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Abstract. Let V,W be two classes of R-modules. The notion of strongly

VW-Gorenstein N -complexes is introduced, and under certain mild hypothe-

ses on V and W, it is shown that an N -complex X is strongly VW-Gorenstein

if and only if each term of X is a VW-Gorenstein module and N -complexes

HomR(V,X) and HomR(X,W ) are N -exact for any V ∈ V and W ∈ W. Fur-

thermore, under the same conditions on V and W, it is proved that an N -exact

N -complex X is VW-Gorenstein if and only if Zt
n(X) is a VW-Gorenstein

module for each n ∈ Z and each t = 1, 2, . . . , N − 1. Consequently, we show

that an N -complex X is strongly Gorenstein projective (resp., injective) if and

only if X is N -exact and Zt
n(X) is a Gorenstein projective (resp., injective)

module for each n ∈ Z and t = 1, 2, . . . , N − 1.
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1. Introduction

Let V,W be two classes of R-modules. Zhao and Sun [31] introduced and studied

VW-Gorenstein R-modules. Such class of R-modules is a common generalization

of Gorenstein projective and Gorenstein injective R-modules [3,7], GC-projective

and GC-injective R-modules (where C is a semidualizing R-module over commu-

tative ring R) [8,24], W-Gorenstein R-modules [5,23], and so on. In [32], Zhao

and Ren extended the notion of VW-Gorenstein R-modules to the category of R-

complexes by introducing the notion of VW-Gorenstein complexes. They showed

that if V,W are closed under extensions, isomorphisms and finite direct sums,

V ⊥ W,V ⊥ V,W ⊥ W and both modules in V,W are VW-Gorenstein, then

VW-Gorenstein complexes are just the complexes of VW-Gorenstein modules, see

[32, Theorem 3.8]. This result recovered the results on Gorenstein projective and

injective complexes [26, Theorems 1, 2] and [30, Theorem 2.2, Proposition 2.8],

This work was partially supported by the National Natural Science Foundation of China (Grant

nos. 11861055 and 12061061).
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W-Gorenstein complexes [12, Corollary 4.8] and [25, Theorem 3.12], GC-projective

and injective complexes [27, Theorems 4.6 and 4.7].

As a natural generalization of complexes, the N -complexes seem to have first

introduced by Mayer [22] in his study of simplicial complexes. The study of ho-

mological theory of N -complexes was originated in the works of Kapranov[11] and

Dubois-Violette[2]. From then, many results of complexes were extended to N -

complexes, see for example [1,4,6,10,14,15,16,17,18,20,21,29,28] and the references

therein. In particular, from [20, Theorem 3.5] or [15, Theorem 3.17] we know that

an N -complex X is Gorenstein projective (resp., injective) if and only if each degree

of X is a Gorenstein projective (resp., injective) module.

It is well known that an N -complex X is projective (resp., injective) if and only

if X is N -exact (or simply exact) and Zt
n(X) is projective (resp., injective) for each

n ∈ Z and 1 ⩽ t ⩽ N−1. The primary goal of this paper is to identify subcategories

of N -complexes that will complete the following diagram:

X is a projective

(resp., injective) N -complex
ks +3

��

X is exact and Zt
n(X) is a

projective (resp., injective) module

for any n ∈ Z and 1 ⩽ t ⩽ N − 1

��

X is a ? (resp., ?) N -complex ks +3

��

X is exact and Zt
n(X) is a

Gorenstein projective (resp., injective) module

for each n ∈ Z and 1 ⩽ t ⩽ N − 1

��

X is a Gorenstein projective

(resp., injective) N -complex
ks +3 each term of X is a Gorenstein projective

(resp., injective) module.

We achieve this goal as applications of the more general works that we develop

for the so-called strongly VW-Gorenstein N -complexes, where V and W are two

classes of R-modules. Here is the outline: Section 2 contains preliminary notions,

notation and lemmas for use throughout this paper. In Section 3, we first give defi-

nition of strongly VW-Gorenstein N -complexes, see Definition 3.1. Then the main

results Theorems 3.8 and 3.9 of this note characterise strongly VW-Gorenstein N -

complexes and exact strongly VW-Gorenstein N -complexes, respectively. Finally,

we apply these abstract results to deduce that an N -complex X is strongly Goren-

stein projective (resp., injective) if and only ifX is exact and Zt
n(X) is a Gorenstein
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projective (resp., injective) module for each n ∈ Z and 1 ⩽ t ⩽ N − 1, see Corollar-

ies 3.10 and 3.12. This arrives at our goal. Also, some other particular cases that

fit to the main results are exhibited, see Corollaries 3.14-3.18.

2. Preliminaries

Throughout, R is a unitary ring and by an R-module we mean a left R-module,

unless otherwise stated. We fix once and for all an integer N ⩾ 2. Next, we recollect

some notation and terminology that will be needed in the rest of the paper.

2.1. N-complexes. The terminology is due to [6,10,28]. An N -complex X is a

sequence of R-modules and R-homomorphisms

· · ·
dX
n+2−−−→ Xn+1

dX
n+1−−−→ Xn

dX
n−−→ Xn−1

dX
n−1−−−→ · · ·

satisfying dXn−(N−1) · · · d
X
n−1d

X
n = 0 for any n ∈ Z. So a 2-complex is a chain

complex in the usual sense. For 0 ⩽ r ⩽ N and n ∈ Z, we denote the compo-

sition dXn−(r−1) · · · d
X
n−1d

X
n by d

X,{r}
n . Sometimes, we simply write dX,{r} with-

out mentioning grades. In this notation, d
X,{0}
n = IdXn

, d
X,{1}
n = dXn and

d
X,{N}
n = 0. A morphism f : X −→ Y of N -complexes is collection of homo-

morphisms fn : Xn −→ Yn that making all the rectangles commute. In this way,

one gets a category of N -complexes of R-modules, denoted by CN (R). This is an

Abelian category having enough projectives and injectives. In what follows, N -

complexes will always be the N -complexes of R-modules and the term complexes

always means 2-complexes.

For an N -complexes X, there are N − 1 choices for homology. Indeed, one can

define

Zr
n(X) := KerdX,{r}

n , Br
n(X) := Imd

X,{r}
n+r for r = 1, 2, . . . , N

and

Hr
n(X) := Zr

n(X)/BN−r
n (X) for r = 1, 2, . . . , N − 1.

An N -complex X is called N -exact, or just exact, if Hr
n(X) = 0 for all n ∈ Z and

r = 1, 2, . . . , N − 1.

The following properties on exactness of N -complexes are useful.

Lemma 2.1. ([6, Proposition 2.2])

(1) An N -complex X is exact if and only if for some 0 < r < N one has

Hr
n(X) = 0 for each n.

(2) Suppose 0 −→ X −→ Y −→ Z −→ 0 is a short exact sequence of N -

complexes. If any two out of the three are exact, then so is the third.
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A morphism f : X → Y of N -complexes is called null-homotopic if there exists

a collection of homomorphisms {sn|sn ∈ HomR(Xn, Yn+N−1), n ∈ Z} such that

fn =

N∑
i=1

d
Y ,{N−i}
n+N−i sn+1−id

X,{i−1}
n

for each n ∈ Z. Two morphisms f, g : X → Y of N -complexes are called homotopic,

in symbols f ∼ g, if f − g is null-homotopic. We denote by KN (R) the homotopy

category of N -complexes, that is, the category consisting of N -complexes such

that the morphism set between X,Y ∈ KN (R) is given by HomKN (R)(X,Y ) =

HomCN (R)(X,Y )/ ∼. It is known that KN (R) is a triangulated category, see [10,

Theorem 2.3].

For any R-module M , any n ∈ Z and 1 ⩽ r ⩽ N , we use Dr
n(M) to denote the

N -complex

· · · −→ 0 −→ M
IdM−−−→ M

IdM−−−→ · · · IdM−−−→ M
IdM−−−→ M −→ 0 −→ · · ·

with M in degrees n, n − 1, . . . , n − (r − 1). Let {Mn}n∈Z be a collection of R-

modules, it is obvious that
⊕

n∈Z D
N
n (Mn) =

∏
n∈Z D

N
n (Mn).

Let X ∈ CN (R) be given. Then the identity map IdXn
gives rise to two mor-

phisms ρXn
n : DN

n (Xn) −→ X and λXn
n : X −→ DN

n+N−1(Xn) for any n ∈ Z.
Consequently, we have a degreewise split epimorphism ρX :

⊕
n∈Z D

N
n (Xn) −→ X

and a degreewise split monomorphism λX : X −→
⊕

n∈Z D
N
n+N−1(Xn). Thus,

there are degreewise split exact sequences of N -complexes

0 −→ KerρX
ϵX−−→

⊕
n∈Z

DN
n (Xn)

ρX

−−→ X −→ 0

and

0 −→ X
λX

−−→
⊕
n∈Z

DN
n+N−1(Xn)

ηX

−−→ CokerλX −→ 0,

where

(KerρX)n =

−1⊕
i=1−N

Xn−i,

dKerρX

=



0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

−d{N−1} −d{N−2} −d{N−3} · · · −d{2} −d


,
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ϵX =



1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

−d{N−1} −d{N−2} −d{N−3} · · · −d{2} −d


,

ρX =
(
d{N−1}, . . . , d, 1

)
and

(CokerλX)n =

N−1⊕
i=1

Xn−i, dCokerλX

=



−d 1 0 · · · 0 0

−d{2} 0 1 · · · 0 0
...

...
...

...
...

...

−d{N−2} 0 0 · · · 0 1

−d{N−1} 0 0 · · · 0 0


,

λX =


1

d
...

d{N−1}

 , ηX =



−d 1 0 · · · 0 0

−d{2} 0 1 · · · 0 0
...

...
...

...
...

...

−d{N−2} 0 0 · · · 1 0

−d{N−1} 0 0 · · · 0 1


.

Now, we define functors Σ,Σ−1 : CN (R) −→ CN (R) by

Σ−1X = KerρX and ΣX = CokerλX

in the exact sequences above. Then Σ and Σ−1 induce the suspension functor and

its quasi-inverse of the triangulated category KN (R).

On the other hand, we define the shift functor Θ : CN (R) −→ CN (R) by

Θ(X)n = Xn−1, dΘ(X)
n = dXn−1

for X = (Xn, d
X
n ) ∈ CN (R). The N -complex Θ(ΘX) is denoted Θ2X and induc-

tively we define ΘkX for all k ∈ Z. This induces the shift functor Θ : KN (R) −→
KN (R) which is a triangle functor. Unlike classical case, Σ does not coincide with

Θ. In fact, Σ2 ≃ ΘN on KN (R), see [10, Theorem 2.4].

2.2. Hom N-complexes. Given two N -complexes X and Y , the N -complex

HomR(X,Y ) of Abelian groups is given by

HomR(X,Y )n =
∏
t∈Z

HomR(Xt, Yn+t)
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and

(dHomR(X,Y )
n (f))m = dYn+mfm − qnfm−1d

X
m

for f ∈ HomR(X,Y )n, where q is the Nth root of unity, qN = 1 and q ̸= 1.

For X,Y ∈ CN (R), we denote the group of i-fold extensions by ExtiCN (R)(X,Y ).

Recall that Ext0CN (R)(X,Y ) is naturally isomorphic to the group HomCN (R)(X,Y )

of morphisms X −→ Y , and Ext1CN (R)(X,Y ) is the group of (equivalence classes)

of short exact sequence 0 −→ Y −→ Z −→ X −→ 0 under the Baer sum. We let

Ext1dwN
(X,Y ) be the subgroup of Ext1CN (R)(X,Y ) consisting of those short exact

sequences which are split in each degree. The following lemma is a standard result

relating Ext1dwN
(X,Y ) to HomR(X,Y ).

Lemma 2.2. ([15, Lemma 3.10]) For any X,Y ∈ CN (R) and any n ∈ Z, we have

(1) Ext1dwN
(ΣX,Y ) ∼= H1

n(HomR(X,ΘnY )) ∼= HomKN (R)(X,Y ).

(2) Ext1dwN
(X,Y ) ∼= H1

n(HomR(X,ΘnΣ−1Y )) ∼= HomKN (R)(X,Σ−1Y ).

2.3. Several classes of N-complexes. Let X be a class of R-modules. As the

classical case, we have the following classes of N -complexes:

• X̃N is the class of all exact N -complex X with cycles Zt
n(X) ∈ X for n ∈ Z

and t = 1, 2, . . . , N ;

• #̃XN is the class of all N -complex X with terms Xn ∈ X for all n ∈ Z;
• CE(XN ) is the class of allN -complexX withXn, Z

t
n(X), Bt

n(X), Ht
n(X) ∈

X for n ∈ Z and t = 1, 2, . . . , N .

2.4. Semidualizing modules and some related classes of modules.

Definition 2.3. ([24, 1.8]) Let R be a commutative ring. An R-module C is called

semidualizing if

(1) C admits a degreewise finitely generated projective resolution,

(2) The homothety map RRR
γR−−→ HomR(C,C) is an isomorphism,

(3) Ext⩾1
R (C,C) = 0.

In the remainder of the paper, let C be an arbitrary but fixed semidualizing

module over a commutative ring R.

Definition 2.4. ([9,24]) The Auslander class AC(R) with respect to C consists of

all R-modules M satisfying:

(1) TorR⩾1(C,M) = 0 = Ext⩾1
R (C,C ⊗R M) and

(2) The natural evaluation homomorphism µM : M −→ HomR(C,C ⊗R M) is

an isomorphism.

The Bass class BC(R) with respect to C consists of all R-modules M satisfying:
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(1) Ext⩾1
R (C,M) = 0 = TorR⩾1(C,HomR(C,M)) and

(2) The natural evaluation homomorphism vM : C ⊗R HomR(C,M) −→ M is

an isomorphism.

We set,

PC(R) = the subcategory of R-modules C ⊗R P where P is R-projective,

IC(R) = the subcategory of R-modules HomR(C, I) where I is R-injective.

Modules in PC(R) and IC(R) are called C-projective and C-injective, respectively.

When C = R, we omit the subscript and recover the classes of projective and

injective R-modules.

2.5. Orthogonal subcategories. Let A be an Abelian category. For two sub-

categories X ,Y of A, we say X ⊥ Y if Ext⩾1
A (X,Y ) = 0 for any X ∈ X and any

Y ∈ Y. In particular, if X ⊥ X , then X is called self-orthogonal. According to [5,

Theorem 3.1 and Corollary 3.2], PC(R) and IC(R) are self-orthogonal and closed

under finite direct sums and direct summands.

2.6. VW-Gorenstein modules. Let A be an Abelian category and X ,Y two

subcategories of A. Recall that a sequence S in A is HomA(X ,−)-exact (resp.,

HomA(−,Y)-exact) if the sequence HomA(X,S) (resp., HomA(S, Y )) is exact for

any X ∈ X (resp., Y ∈ Y).

Definition 2.5. ([31, Definition 3.1]) Let V,W be two classes of R-modules. An

R-module M is called VW-Gorenstein if there exists a both HomR(V,−)-exact and

HomR(−,W)-exact exact sequence

· · · −→ V1 → V0 → W 0 → W 1 −→ · · ·

with Vi ∈ V and W i ∈ W for all i ≥ 0 such that M ∼= Im(V0 → W 0).

We denote the class of all VW-Gorenstein modules by G(VW). The VW-

Gorenstein modules unifies the following notions: GC-projective R-modules [8,24]

(when V = P(R) and W = PC(R)); GC-injective R-modules [8,24] (when V =

IC(R) and W = I(R)); modules in AC(R) (when V = P(R) and W = IC(R),

see [9, Lemma 6.1(1) and Theorem 2]); modules in BC(R) (when V = PC(R)

and W = I(R), see [9, Lemma 6.1(2) and Theorem 6.1]); W-Gorenstein modules

[5,23] (when V = W), and of course Gorenstein projective R-modules (in the case

V = W = P(R)) and Gorenstein injective R-modules (in the case V = W = I(R)),

see [3,7].
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3. Main results

In what follows, let V,W be two classes of R-modules which are closed under

isomorphisms, direct summands and finite direct sums.

Definition 3.1. An N -complex X is called strongly VW-Gorenstein if there ex-

ists a both HomCN (R)(CE(VN ),−)-exact and HomCN (R)(−,CE(WN ))-exact exact

sequence

· · · −→ V1 → V0 → W 0 → W 1 −→ · · · ,

where Vi ∈ ṼN and W i ∈ W̃N , such that X ∼= Im(V0 → W 0).

Remark 3.2. Here are some special cases of strongly VW-GorensteinN -complexes:

(1) If V = W, then we call strongly VW-Gorenstein N -complexes strongly W-

Gorenstein N -complexes. In particular, if they are the class of projective

(resp., injective) R-modules, then strongly VW-Gorenstein N -complexes

is particularly called strongly Gorenstein projective (respectively, injec-

tive) N -complexes. In the case of N = 2, strongly W-Gorenstein N -

complexes happen to be strongly W-Gorenstein complexes in [13]. The

strongly Gorenstein projective complexes were studied in [19].

(2) If V = P(R), W = PC(R), then strongly VW-Gorenstein N -complexes

is particularly called strongly GC-projective N -complexes; if V = IC(R),

W = I(R), then strongly VW-Gorenstein N -complexes is particularly

called strongly GC-injective N -complexes.

To characterize strongly VW-Gorenstein N -complexes, we need some prepara-

tions.

Lemma 3.3. ([15, Lemma 3.12]) Let X ,Y be two classes of R-modules. If X is

self-orthogonal, then the following statements hold:

(1) X ⊥ Y if and only if X̃N ⊥ #̃YN .

(2) Y ⊥ X if and only if #̃YN ⊥ X̃N .

Corollary 3.4. Let X ,Y be two classes of R-modules and X ⊥ Y.

(1) If X is self-orthogonal, then X̃N ⊥ CE(YN ).

(2) If Y is self-orthogonal, then CE(XN ) ⊥ ỸN .

Proof. It follows from CE(XN ) ⊆ #̃XN , CE(YN ) ⊆ #̃YN and Lemma 3.3. □

Lemma 3.5. ([18, Theorem 1]) Let X be an N -complex and X a class R-modules.

If X is self-orthogonal, then X ∈ CE(XN ) if and only if X = X ′ ⊕X ′′, where

X ′ ∈ X̃N , X ′′ =
⊕

n∈Z D
1
n(Mn) with Mn ∈ X for all n ∈ Z.
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Lemma 3.6. Let X ∈ CE(XN ). If X is closed under finite direct sums and self-

orthogonal, then ΣX,Σ−1X ∈ CE(XN ).

Proof. Since X ∈ CE(XN ), by Lemma 3.5 one has X = X ′ ⊕X ′′, where X ′ ∈
X̃N and X ′′ =

⊕
n∈Z D

1
n(Mn) with all Mn ∈ X . One then has ΣX = ΣX ′ ⊕ΣX ′′.

By assumption X is self-orthogonal, it follows that X̃N ⊆ CE(XN ), so one gets

ΣX ′ ⊆ CE(XN ) from [15, Lemma 3.5]. To complete the proof, it is now sufficient

to show that ΣX ′′ ∈ CE(XN ). Let n ∈ Z, notice that

(ΣX ′′)n = Mn−1 ⊕Mn−2 ⊕ · · · ⊕Mn−(N−1)

and

dΣX′′

n =



0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 1

0 0 0 · · · 0 0 0


,

then one has

Z1
n(ΣX

′′) ∼= Mn−1, B1
n(ΣX

′′) ∼= Mn−1 ⊕ · · · ⊕Mn−(N−2),

Z2
n(ΣX

′′) ∼= Mn−1 ⊕Mn−2, B2
n(ΣX

′′) ∼= Mn−1 ⊕ · · · ⊕Mn−(N−3),

...
...

ZN−1
n (ΣX ′′) ∼= Mn−1 ⊕ · · · ⊕Mn−(N−1), BN−1

n (ΣX ′′) = 0.

Since X is closed under finite direct sums, we have (ΣX ′′)n,Z
t
n(ΣX

′′),Bt
n(ΣX

′′) ∈
X and so Ht

n(ΣX
′′) = Mn−t ∈ X for t = 1, 2, . . . , N − 1. It now follows that

ΣX ′′ ∈ CE(XN ), as desired. Similarly, one can show that Σ−1X ∈ CE(XN ). □

Lemma 3.7. Let V,W be two classes of R-modules and

· · · −→ X1 −→ X0 −→ X−1 −→ · · ·

be a both HomCN (R)(CE(VN ),−)-exact and HomCN (R)(−,CE(WN ))-exact exact se-

quence of N -complexes, then for any n ∈ Z, the sequence

· · · −→ (X1)n −→ (X0)n −→ (X−1)n −→ · · ·

is a HomR(V,−)-exact and HomR(−,W)-exact exact sequence of R-modules.
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Proof. Let V ∈ V,W ∈ W and n ∈ Z. Then DN
n (V ) ∈ CE(VN ) and DN

n+N−1(W ) ∈
CE(WN ). Thus, we have the following exact sequences

· · · → HomCN (R)(D
N
n (V ),X1) → HomCN (R)(D

N
n (V ),X0)

→ HomCN (R)(D
N
n (V ),X−1) → · · · ,

· · · → HomCN (R)(X−1,D
N
n+N−1(W )) → HomCN (R)(X0,D

N
n+N−1(W ))

→ HomCN (R)(X1,D
N
n+N−1(W )) → · · · .

It now follows from [15, Lemma 3.3] that the sequences

· · · → HomR(V, (X1)n) → HomR(V, (X0)n) → HomR(V, (X−1)n) → · · ·

and

· · · → HomR((X−1)n,W ) → HomR((X0)n,W ) → HomR((X1)n,W ) → · · ·

are exact. □

With the above preparations, we are now in a position to prove our main results.

Theorem 3.8. Let X be an N -complex. If V,W are self-orthogonal, V ⊥ W and

V,W ⊆ G(VW), then the following statements are equivalent:

(1) X is a strongly VW-Gorenstein N -complex.

(2) Each Xn is a VW-Gorenstein module, and both N -complexes HomR(V ,X)

and HomR(X,W ) are exact for any V ∈ CE(VN ) and any W ∈ CE(WN ).

(3) Each Xn is a VW-Gorenstein module, and both N -complexes HomR(V,X)

and HomR(X,W ) are exact for any V ∈ V and W ∈ W.

Proof. (1) ⇒ (3) Since X is a strongly VW-Gorenstein N -complex, there is a both

HomCN (R)(CE(VN ),−)-exact and HomCN (R)(−,CE(WN ))-exact exact sequence of

N -complexes

· · · −→ V1 → V0 → W 0 → W 1 −→ · · ·

such that X ∼= Im(V0 → W 0), where Vi ∈ ṼN and W i ∈ W̃N for i ⩾ 0. Apply-

ing Lemma 3.7 one thus gets a HomR(V,−)-exact and HomR(−,W)-exact exact

sequence of R-modules

· · · −→ (V1)n → (V0)n → (W 0)n → (W 1)n −→ · · ·

such that Xn
∼= Im((V0)n → (W 0)n) for each n ∈ Z. As V,W are closed on finite

direct sums and self-orthogonal, it follows from [20, Proposition 4.1] that (Vi)n ∈ V
and (W i)n ∈ W for any i and n. Therefore, each Xn is a VW-Gorenstein module.
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Let V ∈ V and W ∈ W. Then D1
n(V ) ∈ CE(VN ),D1

n(W ) ∈ CE(WN ). From

Lemma 3.6 it follows that ΣD1
n(V ) ∈ CE(VN ),ΣD1

n(W ) ∈ CE(WN ). Setting K0 =

Im(V1 → V0) and K1 = Im(W 0 → W 1). Consider exact sequences

HomCN (R)(ΣD
1
n(V ),K1) → Ext1CN (R)(ΣD

1
n(V ),X) → Ext1CN (R)(ΣD

1
n(V ),W 0)

and

HomCN (R)(K0,ΣD
1
n(W )) → Ext1CN (R)(X,ΣD1

n(W )) → Ext1CN (R)(V0,ΣD
1
n(W )).

By the assumptions on V and W, Corollary 3.4 applies to yield that

Ext1CN (R)(ΣD
1
n(V ),W 0) = 0 and Ext1CN (R)(V0,ΣD

1
n(W )) = 0.

The HomCN (R)(CE(VN ),−)-exactness of 0 −→ X −→ W 0 −→ K1 −→ 0 and the

HomCN (R)(−,CE(WN ))-exactness of 0 −→ K0 −→ V0 −→ X −→ 0 now yield that

Ext1CN (R)(ΣD
1
n(V ),X) = 0 and Ext1CN (R)(X,ΣD1

n(W )) = 0. It then follows from

Lemma 2.2 that HomR(V,X) and HomR(X,W ) are exact.

(3) ⇒ (2) It follows by Lemma 3.5, [31, Proposition 3.5] and Lemmas 3.3, 2.1,

2.2.

(2) ⇒ (1) For any n ∈ Z, as Xn is a VW-Gorenstein module, it follows that

there is an exact sequence of R-modules

0 −→ Gn −→ Vn
gn−→ Xn −→ 0,

where Gn ∈ G(VW) and Vn ∈ V by [31, Corollary 4.6]. One thus gets an exact

sequence of N -complexes

0 −→
⊕
n∈Z

DN
n (Gn) −→

⊕
n∈Z

DN
n (Vn)

g−−→
⊕
n∈Z

DN
n (Xn) −→ 0,

where g =
⊕

n∈Z D
N
n (gn). Put V0 =

⊕
n∈Z D

N
n (Vn). By [20, Proposition 4.1] one

has V0 ∈ ṼN . On the other hand, there is always a degreewise split short exact

sequence

0 −→ Σ−1X
ϵX−−→

⊕
n∈Z

DN
n (Xn)

ρX

−−→ X −→ 0.

Let β = ρXg. Then β is an epimorphism from V0 to X. Setting K0 = Kerβ yields

an exact sequence of N -complexes

0 −→ K0 −→ V0 −→ X −→ 0. (†0)

Now, we show that K0 has the same properties as X, and that the exact sequence

(†0) is both HomCN (R)(CE(VN ),−)-exact and HomCN (R)(−,CE(WN ))-exact. To
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this end, consider the following commutative diagram with exact rows and columns

0

��

0

��
K0

��

// Σ−1X

ϵX

��
0 // ⊕

n∈Z D
N
n (Gn) //

��

V0

g //

β

��

⊕
n∈Z D

N
n (Xn)

ρX

��

// 0

0 // 0 // X

��

X

��

// 0

0 0.

Apply the Snake Lemma to this diagram to get the exact sequence

0 −→
⊕
n∈Z

DN
n (Gn) −→ K0 −→ Σ−1X −→ 0.

Notice that both
⊕

n∈Z D
N
n (Gn) and Σ−1X are N -complexes of VW-Gorenstein

modules, it follows from [31, Corollary 3.8] that each degree ofK0 is VW-Gorenstein.

Let V ∈ CE(VN ), then Ext1R(Vk, (K0)n+k) = 0 for any n, k ∈ Z by [31, Proposition

3.5]. So we have the following exact sequence

0 −→ HomR(Vk, (K0)n+k) −→ HomR(Vk, (V0)n+k) −→ HomR(Vk, Xn+k) −→ 0.

One thus gets the following exact sequence of N -complexes

0 −→ HomR(V ,K0) −→ HomR(V ,V0) −→ HomR(V ,X) −→ 0.

As V0 =
⊕

n∈Z D
N
n (Vn) is a contractible N -complex by [6, Theorem 3.3], it follows

that V0 is a null object in KN (R). Thus,

H1
n(HomR(V ,V0)) ∼= HomKN (R)(V ,Θ−nV0) = 0

for each n ∈ Z by Lemma 2.2, and whence HomR(V ,V0) is exact by Lemma 2.1.

The N -complex HomR(V ,K0) is now exact by Lemma 2.1, as HomR(V ,X) is

exact by assumption. Similarly, one can show that HomR(K0,W ) is exact for any

W ∈ CE(WN ). Let V ∈ CE(VN ) and W ∈ CE(WN ). For any n ∈ Z, by Lemma

3.6 one has ΣΘ−nV ∈ CE(VN ) and ΘnΣ−1W ∈ CE(WN ), so HomR(ΣΘ
−nV ,K0)

is exact as above, and HomR(X,ΘnΣ−1W ) is exact by assumption. Hence, it

follows from [31, Proposition 3.5] and Lemma 2.2 that

Ext1CN (R)(V ,K0) = Ext1dwN
(V ,K0) ∼= H1

n

(
HomR(ΣΘ

−nV ,K0)
)
= 0,
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and

Ext1CN (R)(X,W ) = Ext1dwN
(X,W ) ∼= H1

n

(
HomR(X,ΘnΣ−1W )

)
= 0.

This implies that the sequence

0 −→ K0 −→ V0 −→ X −→ 0

is both HomCN (R)(CE(VN ),−)-exact and HomCN (R)(−,CE(WN ))-exact.

Since K0 has the same properties as X, one may continue inductively to con-

struct a both HomCN (R)(CE(VN ),−)-exact and HomCN (R)(−,CE(WN ))-exact exact

sequence of N -complexes

· · · −→ V2 −→ V1 −→ V0 −→ X −→ 0 (†)

with all Vi ∈ Ṽ.
Dually, one can get a HomCN (R)(CE(VN ),−)-exact and HomCN (R)(−,CE(WN ))-

exact exact sequence of N -complexes

0 −→ X −→ W 0 −→ W 1 −→ W 2 −→ · · · (‡)

with each W i ∈ W̃N .

Finally, splicing together (†) and (‡) at X, one gets a HomCN (R)(CE(VN ),−)-

exact and HomCN (R)(−,CE(WN ))-exact exact sequence N -complexes

· · · −→ V1 → V0 → W 0 → W 1 −→ · · ·

with each Vi ∈ ṼN and each Wi ∈ W̃N , such that X ∼= Im(V0 → W 0). Therefore,

X is a strongly VW-Gorenstein N -complex. □

The next result gives a characterization of exact strongly VW-Gorenstein N -

complexes.

Theorem 3.9. Let X be an exact N -complex. If V,W are self-orthogonal, V ⊥ W
and V,W ⊆ G(VW), then X is strongly VW-Gorenstein if and only if Zt

n(X) is a

VW-Gorenstein module for any n ∈ Z and t = 1, 2, . . . , N − 1.

Proof. (⇒) As X is strongly VW-Gorenstein, there is a HomCN (R)(CE(VN ),−)-

exact and HomCN (R)(−,CE(WN ))-exact exact sequence of N -complexes

U := · · · −→ V1 → V0 → W 0 → W 1 −→ · · ·

with Vi ∈ ṼN ,W i ∈ W̃N for all i ⩾ 0, such that X ∼= Im(V0 → W 0). We set

Ki = Im(Vi+1 → Vi) and Ki = Ker(W i → W i+1) for i ⩾ 0. Since X = K0

and all Vi,W
i are exact, Lemma 2.1 implies Ki and Ki are exact N -complexes
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for i = 0, 1, 2, . . .. It now follows from [14, Lemma 3.4] that there exists an exact

sequence of R-modules

Zt
n(U) := · · · −→ Zt

n(V1) → Zt
n(V0) → Zt

n(W
0) → Zt

n(W
1) −→ · · ·

such that Zt
n(X) ∼= Im(Zt

n(V0) → Zt
n(W

0)) for all n ∈ Z and all t = 1, 2, . . . , N−1.

Given an n ∈ Z and a t = 1, 2, . . . , N −1, to show Zt
n(X) is a VW-Gorenstein mod-

ule, it remains to show that Zt
n(U) is both HomR(V,−)-exact and HomR(−,W)-

exact.

Claim 1. Zt
n(U) is HomR(V,−)-exact.

Let V ∈ V. Then Dt
n(V ) ∈ CE(VN ). Thus, HomCN (R)(D

t
n(V ),U) is exact. It

now follows from [29, Lemma 2.2] that HomR(V,Z
t
n(U)) is exact. This yields the

claim 1.

Claim 2. Zt
n(U) is HomR(−,W)-exact.

It is sufficient to show that

0 −→ Zt
n(Ki)

φ−→ Zt
n(Vi) −→ Zt

n(Ki−1) −→ 0 (∗i)

and

0 −→ Zt
n(K

i) −→ Zt
n(W

i) −→ Zt
n(K

i+1) −→ 0 (∗i)

are HomR(−,W)-exact for all i ⩾ 0, where K−1 = X. We will prove (∗i) is

HomR(−,W)-exact, the proof of the HomR(−,W)-exactness of (∗i) is similar.

Let W ∈ W. As V ⊥ V,W ⊥ W, it follows that ṼN ⊆ #̃VN , W̃N ⊆ #̃WN , so

Ki−1 consists of VW-Gorenstein modules by Lemma 3.7 and [31, Corollary 4.6].

Hence, [31, Proposition 3.5] implies the sequence

0 −→ HomR(Ki−1,W ) −→ HomR(Vi,W ) −→ HomR(Ki,W ) −→ 0

is exact. Because Vi ∈ ṼN and V ⊥ W, the N -complex HomR(Vi,W ) is exact, and

so HomR(Ki,W ) is exact by an induction argument since HomR(X,W ) is exact.

To show that

0 −→ HomR(Z
t
n(Ki−1),W ) −→ HomR(Z

t
n(Vi),W )

φ∗

−−→ HomR(Z
t
n(Ki),W ) −→ 0

is exact, let α ∈ HomR(Z
t
n(Ki),W ). As HomR(Ki,W ) is exact, applying HomR(−,W )

to the exact sequence

0 −→ Zt
n(Ki)

ε−→ (Ki)n −→ ZN−t
n−t (Ki) −→ 0

yields the exact sequence

0 −→ HomR(Z
N−t
n−t (Ki),W ) −→ HomR((Ki)n,W )

ε∗−→ HomR(Z
t
n(Ki),W ) −→ 0.
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Thus, there is a β ∈ HomR((Ki)n,W ) such that α = βε. Notice that DN
n+N−1(W ) ∈

CE(WN ), HomCN (R)(−, DN
n+N−1(W )) leaves the sequence

0 −→ Ki −→ Vi −→ Ki−1 −→ 0

exact. So by [29, Lemma 2.2], the sequence

0 −→ HomR((Ki−1)n,W ) −→ HomR((Vi)n,W )
δ∗−→ HomR((Ki)n,W ) −→ 0

is exact, where δ ∈ HomR((Ki)n, (Vi)n). Then we obtain a γ ∈ HomR((Vi)n,W )

such that β = γδ. It now follows from the commutative diagram

Zt
n(Ki)

ε //

φ

��

(Ki)n

δ

��
Zt
n(Vi)

e // (Vi)n

that γe ∈ HomR(Z
t
n(Vi),W ) and α = βε = γδε = γeφ = φ∗(γe). This finishes the

proof of Claim 2.

Now, the proof of the necessity is complete.

(2) ⇒ (1) Let n ∈ Z. Take a 1 ⩽ t ⩽ N − 1, the exactness of X provides an

exact sequence

0 −→ Zt
n(X) −→ Xn −→ ZN−t

n−t (X) −→ 0.

Since G(VW) is closed under extensions by [31, Corollary 3.8], the displayed se-

quence implies that Xn ∈ G(VW). To prove that X is strongly VW-Gorenstein it

is thus, by Theorem 3.8, enough to show that HomR(V,X),HomR(X,W ) are exact

for any V ∈ V andW ∈ W. Let V ∈ V and n ∈ Z. Notice that ΣD1
0(V ) = DN−1

N−1(V )

and as X is exact, Lemma 2.2 and [29, Lemma 2.2(vii)] combine with [31, Propo-

sition 3.5] to yield

H1
n (HomR(V,Θ

nX)) ∼= Ext1CN (R)

(
ΣD1

0(V ),X
)

∼= Ext1CN (R)

(
DN−1

N−1(V ),X
)

∼= Ext1R
(
V,ZN−1

N−1(X)
)
= 0.

Thus, Lemma 2.1 implies that HomR(V,X) is exact. Given a W ∈ W and an

n ∈ Z. As X is exact, it follows from [10, Proposition 3.2(ii)] that ΣX is also

exact. This yields

H1
n

(
HomR(X,ΘnD1

0(W )
)
) ∼= Ext1CN (R)

(
ΣX,D1

0(W )
)

∼= Ext1R
(
(ΣX)0/B

1
0(ΣX),W

)
∼= Ext1R

(
Z1
1−N (ΣX),W

)
.

In this sequence, the first isomorphism comes from Lemma 2.2 and [31, Proposi-

tion 3.5]. The second isomorphism is due to [29, Lemma 2.2(viii)] and the third
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isomorphism is an immediate consequence of the exactness of X. The proof [15,

Lemma 3.5] shows that

Z1
1−N (ΣX) = B1

−N (X)⊕ B2
−N−1(X)⊕ · · · ⊕ BN−1

2−2N (X).

Since X is N -exact, we conclude that

Z1
1−N (ΣX) = ZN−1

−N (X)⊕ ZN−2
−N−1(X)⊕ · · · ⊕ Z1

2−2N (X),

and so Z1
1−N (ΣX) ∈ G(VW) by assumption. Thus, Ext1R(Z

1
1−N (ΣX),W ) = 0 by

[31, Proposition 3.5]. From the isomorphism above we deduce that

H1
n

(
HomR(X,ΘnD1

0(W )
)
) = 0,

which yields that HomR(X,W ) is N -exact. This completes the proof. □

Finally, we outline the consequences of Theorems 3.8 and 3.9 for the examples

of Remark 3.2.

Corollary 3.10. Let X be an N -complex. Then X is strongly Gorenstein projec-

tive if and only if X is exact and Zt
n(X) is a Gorenstein projective module for each

n ∈ Z and t = 1, 2, . . . , N − 1.

Proof. Take V = W = P(R). Then VW-Gorenstein R-modules are exactly

Gorenstein projective R-modules, strongly VW-Gorenstein N -complexes are the

so called strongly Gorenstein projective N -complexes by Remark 3.2. If X is a

strongly Gorenstein projective N -complex, then it follows from Theorem 3.8 that

X ∼= HomR(R,X) is exact. Now, apply Theorem 3.9. □

Corollary 3.11. ([19, Theorem 1.1]) Let X be a complex. Then X is strongly

Gorenstein projective if and only if X is exact and Zn(X) is a Gorenstein projective

module for each n ∈ Z.

Proof. This follows from [30, Theorem 2.2] and Theorem 3.8, Corollary 3.10 by

taking N = 2. □

The proofs of the next two results are dual to the previous two.

Corollary 3.12. Let X be an N -complex. Then X is strongly Gorenstein injective

if and only if X is exact and Zt
n(X) is a Gorenstein injective module for each n ∈ Z

and t = 1, 2, . . . , N − 1.

Corollary 3.13. ([13, Proposition 4.6]) Let X be a complex. Then X is strongly

Gorenstein injective if and only if X is exact and Zn(X) is a Gorenstein injective

module for each n ∈ Z.
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Corollary 3.14. Let R be a commutative ring, C a semidualizing R-module and

X an N -complex. Then X is strongly GC-projective if and only if X is exact and

Zt
n(X) is a GC-projective module for each n ∈ Z and t = 1, 2, . . . , N − 1.

Proof. Take V = P(R) and W = PC(R). Then VW-Gorenstein R-modules are

precisely GC-projective R-modules, while strongly VW-Gorenstein N -complexes

are the so called strongly GC-projective N -complexes by Remark 3.2. From [24,

Proposition 2.6] we conclude that projectiveR-modules and C-projectiveR-modules

are GC-projective R-modules. The subcategory PC(R) is self-orthogonal by [5, Re-

mark 2.3]. Assume that X is strongly GC-projective, then Theorem 3.8 yields that

X ∼= HomR(R,X) is an exact N -complex. The result now follows from Theorem

3.9. □

Set N = 2 in Corollary 3.14, one gets:

Corollary 3.15. Let R be a commutative ring, C a semidualizing R-module and

X an R-complex. Then X is strongly GC-projective if and only if X is an exact

complex and Zn(X) is a GC-projective R-module for each n ∈ Z.

Dually, we have the following result.

Corollary 3.16. Let R be a commutative ring, C a semidualizing R-module and

X an N -complex. Then X is strongly GC-injective if and only if X is exact and

Zt
n(X) is a GC-injective R-module for any n ∈ Z and t = 1, 2, . . . , N − 1.

It follows from [9, Lemma 6.1, Theorems 2 and 6.1] that

AC(R) = G(P(R)IC(R)), BC(R) = G(PC(R)I(R)).

Note that P(R), IC(R) ⊆ AC(R) and PC(R), I(R) ⊆ BC(R) by [9, Lemma 4.1 and

Corollary 6.1]. As another application of Theorem 3.9, we have the following result.

Corollary 3.17. Let R be a commutative ring, C a semidualizing R-module and

X an N -complex. Then the following statements hold:

(1) X is a strongly P(R)IC(R)-Gorenstein N -complex if and only if X is exact

and Zt
n(X) ∈ AC(R) for any n ∈ Z and t = 1, 2, . . . , N .

(2) X is a strongly PC(R)I(R)-Gorenstein N -complex if and only if X is exact

and Zt
n(X) ∈ BC(R) for any n ∈ Z and t = 1, 2, . . . , N .

In particular, set N = 2, we have:

Corollary 3.18. Let R be a commutative ring, C a semidualizing R-module and

X an R-complex.
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(1) X is a strongly P(R)IC(R)-Gorenstein complex if and only if X is exact

and Zn(X) ∈ AC(R) for any n ∈ Z.
(2) (2) X is a strongly PC(R)I(R)-Gorenstein complex if and only if X is

exact and Zn(X) ∈ BC(R) for each n ∈ Z.
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