where we define strong semilattices of so-called D-monoids

in a way that ensures that a strong semilattice of D-monoids is itself a D-monoid.

Since every strong semilattice of semigroups is itself a semigroup and, as we will

see in Section 6, every strong semilattic of D-semigroups is itself a D-semigroup and

every strong semilattice of D-monoids is itself a D-monoid, we will avoid the usual

term strong semilattice of monoids for a strong semilattice of semigroups which

happen to be monoids (even if the strong semilattice is obtained from an inverse

system of monoids), because such a strong semilattice might not be a monoid itself.

We will speak of strong semilattices of semigroups with identities instead.

4. Decomposition of the multiplicative semigroup of an m-domain ring

In this section we investigate further the inverse system of semigroups of an m-

domain ring described in Example 3.2. Recall that a right-cancellative semigroup

is a semigroup A in which xa = ya implies x = y for all x, y, a ∈ A. The results in

this section which deal with inverse systems of right-cancellative semigroups hold

also for inverse systems af left-cancellative semigroups.

The next theorem shows that the multiplicative semigroup of an m-domain ring

is a strong semilattice of semigroups induced by the inverse system sysR from

Example 3.2.

Theorem 4.1. (a) Let ⟨R,+, ·⟩ be an m-domain ring. Then ⟨R, ·⟩ = S(sysR).

(b) Let ⟨A,H⟩ be an inverse system of disjoint right-cancellative semigroups

with identities over a lower semilattice S. If S⟨A,H⟩ = ⟨R, ·⟩ for some

m-domain ring R, then ⟨A,H⟩ = sysR.

Proof. (a) As described in Example 3.2, sysR = ⟨M,Φ⟩, where M is the set of

m-domains indexed by idempotents and Φ is the set of homomorphisms defined in
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Equation (6). We construct the strong semilattice of semigroups induced by the

inverse system ⟨M,Φ⟩ using Equation (7). Since the union of all the m-domains is

R by Lemma 2.7, this strong semilattice will have the form ⟨R, •⟩. It remains to

prove that the multiplication • coincides with the original ring multiplication.

Suppose that x ∈ Me and y ∈ Mf for some elements x, y ∈ R and idempotents

e, f ∈ E. By Lemma 2.7, this means

x◦ = e and y◦ = f (8)

Now by Equations (7), (2), (6), centrality of idempotents, Equation (8) and Propo-

sition 2.4(a) we have

x • y = ϕe
e∧f (x) ·e∧f ϕf

e∧f (y)

= ϕe
ef (x) ·ef ϕf

ef (y)

= xef · yef

= xx◦yy◦

= x · y.

Thus ⟨R, ·⟩ = S⟨M,Φ⟩.
(b) Let ⟨A,H⟩ be an inverse system of disjoint right-cancellative semigroups

with identities over a lower semilattice S and suppose S⟨A,H⟩ = ⟨R, ·⟩ for some

m-domain ring R.

In order to simplify the notation, we will work with the partial order induced on

the family A by the semilattice S instead of referring to the semilattice S itself. We

will denote this induced partial order on A by ⪯ (i.e., As ⪯ At iff s ≤ t). The corre-

sponding meet operation will be denoted by ⋏. We will index the homomorphisms

from H by their domain and range, i.e., hB
A denotes the semigroup homomorphism

from B to A for semigroups A,B ∈ A with A ⪯ B. The multiplication on a

semigroup A ∈ A will be denoted by ◦
A

.

We need to prove that A is the family of m-domains of R and that H is the

family of all the homomorphisms ϕf
e defined in Equation (6).

Let ⟨M,Φ⟩ = sysR, i.e., M is the set of m-domains ⟨Me, ·⟩ indexed by idempo-

tents, and Φ = {ϕf
e | e, f ∈ E and e ≤ f}, where E is the set of idempotents.

Since S⟨A,H⟩ = ⟨R, ·⟩, obviously A is a partition of R. Moreover, for x ∈ A

and y ∈ B, Equation (7) translates to

xy = hA
A⋏B(x) ◦

A⋏B
hB
A⋏B(y) (9)

(in particular, xy ∈ A⋏B).
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Obviously, the identities of the semigroups from A are idempotents of the ring

R, since the multiplication on a semigroup A ∈ A is a restriction of the ring

multiplication to the set A.

We will prove that

(1) for every a ∈ R and every A ∈ A, we have a ∈ A iff a◦ ∈ A,

(2) every semigroup A ∈ A is the m-domain corresponding to its identity,

(3) M = A,

(4) H = Φ.

(1) For a semigroup A ∈ A, let e be the identity of A and let a ∈ A be

an arbitrary element of A. Let B ∈ A be the semigroup containing the

element a◦.

Since ae = ea = a, we have a◦e = a◦ by Definition 2.5(b). Therefore

a◦e ∈ B, because a◦ ∈ B. But since ⟨R, ·⟩ = S⟨A,H⟩, Equation (9) yields

that a◦e ∈ B ⋏A. So B ⪯ A.

On the other hand, by Definition 2.5(a), we have a◦a = a ∈ A. But now

Equation (9) yields a◦a ∈ B ⋏A. So B ⋏A = A, i.e., A ⪯ B.

Hence, A = B. Since A was arbitrary and B was chosen to be the

semigroup containing a◦ for an arbitrary element a ∈ A, we conclude that

a and a◦ are always contained in the same semigroup. I.e., for a ∈ R and

A ∈ A, a ∈ A if and only if a◦ ∈ A.

(2) If a ∈ A, then not only a◦ ∈ A, but a◦ must be the identity e of A, because

by right-cancellativity of A, from a◦a = a = ea (see Definition 2.5(a))

follows a◦ = e.

Conversely, let e be the identity of A and a ∈ R and a◦ = e. Then by

the previous paragraph (1), we have a ∈ A.

This proves that A = Me, because the m-domain is defined as Me =

{x ∈ R |x◦ = e} (see Lemma 2.7). Since the multiplication ◦
A

is a restriction

of the ring multiplication, A and Me are equal not only as sets, but also as

semigroups.

(3) It follows from the previous step that A ⊆ M. Since both A and M are

partitions of the ring R, this immediately implies A = M.

(4) Let hB
A ∈ H. In view of the previous items, the domain and range of hB

A

are m-domains. So hB
A : Mf → Me for some idempotents e, f ∈ E. We will

prove that e ≤ f and hB
A = ϕf

e .

First, observe that e is the only idempotent in Me: If g ∈ Me is idempo-

tent, then eg = geg by centrality of idempotents (see Remark 2.6). So by
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cancellativity, e = ge. But ge = g, because e is the identity of Me. Hence,

e = g.

Let x ∈ Mf ; then

hB
A(x) = e ◦

A
hB
A(x) (since e is the identity of Me)

= hA
A(e) ◦

A
hB
A(x) (because hA

A is the identity map)

= ex (by Equation (9)).

By the first part of this theorem, ex ∈ Me∧f , since e ∈ Me and x ∈ Mf .

But since the range of hB
A is Me, we also have ex ∈ Me. This yields

Me = Me∧f . So e = e ∧ f , i.e., e ≤ f . Now obviously hB
A(x) = ex = ϕf

e (x)

by Equation (6).

So indeed ⟨A,H⟩ = sysR. □

Fountain obtained a result on a strong semilattice decomposition of right PP-

monoids with central idempotents, see [7, Theorem 1]. His result is similar to

Theorem 4.1(a) and in particular Corollary 4.2(a), and there are similar ideas in

the proofs. However, the author preferred a short, direct and independent proof of

Theorem 4.1(a). This also establishes some notation which will be necessary in the

proof of Theorem 8.1.

It follows from Theorem 4.1 that the multiplicative semigroups of m-domain rings

R and R′ are equal if sysR = sysR′ (the converse is also true by Example 3.2).

As a special case of Theorem 4.1, we obtain the following.

Corollary 4.2. (a) Let ⟨R,+, ·, 1⟩ be a reduced Rickart ring. Then ⟨R, ·⟩ =

S(sysR).

(b) Let ⟨A,H⟩ be an inverse system of disjoint right-cancellative semigroups

over lower semilattice S. If S⟨A,H⟩ = ⟨R, ·⟩ for some reduced Rickart ring

R, then ⟨A,H⟩ = sysR.

Proof. (a) Immediate from Theorem 4.1(a).

(b) Suppose that S⟨A,H⟩ = ⟨R, ·⟩ for some reduced Rickart ring R. Since

every reduced Rickart ring is also an m-domain ring, it suffices to prove

that the semigroups from the inverse system ⟨A,H⟩ have identities. We

use the fact that every reduced Rickart ring is unital.

Since A is a partition of R, the element 1 of the ring is contained in

some semigroup from A. Let T be this semigroup. For every element x

of the ring, if x ∈ A, then x · 1 ∈ A ⋏ T by Equation 9. But obviously

x · 1 = x ∈ A. Therefore, A = A ⋏ T . Since this is the case for all A ∈ A,

the semigroup T must be the greatest element of A.
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Therefore, for every A ∈ A, there is a homomorphism hT
A from T to

A. Now consider the element hT
A(1) ∈ A. For every element a ∈ A, since

hA
A is the identity map (see Definition 3.4), we have hT

A(1) ◦
A
a = hT

A(1) ◦
A

hA
A(a) = 1 · a by Equation (9). In the same way, a ◦

A
hT
A(1) = a. So the

element hT
A(1) is the identity of A. □

It is already known from Fountain’s result in [7] that the semigroup S⟨A,H⟩
mentioned in Corollary 4.2(b) is a left PP monoid with central idempotents.

It follows from Corollary 4.2 that the multiplicative semigroups of reduced Rickart

rings R and R′ are equal if sysR = sysR′ and that S(sysR) is the unique repre-

sentation of the semigroup ⟨R, ·⟩ as a strong semilattice of right-cancellative semi-

groups.

5. D-semigroups, D-monoids and D-rings

The question arises if Theorem 4.1 can be modified to include also the operation
◦. I.e., we want to find out what happens if instead of the inverse system of m-

domains (seen as semigroups ⟨Me, ·⟩) we deal with the inverse system of ”enriched”

m-domains (seen as algebras of the kind ⟨Me, ·,◦⟩ or ⟨Me, ·,◦ , e⟩). This section will

provide the necessary tools for the following sections, in which that question will be

answered. We need to work with algebras which have not only multiplication, but

also a unary operation similar to the operation ◦. D-semigroups are such algebras,

and therefore, we recall their definition and basic properties in this section.

Definition 5.1. [15] A semigroup A is said to be a D-semigroup if there exists

some subset U of its set of idempotents E such that, for all a ∈ A, there exists a

smallest e ∈ U with the property that ea = a (smallest in the sense of the standard

partial order of idempotents, see Equation (1)).

D-semigroups can also be characterized in the following way.

Proposition 5.2. [15] A semigroup A is a D-semigroup if and only if it can be

equipped with a unary operation ◦ satisfying the following for all a, b ∈ A:

(a) a◦a = a,

(b) (a◦)◦ = a◦,

(c) (ab)◦a◦ = a◦(ab)◦ = (ab)◦.

In a D-semigroup A, the set U from Definition 5.1 is the range of the operation ◦

from Proposition 5.2. For each element a ∈ A, the element a◦ from Proposition 5.2

is the smallest e ∈ U with the property that ea = a. Hence the set U from
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Definition 5.1 uniquely determines the operation ◦ from Proposition 5.2 and vice

versa.

We will treat D-semigroups as algebras of the kind ⟨A, ·,◦⟩ (where · denotes the

multiplication on the semigroup).

Note that, since a◦a◦ = (a◦)◦a◦ = a◦ by Proposition 5.2(b) and Proposi-

tion 5.2(a), the element a◦ is idempotent for every a ∈ A.

Definition 5.3. [15] A D-semigroup ⟨A, ·,◦⟩ is called D-semiadequate if a◦b◦ = b◦a◦

for all a, b ∈ A.

The notion of D-abundant D-semigroup is also defined in [15], and in the same

article, the following was proved to be equivalent to the original definition of a

D-abundant D-semigroup.

Definition 5.4. A D-semigroup ⟨A, ·,◦⟩ is said to be D-abundant if, for all x, y ∈ A1

and all a ∈ A, xa = ya implies xa◦ = ya◦ (where A1 denotes the monoid created

from the semigroup A by adding a new element which acts like an identity).

In this article, we will refer to D-semigroups with identity ⟨A, ·,◦ , 1⟩ as D-

monoids. We will deal with the following special subclasses of D-monoids.

Definition 5.5. A D-semigroup or D-monoid is said to be right-cancellative if the

underlying semigroup is right-cancellative.

We call a D-monoid ⟨A, ·,◦ , 1⟩ ◦-trivial if a◦ = 1 for all a ∈ A.

Every monoid can be turned into a ◦-trivial D-monoid in the following very

straight-forward way:

Proposition 5.6. Let ⟨A, ·, 1⟩ be a monoid, and let a◦ := 1 for all a ∈ A. Then

⟨A, ·,◦ , 1⟩ is a D-monoid.

Proof. Easy calculations show that all the conditions of Definition 5.1 are satisfied:

a◦a = 1a = a, (a◦)◦ = 1 = 1◦ and (ab)◦a◦ = a◦(ab)◦ = (ab)◦ = 1. □

Proposition 5.7. Let ⟨A, ·, 1⟩ be a right-cancellative monoid with a unary opera-

tion ◦. Then the following are equivalent.

(a) The algebra ⟨A, ·,◦ , 1⟩ is a D-monoid.

(b) The operation ◦ satisfies the conditions (a) and (b) from Proposition 5.2.

(c) a◦ = 1 for all a ∈ A.

Proof. (a) =⇒ (b) is obvious.

(b) =⇒ (c) follows by right-cancellativity from a◦a = 1 · a.

(c) =⇒ (a) is immediate from Proposition 5.6. □
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The next lemma establishes the relationships between right-cancellative, ◦-trivial

and D-abundant D-monoids.

Lemma 5.8. A D-monoid ⟨A, ·,◦ , 1⟩ is right-cancellative if and only if it is both

D-abundant and ◦-trivial.

Proof. Let ⟨A, ·,◦ , 1⟩ be a D-monoid.

First, assume that ⟨A, ·,◦ , 1⟩ is both D-abundant and ◦-trivial. Let a, x, y ∈ A

such that xa = ya. Then xa◦ = ya◦, since ⟨A, ·,◦ , 1⟩ is D-abundant (see Defini-

tion 5.4). But since it is also ◦-trivial (see Definition 5.5), a◦ = 1, so x = y. Hence,

⟨A, ·,◦ , 1⟩ is right-cancellative.

For the opposite direction, assume that ⟨A, ·,◦ , 1⟩ is right-cancellative. Then it

is obviously D-abundant, because for all x, y, a ∈ A, xa = ya implies x = y. Thus

also xa◦ = ya◦, and ◦-triviality follows from Proposition 5.7. □

A ring is said to be a D-ring if its multiplicative semigroup is a D-semigroup (of

course, every ring which has the multiplicative identity can be turned into a ◦-trivial

D-ring by chosing a◦ = 1 for all elements a). It is immediate from Definition 5.1

and the definition of a C-ring (see [6]) that the multiplicative semigroup of a C-ring

is a D-semigroup such that the set U from Definition 5.1 is the set of all central

idempotents. Hence, C-rings are examples of D-rings.

We will treat D-rings as algebras of the kind ⟨R,+, ·,◦ , 1⟩ (like enriched reduced

Rickart rings) or ⟨R,+, ·,◦⟩ (like enriched m-domain rings). A D-ring is said to be

D-abundant if its multiplicative semigroup is D-abundant.

The purpose of the following proposition is to clarify the relation between D-

rings and enriched m-domain rings by showing that every enriched m-domain ring

is a D-abundant D-ring in a unique way.

Proposition 5.9. Let ⟨R,+, ·,◦⟩ be an enriched m-domain ring.

(a) Then ⟨R,+, ·,◦⟩ is a D-semiadequate D-abundant D-ring. The set U from

Definition 5.1 which corresponds to the operation ◦ is the set of all idem-

potents E.

(b) If an algebra ⟨R,+, ·,+⟩ (i.e., the same ring with another unary operation +)

is a D-abundant D-ring, too, then the operations ◦ and + coincide.

Proof. (a) To prove that ⟨R,+, ·,◦⟩ is a D-ring, we will verify that ⟨R, ·,◦⟩
satisfies the conditions for being a D-semigroup given in Proposition 5.2.

Obviously, the first condition of Proposition 5.2 holds, because it is identical

to the first item of Definition 2.5 (recall that idempotents are central by

Remark 2.6). The third condition of Proposition 5.2 follows immediately
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from the third item of Definition 2.5 and from the fact that a◦ is a central

idempotent for every a ∈ R. For the second condition of Proposition 5.2,

let a ∈ R. By Lemma 2.7, there exists some m-domain Me such that

a ∈ Me, and a◦ = e. Since e ∈ Me, too, Lemma 2.7 also yields that e◦ = e.

Therefore, (a◦)◦ = e◦ = e = a◦. So ⟨R,+, ·,◦⟩ is a D-ring.

To prove that ⟨R, ·,◦⟩ is also D-abundant, let x, y, a ∈ R be such that

xa = ya. Then (x− y)a = 0.

So by Definition 2.5(c) and Equation (5), (x − y)◦a◦ = ((x − y)a)◦ =

0◦ = 0. Hence, by Definition 2.5(a), (x − y)a◦ = (x − y)(x − y)◦a◦ = 0.

Therefore, xa = ya implies xa◦ = ya◦, so by Definition 5.4, ⟨R,+, ·,◦⟩ is

D-abundant.

D-semiadequateness follows immedidately from centrality of idempotents

a◦ and b◦ (for arbitrary a and b).

Obviously, the set U from Definition 5.1 must be the set of all idem-

potents, because the operation ◦ maps every idempotent on itself (see Re-

mark 2.6).

(b) For uniqueness of the operation ◦, suppose + is another unary operation

defined on R such that ⟨R,+, ·,+⟩ is a D-abundant D-ring. Then

a+a = a = a◦a (10)

for every a ∈ R by Proposition 5.2(a). This yields a+ = a+a+ = a◦a+ by

Definition 5.4. In the same way, Equation (10) also yields a◦ = a◦a◦ =

a+a◦. So a+ = a◦a+ = a+a◦ = a◦ by centrality of a◦. □

From here on, given an enriched m-domain ring ⟨R,+, ·,◦⟩, the D-semigroup

⟨R, ·,◦⟩ will be called the D-semigroup reduct of R, and for an enriched reduced

Rickart ring ⟨R,+, ·,◦ , 1⟩, the D-monoid ⟨R, ·,◦ , 1⟩ will be called the D-monoid

reduct of R.

6. Inverse systems: a continuation

In Theorem 4.1 we saw that, first, the multiplicative semigroup ⟨R, ·⟩ of an m-

domain ring is the strong semilattice induced by its inverse system of semigroups,

and, second, if the strong semilattice induced by a given inverse system ⟨A,H⟩ of

right-cancellative semigroups with identity happens to be the multiplicative semi-

group of some m-domain ring, then ⟨A,H⟩ is the inverse system of semigroups of

the ring.

We are going to prove similar results about the D-semigroup reduct of an enriched

m-domain ring and about the D-monoid reduct of an enriched reduced Rickart ring
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in Section 8. Therefore in this section we turn the m-domains into ◦-trivial D-

monoids and prove that the semigroup homomorphisms defined in Equation (6)

between the m-domains are also D-monoid homomorphisms. Hence we obtain an

inverse system of D-monoids in an enriched m-domain ring.

Proposition 6.1. Let R be an enriched m-domain ring and let E be its semilattice

of idempotents. For every e ∈ E, let ⟨Me, ·e, ◦e, e⟩ be the algebra of type (2, 1, 0)

defined by

a ·e b := a · b (11)

(see also Example 3.2) and

a◦e := e. (12)

Then ⟨Me, ·e, ◦e, e⟩ is a right-cancellative D-monoid.

Proof. By Proposition 5.9, ⟨R,+, ·,◦⟩ is a D-abundant D-ring. The operation ·e is

the restriction of the ring multiplication · to the m-domain Me, and the operation
◦
e is the restriction of the operation ◦ from Definition 2.5 (recall that Me is closed

under · by Lemma 2.7 and under ◦ by Remark 2.9). So ⟨Me, ·e, ◦e⟩ is a sub-D-

semigroup of ⟨R, ·,◦⟩. Therefore, it must be D-abundant, too.

Moreover, since Me has the identity e (by Lemma 2.7), it is a D-monoid. It

is evident from Equation (12) that the D-monoid ⟨Me, ·e, ◦e, e⟩ is ◦-trivial. Now

Lemma 5.8 yields that it is right-cancellative. □

Proposition 6.2. Let R be an enriched m-domain ring, let E be its semilattice of

idempotents and for every pair of idempotents e, f with e ≤ f , let ϕf
e : Mf → Me

be the map given by Equation (6) (i.e., ϕf
e (x) = xe). Let

M◦
1 = {⟨Me, ·e, ◦e, e⟩ | e ∈ E} (13)

with ⟨Me, ·e, ◦e, e⟩ as in Proposition 6.1 and let

Φ = {ϕf
e | e, f ∈ E and e ≤ f} (14)

as in Example 3.2. Then ⟨M◦
1,Φ⟩ is an inverse system of right-cancellative D-

monoids.

Proof. First let us prove that ϕf
e is a D-monoid homomorphism between the D-

monoids ⟨Mf , ·f , ◦f , f⟩ and ⟨Me, ·e, ◦e, e⟩.
We have already proved (see Example 3.2) that the map ϕf

e is a semigroup ho-

momorphism between ⟨Mf , ·f ⟩ and ⟨Me, ·e⟩. It also preserves the identity, because

by Equation (6), ϕf
e (f) = fe = e, since e ≤ f . Since it preserves the identity, it

must also preserve the unary operation, because the D-monoids are ◦-trivial: By
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Equation (12) ϕf
e (x◦

f ) = ϕf
e (f) = e = (ϕf

e (x))
◦
e. Hence, ϕf

e is a D-monoid homo-

morphism.

In Example 3.2 we already saw that for every e ∈ E, the map ϕe
e is the identity

map, and that ϕf
eϕ

g
f = ϕg

e for all e, f, g ∈ E with e ≤ f ≤ g. We conclude that

⟨E,M,Φ⟩ is an inverse system of D-monoids. □

Definition 6.3. The inverse system of D-monoids ⟨M◦
1,Φ⟩ from Proposition 6.2

will be called the inverse system of D-monoids of the enriched m-domain ring R

and we will denote it by sys◦1 R. When we want to treat the m-domains just as

D-semigroups instead of D-monoids, then we will speak of the inverse system of

D-semigroups of the enriched m-domain ring R and write sys◦ R to refer to the

inverse system ⟨M◦,Φ⟩, where M◦ = {⟨Me, ·e, ◦e⟩ | e ∈ E} .

7. Strong semilattices of D-monoids

In this section, we will settle the terminology concerning strong semilattices of

D-semigroups and D-monoids.

The following definition is a variation of the left/right dual construction of the

one in [7, Theorem 1]. It is more general in that it does not assume the D-monoids to

be right-cancellative, whereas in [7], the monoids are required to be left-cancellative

(so the dual would require them to be right-cancellative).

Definition 7.1. (a) Let ⟨A◦,H⟩ be an inverse system of pairwise disjoint D-

semigroups over a lower semilattice S. On the union of all the D-semigroups

A =
⋃

s∈S As, we define a binary operation • as in Equation (7) and a unary

operation in the following way: For x ∈ As,

x• := x◦
s. (15)

Then we write A = S◦⟨A◦,H⟩ and call the algebra ⟨A, •, •⟩ a strong semi-

lattice of D-semigroups (induced by the inverse system ⟨A◦,H⟩).
(b) If ⟨A◦,H⟩ is even an inverse system of D-monoids over a semilattice S which

has the greatest element ⊤, then we can define also a constant 1 by

1 := 1⊤. (16)

We write A = S◦
1⟨A◦,H⟩ and call the algebra ⟨A, •, •,1⟩ a strong semilattice

of D-monoids.

Obviously, if ⟨A, •, •⟩ is a strong semilattice of D-semigroups, then ⟨A, •⟩ is a

strong semilattice of semigroups.
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The purpose of the next Proposition is to justify the terminology by giving a

positive answer to the naturally arising question whether a strong semilattice of

D-semigroups (D-monoids) is itself also a D-semigroup (D-monoid).

Proposition 7.2. (a) Every strong semilattice of D-semigroups is a D-semigroup.

(b) Every strong semilattice of D-monoids is a D-monoid.

Proof. (a) Let S, A◦ and H be as in Definition 7.1, and let • and • be the

operations defined on the union A =
⋃

s∈S As as in Definition 7.1(a).

Since ⟨A, •⟩ is a strong semilattice of semigroups, it is clear that it is a

semigroup. So we only need to prove that the identities from Proposition 5.2

are satsified.

Let x ∈ As, y ∈ At and z ∈ Au.

By Equation (7), Equation (15), Definition 3.1 (recall that ⟨A◦,H⟩ is an

inverse system) and Proposition 5.2(a):

x• • x = hs
s(x

◦
s) ·s hs

s(x) = x◦
s ·s x = x

By Equation (15) and Proposition 5.2(b):

(x•)
•

= (x◦
s)

◦
s = x◦

s = x•.

The third identity follows similarly from Proposition 5.2(c):

(x • y)
• • x•

= (hs
s∧t(x) ·s∧t h

t
s∧t(y))

• • x◦
s (by Equations (7) and (15))

= (hs
s∧t(x) ·s∧t h

t
s∧t(y))

◦
s∧t ·s∧t h

s
s∧t(x

◦
s) (by Equations (15) and (7))

= (hs
s∧t(x) ·s∧t h

t
s∧t(y))

◦
s∧t ·s∧t (hs

s∧t(x))
◦
s (hs

s∧t is a D-semigroup morphism)

= (hs
s∧t(x) ·s∧t h

t
s∧t(y))

◦
s∧t (by Proposition 5.2(c))

= (x • y)
•

(by Equations (7) and (15)),

and similarly for the multiplication from the other side.

(b) Suppose the semilattice S has a top element ⊤ and ⟨A◦,H⟩ is an inverse sys-

tem of D-monoids over S. By the previous item, ⟨A, •, •⟩ is a D-semigroup.

The element 1 is the neutral element with respect to the operation •,

because 1s is the neutral element for ·s:

x • 1 = hs
s∧⊤(x) ·s∧⊤ h⊤

s∧⊤(1⊤) = hs
s(x) ·s h⊤

s (1⊤) = hs
s(x) ·s 1s = x,

by Equation (7) and (16), since ⊤ is the top element of S and h⊤
s is a

monoid homomorphism. (The identity 1 • x = x is proved in the same

way.) Hence, ⟨A, •,1⟩ is a monoid. □
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Observe that the operation ◦ is used neither in Equation (16) nor in the proof of

Proposition 7.2(b). So given an inverse system of monoids (instead of D-monoids)

over a lower semilattice which has the greatest element, we can also define a constant

1 by Equation (16), and 1 is the identity of the strong semilattice of semigroups

⟨A, •⟩.

8. Decomposition of the D-semigroup reduct of an enriched m-domain

ring

In this section, we look at the strong semilattice of D-semigroups (D-monoids)

induced by the inverse system sys◦ R (sys◦1 R) of a given enriched m-domain ring

(reduced Rickart ring) R, and we see that it is the D-semigroup ⟨R, ·,◦⟩ (and for a

reduced Rickart ring, the D-monoid ⟨R, ·,◦ , 1⟩). So the D-semigroup reduct of an

enriched m-domain ring is a strong semilattice of right-cancellative D-semigroups,

and the D-monoid reduct of a reduced Rickart ring is a strong semilattice of right-

cancellative D-monoids.

The next theorem is the D-semigroup version of Theorem 4.1. It proves that the

D-semigroup reduct ⟨R, ·,◦⟩ of an enriched m-domain ring is a strong semilattice of

right-cancellative D-semigroups.

Theorem 8.1. (a) Let ⟨R,+, ·,◦⟩ be an enriched m-domain ring. Then ⟨R, ·,◦⟩ =

S◦(sys◦ R).

(b) Let ⟨A◦,H⟩ be an inverse system of pairwise disjoint right-cancellative D-

semigroups with identities over some lower semilattice. Suppose S◦⟨A◦,H⟩ =

⟨R, ·,◦⟩ for some enriched m-domain ring ⟨R,+, ·,◦⟩. Then ⟨A◦,H⟩ =

sys◦ R.

Proof. Let R be an enriched m-domain ring and let ⟨M◦,Φ⟩ = sys◦ R. So M◦ =

{⟨Me, ·e, ◦e | e ∈ E⟩} (see Definition 6.3) and Φ is the family defined in Equation (14),

i.e., Φ = {ϕf
e | e, f ∈ E and e ≤ f}, where ϕf

e are the maps defined in Equation (6).

Let ⟨R, •, •⟩ = S◦⟨M◦,Φ⟩.
(a) We need to prove that ⟨R, •, •⟩ = ⟨R, ·,◦⟩. To prove that the binary op-

eration • coincides with ·, let us forget about the other operations for

a moment. Consider the family of semigroups M obtained from M◦

by replacing each element ⟨Me, ·e, ◦e⟩ by its reduct ⟨Me, ·e⟩. By Defini-

tion 3.3, ⟨M,Φ⟩ = sysR. So by Theorem 4.1, S⟨M,Φ⟩ = ⟨R, ·⟩. But

S⟨M,Φ⟩ = ⟨R, •⟩. So the operation • indeed coincides with the ring mul-

tiplication ·. The unary operations ◦ and • obviously coincide, too, because

x• = x◦
e = e = x◦ by Equations (15), Equation (12) and Lemma 2.7.
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(b) Now let ⟨A◦,H⟩ be an inverse system of right-cancellative D-semigroups

with identities over a lower semilattice such that S◦⟨A◦,H⟩ = ⟨R, ·,◦⟩. We

have to prove that ⟨A◦,H⟩ = sys◦ R, i.e., that ⟨A◦,H⟩ = ⟨M◦,Φ⟩ (with

⟨M◦,Φ⟩ as defined in Definition 6.3).

Let M and A be the families of semigroups obtained from M◦ and A◦

by replacing all the elements by their semigroup reducts. So S⟨A,H⟩ =

⟨R, ·⟩, and since the semigroups from A have identities, we can use Theo-

rem 4.1(b), obtaining that ⟨A,H⟩ = sysR, i.e., M = A and Φ = H. In

particular, the underlying sets of the members of A are the m-domains of

the ring R, and the multiplications ·e on them are just restrictions of the

ring multiplication.

It remains to prove that the unary operations on each m-domain Me also

coincide. Let A◦ = {⟨Me, ·e,+e ⟩ | e ∈ E}. By Proposition 5.2(a), for every

element a of the m-domain Me, we have a+e a = a, because ⟨Me, ·e,+e ⟩ is a D-

semigroup. Since by Proposition 6.1 the m-domain Me with the usual unary

operation ◦
e is also a D-semigroup, we also have a◦ea = a. So a+e a = a◦ea.

But by right-cancellativity of the semigroup ⟨Me, ·e⟩, this implies a+e = a◦e.

So ⟨A◦,H⟩ = sys◦ R. □

For an inverse system ⟨A◦,H⟩ of D-semigroups with identities, let us denote by

A◦
1 the family obtained from A◦ by including the identities of the D-semigroups

into their signatures. Then ⟨A◦
1,H⟩ is even an inverse system of D-monoids.

The following corollary shows that in the case of an enriched reduced Rickart ring,

Theorem 8.1 can be modified to include the multiplicative identities not only into

the inverse system, but also into the strong semilattice construction. In particular,

it says that the D-monoid reduct ⟨R, ·,◦ , 1⟩ of an enriched reduced Rickart ring is

a strong semilattice of right-cancellative D-monoids.

Corollary 8.2. (a) If R is an enriched reduced Rickart ring, then ⟨R, ·,◦ , 1⟩ =

S◦
1(sys◦1 R).

(b) Let ⟨A◦,H⟩ be an inverse system of pairwise disjoint right-cancellative D-

semigroups with identities over some lower semilattice, and let A◦
1 denote

the family of D-monoids obtained from the family of D-semigroups A◦ by

including the identities into the signatures. Suppose S◦⟨A◦,H⟩ = ⟨R, ·,◦⟩
for some enriched reduced Rickart ring R. Then ⟨A◦

1,H⟩ = sys◦1 R.

Proof. (a) If R is not only an enriched m-domain ring, but even an enriched

reduced Rickart ring, then its lattice of idempotents E has the greatest
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element 1. Hence, we can apply the second part of Definition 7.1 to obtain a

strong semilattice of D-monoids S◦
1⟨M◦

1,Φ⟩. Let ⟨R, •, •,1⟩ = S◦
1⟨M◦

1,Φ⟩.
It is clear from Theorems 4.1(a) and 8.1(a) that the operation • is the

ring multiplication and that • is the operation from Lemma 2.4.

By Definition 7.1, 1 is the identity element with respect to the operation

·⊤ of the D-monoid ⟨M⊤, ·⊤, ◦⊤,⊤⟩ corresponding to the top element ⊤ of

the lattice E. Since ⊤ = 1, obviously 1 = 1.

(b) By Theorem 8.1(b), we already know that ⟨A◦,H⟩ = sys◦ R. So ⟨A◦,H⟩
is an inverse system over a semilattice which actually is (isomorphic to)

the lattice of idempotents E, and A◦ = M◦. Therefore, the constant 1

obtained from ⟨A◦,H⟩ by Equation (16) is the identity of the m-domain

M1, that is, 1 = 1. Hence, ⟨A◦
1,H⟩ = sys◦1 R. □
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