

International Electronic Journal of Algebra Published Online: October 1, 2024 DOI: 10.24330/ieja.1559027

STRONGLY VW-GORENSTEIN N-COMPLEXES

Wenjun Guo, Honghui Jia and Renyu Zhao

Received: 6 December 2023; Accepted: 4 August 2024 Communicated by Meltem Altun Ozarslan ¨

ABSTRACT. Let V, W be two classes of R-modules. The notion of strongly VW-Gorenstein N-complexes is introduced, and under certain mild hypotheses on V and W , it is shown that an N-complex X is strongly VW -Gorenstein if and only if each term of X is a VW -Gorenstein module and N-complexes Hom_R(V, **X**) and Hom_R(**X**, *W*) are N-exact for any $V \in V$ and $W \in W$. Furthermore, under the same conditions on V and W , it is proved that an N-exact *N*-complex **X** is VW -Gorenstein if and only if $Z_n^t(X)$ is a VW -Gorenstein module for each $n \in \mathbb{Z}$ and each $t = 1, 2, ..., N - 1$. Consequently, we show that an N -complex X is strongly Gorenstein projective (resp., injective) if and only if X is N-exact and $\mathcal{Z}_n^t(X)$ is a Gorenstein projective (resp., injective) module for each $n \in \mathbb{Z}$ and $t = 1, 2, ..., N - 1$.

Mathematics Subject Classification (2020): 18G25, 18G35, 18E10 Keywords: VW-Gorenstein module, strongly VW-Gorenstein N-complex, strongly Gorenstein projective N-complex, strongly Gorenstein injective Ncomplex

1. Introduction

Let V, W be two classes of R-modules. Zhao and Sun [31] introduced and studied VW -Gorenstein R-modules. Such class of R-modules is a common generalization of Gorenstein projective and Gorenstein injective R -modules [3,7], G_C -projective and G_C -injective R-modules (where C is a semidualizing R-module over commutative ring R) [8,24], *W*-Gorenstein R -modules [5,23], and so on. In [32], Zhao and Ren extended the notion of \mathcal{VW} -Gorenstein R-modules to the category of Rcomplexes by introducing the notion of VW-Gorenstein complexes. They showed that if V, W are closed under extensions, isomorphisms and finite direct sums, $V \perp W, V \perp V, W \perp W$ and both modules in V, W are VW-Gorenstein, then VW -Gorenstein complexes are just the complexes of VW -Gorenstein modules, see [32, Theorem 3.8]. This result recovered the results on Gorenstein projective and injective complexes [26, Theorems 1, 2] and [30, Theorem 2.2, Proposition 2.8],

This work was partially supported by the National Natural Science Foundation of China (Grant nos. 11861055 and 12061061).

W-Gorenstein complexes [12, Corollary 4.8] and [25, Theorem 3.12], G_C -projective and injective complexes [27, Theorems 4.6 and 4.7].

As a natural generalization of complexes, the N-complexes seem to have first introduced by Mayer [22] in his study of simplicial complexes. The study of homological theory of N-complexes was originated in the works of Kapranov $[11]$ and Dubois-Violette[2]. From then, many results of complexes were extended to Ncomplexes, see for example $[1,4,6,10,14,15,16,17,18,20,21,29,28]$ and the references therein. In particular, from [20, Theorem 3.5] or [15, Theorem 3.17] we know that an N -complex \boldsymbol{X} is Gorenstein projective (resp., injective) if and only if each degree of X is a Gorenstein projective (resp., injective) module.

It is well known that an N -complex \boldsymbol{X} is projective (resp., injective) if and only if **X** is N-exact (or simply exact) and $\mathcal{Z}_n^t(\boldsymbol{X})$ is projective (resp., injective) for each $n \in \mathbb{Z}$ and $1 \leq t \leq N-1$. The primary goal of this paper is to identify subcategories of N-complexes that will complete the following diagram:

We achieve this goal as applications of the more general works that we develop for the so-called strongly VW-Gorenstein N-complexes, where V and W are two classes of R-modules. Here is the outline: Section 2 contains preliminary notions, notation and lemmas for use throughout this paper. In Section 3, we first give definition of strongly VW -Gorenstein N-complexes, see Definition 3.1. Then the main results Theorems 3.8 and 3.9 of this note characterise strongly VW -Gorenstein Ncomplexes and exact strongly VW-Gorenstein N-complexes, respectively. Finally, we apply these abstract results to deduce that an N -complex X is strongly Gorenstein projective (resp., injective) if and only if X is exact and $\mathbf{Z}_{n}^{t}(X)$ is a Gorenstein

projective (resp., injective) module for each $n \in \mathbb{Z}$ and $1 \leq t \leq N-1$, see Corollaries 3.10 and 3.12. This arrives at our goal. Also, some other particular cases that fit to the main results are exhibited, see Corollaries 3.14-3.18.

2. Preliminaries

Throughout, R is a unitary ring and by an R -module we mean a left R -module, unless otherwise stated. We fix once and for all an integer $N \geq 2$. Next, we recollect some notation and terminology that will be needed in the rest of the paper.

2.1. N-complexes. The terminology is due to [6,10,28]. An N-complex X is a sequence of R-modules and R-homomorphisms

$$
\cdots \xrightarrow{d_{n+2}^{\mathbf{X}}} X_{n+1} \xrightarrow{d_{n+1}^{\mathbf{X}}} X_n \xrightarrow{d_n^{\mathbf{X}}} X_{n-1} \xrightarrow{d_{n-1}^{\mathbf{X}}} \cdots
$$

satisfying $d_{n-(N-1)}^{\mathbf{X}} \cdots d_{n-1}^{\mathbf{X}} d_n^{\mathbf{X}} = 0$ for any $n \in \mathbb{Z}$. So a 2-complex is a chain complex in the usual sense. For $0 \leq r \leq N$ and $n \in \mathbb{Z}$, we denote the composition $d_{n-(r-1)}^{\mathbf{X}} \cdots d_{n-1}^{\mathbf{X}} d_n^{\mathbf{X}}$ by $d_n^{\mathbf{X},\{r\}}$. Sometimes, we simply write $d^{\mathbf{X},\{r\}}$ without mentioning grades. In this notation, $d_n^{\mathbf{X},\{0\}} = \mathrm{Id}_{X_n}$, $d_n^{\mathbf{X},\{1\}} = d_n^{\mathbf{X}}$ and $d_n^{\mathbf{X},\{N\}} = 0$. A morphism $f: \mathbf{X} \longrightarrow \mathbf{Y}$ of N-complexes is collection of homomorphisms $f_n: X_n \longrightarrow Y_n$ that making all the rectangles commute. In this way, one gets a category of N-complexes of R-modules, denoted by $C_N(R)$. This is an Abelian category having enough projectives and injectives. In what follows, Ncomplexes will always be the N -complexes of R -modules and the term complexes always means 2-complexes.

For an N-complexes X , there are $N-1$ choices for homology. Indeed, one can define

$$
Z_n^r(\boldsymbol{X}) := \text{Ker}d_n^{\boldsymbol{X},\{r\}}, \ \ \text{B}_n^r(\boldsymbol{X}) := \text{Im}d_{n+r}^{\boldsymbol{X},\{r\}} \ \ \text{for} \ \ r = 1,2,\ldots,N
$$

and

$$
H_n^r(\mathbf{X}) := \mathbb{Z}_n^r(\mathbf{X})/\mathbb{B}_n^{N-r}(\mathbf{X})
$$
 for $r = 1, 2, ..., N - 1$.

An N-complex X is called N-exact, or just exact, if $H_n^r(X) = 0$ for all $n \in \mathbb{Z}$ and $r = 1, 2, \ldots, N - 1.$

The following properties on exactness of N-complexes are useful.

Lemma 2.1. ([6, Proposition 2.2])

- (1) An N-complex X is exact if and only if for some $0 < r < N$ one has $H_n^r(\boldsymbol{X}) = 0$ for each n.
- (2) Suppose $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ is a short exact sequence of Ncomplexes. If any two out of the three are exact, then so is the third.

A morphism $f: X \to Y$ of N-complexes is called *null-homotopic* if there exists a collection of homomorphisms $\{s_n|s_n \in \text{Hom}_R(X_n, Y_{n+N-1}), n \in \mathbb{Z}\}\$ such that

$$
f_n = \sum_{i=1}^{N} d_{n+N-i}^{\mathbf{Y},\{N-i\}} s_{n+1-i} d_n^{\mathbf{X},\{i-1\}}
$$

for each $n \in \mathbb{Z}$. Two morphisms $f, g: \mathbf{X} \to \mathbf{Y}$ of N-complexes are called *homotopic*, in symbols $f \sim g$, if $f - g$ is null-homotopic. We denote by $\mathcal{K}_N(R)$ the *homotopy* category of N-complexes, that is, the category consisting of N-complexes such that the morphism set between $X, Y \in \mathcal{K}_N(R)$ is given by $\text{Hom}_{\mathcal{K}_N(R)}(X, Y) =$ $\text{Hom}_{\mathcal{C}_{N}(R)}(\mathbf{X},\mathbf{Y})/\sim$. It is known that $\mathcal{K}_{N}(R)$ is a triangulated category, see [10, Theorem 2.3].

For any R-module M, any $n \in \mathbb{Z}$ and $1 \leqslant r \leqslant N$, we use $D_n^r(M)$ to denote the N-complex

$$
\cdots \longrightarrow 0 \longrightarrow M \xrightarrow{\mathrm{Id}_M} M \xrightarrow{\mathrm{Id}_M} \cdots \xrightarrow{\mathrm{Id}_M} M \xrightarrow{\mathrm{Id}_M} M \longrightarrow 0 \longrightarrow \cdots
$$

with M in degrees $n, n-1, \ldots, n-(r-1)$. Let $\{M_n\}_{n\in\mathbb{Z}}$ be a collection of Rmodules, it is obvious that $\bigoplus_{n\in\mathbb{Z}}\mathrm{D}_n^N(M_n)=\prod_{n\in\mathbb{Z}}\mathrm{D}_n^N(M_n)$.

Let $\mathbf{X} \in \mathcal{C}_N(R)$ be given. Then the identity map Id_{X_n} gives rise to two morphisms $\rho_n^{X_n} : D_n^N(X_n) \longrightarrow X$ and $\lambda_n^{X_n} : X \longrightarrow D_{n+N-1}^N(X_n)$ for any $n \in \mathbb{Z}$. Consequently, we have a degreewise split epimorphism $\rho^X : \bigoplus_{n \in \mathbb{Z}} D_n^N(X_n) \longrightarrow X$ and a degreewise split monomorphism $\lambda^X : X \longrightarrow \bigoplus_{n \in \mathbb{Z}} D_{n+N-1}^N(X_n)$. Thus, there are degreewise split exact sequences of N-complexes

$$
0 \longrightarrow \mathrm{Ker} \rho^{\mathbf{X}} \xrightarrow{\epsilon^{\mathbf{X}}} \bigoplus_{n \in \mathbb{Z}} \mathrm{D}^N_n(X_n) \xrightarrow{\rho^{\mathbf{X}}} \mathbf{X} \longrightarrow 0
$$

and

$$
0 \longrightarrow \mathbf{X} \xrightarrow{\lambda^{\mathbf{X}}} \bigoplus_{n \in \mathbb{Z}} D_{n+N-1}^N(X_n) \xrightarrow{\eta^{\mathbf{X}}} \mathrm{Coker}\lambda^{\mathbf{X}} \longrightarrow 0,
$$

where

$$
(\text{Ker}\rho^{\mathbf{X}})_n = \bigoplus_{i=1-N}^{-1} X_{n-i},
$$

$$
d^{\text{Ker}\rho^{\mathbf{X}}} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ -d^{\{N-1\}} & -d^{\{N-2\}} & -d^{\{N-3\}} & \cdots & -d^{\{2\}} & -d \end{pmatrix},
$$

$$
\epsilon^{\mathbf{X}} = \begin{pmatrix}\n1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-d^{\{N-1\}} & -d^{\{N-2\}} & -d^{\{N-3\}} & \cdots & -d^{\{2\}} & -d\n\end{pmatrix},
$$
\n
$$
\rho^{\mathbf{X}} = \left(d^{\{N-1\}}, \ldots, d, 1 \right)
$$

and

$$
(\text{Coker}\lambda^{\boldsymbol{X}})_n = \bigoplus_{i=1}^{N-1} X_{n-i}, \quad d^{\text{Coker}\lambda^{\boldsymbol{X}}} = \begin{pmatrix} -d & 1 & 0 & \cdots & 0 & 0 \\ -d^{\{2\}} & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -d^{\{N-2\}} & 0 & 0 & \cdots & 0 & 1 \\ -d^{\{N-1\}} & 0 & 0 & \cdots & 0 & 0 \end{pmatrix},
$$

$$
\lambda^{\boldsymbol{X}} = \begin{pmatrix} 1 \\ d \\ \vdots \\ d^{\{N-1\}} \end{pmatrix}, \quad \eta^{\boldsymbol{X}} = \begin{pmatrix} -d & 1 & 0 & \cdots & 0 & 0 \\ -d^{\{2\}} & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -d^{\{N-2\}} & 0 & 0 & \cdots & 1 & 0 \\ -d^{\{N-1\}} & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}.
$$

Now, we define functors Σ , Σ^{-1} : $\mathcal{C}_N(R) \longrightarrow \mathcal{C}_N(R)$ by

$$
\Sigma^{-1}X = \text{Ker}\rho^X \text{ and } \Sigma X = \text{Coker}\lambda^X
$$

in the exact sequences above. Then Σ and Σ^{-1} induce the suspension functor and its quasi-inverse of the triangulated category $\mathcal{K}_N(R)$.

On the other hand, we define the *shift functor* $\Theta : \mathcal{C}_N(R) \longrightarrow \mathcal{C}_N(R)$ by

$$
\Theta(\mathbf{X})_n = X_{n-1}, \ d_n^{\Theta(\mathbf{X})} = d_{n-1}^{\mathbf{X}}
$$

for $\mathbf{X} = (X_n, d_n^{\mathbf{X}}) \in \mathcal{C}_N(R)$. The N-complex $\Theta(\Theta X)$ is denoted $\Theta^2 X$ and inductively we define $\Theta^k X$ for all $k \in \mathbb{Z}$. This induces the shift functor $\Theta : \mathcal{K}_N(R) \longrightarrow$ $\mathcal{K}_N(R)$ which is a triangle functor. Unlike classical case, Σ does not coincide with Θ. In fact, $\Sigma^2 \simeq \Theta^N$ on $\mathcal{K}_N(R)$, see [10, Theorem 2.4].

2.2. Hom N-complexes. Given two N-complexes X and Y , the N-complex $\text{Hom}_R(X, Y)$ of Abelian groups is given by

$$
\operatorname{Hom}_R(\boldsymbol{X},\boldsymbol{Y})_n=\prod_{t\in\mathbb{Z}}\operatorname{Hom}_R(X_t,Y_{n+t})
$$

and

$$
(d_n^{\mathrm{Hom}_R(\mathbf{X}, \mathbf{Y})}(f))_m = d_{n+m}^{\mathbf{Y}} f_m - q^n f_{m-1} d_m^{\mathbf{X}}
$$

for $f \in \text{Hom}_R(X, Y)_n$, where q is the Nth root of unity, $q^N = 1$ and $q \neq 1$.

For $X, Y \in C_N(R)$, we denote the group of *i*-fold extensions by $\mathrm{Ext}^i_{C_N(R)}(X, Y)$. Recall that $\mathrm{Ext}^0_{\mathcal{C}_N(R)}(\bm{X},\bm{Y})$ is naturally isomorphic to the group $\mathrm{Hom}_{\mathcal{C}_N(R)}(\bm{X},\bm{Y})$ of morphisms $X \longrightarrow Y$, and $\text{Ext}^1_{\mathcal{C}_N(R)}(X,Y)$ is the group of (equivalence classes) of short exact sequence $0 \longrightarrow Y \longrightarrow Z \longrightarrow X \longrightarrow 0$ under the Baer sum. We let $\mathrm{Ext}^1_{dw_N}(\bm{X},\bm{Y})$ be the subgroup of $\mathrm{Ext}^1_{\mathcal{C}_N(R)}(\bm{X},\bm{Y})$ consisting of those short exact sequences which are split in each degree. The following lemma is a standard result relating $\text{Ext}^1_{dw_N}(\boldsymbol{X}, \boldsymbol{Y})$ to $\text{Hom}_R(\boldsymbol{X}, \boldsymbol{Y}).$

Lemma 2.2. ([15, Lemma 3.10]) For any $X, Y \in \mathcal{C}_N(R)$ and any $n \in \mathbb{Z}$, we have

- (1) $\mathrm{Ext}^1_{dw_N}(\Sigma \boldsymbol{X}, \boldsymbol{Y}) \cong \mathrm{H}^1_n(\mathrm{Hom}_R(\boldsymbol{X}, \Theta^n \boldsymbol{Y})) \cong \mathrm{Hom}_{\mathcal{K}_N(R)}(\boldsymbol{X}, \boldsymbol{Y}).$
- (2) $\text{Ext}^1_{dw_N}(\boldsymbol{X}, \boldsymbol{Y}) \cong \text{H}^1_n(\text{Hom}_R(\boldsymbol{X}, \Theta^n \Sigma^{-1} \boldsymbol{Y})) \cong \text{Hom}_{\mathcal{K}_N(R)}(\boldsymbol{X}, \Sigma^{-1} \boldsymbol{Y}).$

2.3. Several classes of N-complexes. Let \mathcal{X} be a class of R-modules. As the classical case, we have the following classes of N-complexes:

- $\widetilde{\mathcal{X}_N}$ is the class of all exact N-complex **X** with cycles $Z_n^t(X) \in \mathcal{X}$ for $n \in \mathbb{Z}$ and $t = 1, 2, ..., N$;
- $\widetilde{\#X_N}$ is the class of all N-complex X with terms $X_n \in \mathcal{X}$ for all $n \in \mathbb{Z}$;
- CE(\mathcal{X}_N) is the class of all N-complex X with X_n , $Z_n^t(X)$, $B_n^t(X)$, $H_n^t(X) \in$ $\mathcal X$ for $n \in \mathbb Z$ and $t = 1, 2, \ldots, N$.

2.4. Semidualizing modules and some related classes of modules.

Definition 2.3. ([24, 1.8]) Let R be a commutative ring. An R-module C is called semidualizing if

- (1) C admits a degreewise finitely generated projective resolution,
- (2) The homothety map $_R R_R \xrightarrow{\gamma_R} \text{Hom}_R(C, C)$ is an isomorphism,
- (3) $\text{Ext}_{R}^{\geqslant 1}(C, C) = 0.$

In the remainder of the paper, let C be an arbitrary but fixed semidualizing module over a commutative ring R.

Definition 2.4. ([9,24]) The *Auslander class* $\mathcal{A}_C(R)$ with respect to C consists of all R -modules M satisfying:

- (1) $\operatorname{Tor}^R_{\geq 1}(C,M) = 0 = \operatorname{Ext}^{\geq 1}_R(C,C\otimes_R M)$ and
- (2) The natural evaluation homomorphism $\mu_M : M \longrightarrow \text{Hom}_R(C, C \otimes_R M)$ is an isomorphism.

The Bass class $\mathcal{B}_C(R)$ with respect to C consists of all R-modules M satisfying:

- (1) $\operatorname{Ext}_{R}^{\geq 1}(C,M) = 0 = \operatorname{Tor}_{\geq 1}^{R}(C,\operatorname{Hom}_{R}(C,M))$ and
- (2) The natural evaluation homomorphism $v_M : C \otimes_R \text{Hom}_R(C, M) \longrightarrow M$ is an isomorphism.

We set,

 $\mathcal{P}_C(R)$ = the subcategory of R-modules $C \otimes_R P$ where P is R-projective, $\mathcal{I}_C(R)$ = the subcategory of R-modules $\text{Hom}_R(C, I)$ where I is R-injective.

Modules in $\mathcal{P}_C(R)$ and $\mathcal{I}_C(R)$ are called C-projective and C-injective, respectively. When $C = R$, we omit the subscript and recover the classes of projective and injective R-modules.

2.5. Orthogonal subcategories. Let A be an Abelian category. For two subcategories \mathcal{X}, \mathcal{Y} of \mathcal{A} , we say $\mathcal{X} \perp \mathcal{Y}$ if $\text{Ext}_{\mathcal{A}}^{\geq 1}(X, Y) = 0$ for any $X \in \mathcal{X}$ and any $Y \in \mathcal{Y}$. In particular, if $\mathcal{X} \perp \mathcal{X}$, then X is called *self-orthogonal*. According to [5, Theorem 3.1 and Corollary 3.2, $\mathcal{P}_C(R)$ and $\mathcal{I}_C(R)$ are self-orthogonal and closed under finite direct sums and direct summands.

2.6. *VW*-Gorenstein modules. Let A be an Abelian category and X, Y two subcategories of A. Recall that a sequence S in A is Hom $_A(\mathcal{X},-)$ -exact (resp., $\text{Hom}_{\mathcal{A}}(-, \mathcal{Y})$ -exact) if the sequence $\text{Hom}_{\mathcal{A}}(X, \mathbb{S})$ (resp., $\text{Hom}_{\mathcal{A}}(\mathbb{S}, Y)$) is exact for any $X \in \mathcal{X}$ (resp., $Y \in \mathcal{Y}$).

Definition 2.5. ([31, Definition 3.1]) Let V, W be two classes of R-modules. An R-module M is called \mathcal{VW} -Gorenstein if there exists a both $\text{Hom}_R(\mathcal{V},-)$ -exact and $Hom_R(-, W)$ -exact exact sequence

$$
\cdots \longrightarrow V_1 \longrightarrow V_0 \longrightarrow W^0 \longrightarrow W^1 \longrightarrow \cdots
$$

with $V_i \in \mathcal{V}$ and $W^i \in \mathcal{W}$ for all $i \geq 0$ such that $M \cong \text{Im}(V_0 \to W^0)$.

We denote the class of all VW-Gorenstein modules by $G(VW)$. The VW-Gorenstein modules unifies the following notions: G_C -projective R-modules [8,24] (when $V = \mathcal{P}(R)$ and $W = \mathcal{P}_C(R)$); G_C -injective R-modules [8,24] (when $V =$ $\mathcal{I}_{C}(R)$ and $\mathcal{W} = \mathcal{I}(R)$; modules in $\mathcal{A}_{C}(R)$ (when $\mathcal{V} = \mathcal{P}(R)$ and $\mathcal{W} = \mathcal{I}_{C}(R)$, see [9, Lemma 6.1(1) and Theorem 2]); modules in $\mathcal{B}_C(R)$ (when $\mathcal{V} = \mathcal{P}_C(R)$ and $W = \mathcal{I}(R)$, see [9, Lemma 6.1(2) and Theorem 6.1]); W-Gorenstein modules [5,23] (when $V = W$), and of course Gorenstein projective R-modules (in the case $V = W = \mathcal{P}(R)$ and Gorenstein injective R-modules (in the case $V = W = \mathcal{I}(R)$), see [3,7].

3. Main results

In what follows, let V, W be two classes of R-modules which are closed under isomorphisms, direct summands and finite direct sums.

Definition 3.1. An N-complex X is called *strongly VW-Gorenstein* if there exists a both $\text{Hom}_{\mathcal{C}_N(R)}(\text{CE}(\mathcal{V}_N),-)$ -exact and $\text{Hom}_{\mathcal{C}_N(R)}(-,\text{CE}(\mathcal{W}_N))$ -exact exact sequence

$$
\cdots \longrightarrow V_1 \to V_0 \to W^0 \to W^1 \longrightarrow \cdots,
$$

where $V_i \in \widetilde{\mathcal{V}_N}$ and $W^i \in \widetilde{\mathcal{W}_N}$, such that $X \cong \text{Im}(V_0 \to W^0)$.

Remark 3.2. Here are some special cases of strongly VW -Gorenstein N-complexes:

- (1) If $V = W$, then we call strongly VW-Gorenstein N-complexes strongly W-Gorenstein N-complexes. In particular, if they are the class of projective (resp., injective) R-modules, then strongly VW -Gorenstein N-complexes is particularly called strongly Gorenstein projective (respectively, injective) N-complexes. In the case of $N = 2$, strongly W-Gorenstein Ncomplexes happen to be strongly W-Gorenstein complexes in [13]. The strongly Gorenstein projective complexes were studied in [19].
- (2) If $V = \mathcal{P}(R)$, $W = \mathcal{P}_C(R)$, then strongly VW-Gorenstein N-complexes is particularly called strongly G_C -projective N-complexes; if $\mathcal{V} = \mathcal{I}_C(R)$, $W = \mathcal{I}(R)$, then strongly VW-Gorenstein N-complexes is particularly called strongly G_C -injective N-complexes.

To characterize strongly VW -Gorenstein N-complexes, we need some preparations.

Lemma 3.3. ([15, Lemma 3.12]) Let \mathcal{X}, \mathcal{Y} be two classes of R-modules. If \mathcal{X} is self-orthogonal, then the following statements hold:

- (1) $\mathcal{X} \perp \mathcal{Y}$ if and only if $\widetilde{\mathcal{X}_N} \perp \widetilde{\# \mathcal{Y}_N}$.
- (2) $\mathcal{Y} \perp \mathcal{X}$ if and only if $\widetilde{\# \mathcal{Y}_N} \perp \widetilde{\mathcal{X}_N}$.

Corollary 3.4. Let \mathcal{X}, \mathcal{Y} be two classes of R-modules and $\mathcal{X} \perp \mathcal{Y}$.

- (1) If X is self-orthogonal, then $\widetilde{X_N} \perp \text{CE}(\mathcal{Y}_N)$.
- (2) If Y is self-orthogonal, then $CE(\mathcal{X}_N) \perp \widetilde{\mathcal{Y}_N}$.

Proof. It follows from $CE(\mathcal{X}_N) \subseteq \widetilde{\#X_N}$, $CE(\mathcal{Y}_N) \subseteq \widetilde{\#Y_N}$ and Lemma 3.3. $□$

Lemma 3.5. ([18, Theorem 1]) Let **X** be an N-complex and \mathcal{X} a class R-modules. If X is self-orthogonal, then $X \in \text{CE}(\mathcal{X}_N)$ if and only if $X = X' \bigoplus X''$, where $\mathbf{X}' \in \widetilde{\mathcal{X}_N}$, $\mathbf{X}'' = \bigoplus_{n \in \mathbb{Z}} D_n^1(M_n)$ with $M_n \in \mathcal{X}$ for all $n \in \mathbb{Z}$.

Lemma 3.6. Let $X \in \text{CE}(\mathcal{X}_N)$. If X is closed under finite direct sums and selforthogonal, then $\Sigma \mathbf{X}, \Sigma^{-1} \mathbf{X} \in \mathrm{CE}(\mathcal{X}_N)$.

Proof. Since $X \in \text{CE}(\mathcal{X}_N)$, by Lemma 3.5 one has $X = X' \bigoplus X''$, where $X' \in$ $\widetilde{\mathcal{X}_N}$ and $\mathbf{X}'' = \bigoplus_{n \in \mathbb{Z}} D_n^1(M_n)$ with all $M_n \in \mathcal{X}$. One then has $\Sigma \mathbf{X} = \Sigma \mathbf{X}' \bigoplus \Sigma \mathbf{X}''$. By assumption X is self-orthogonal, it follows that $\mathcal{X}_N \subseteq \text{CE}(\mathcal{X}_N)$, so one gets $\Sigma \mathbf{X}' \subseteq \text{CE}(\mathcal{X}_N)$ from [15, Lemma 3.5]. To complete the proof, it is now sufficient to show that $\Sigma \mathbf{X}'' \in \mathrm{CE}(\mathcal{X}_N)$. Let $n \in \mathbb{Z}$, notice that

$$
(\Sigma \mathbf{X''})_n = M_{n-1} \oplus M_{n-2} \oplus \cdots \oplus M_{n-(N-1)}
$$

and

$$
d_n^{\Sigma X''} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \end{pmatrix},
$$

then one has

$$
Z_n^1(\Sigma X'') \cong M_{n-1},
$$

\n
$$
Z_n^2(\Sigma X'') \cong M_{n-1} \oplus M_{n-2},
$$

\n
$$
Z_n^2(\Sigma X'') \cong M_{n-1} \oplus M_{n-2},
$$

\n
$$
\vdots
$$

\n
$$
Z_n^{N-1}(\Sigma X'') \cong M_{n-1} \oplus \cdots \oplus M_{n-(N-3)},
$$

\n
$$
B_n^2(\Sigma X'') \cong M_{n-1} \oplus \cdots \oplus M_{n-(N-3)},
$$

\n
$$
\vdots
$$

\n
$$
B_n^{N-1}(\Sigma X'') = 0.
$$

Since X is closed under finite direct sums, we have $(\Sigma \mathbf{X}'')_n, \mathbf{Z}_n^t(\Sigma \mathbf{X}''), \mathbf{B}_n^t(\Sigma \mathbf{X}'') \in$ \mathcal{X} and so $H_n^t(\Sigma \mathbf{X}'') = M_{n-t} \in \mathcal{X}$ for $t = 1, 2, ..., N-1$. It now follows that $\Sigma \mathbf{X}'' \in \mathrm{CE}(\mathcal{X}_N)$, as desired. Similarly, one can show that $\Sigma^{-1} \mathbf{X} \in \mathrm{CE}(\mathcal{X}_N)$. \Box

Lemma 3.7. Let V, W be two classes of R-modules and

$$
\cdots \longrightarrow {\boldsymbol X}_1 \to {\boldsymbol X}_0 \to {\boldsymbol X}_{-1} \longrightarrow \cdots
$$

be a both $\text{Hom}_{\mathcal{C}_N(R)}(\text{CE}(\mathcal{V}_N),-)$ -exact and $\text{Hom}_{\mathcal{C}_N(R)}(-,\text{CE}(\mathcal{W}_N))$ -exact exact sequence of N-complexes, then for any $n \in \mathbb{Z}$, the sequence

$$
\cdots \longrightarrow ({\boldsymbol X}_1)_n \to ({\boldsymbol X}_0)_n \to ({\boldsymbol X}_{-1})_n \longrightarrow \cdots
$$

is a Hom $_R(V, -)$ -exact and Hom $_R(-, W)$ -exact exact sequence of R-modules.

Proof. Let $V \in V$, $W \in W$ and $n \in \mathbb{Z}$. Then $D_n^N(V) \in \text{CE}(\mathcal{V}_N)$ and $D_{n+N-1}^N(W) \in$ $CE(W_N)$. Thus, we have the following exact sequences

$$
\cdots \to \text{Hom}_{\mathcal{C}_N(R)}(\mathcal{D}_n^N(V), \mathbf{X}_1) \to \text{Hom}_{\mathcal{C}_N(R)}(\mathcal{D}_n^N(V), \mathbf{X}_0)
$$

$$
\to \text{Hom}_{\mathcal{C}_N(R)}(\mathcal{D}_n^N(V), \mathbf{X}_{-1}) \to \cdots,
$$

$$
\cdots \to \text{Hom}_{\mathcal{C}_N(R)}(\mathbf{X}_{-1}, \mathcal{D}_{n+N-1}^N(W)) \to \text{Hom}_{\mathcal{C}_N(R)}(\mathbf{X}_0, \mathcal{D}_{n+N-1}^N(W))
$$

$$
\to \text{Hom}_{\mathcal{C}_N(R)}(\mathbf{X}_1, \mathcal{D}_{n+N-1}^N(W)) \to \cdots.
$$

It now follows from [15, Lemma 3.3] that the sequences

$$
\cdots \to \text{Hom}_{R}(V, (\mathbf{X}_{1})_{n}) \to \text{Hom}_{R}(V, (\mathbf{X}_{0})_{n}) \to \text{Hom}_{R}(V, (\mathbf{X}_{-1})_{n}) \to \cdots
$$

and

 $\cdots \to \text{Hom}_{R}((X_{-1})_{n}, W) \to \text{Hom}_{R}((X_{0})_{n}, W) \to \text{Hom}_{R}((X_{1})_{n}, W) \to \cdots$

are exact. \Box

With the above preparations, we are now in a position to prove our main results.

Theorem 3.8. Let **X** be an N-complex. If V, W are self-orthogonal, $V \perp W$ and $V, W \subseteq \mathcal{G}(VW)$, then the following statements are equivalent:

- (1) \boldsymbol{X} is a strongly VW-Gorenstein N-complex.
- (2) Each X_n is a VW-Gorenstein module, and both N-complexes $\text{Hom}_R(V, X)$ and $\text{Hom}_R(X, W)$ are exact for any $V \in \text{CE}(\mathcal{V}_N)$ and any $W \in \text{CE}(\mathcal{W}_N)$.
- (3) Each X_n is a VW-Gorenstein module, and both N-complexes $\text{Hom}_R(V, X)$ and $\text{Hom}_R(\mathbf{X}, W)$ are exact for any $V \in \mathcal{V}$ and $W \in \mathcal{W}$.

Proof. (1) \Rightarrow (3) Since X is a strongly VW-Gorenstein N-complex, there is a both $\text{Hom}_{\mathcal{C}_N(R)}(\text{CE}(\mathcal{V}_N),-)$ -exact and $\text{Hom}_{\mathcal{C}_N(R)}(-,\text{CE}(\mathcal{W}_N))$ -exact exact sequence of N-complexes

$$
\cdots \longrightarrow V_1 \to V_0 \to W^0 \to W^1 \longrightarrow \cdots
$$

such that $\mathbf{X} \cong \text{Im}(\mathbf{V}_0 \to \mathbf{W}^0)$, where $\mathbf{V}_i \in \widetilde{\mathcal{V}_N}$ and $\mathbf{W}^i \in \widetilde{\mathcal{W}_N}$ for $i \geqslant 0$. Applying Lemma 3.7 one thus gets a $\text{Hom}_R(V, -)$ -exact and $\text{Hom}_R(-, W)$ -exact exact sequence of R-modules

$$
\cdots \longrightarrow (V_1)_n \to (V_0)_n \to (W^0)_n \to (W^1)_n \longrightarrow \cdots
$$

such that $X_n \cong \mathrm{Im}((V_0)_n \to (W^0)_n)$ for each $n \in \mathbb{Z}$. As \mathcal{V}, \mathcal{W} are closed on finite direct sums and self-orthogonal, it follows from [20, Proposition 4.1] that $(V_i)_n \in \mathcal{V}$ and $(W^i)_n \in \mathcal{W}$ for any i and n. Therefore, each X_n is a \mathcal{VW} -Gorenstein module.

Let $V \in \mathcal{V}$ and $W \in \mathcal{W}$. Then $D_n^1(V) \in \text{CE}(\mathcal{V}_N)$, $D_n^1(W) \in \text{CE}(\mathcal{W}_N)$. From Lemma 3.6 it follows that $\Sigma D_n^1(V) \in \mathrm{CE}(V_N), \Sigma D_n^1(W) \in \mathrm{CE}(W_N)$. Setting $K_0 =$ $\text{Im}(V_1 \to V_0)$ and $K^1 = \text{Im}(W^0 \to W^1)$. Consider exact sequences

$$
\text{Hom}_{\mathcal{C}_N(R)}(\Sigma\text{D}_n^1(V),\mathbf{K}^1)\to \text{Ext}^1_{\mathcal{C}_N(R)}(\Sigma\text{D}_n^1(V),\mathbf{X})\to \text{Ext}^1_{\mathcal{C}_N(R)}(\Sigma\text{D}_n^1(V),\mathbf{W}^0)
$$

and

$$
\text{Hom}_{\mathcal{C}_N(R)}(\mathcal{K}_0,\Sigma\text{D}_n^1(W))\to \text{Ext}^1_{\mathcal{C}_N(R)}(\mathcal{X},\Sigma\text{D}_n^1(W))\to \text{Ext}^1_{\mathcal{C}_N(R)}(\mathcal{V}_0,\Sigma\text{D}_n^1(W)).
$$

By the assumptions on V and W , Corollary 3.4 applies to yield that

$$
\operatorname{Ext}^1_{\mathcal{C}_N(R)}(\Sigma\mathrm{D}_n^1(V),\mathbf{W}^0)=0 \text{ and } \operatorname{Ext}^1_{\mathcal{C}_N(R)}(\mathbf{V}_0,\Sigma\mathrm{D}_n^1(W))=0.
$$

The Hom_{C_N(R)}(CE(V_N), -)-exactness of 0 \longrightarrow **X** \longrightarrow **W**⁰ \longrightarrow **K**¹ \longrightarrow 0 and the $\text{Hom}_{\mathcal{C}_N(R)}(-, \text{CE}(\mathcal{W}_N))$ -exactness of $0 \longrightarrow \mathbf{K}_0 \longrightarrow \mathbf{V}_0 \longrightarrow \mathbf{X} \longrightarrow 0$ now yield that $\text{Ext}^1_{\mathcal{C}_N(R)}(\Sigma\mathrm{D}_n^1(V),\mathbf{X})=0$ and $\text{Ext}^1_{\mathcal{C}_N(R)}(\mathbf{X},\Sigma\mathrm{D}_n^1(W))=0$. It then follows from Lemma 2.2 that $\text{Hom}_R(V, X)$ and $\text{Hom}_R(X, W)$ are exact.

 $(3) \Rightarrow (2)$ It follows by Lemma 3.5, [31, Proposition 3.5] and Lemmas 3.3, 2.1, 2.2.

 $(2) \Rightarrow (1)$ For any $n \in \mathbb{Z}$, as X_n is a VW-Gorenstein module, it follows that there is an exact sequence of R-modules

$$
0 \longrightarrow G_n \longrightarrow V_n \xrightarrow{g_n} X_n \longrightarrow 0,
$$

where $G_n \in \mathcal{G}(V\mathcal{W})$ and $V_n \in V$ by [31, Corollary 4.6]. One thus gets an exact sequence of N-complexes

$$
0 \longrightarrow \bigoplus_{n \in \mathbb{Z}} D_n^N(G_n) \longrightarrow \bigoplus_{n \in \mathbb{Z}} D_n^N(V_n) \stackrel{g}{\longrightarrow} \bigoplus_{n \in \mathbb{Z}} D_n^N(X_n) \longrightarrow 0,
$$

where $g = \bigoplus_{n \in \mathbb{Z}} D_n^N(g_n)$. Put $V_0 = \bigoplus_{n \in \mathbb{Z}} D_n^N(V_n)$. By [20, Proposition 4.1] one has $V_0 \in \widetilde{\mathcal{V}_N}$. On the other hand, there is always a degreewise split short exact sequence

$$
0 \longrightarrow \Sigma^{-1} \mathbf{X} \stackrel{\epsilon^{\mathbf{X}}}{\longrightarrow} \bigoplus_{n \in \mathbb{Z}} \mathcal{D}_n^N(X_n) \stackrel{\rho^{\mathbf{X}}}{\longrightarrow} \mathbf{X} \longrightarrow 0.
$$

Let $\beta = \rho^X g$. Then β is an epimorphism from V_0 to X. Setting $K_0 = \text{Ker}\beta$ yields an exact sequence of N-complexes

$$
0 \longrightarrow K_0 \longrightarrow V_0 \longrightarrow X \longrightarrow 0. \tag{\dagger_0}
$$

Now, we show that K_0 has the same properties as X , and that the exact sequence (\dagger_0) is both $\text{Hom}_{\mathcal{C}_N(R)}(\text{CE}(\mathcal{V}_N),-)$ -exact and $\text{Hom}_{\mathcal{C}_N(R)}(-,\text{CE}(\mathcal{W}_N))$ -exact. To

this end, consider the following commutative diagram with exact rows and columns

Apply the Snake Lemma to this diagram to get the exact sequence

$$
0 \longrightarrow \bigoplus_{n \in \mathbb{Z}} \mathcal{D}_n^N(G_n) \longrightarrow \mathbf{K}_0 \longrightarrow \Sigma^{-1} \mathbf{X} \longrightarrow 0.
$$

Notice that both $\bigoplus_{n\in\mathbb{Z}}\mathcal{D}_n^N(G_n)$ and $\Sigma^{-1}\boldsymbol{X}$ are N-complexes of VW-Gorenstein modules, it follows from [31, Corollary 3.8] that each degree of K_0 is \mathcal{VW} -Gorenstein. Let $\mathbf{V} \in \mathrm{CE}(\mathcal{V}_N)$, then $\mathrm{Ext}^1_R(V_k, (\mathbf{K}_0)_{n+k}) = 0$ for any $n, k \in \mathbb{Z}$ by [31, Proposition 3.5]. So we have the following exact sequence

$$
0 \longrightarrow \text{Hom}_{R}(V_{k}, (\mathbf{K}_{0})_{n+k}) \longrightarrow \text{Hom}_{R}(V_{k}, (\mathbf{V}_{0})_{n+k}) \longrightarrow \text{Hom}_{R}(V_{k}, X_{n+k}) \longrightarrow 0.
$$

One thus gets the following exact sequence of N-complexes

 $0 \longrightarrow \text{Hom}_R(V, K_0) \longrightarrow \text{Hom}_R(V, V_0) \longrightarrow \text{Hom}_R(V, X) \longrightarrow 0.$

As $V_0 = \bigoplus_{n \in \mathbb{Z}} D_n^N(V_n)$ is a contractible N-complex by [6, Theorem 3.3], it follows that V_0 is a null object in $\mathcal{K}_N(R)$. Thus,

$$
\mathrm{H}^1_n(\mathrm{Hom}_R(\boldsymbol{V},\boldsymbol{V}_0)) \cong \mathrm{Hom}_{\mathcal{K}_N(R)}(\boldsymbol{V},\Theta^{-n}\boldsymbol{V}_0) = 0
$$

for each $n \in \mathbb{Z}$ by Lemma 2.2, and whence $\text{Hom}_R(V, V_0)$ is exact by Lemma 2.1. The N-complex $\text{Hom}_R(V, K_0)$ is now exact by Lemma 2.1, as $\text{Hom}_R(V, X)$ is exact by assumption. Similarly, one can show that $\text{Hom}_R(K_0, W)$ is exact for any $W \in \text{CE}(\mathcal{W}_N)$. Let $V \in \text{CE}(\mathcal{V}_N)$ and $W \in \text{CE}(\mathcal{W}_N)$. For any $n \in \mathbb{Z}$, by Lemma 3.6 one has $\Sigma \Theta^{-n} \mathbf{V} \in \mathrm{CE}(\mathcal{V}_N)$ and $\Theta^n \Sigma^{-1} \mathbf{W} \in \mathrm{CE}(\mathcal{W}_N)$, so $\text{Hom}_R(\Sigma \Theta^{-n} \mathbf{V}, \mathbf{K}_0)$ is exact as above, and $\text{Hom}_R(X, \Theta^n \Sigma^{-1} W)$ is exact by assumption. Hence, it follows from [31, Proposition 3.5] and Lemma 2.2 that

$$
\mathrm{Ext}^1_{\mathcal{C}_N(R)}(V,K_0)=\mathrm{Ext}^1_{dw_N}(V,K_0)\cong \mathrm{H}^1_n\left(\mathrm{Hom}_R(\Sigma\Theta^{-n}V,K_0)\right)=0,
$$

and

$$
\mathrm{Ext}^1_{\mathcal{C}_N(R)}(\boldsymbol{X}, \boldsymbol{W}) = \mathrm{Ext}^1_{dw_N}(\boldsymbol{X}, \boldsymbol{W}) \cong \mathrm{H}^1_n \left(\mathrm{Hom}_R(\boldsymbol{X}, \Theta^n \Sigma^{-1} \boldsymbol{W}) \right) = 0.
$$

This implies that the sequence

$$
0\longrightarrow \pmb{K}_0\longrightarrow \pmb{V}_0\longrightarrow \pmb{X}\longrightarrow 0
$$

is both $\text{Hom}_{\mathcal{C}_N(R)}(\text{CE}(\mathcal{V}_N),-)$ -exact and $\text{Hom}_{\mathcal{C}_N(R)}(-,\text{CE}(\mathcal{W}_N))$ -exact.

Since K_0 has the same properties as X , one may continue inductively to construct a both $\text{Hom}_{\mathcal{C}_N(R)}(\text{CE}(\mathcal{V}_N),-)$ -exact and $\text{Hom}_{\mathcal{C}_N(R)}(-,\text{CE}(\mathcal{W}_N))$ -exact exact sequence of N-complexes

$$
\cdots \longrightarrow V_2 \longrightarrow V_1 \longrightarrow V_0 \longrightarrow X \longrightarrow 0 \tag{\dagger}
$$

with all $V_i \in \widetilde{\mathcal{V}}$.

Dually, one can get a $\text{Hom}_{\mathcal{C}_N(R)}(\text{CE}(\mathcal{V}_N),-)$ -exact and $\text{Hom}_{\mathcal{C}_N(R)}(-,\text{CE}(\mathcal{W}_N))$ exact exact sequence of N-complexes

$$
0 \longrightarrow X \longrightarrow W^0 \longrightarrow W^1 \longrightarrow W^2 \longrightarrow \cdots \tag{\dagger}
$$

with each $W^i \in \widetilde{\mathcal{W}_N}$.

Finally, splicing together (†) and (‡) at X, one gets a $\text{Hom}_{\mathcal{C}_N(R)}(\text{CE}(\mathcal{V}_N), -)$ exact and $\text{Hom}_{\mathcal{C}_N(R)}(-, \text{CE}(\mathcal{W}_N))$ -exact exact sequence N-complexes

$$
\cdots \longrightarrow V_1 \to V_0 \to W^0 \to W^1 \longrightarrow \cdots
$$

with each $V_i \in \widetilde{\mathcal{V}_N}$ and each $W_i \in \widetilde{\mathcal{W}_N}$, such that $X \cong \text{Im}(V_0 \to W^0)$. Therefore, X is a strongly VW -Gorenstein N-complex.

The next result gives a characterization of exact strongly VW -Gorenstein Ncomplexes.

Theorem 3.9. Let X be an exact N-complex. If V, W are self-orthogonal, $V \perp W$ and $V, W \subseteq \mathcal{G}(VW)$, then **X** is strongly VW-Gorenstein if and only if $Z_n^t(\boldsymbol{X})$ is a $VW\text{-}Gorenstein module for any $n \in \mathbb{Z}$ and $t = 1, 2, ..., N - 1$.$

Proof. (\Rightarrow) As X is strongly VW-Gorenstein, there is a Hom_{C_N(R)}(CE(V_N), –)exact and $\text{Hom}_{\mathcal{C}_N(R)}(-, \text{CE}(\mathcal{W}_N))$ -exact exact sequence of N-complexes

$$
\mathbb{U}:=\cdots\longrightarrow V_1\to V_0\to W^0\to W^1\longrightarrow\cdots
$$

with $V_i \in \widetilde{\mathcal{V}_N}, W^i \in \widetilde{\mathcal{W}_N}$ for all $i \geqslant 0$, such that $X \cong \text{Im}(V_0 \to W^0)$. We set $K_i = \text{Im}(V_{i+1} \to V_i)$ and $K^i = \text{Ker}(W^i \to W^{i+1})$ for $i \geqslant 0$. Since $X = K^0$ and all V_i, W^i are exact, Lemma 2.1 implies K_i and K^i are exact N-complexes

for $i = 0, 1, 2, \ldots$ It now follows from [14, Lemma 3.4] that there exists an exact sequence of R-modules

$$
\mathop{\rm Z}\nolimits^t_n(\mathbb{U}):=\cdots\longrightarrow \mathop{\rm Z}\nolimits^t_n(V_1)\rightarrow \mathop{\rm Z}\nolimits^t_n(V_0)\rightarrow \mathop{\rm Z}\nolimits^t_n(\bm{W}^0)\rightarrow \mathop{\rm Z}\nolimits^t_n(\bm{W}^1)\longrightarrow\cdots
$$

such that $\mathcal{Z}_n^t(\boldsymbol{X}) \cong \text{Im}(\mathcal{Z}_n^t(\boldsymbol{V}_0) \to \mathcal{Z}_n^t(\boldsymbol{W}^0))$ for all $n \in \mathbb{Z}$ and all $t = 1, 2, ..., N - 1$. Given an $n \in \mathbb{Z}$ and a $t = 1, 2, ..., N - 1$, to show $\mathbb{Z}_n^t(\mathbf{X})$ is a \mathcal{VW} -Gorenstein module, it remains to show that $\mathcal{Z}_n^t(\mathbb{U})$ is both $\text{Hom}_R(\mathcal{V},-)$ -exact and $\text{Hom}_R(-, \mathcal{W})$ exact.

Claim 1. $\mathbb{Z}_n^t(\mathbb{U})$ is $\text{Hom}_R(\mathcal{V},-)$ -exact.

Let $V \in \mathcal{V}$. Then $D_n^t(V) \in \text{CE}(\mathcal{V}_N)$. Thus, $\text{Hom}_{\mathcal{C}_N(R)}(D_n^t(V), \mathbb{U})$ is exact. It now follows from [29, Lemma 2.2] that $\text{Hom}_R(V, \mathbb{Z}_n^t(\mathbb{U}))$ is exact. This yields the claim 1.

Claim 2. $\mathbb{Z}_n^t(\mathbb{U})$ is $\text{Hom}_R(-, \mathcal{W})$ -exact.

It is sufficient to show that

$$
0 \longrightarrow Z_n^t(\mathbf{K}_i) \xrightarrow{\varphi} Z_n^t(\mathbf{V}_i) \longrightarrow Z_n^t(\mathbf{K}_{i-1}) \longrightarrow 0 \tag{*}
$$

and

$$
0 \longrightarrow Z_n^t(\mathbf{K}^i) \longrightarrow Z_n^t(\mathbf{W}^i) \longrightarrow Z_n^t(\mathbf{K}^{i+1}) \longrightarrow 0
$$
 (*)

are Hom_R $(-, W)$ -exact for all $i \geq 0$, where $K_{-1} = X$. We will prove $(*_i)$ is $\text{Hom}_R(-, \mathcal{W})$ -exact, the proof of the $\text{Hom}_R(-, \mathcal{W})$ -exactness of $(*^i)$ is similar.

Let $W \in \mathcal{W}$. As $\mathcal{V} \perp \mathcal{V}, \mathcal{W} \perp \mathcal{W}$, it follows that $\widetilde{\mathcal{V}_N} \subseteq \widetilde{\# \mathcal{V}_N}, \widetilde{\mathcal{W}_N} \subseteq \widetilde{\# \mathcal{W}_N}$, so K_{i-1} consists of VW-Gorenstein modules by Lemma 3.7 and [31, Corollary 4.6]. Hence, [31, Proposition 3.5] implies the sequence

$$
0 \longrightarrow \text{Hom}_{R}(\mathbf{K}_{i-1}, W) \longrightarrow \text{Hom}_{R}(V_{i}, W) \longrightarrow \text{Hom}_{R}(\mathbf{K}_{i}, W) \longrightarrow 0
$$

is exact. Because $V_i \in V_N$ and $V \perp W$, the N-complex $\text{Hom}_R(V_i, W)$ is exact, and so $\text{Hom}_R(K_i, W)$ is exact by an induction argument since $\text{Hom}_R(X, W)$ is exact. To show that

$$
0 \longrightarrow \text{Hom}_{R}(\text{Z}_{n}^{t}(\mathbf{K}_{i-1}), W) \longrightarrow \text{Hom}_{R}(\text{Z}_{n}^{t}(\mathbf{V}_{i}), W) \xrightarrow{\varphi^{*}} \text{Hom}_{R}(\text{Z}_{n}^{t}(\mathbf{K}_{i}), W) \longrightarrow 0
$$

is exact, let $\alpha \in \text{Hom}_R(\mathbf{Z}_n^t(\boldsymbol{K}_i), W)$. As $\text{Hom}_R(\boldsymbol{K}_i, W)$ is exact, applying $\text{Hom}_R(-, W)$ to the exact sequence

$$
0 \longrightarrow Z_n^t(\mathbf{K}_i) \xrightarrow{\varepsilon} (\mathbf{K}_i)_n \longrightarrow Z_{n-t}^{N-t}(\mathbf{K}_i) \longrightarrow 0
$$

yields the exact sequence

$$
0 \longrightarrow \text{Hom}_{R}(Z_{n-t}^{N-t}(\boldsymbol{K}_{i}), W) \longrightarrow \text{Hom}_{R}((\boldsymbol{K}_{i})_{n}, W) \stackrel{\varepsilon^{*}}{\longrightarrow} \text{Hom}_{R}(Z_{n}^{t}(\boldsymbol{K}_{i}), W) \longrightarrow 0.
$$

Thus, there is a $\beta \in \text{Hom}_{R}((K_{i})_{n}, W)$ such that $\alpha = \beta \varepsilon$. Notice that $D_{n+N-1}^{N}(W) \in$ $CE(W_N)$, $Hom_{\mathcal{C}_N(R)}(-, D_{n+N-1}^N(W))$ leaves the sequence

$$
0 \longrightarrow \mathbf{K}_i \to \mathbf{V}_i \to \mathbf{K}_{i-1} \longrightarrow 0
$$

exact. So by [29, Lemma 2.2], the sequence

$$
0 \longrightarrow \text{Hom}_{R}((\mathbf{K}_{i-1})_{n}, W) \longrightarrow \text{Hom}_{R}((\mathbf{V}_{i})_{n}, W) \stackrel{\delta^{*}}{\longrightarrow} \text{Hom}_{R}((\mathbf{K}_{i})_{n}, W) \longrightarrow 0
$$

is exact, where $\delta \in \text{Hom}_{R}((\mathbf{K}_{i})_{n},(\mathbf{V}_{i})_{n}).$ Then we obtain $a \gamma \in \text{Hom}_{R}((\mathbf{V}_{i})_{n},W)$ such that $\beta = \gamma \delta$. It now follows from the commutative diagram

$$
Z_n^t(K_i) \xrightarrow{\varepsilon} (K_i)_n
$$

$$
\downarrow \varphi \qquad \qquad \downarrow \delta
$$

$$
Z_n^t(V_i) \xrightarrow{e} (V_i)_n
$$

that $\gamma e \in \text{Hom}_R(\text{Z}_n^t(\textbf{V}_i), W)$ and $\alpha = \beta \varepsilon = \gamma \delta \varepsilon = \gamma e \varphi = \varphi^*(\gamma e)$. This finishes the proof of Claim 2.

Now, the proof of the necessity is complete.

 Ω

 $(2) \Rightarrow (1)$ Let $n \in \mathbb{Z}$. Take a $1 \leq t \leq N-1$, the exactness of **X** provides an exact sequence

$$
\longrightarrow Z_n^t(\mathbf{X}) \longrightarrow X_n \longrightarrow Z_{n-t}^{N-t}(\mathbf{X}) \longrightarrow 0.
$$

Since $\mathcal{G}(VW)$ is closed under extensions by [31, Corollary 3.8], the displayed sequence implies that $X_n \in \mathcal{G}(V\mathcal{W})$. To prove that X is strongly VW-Gorenstein it is thus, by Theorem 3.8, enough to show that $\text{Hom}_R(V, X)$, $\text{Hom}_R(X, W)$ are exact for any $V \in V$ and $W \in W$. Let $V \in V$ and $n \in \mathbb{Z}$. Notice that $\Sigma D_0^1(V) = D_{N-1}^{N-1}(V)$ and as X is exact, Lemma 2.2 and [29, Lemma 2.2(vii)] combine with [31, Proposition 3.5] to yield

$$
H_n^1(\text{Hom}_R(V, \Theta^n \mathbf{X})) \cong \text{Ext}^1_{\mathcal{C}_N(R)}(\Sigma D_0^1(V), \mathbf{X})
$$

\n
$$
\cong \text{Ext}^1_{\mathcal{C}_N(R)}(D_{N-1}^{N-1}(V), \mathbf{X})
$$

\n
$$
\cong \text{Ext}^1_R(V, \mathbf{Z}_{N-1}^{N-1}(\mathbf{X})) = 0.
$$

Thus, Lemma 2.1 implies that $\text{Hom}_R(V, X)$ is exact. Given a $W \in \mathcal{W}$ and an $n \in \mathbb{Z}$. As X is exact, it follows from [10, Proposition 3.2(ii)] that ΣX is also exact. This yields

$$
H_n^1\left(\mathrm{Hom}_R(\mathbf{X},\Theta^n \mathrm{D}_0^1(W))\right) \cong \mathrm{Ext}^1_{\mathcal{C}_N(R)}\left(\Sigma \mathbf{X},\mathrm{D}_0^1(W)\right)
$$

$$
\cong \mathrm{Ext}^1_R\left((\Sigma \mathbf{X})_0/\mathrm{B}_0^1(\Sigma \mathbf{X}),W\right)
$$

$$
\cong \mathrm{Ext}^1_R\left(\mathrm{Z}_{1-N}^1(\Sigma \mathbf{X}),W\right).
$$

In this sequence, the first isomorphism comes from Lemma 2.2 and [31, Proposition 3.5]. The second isomorphism is due to $[29, \text{ Lemma } 2.2(\text{viii})]$ and the third isomorphism is an immediate consequence of the exactness of X . The proof [15, Lemma 3.5] shows that

$$
\mathrm{Z}^1_{1-N}(\Sigma \boldsymbol{X}) = \mathrm{B}^1_{-N}(\boldsymbol{X}) \oplus \mathrm{B}^2_{-N-1}(\boldsymbol{X}) \oplus \cdots \oplus \mathrm{B}^{N-1}_{2-2N}(\boldsymbol{X}).
$$

Since X is N-exact, we conclude that

$$
Z_{1-N}^1(\Sigma X) = Z_{-N}^{N-1}(X) \oplus Z_{-N-1}^{N-2}(X) \oplus \cdots \oplus Z_{2-2N}^1(X),
$$

and so $Z_{1-N}^1(\Sigma X) \in \mathcal{G}(V\mathcal{W})$ by assumption. Thus, $\text{Ext}^1_R(Z_{1-N}^1(\Sigma X), W) = 0$ by [31, Proposition 3.5]. From the isomorphism above we deduce that

$$
\mathrm{H}^{1}_{n}\left(\mathrm{Hom}_{R}(\boldsymbol{X},\Theta^{n}\mathrm{D}^{1}_{0}(W))\right)=0,
$$

which yields that $\text{Hom}_R(X, W)$ is N-exact. This completes the proof. \Box

Finally, we outline the consequences of Theorems 3.8 and 3.9 for the examples of Remark 3.2.

Corollary 3.10. Let X be an N-complex. Then X is strongly Gorenstein projective if and only if X is exact and $\mathcal{Z}_n^t(X)$ is a Gorenstein projective module for each $n \in \mathbb{Z}$ and $t = 1, 2, \ldots, N - 1$.

Proof. Take $V = W = P(R)$. Then VW-Gorenstein R-modules are exactly Gorenstein projective R-modules, strongly VW-Gorenstein N-complexes are the so called strongly Gorenstein projective N -complexes by Remark 3.2. If X is a strongly Gorenstein projective N-complex, then it follows from Theorem 3.8 that $\mathbf{X} \cong \text{Hom}_R(R, \mathbf{X})$ is exact. Now, apply Theorem 3.9.

Corollary 3.11. ([19, Theorem 1.1]) Let X be a complex. Then X is strongly Gorenstein projective if and only if X is exact and $Z_n(X)$ is a Gorenstein projective module for each $n \in \mathbb{Z}$.

Proof. This follows from [30, Theorem 2.2] and Theorem 3.8, Corollary 3.10 by taking $N = 2$.

The proofs of the next two results are dual to the previous two.

Corollary 3.12. Let X be an N-complex. Then X is strongly Gorenstein injective if and only if X is exact and $\mathcal{Z}_n^t(X)$ is a Gorenstein injective module for each $n \in \mathbb{Z}$ and $t = 1, 2, ..., N - 1$.

Corollary 3.13. ([13, Proposition 4.6]) Let X be a complex. Then X is strongly Gorenstein injective if and only if X is exact and $Z_n(X)$ is a Gorenstein injective module for each $n \in \mathbb{Z}$.

Corollary 3.14. Let R be a commutative ring, C a semidualizing R-module and X an N-complex. Then X is strongly G_C -projective if and only if X is exact and $Z_n^t(\boldsymbol{X})$ is a G_C -projective module for each $n \in \mathbb{Z}$ and $t = 1, 2, ..., N - 1$.

Proof. Take $V = \mathcal{P}(R)$ and $W = \mathcal{P}_C(R)$. Then VW-Gorenstein R-modules are precisely G_C -projective R-modules, while strongly VW-Gorenstein N-complexes are the so called strongly G_C -projective N-complexes by Remark 3.2. From [24, Proposition 2.6] we conclude that projective R-modules and C-projective R-modules are G_C -projective R-modules. The subcategory $\mathcal{P}_C(R)$ is self-orthogonal by [5, Remark 2.3]. Assume that X is strongly G_C -projective, then Theorem 3.8 yields that $\mathbf{X} \cong \text{Hom}_{R}(R, \mathbf{X})$ is an exact N-complex. The result now follows from Theorem $3.9.$

Set $N = 2$ in Corollary 3.14, one gets:

Corollary 3.15. Let R be a commutative ring, C a semidualizing R -module and **X** an R-complex. Then **X** is strongly G_C -projective if and only if **X** is an exact complex and $Z_n(X)$ is a G_C -projective R-module for each $n \in \mathbb{Z}$.

Dually, we have the following result.

Corollary 3.16. Let R be a commutative ring, C a semidualizing R -module and X an N-complex. Then X is strongly G_C -injective if and only if X is exact and $Z_n^t(\boldsymbol{X})$ is a G_C -injective R-module for any $n \in \mathbb{Z}$ and $t = 1, 2, ..., N - 1$.

It follows from [9, Lemma 6.1, Theorems 2 and 6.1] that

 $\mathcal{A}_{C}(R) = \mathcal{G}(\mathcal{P}(R)\mathcal{I}_{C}(R)), \ \ \mathcal{B}_{C}(R) = \mathcal{G}(\mathcal{P}_{C}(R)\mathcal{I}(R)).$

Note that $\mathcal{P}(R), \mathcal{I}_C(R) \subseteq \mathcal{A}_C(R)$ and $\mathcal{P}_C(R), \mathcal{I}(R) \subseteq \mathcal{B}_C(R)$ by [9, Lemma 4.1 and Corollary 6.1]. As another application of Theorem 3.9, we have the following result.

Corollary 3.17. Let R be a commutative ring, C a semidualizing R -module and \boldsymbol{X} an N-complex. Then the following statements hold:

- (1) X is a strongly $\mathcal{P}(R)\mathcal{I}_C(R)$ -Gorenstein N-complex if and only if X is exact and $\mathbf{Z}_n^t(\boldsymbol{X}) \in \mathcal{A}_C(R)$ for any $n \in \mathbb{Z}$ and $t = 1, 2, ..., N$.
- (2) X is a strongly $\mathcal{P}_C(R)\mathcal{I}(R)$ -Gorenstein N-complex if and only if X is exact and $\mathbf{Z}_n^t(\boldsymbol{X}) \in \mathcal{B}_C(R)$ for any $n \in \mathbb{Z}$ and $t = 1, 2, ..., N$.

In particular, set $N = 2$, we have:

Corollary 3.18. Let R be a commutative ring, C a semidualizing R-module and X an R-complex.

- (1) X is a strongly $\mathcal{P}(R)\mathcal{I}_C(R)$ -Gorenstein complex if and only if X is exact and $Z_n(\mathbf{X}) \in \mathcal{A}_C(R)$ for any $n \in \mathbb{Z}$.
- (2) (2) X is a strongly $\mathcal{P}_C(R)\mathcal{I}(R)$ -Gorenstein complex if and only if X is exact and $Z_n(\mathbf{X}) \in \mathcal{B}_C(R)$ for each $n \in \mathbb{Z}$.

Acknowledgement. The authors would like to thank the referee for the valuable suggestions and comments.

Disclosure statement. The authors report there are no competing interests to declare.

References

- [1] P. Bahiraei, Cotorsion pairs and adjoint functors in the homotopy category of N-complexes, J. Algebra Appl., 19(12) (2020), 2050236 (19 pp).
- [2] M. Dubois-Violette, $d^N = 0$: generalized homology, K-Theory, 14(4) (1998), 371-404.
- [3] E. E. Enochs and O. M. G. Jenda, *Gorenstein injective and projective modules*, Math. Z., 220(4) (1995), 611-633.
- [4] S. Estrada, Monomial algebras over infinite quivers. Applications to Ncomplexes of modules, Comm. Algebra, 35(10) (2007), 3214-3225.
- [5] Y. Geng and N. Ding, W-Gorenstein modules, J. Algebra, 325 (2011), 132-146.
- [6] J. Gillespie, The homotopy category of N-complexes is a homotopy category, J. Homotopy Relat. Struct., 10(1) (2015), 93-106.
- [7] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189(1-3) (2004), 167-193.
- [8] H. Holm and P. Jørgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra, 205(2) (2006), 423-445.
- [9] H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ., 47(4) (2007), 781-808.
- [10] O. Iyama, K. Kato and J.-i. Miyachi, Derived categories of N-complexes, J. Lond. Math. Soc. (2), 96(3) (2017), 687-716.
- [11] M. M. Kapranov, On the q-analog of homological algebra, available at arXiv:qalg/9611005, (1996).
- [12] L. Liang, N. Q. Ding and G. Yang, Some remarks on projective generators and injective cogenerators, Acta Math. Sin. (Engl. Ser.), 30(12) (2014), 2063-2078.
- [13] B. Lu, Strongly W-Gorenstein complexes, J. Math. Res. Appl., 38(5) (2018), 449-457.
- [14] B. Lu, Cartan-Eilenberg Gorenstein projective N-complexes, Comm. Algebra, 49(9) (2021), 3810-3824.
- [15] B. Lu. Gorenstein objects in the category of N-complexes, J. Algebra Appl., 20(10) (2021), 2150174 (26 pp).
- [16] B. Lu and A. Daiqing, *Cartan-Eilenberg Gorenstein-injective m-complexes*, AIMS Math., 6(5) (2021), 4306-4318.
- [17] B. Lu and Z. Di, Gorenstein cohomology of N-complexes, J. Algebra Appl., 19(9) (2020), 2050174 (14 pp).
- [18] B. Lu, Z. Di and Y. Liu, *Cartan-Eilenberg N-complexes with respect to self*orthogonal subcategories, Front. Math. China, 15(2) (2020), 351-365.
- [19] B. Lu and Z. Liu, A note on Gorenstein projective complexes, Turkish J. Math., 40(2) (2016), 235-243.
- [20] B. Lu, J. Wei and Z. Di, W-Gorenstein N-complexes, Rocky Mountain J. Math., 49(6) (2019), 1973-1992.
- [21] P. Ma and X. Yang, Cohomology of torsion and completion of N-complexes, J. Korean Math. Soc., 59(2) (2022), 379-405.
- [22] W. Mayer, A new homology theory. I, II, Ann. of Math. (2), 43 (1942), 370-380, 594-605.
- [23] S. Sather-Wagstaff, T. Sharif and D. White, Stability of Gorenstein categories, J. Lond. Math. Soc. (2), 77(2) (2008), 481-502.
- [24] D. White, *Gorenstein projective dimension with respect to a semidualizing mod*ule, J. Commut. Algebra, 2(1) (2010), 111-137.
- [25] D. Xin, J. Chen and X. Zhang, *Completely W*-resolved complexes, Comm. Algebra, 41(3) (2013), 1094-1106.
- [26] G. Yang, Gorenstein projective, injective and flat complexes, Acta Math. Sinica (Chinese Ser.), 54(3) (2011), 451-460.
- [27] C. Yang and L. Liang, Gorenstein injective and projective complexes with respect to a semidualizing module, Comm. Algebra, $40(9)$ (2012), 3352-3364.
- [28] X. Yang and N. Ding, The homotopy category and derived category of Ncomplexes, J. Algebra, 426 (2015), 430-476.
- [29] X. Yang and T. Cao, *Cotorsion pairs in* $\mathcal{C}_N(\mathcal{A})$, Algebra Colloq., 24(4) (2017), 577-602.
- [30] X. Yang and Z. Liu, Gorenstein projective, injective, and flat complexes, Comm. Algebra, 39(5) (2011), 1705-1721.
- [31] G. Zhao and J. Sun, \mathcal{VW} -Gorenstein categories, Turkish J. Math., 40(2) (2016). 365-375.
- [32] R. Zhao and W. Ren, VW -Gorenstein complexes, Turkish J. Math., 41(3) (2017), 537-547.

Wenjun Guo, Honghui Jia and Renyu Zhao (Corresponding Author) College of Mathematics and Statistics Northwest Normal University 730070 Lanzhou, P. R. China e-mails: 1806598010@qq.com (W. J. Guo) 2977280442@qq.com (H. H. Jia) zhaory@nwnu.edu.cn (R. Y. Zhao)