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Abstract. Let R be a commutative ring with nonzero identity, let I(R) be

the set of all ideals of R and δ : I(R) → I(R) be a function. Then δ is called

an expansion function of ideals of R if whenever L, I, J are ideals of R with

J ⊆ I, we have L ⊆ δ(L) and δ(J) ⊆ δ(I). In this paper, we present the

concept of δ(0)-ideals in commutative rings. A proper ideal I of R is called

a δ(0)-ideal if whenever a, b ∈ R with ab ∈ I and a /∈ δ(0), we have b ∈ I.

Our purpose is to extend the concept of n-ideals to δ(0)-ideals of commutative

rings. Then we investigate the basic properties of δ(0)-ideals and also, we give

many examples about δ(0)-ideals.
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1. Introduction

Throughout this study, all rings are assumed to be commutative with nonzero

identity. Let R be a ring. If I is an ideal of R with I ̸= R, then I is called a

proper ideal. Let I be an ideal of R. We denote the set of regular elements of R

by Reg(R) and the Jacobson ideal of R by J(R). Also, we denote the radical of I

by
√
I = {a ∈ R : an ∈ I for some n ∈ N}. In particular, we mean by

√
0 the set

of all nilpotents in R; i.e., {a ∈ R : an = 0 for some n ∈ N}. Let S be a nonempty

subset of R. Then the ideal {a ∈ R : aS ⊆ I}, which contains I, will be designated

by (I : S).

Zhao in [11] introduced the concept of expansions of ideals: a function δ from

I(R) to I(R) is an ideal expansion if it has the following properties: I ⊆ δ(I)

and if I ⊆ J for some ideals I, J of R, then δ(I) ⊆ δ(J). For example, δ0 is

the identity function, where δ0(I) = I for all ideals I of R, and δ1 is defined by

δ1(I) =
√
I. For other examples, consider the functions δ+ and δ∗ of I(R) defined

with δ+(I) = I + J , where J ∈ I(R) and δ∗(I) = (I : P ), where P ∈ I(R), for all

I ∈ I(R), respectively (see [4]).
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The notion of the prime ideal plays a key role in the theory of commutative

algebra, and it has been widely studied. See, for example, [1,6]. Recall from [3]

that a prime ideal P of R is a proper ideal having the property that ab ∈ P implies

either a ∈ P or b ∈ P for each a, b ∈ R. In [9], Mohamadian defined a proper ideal I

of R as an r-ideal if whenever a, b ∈ R with ab ∈ I and Ann(a) = 0, we have b ∈ I.

In a recent study, the authors of [10] introduce the notion of n-ideals. A proper

ideal I of R is called an n-ideal of R if whenever a, b ∈ R such that ab ∈ I with

a /∈
√
0, we have b ∈ I. Motivated by this concept, we give the notion of δ(0)-ideals

and we investigate many properties of δ(0)-ideals similar to those of r-ideals and

n-ideals. A proper ideal I of R is said to be a δ(0)-ideal if the condition ab ∈ I with

a /∈ δ(0) implies b ∈ I for every a, b ∈ R. It is clear that if δ(I) = δ1(I) =
√
I, then

I is an n-ideal if and only if I is a δ(0)-ideal. Among many results in this paper,

it is shown (Corollary 2.5) that if a prime ideal I ⊆ δ(0), then I is a δ(0)-ideal. In

Theorem 2.12 we show that a proper ideal I of R is a δ(0)-ideal of R if and only if

I = (I : a) for every a /∈ δ(0). In Proposition 2.16 for a δ-reduced von Neumann

ring R, we show that 0 is a δ(0)-ideal if and only if R is a field.

2. δ(0)-Ideals of commutative rings

In this part, we will define δ(0)-ideal of commutative rings and we will give some

fundamental theorems and examples about them.

Definition 2.1. A proper ideal I of R is called a δ(0)-ideal if whenever a, b ∈ R

with ab ∈ I and a /∈ δ(0), we have b ∈ I.

Remark 2.2. Let R be a ring, and δ, γ two expansions of ideals.

(1) If I is a δ(0)-ideal of R with δ(0) ⊆ γ(0), then I is a γ(0)-ideal. In particular

if
√
0 ⊆ δ(0), then every n-ideal is a δ(0)-ideal.

(2) If
√
0 = δ(0), then an ideal I is a δ(0)-ideal if and only if I is an n-ideal.

Proposition 2.3. If I is a δ(0)-ideal of R, then I ⊆ δ(0).

Proof. Assume that I is a δ(0)-ideal but I ⊈ δ(0). Then there exists a ∈ I such

that a /∈ δ(0). Since a.1 = a ∈ I and I is a δ(0)-ideal, we conclude that 1 ∈ I, so

that I = R, a contradiction. Hence I ⊆ δ(0). □

Proposition 2.4. Let R be a ring, I be an ideal of R and δ be an expansion

function. If I is a primary ideal and
√
I ⊆ δ(0), then I is a δ(0)-ideal.

Proof. Let I be a primary ideal and ab ∈ I with a ̸∈ δ(0). Then a ̸∈
√
I. Since I

is primary, we have b ∈ I, as desired. □
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Corollary 2.5. Let I be a prime ideal. If I ⊆ δ(0), then I is a δ(0)-ideal.

Next, we give an example of a δ(0)-ideal that is not an n-ideal.

Example 2.6. Assume that R = Z6 and δ∗(J) = (J : 3Z6). Let I = 2Z6. Then, I

is a δ∗(0)-ideal, since I is prime and δ∗(0) = I. But I ⊈
√
0, which implies it is not

an n-ideal.

Proposition 2.7. Let {Ii}i∈∆ be a nonempty set of δ(0)-ideals of R. Then
⋂
i∈∆

Ii

is a δ(0)-ideal of R.

Proof. Let ab ∈
⋂
i∈∆

Ii with a /∈ δ(0) for a, b ∈ R. Then ab ∈ Ii for every i ∈ ∆.

Since Ii is a δ(0)-ideal of R, we get the result that b ∈ Ii and so b ∈
⋂
i∈∆

Ii. □

Recall from [11] that a proper ideal Q of R is a δ-primary ideal if whenever

a, b ∈ R with ab ∈ Q, we have a ∈ Q or b ∈ δ(Q). In the following proposition, we

show that every δ(0)-ideal is also a δ-primary ideal.

Proposition 2.8. Let R be a ring.

(1) If I is a δ(0)-ideal of R, then it is a δ-primary ideal.

(2) Assume that δ2(0) ⊆ δ(0). Then I is a δ(0)-ideal of R if and only if it is a

δ-primary ideal and I ⊆ δ(0).

Proof. (1) Suppose that I is a δ(0)-ideal of R and ab = ba ∈ I with b /∈ δ(I)

for a, b ∈ R. Then b /∈ δ(0). Since I is a δ(0)-ideal, we conclude that a ∈ I.

Consequently, I is a δ-primary ideal of R.

(2) Suppose that I is a δ-primary ideal and I ⊆ δ(0). Let ab = ba ∈ I with b /∈ I.

This implies a ∈ δ(I) ⊆ δ2(0). Since δ2(0) ⊆ δ(0), we have a ∈ δ(0). This implies

that I is a δ(0)-ideal of R. Conversely, suppose that I is a δ(0)-ideal. By (1) and

Proposition 2.3, we have I is a δ-primary ideal and I ⊆ δ(0). □

In the next example, we show that the condition δ2(0) ⊆ δ(0) in (2) of Proposi-

tion 2.8 is crucial.

Example 2.9. Let R = Z6 and δ∗(J) = (J : 3Z6). Let I = 3Z6. It’s clear that

δ∗(I) = R. Thus, for all ab ∈ I, we have b ∈ δ∗(I) which implies that I is a δ∗-

primary ideal. Since I ⊈ δ∗(0), we find that I is not a δ∗(0)-ideal by Proposition

2.3.

Proposition 2.10. Assume that 0 is a δ(0)-ideal such that
√

δ(0) = δ(0). Then
√
0 is a δ(0)-ideal.
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Proof. Suppose ab ∈
√
0 and a ̸∈

√
0. Then there exists n ∈ Z+ such that

(ab)n = 0. Since anbn = 0, an ̸= 0 and 0 is a δ(0)-ideal, we get bn ∈ δ(0). Then

b ∈
√

δ(0) = δ(0). Hence we conclude that
√
0 is a δ(0)-ideal. □

Recall that a proper ideal I of R is called a J-ideal if whenever ab ∈ I for

a, b ∈ R, we have either a ∈ J(R) or b ∈ I.

Theorem 2.11. Let δ be an expansion function of ideals of R and δ(0) be a maximal

ideal. Then every J-ideal is a δ(0)-ideal.

Proof. Let I be a J-ideal. Suppose ab ∈ I and a ̸∈ I. Then b ∈ J(R) ⊆ δ(0).

Thus I is a δ(0)-ideal, as desired. □

Theorem 2.12. Let R be a ring and I a proper ideal of R. Then the following are

equivalent:

(1) I is a δ(0)-ideal of R;

(2) I = (I : a) for every a /∈ δ(0);

(3) For ideals J and K of R, JK ⊆ I with J ∩ (R− δ(0)) ̸= ∅ implies K ⊆ I.

Proof. (1) ⇒ (2) Assume that I is a δ(0)-ideal of R. For every a ∈ R, the inclusion

I ⊆ (I : a) always holds. Let a /∈ δ(0) and b ∈ (I : a). Then we have ab ∈ I. Since

I is a δ(0)-ideal, we conclude that b ∈ I and thus I = (I : a).

(2) ⇒ (3) Suppose that JK ⊆ I with J ∩ (R− δ(0)) ̸= ∅, for ideals J and K of R.

Since J ∩ (R − δ(0)) ̸= ∅, there exists an a ∈ J such that a /∈ δ(0). Then we have

aK ⊆ I, and so K ⊆ (I : a) = I by (2).

(3) ⇒ (1) Let ab ∈ I with a /∈ δ(0) for a, b ∈ R. It is sufficient to take J = aR and

K = bR to prove the result. □

Proposition 2.13. Let I be a prime ideal of R such that δ(I) = I. Then I is a

δ(0)-ideal of R if and only if I = δ(0).

Proof. Since 0 ∈ I, it is clear that δ(0) ⊆ δ(I) = I. If I is a δ(0)-ideal of R, then

by Proposition 2.3, we have I ⊆ δ(0) and so I = δ(0). For the converse, assume

that I = δ(0). Now we show that I is a δ(0)-ideal. Let ab ∈ I and a /∈ δ(0) for

a, b ∈ R. Since I is a prime ideal and a /∈ δ(0), we get b ∈ I and so I is a δ(0)-ideal

of R. □

Recall from [4] that a ring R is said to be δ-reduced if δ(0) = 0.

Proposition 2.14. (1) δ(0) is a δ(0)-ideal of R if and only if it is a prime

ideal of R.

(2) Any δ-reduced ring which is not an integral domain, has no δ(0)-ideals.
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Proof. (1) Suppose that δ(0) is a prime ideal of R and ab ∈ δ(0) with a /∈ δ(0) for

a, b ∈ R. Then b ∈ δ(0). Hence δ(0) is a δ(0)-ideal of R. For the converse, assume

that δ(0) is a δ(0)-ideal of R. Let ab ∈ δ(0) and a /∈ δ(0). Since δ(0) is a δ(0)-ideal

of R, we conclude that b ∈ δ(0). Hence δ(0) is a prime ideal of R.

(2) Let R be a δ-reduced ring which is not an integral domain. Then δ(0) = 0 is

not a prime ideal of R and so by (1), it is not a δ(0)-ideal. On the other hand, if I

is a nonzero δ(0)-ideal of R, then by Proposition 2.3, I ⊆ δ(0) = 0 and so I = 0,

which is a contradiction. □

Proposition 2.15. Let R be a ring. If R is an integral domain, then 0 is a δ(0)-

ideal. Moreover, if R is a δ-reduced ring, then R is an integral domain if and only

if 0 is a δ(0)-ideal of R.

Proof. Let ab = 0 and a ̸∈ δ(0). Then a ̸= 0. Since R is an integral domain,

we have b = 0. It implies that 0 is a δ(0)-ideal. Moreover, suppose that R is a

δ-reduced ring. If 0 is a δ(0)-ideal of R, then by Proposition 2.14 (2), R is an

integral domain. □

Proposition 2.16. Let R be a δ-reduced von Neumann ring. Then 0 is a δ(0)-ideal

if and only if R is a field.

Proof. Take 0 ̸= a ∈ R. Then a = a2x for some x ∈ R. Since a(1− ax) ∈ 0 and 0

is a δ(0)-ideal, we get 1− ax ∈ δ(0) = 0. Thus ax = 1, as required.

The converse follows from Proposition 2.15. □

Proposition 2.17. Let R be a ring and S a nonempty subset of R. If I is a

δ(0)-ideal of R with S ⊈ I, then (I : S) is a δ(0)-ideal of R.

Proof. It is easy to see that (I : S) ̸= R. Let ab ∈ (I : S) and a /∈ δ(0). Then we

have abs ∈ I for every s ∈ S. Since I is a δ(0)-ideal of R, we conclude that bs ∈ I

and thus b ∈ (I : S). □

Let R be a ring. We call a δ(0)-ideal M of R a maximal δ(0)-ideal if there is no

δ(0)-ideal containing M properly.

Theorem 2.18. If I is a maximal δ(0)-ideal of R with δ(I) = I, then I = δ(0).

Proof. We show that I is a prime ideal of R, and so by Proposition 2.13, we have

I = δ(0). Let ab ∈ I and a /∈ I for a, b ∈ R. Since I is a δ(0)-ideal and a /∈ I,

(I : a) is a δ(0)-ideal by Proposition 2.17. Thus b ∈ (I : a) = I by the maximality

of I. Hence I is a prime ideal of R. □
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By Proposition 2.14, if δ(0) is a prime ideal of R, then R admits a δ(0)-ideal

δ(0). For the converse, we have:

Theorem 2.19. Let R be a ring. If there exists a δ(0)-ideal of R, then there exists

a maximal δ(0)-ideal of R. Moreover, if δ(I) = I for every maximal δ(0)-ideal I of

R, then δ(0) is a prime ideal of R.

Proof. Suppose that I is a δ(0)-ideal of R and Ω = {J : J is a δ(0)-ideal of R}.
Since I ∈ Ω, Ω ̸= ∅. It is clear that Ω is a partially ordered set by the set inclusion.

Suppose I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · is a chain of Ω. Now, we show that
∞⋃

n=1
In is a

δ(0)-ideal of R. Let ab ∈
∞⋃

n=1
In with a /∈ δ(0) for a, b ∈ R. Then we have ab ∈ Ik

for some k ∈ N. Since Ik is a δ(0)-ideal, we conclude b ∈ Ik ⊆
∞⋃

n=1
In. So

∞⋃
n=1

In

is an upper bound of the chain {Ii : i ∈ N}. By Zorn’s Lemma, Ω has a maximal

element K. Then by Theorem 2.18, we get the result that K = δ(0) is a prime

ideal of R. □

Proposition 2.20. Let R be a ring and K an ideal of R with K ∩ (R− δ(0)) ̸= ∅.
Then the following hold:

(1) If I1, I2 are δ(0)-ideals of R with I1K = I2K, then I1 = I2.

(2) If IK is a δ(0)-ideal of R, then IK = I.

Proof. (1) Since I1 is a δ(0)-ideal and I2K ⊆ I1, it follows from Theorem 2.12 (3)

that we get the result that I2 ⊆ I1. Likewise, we get I1 ⊆ I2.

(2) Since IK is a δ(0)-ideal and IK ⊆ IK, we conclude that I ⊆ IK, so this

completes the proof. □

Let R and S be commutative rings with 1 ̸= 0 and let δ, γ be two expansion

functions of I(R) and I(S), respectively. Then a ring homomorphism f : R → S

is called a δγ-homomorphism if δ
(
f−1(I)

)
= f−1(γ(I)) for all ideals I of S. Let γ1

be a radical operation on ideals of S and δ1 a radical operation on ideals of R. A

homomorphism from R to S is an example of δ1γ1-homomorphism. Additionally,

if f is a δγ-epimorphism and I is an ideal of R containing Ker(f), then γ(f(I)) =

f(δ(I)), see [4].

Theorem 2.21. Let f : R → S be a ring δγ-homomorphism. Then the following

hold:

(1) If f is an epimorphism and I is a δ(0R)-ideal of R containing Ker(f), then

f(I) is a γ(0S)-ideal of S.
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(2) If f is a monomorphism and J is a γ(0S)-ideal of S, then f−1(J) is a

δ(0R)-ideal of R.

Proof. (1) Let a′b′ ∈ f(I) with a′ /∈ γ(0S) for a
′, b′ ∈ S. Since f is an epimorphism,

there exist a, b ∈ R such that a′ = f(a) and b′ = f(b). Then a′b′ = f(ab) ∈ f(I).

As Ker(f) ⊆ I, we conclude that ab ∈ I. Also, note that a /∈ δ(0R). Since I is a

δ(0R)-ideal of R, we get the result that b ∈ I and so f(b) = b′ ∈ f(I) as needed.

(2) Let ab ∈ f−1(J) and a /∈ δ(0R). Then f(ab) = f(a)f(b) ∈ J . Since a /∈ δ(0R)

and f is a monomorphism, we get f(a) /∈ γ(0S). Since J is a γ(0S)-ideal of S, f(b) ∈
J and so b ∈ f−1(J). Consequently, f−1(J) is a δ(0R)-ideal of R.

Let δ be an expansion function of I(R) and I a proper ideal of R. Then the

function δq : R/I → R/I, defined by δq(J/I) = δ(J)/I for all ideals I ⊆ J , becomes

an expansion function of R/I, see [4]. Consider the natural homomorphism π : R →
R/J. Then for ideals I of R with Ker (π) ⊆ I, we have δq(π(I)) = π(δ(I)). □

Corollary 2.22. Let R be a ring and J ⊆ I be two ideals of R. Then the following

hold:

(1) If I is a δ(0)-ideal of R, then I/J is a δq(0)-ideal of R/J .

(2) If I/J is a δq(0)-ideal of R/J and J ⊆ δ(0), then I is a δ(0)-ideal of R.

(3) If I/J is a δq(0)-ideal of R/J and J is a δ(0)-ideal of R, then I is a δ(0)-

ideal of R.

Proof. (1) Assume that I is a δ(0)-ideal of R with J ⊆ I. Let π : R → R/J be

the natural homomorphism. Note that Ker(π) = J ⊆ I, and so by Theorem 2.21

(1), it follows that I/J is a δq(0)-ideal of R/J.

(2) Let ab ∈ I with a /∈ δ(0) for a, b ∈ R. Then we have (a+J)(b+J) = ab+J ∈ I/J

and a+J /∈ δq(0R/J). Since I/J is a δ(0)-ideal of R/J , we conclude that b+J ∈ I/J

and so b ∈ I. Consequently, I is a δ(0)-ideal of R.

(3) It follows from (2) and Proposition 2.3. □

The following example shows that the converse of Corollary 2.22 (1) is not always

true.

Example 2.23. Let R = Z, I = 6Z and J = 2Z. Set δ+ be an ideal expansion

such that δ+(K) = K + 3Z for each ideal K of Z. Clearly, δ+(0) = 3Z. Therefore

δq+(0R/J) = Z2. Since I/J = {0} is a prime ideal of R/J = Z2 and I/J ⊆
δq+(0R/J), by Corollary 2.5, I/J is a δq+(0R/J)-ideal of R/J . But 2 × 3 ∈ I and

2 /∈ δ+(0) and 3 /∈ I. Then I is not a δ+(0)-ideal of R.
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Let S be a multiplicatively closed subset of a ring R and δ an expansion function

of I(R). Note that δS is an expansion function of I(S−1R) such that δS(S
−1I) =

S−1δ(I) for each ideal I of R.

Proposition 2.24. Let R be a ring and S a multiplicatively closed subset of R.

Then the following hold:

(1) If I is a δ(0)-ideal of R, then S−1I is a δs(0)-ideal of S
−1R.

(2) If S = Reg(R) and J is a δs(0)-ideal of S
−1R, then Jc is a δ(0)-ideal of R.

Proof. (1) Let a
s
b
t ∈ S−1I with a

s /∈ δs(0S−1R), where a, b ∈ R and s, t ∈ S. Then

we have uab ∈ I for some u ∈ S. It is clear that a /∈ δ(0). Since I is a δ(0)-ideal

of R, we conclude that ub ∈ I and so b
t = ub

ut ∈ S−1I. Consequently, S−1I is a

δs(0)-ideal of S
−1R.

(2) Let ab ∈ Jc and a /∈ δ(0R). Then we have a
1
b
1 ∈ J. Now we show that a

1 /∈
δs(0S−1R). Suppose

a
1 ∈ δs(0S−1R). Then ua = 0 for some u ∈ S. Since u ∈ Reg(R),

we conclude that a = 0 ∈ δ(0R), a contradiction. Thus we have a
1 /∈ δs(0S−1R).

Since J is a δ(0)-ideal of S−1R, we get b
1 ∈ J and so b ∈ Jc. □

Definition 2.25. Let S be a nonempty subset of R with R− δ(0) ⊆ S. Then S is

called a δ(0)-multiplicatively closed subset of R if xy ∈ S for all x ∈ R − δ(0) and

y ∈ S.

Proposition 2.26. For a proper ideal I of R, I is a δ(0)-ideal of R if and only if

R− I is a δ(0)-multiplicatively closed subset of R.

Proof. Suppose that I is a δ(0)-ideal of R. Then by Proposition 2.3, we have

I ⊆ δ(0) and so R − δ(0) ⊆ R − I. Let x ∈ R − δ(0) and y ∈ R − I. Assume that

xy ∈ I. Since x /∈ δ(0) and I is a δ(0)-ideal, we conclude that y ∈ I, a contradiction.

Thus we get xy ∈ R − I, and so R − I is a δ(0)-multiplicatively closed subset of

R. For the converse, suppose that I is an ideal and R− I is a δ(0)-multiplicatively

closed subset of R. Now we show that I is a δ(0)-ideal. Let ab ∈ I with a /∈ δ(0)

for a, b ∈ R. Then we have b ∈ I, or else we would have ab ∈ R − I since R − I

is a δ(0)-multiplicatively closed subset of R. So it follows that I is a δ(0)-ideal of

R. □

By the above observations, we have the following result analogous to the relations

between prime ideals and multiplicatively closed subsets. We remind the reader that

if I is an ideal that disjoint from a multiplicatively closed subset S of R, then there

exists a prime ideal P of R containing I such that P ∩S = ∅. The following theorem

states that a similar result is true for δ(0)-ideals.
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Theorem 2.27. Let I be an ideal of R such that I ∩ S = ∅ where S is a δ(0)-

multiplicatively closed subset of R. Then there exists a δ(0)-ideal J containing I

such that J ∩ S = ∅.

Proof. Consider the set Ω = {I ′ : I ′ is an ideal of R with I ′ ∩ S = ∅}. Since

I ∈ Ω, we have Ω ̸= ∅. By using Zorn’s Lemma, we get a maximal element J of

Ω. Now we show that J is a δ(0)-ideal of R. Suppose not. Then we have ab ∈ J

for some a /∈ δ(0) and b /∈ J . Thus we get b ∈ (J : a) and J ⊊ (J : a). By the

maximality of J , we have (J : a) ∩ S ̸= ∅ and thus there exists an s ∈ S such that

s ∈ (J : a). So we have as ∈ J . Also sa ∈ S, because a ∈ R − δ(0), s ∈ S and

S is a δ(0)-multiplicatively closed subset of R. Thus we get S ∩ J ̸= ∅, and this

contradicts by J ∈ Ω. Hence J is a δ(0)-ideal of R. □

An element a of a ring R is called δ-nilpotent if a ∈ δ(0). So the δ0-nilpotent

element is the zero element. Also, δ1-nilpotent elements are exactly the ordinary

nilpotent elements.

Proposition 2.28. Let R be a ring with δ(I) = I for every maximal δ(0)-ideal I.

Suppose that I ⊆ I1 ∪ I2 ∪ · · · ∪ In, where I, I1, I2, · · · , In are ideals of R. If Ii is a

δ(0)-ideal and the others have non δ-nilpotent elements with I ⊈
⋃
j ̸=i

Ij, then I ⊆ Ii.

Proof. We may assume that i = 1. Since I ⊈ I2∪· · ·∪In, there exits x ∈ I−
n⋃

j=2

Ij .

Thus we have x ∈ I1. Let y ∈ I ∩ (I2 ∩ I3 ∩ · · · ∩ In) . Since x /∈ Ik and y ∈ Ik for

every 2 ≤ k ≤ n, we have x+y /∈ Ik. Thus we have x+y ∈ I−
n⋃

j=2

Ij and so x+y ∈ I1.

As x+y ∈ I1 and x ∈ I1, it follows that y ∈ I1 and so I ∩
n⋂

k=2

Ik ⊆ I1. Since R has a

δ(0)-ideal by Theorem 2.19, δ(0) is a prime ideal. So the product of non δ-nilpotent

elements is also a non-nilpotent element. Thus we have (
∏n

k=2 Ik)∩ (R− δ(0)) ̸= ∅.
Since I · (

∏n
k=2 Ik) ⊆ I1 and I1 is a δ(0)-ideal of R, we have I ⊆ I1 by Theorem

2.12. □

Proposition 2.29. For any ring R, the following are equivalent:

(1) Every element of R is either δ-nilpotent or unit.

(2) Every proper principal ideal is a δ(0)-ideal.

(3) Every proper ideal is a δ(0)-ideal.

(4) R is a local ring with maximal ideal δ(0).

Proof. (1) ⇒ (2) Suppose that < x ≯= R, where x ∈ R. Let ab ∈< x > and

a /∈ δ(0). Since a is not δ-nilpotent, by (1), a is a unit in R. Then we have
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b = a−1(ab) ∈< x > and so < x > is a δ(0)-ideal of R.

(2) ⇒ (3) Let I be a proper ideal of R and ab ∈ I, where a /∈ δ(0). Since ab ∈< ab >

and < ab > is a δ(0)-ideal of R, we conclude that b ∈< ab >⊆ I. Hence I is a

δ(0)-ideal of R.

(3) ⇒ (4) Let I be a proper ideal. Then (3) implies that I is a δ(0)-ideal. Since

by Proposition 2.3, we have I ⊆ δ(0). Then R is a local ring with a maximal ideal

δ(0).

(4) ⇒ (1) It is straightforward. □

Definition 2.30. A proper ideal I of R is called a weakly δ(0)-ideal if whenever

a, b ∈ R with 0 ̸= ab ∈ I, we have either a ∈ I or b ∈ δ(0).

Definition 2.31. Let I be a weakly δ(0)-ideal. Then (a, b) is called δ(0)-twin-zero

of I if ab = 0, a ̸∈ I and b ̸∈ δ(0).

Theorem 2.32. Let I be a weakly δ(0)-ideal of R and suppose (a, b) is a δ(0)-twin-

zero of I for some a, b ∈ R. Then aδ(0) = bδ(0) = 0.

Proof. Assume that aδ(0) ̸= 0. Then there exists i ∈ δ(0) such that ai ̸= 0. Hence

a(b + i) ̸= 0. Since a ̸∈ I and I is a weakly δ(0)-ideal, we have b + i ∈ δ(0). This

implies b ∈ δ(0), a contradiction. So aδ(0) = 0. A similar argument shows that

bδ(0) = 0. □

Lemma 2.33. Let δ be an expansion function of ideals and I be a weakly δ(0)-ideal.

Suppose aJ ⊆ I for some element a ∈ R such that (a, b) is not δ(0)-twin-zero for

any b ∈ J . If a ̸∈ I, then J ⊆ δ(0).

Proof. Suppose that J ̸⊆ δ(0). Then there exists j ∈ J such that j ̸∈ δ(0). Since

(a, j) is not δ(0)-twin-zero, aj ∈ I and a ̸∈ I, we get j ∈ δ(0). This gives a

contradiction. □

Theorem 2.34. Let δ, γ be expansion functions such that I is a γ(0)-ideal of R.

Then I is a weakly γoδ(0)-ideal if and only if I is a γoδ(0)-ideal.

Proof. Assume that I is a weakly γoδ(0)-ideal. Take ab ∈ I. If 0 ̸= ab, then either

a ∈ I or b ∈ γoδ(0) and so we are done. Now suppose that ab = 0 and a ̸∈ I.

Since ab = 0 ∈ I and I is a γ(0)-ideal, we get b ∈ γ(0) ⊆ γ(δ(0)). Hence I is a

γoδ(0)-ideal. The other direction is clear. □

Theorem 2.35. Let R1 and R2 be commutative rings, δ1, δ2 be expansion functions

of ideals of R1, R2, respectively. Let I be a proper ideal of R1 and R = R1 ×R2. If

I ×R2 is a δ(0)-ideal where δ(0) = δ1(0)× δ2(0), then I is a δ1(0)-ideal.
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Proof. Let ab ∈ I for some a, b,∈ R. Since (a, 1)(b, 1) ∈ I × R2 and I × R2 is a

δ(0)-ideal, we have (a, 1) ∈ δ(0×0) or (b, 1) ∈ I×R2. This gives a ∈ δ1(0) or b ∈ I,

as needed. □

Let A be a ring and E an A-module. Then A ∝ E, the trivial (ring) extension

of A by E, is the ring whose additive structure is coordinate-wise addition and

whose multiplication is defined by (a, e)(b, f) := (ab, af + be) for all a, b ∈ A and

all e, f ∈ E. (This construction is also known by other terminology and other

notation, such as the idealization A(+)E.) The basic properties of trivial ring

extensions are summarized in the books [7], [8]. Trivial ring extensions have been

studied or generalized extensively, often because of their usefulness in constructing

new classes of examples of rings satisfying various properties (cf. [2,5]). In addition,

for an ideal I of A and a submodule F of E, I ∝ F is an ideal of A ∝ E if and only

if IE ⊆ F . Moreover, for an expansion function δ of A, it is clear that δ∝ defined

as δ∝(I ∝ F ) = δ(I) ∝ E is an expansion function of A ∝ E.

Definition 2.36. Let M be an R-module. Then a proper submodule N of M is

called a δ(0)-submodule if whenever am ∈ N for a ∈ R, m ∈ M , we have either

a ∈ δ(0) or m ∈ N .

Theorem 2.37. Let A be a ring, E an A-module and δ be an expansion function

of I(A). Let I be an ideal of A and F a submodule of E such that IE ⊆ F . Then

the following statements hold:

(1) If I ∝ F is a δ(0)-ideal of A ∝ E, then I is a δ(0)-ideal of A and F is a

δ(0)-submodule of E.

(2) Assume that (F : c) = F for every c ∈ A \ I. Then I ∝ F is a δ(0)-ideal of

A ∝ E if and only if I is a δ(0)-ideal of A.

Proof. (1) Assume that I ∝ F is a δ(0)-ideal of A ∝ E. Let ab ∈ I with a /∈ δ(0) for

a, b two elements of A. Thus (a, 0)(b, 0) = (ab, 0) ∈ I ∝ F and (a, 0) /∈ δ∝(0A∝E).

This implies (b, 0) ∈ I ∝ F . Therefore b ∈ I. Now suppose that am ∈ F with

a ̸∈ δ(0). Then (a, 0)(0,m) = (0, am) ∈ I ∝ F with (a, 0) ̸∈ δ∝(0). This implies

that (0,m) ∈ I ∝ F and so m ∈ F , as desired.

(2) By (1), it suffices to prove the “if” assertion. Assume that I is a δ(0)-ideal of

A and (a, e)(b, f) = (ab, af + be) ∈ I ∝ F , with (a, e) /∈ δ∝(0A∝E). Then we have

ab ∈ I with a /∈ δ(0). Then b ∈ I and by Proposition 2.3, we have a /∈ I. Since

IE ⊆ F and af+be ∈ F , we have af ∈ F . This implies f ∈ (F : a) = F . Therefore

(b, f) ∈ I ∝ F , as desired. □
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Let δ1 and δ2 be two ideal expansions, and let δ(I) = δ1(I)∩δ2(I). We can easily

check that δ is also an ideal expansion. Generally, the intersection of any collection

of ideal expansions is an ideal expansion. In the next example, we show that the

converse of Theorem 2.37 (1) is not true in general.

Example 2.38. Consider the Z-module Z9 and δ an ideal expansion defined by

δ(I) = δ1(I) ∩ δ2(I), with δ1(I) =
√
I and δ2(I) = I. Then δ(0) = {0}. Thus

by Proposition 2.15, we have that 0 is a δ(0)-ideal of Z. But I = (0, 0) is not a

δ∝(0Z∝Z9)-ideal of Z ∝ Z9. Because (3; 0)(0; 3) = (0; 0) ∈ I. (3; 0) /∈ δ∝(0Z∝Z9
) and

(0; 3) /∈ I.

Corollary 2.39. Let A be a ring, E an A-module and δ be an expansion function

of I(A). Let I be a proper ideal of A. Then I is a δ(0)-ideal of A if and only if

I ∝ E is a δ∝(0)-ideal of A ∝ E.
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