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Abstract. Let R be a commutative ring and M be an R-module. In this
paper, we define minimal submodules graph of M , denoted by Γmin(M), in
which the vertex set is the set of nonzero proper submodules of M . Two distinct
vertices A and B are adjacent provided that A∩B is a minimal submodule of
M . In this study, we associate some properties of the graph from the properties
of module and vice versa. Moreover, if we have an R-module homomorphism
from M to M ′, we compare some invariant numbers and properties of Γmin(M)

and Γmin(M
′).
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1. Introduction

Associating certain algebraic structure to a certain graph is the most recent
research area which combines two different concepts, algebraic structure and graph
theory. One of the most often algebraic structures which is involved to a certain
graph is module. Modules over rings can be used to construct some graphs. The
vertices of the graphs can be the elements of the module or the nonzero submodules,
see for example [1], [2], [5], [6] and [17].

Assume that R is a commutative ring. The ring R can be considered as a module
over itself and its ideals can be thought as submodules. As a result, we may think
of a module over a ring as a ring generalization. There are some researches related
to certain graphs of rings which are extended into the graphs of modules. E. Mehdi-
Nezhad and A. M. Rahimi in [12] defined comaximal submodule graphs of unitary
modules which is a generalization of comaximal ideal graph of a commutative ring.
In this paper, E. Mehdi-Nezhad and A. M. Rahimi compared the graph properties of
rings and modules. Besides, a generalization of zero divisor graphs of commutative
rings, zero divisor graphs for modules over commutative rings are observed in [7].
In this article, it was investigated the relationships between the module and its
graph.

In [13], a simple-intersection graph GS(R) of a ring R is defined. The vertex
set of GS(R) is V (GS(R)) = {I|I ⊴ R, I ̸= 0} and two distinct vertices X and Y
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are adjacent if X ∩ Y is a simple ideal. We develop the simple-intersection graph
of rings to modules. If two submodules intersect in a minimal submodule, this
minimal submodule becomes a crucial part of the overall structure of the module.
In this article, we study minimal submodules graph of modules over commutative
rings M (designated with Γmin(M)). However, we only consider the nonzero proper
submodules as vertices of the graph. Two submodules are adjacent if their inter-
section is minimal. These graphs will help illuminate the structure of the modules.
We observe the interplay of properties of module M with the properties of graph
Γmin(M). We also compare some invariant numbers and decomposition of minimal
submodules graph of domain and codomain from given module homomorphism.

2. Preliminary

Some basic concepts which will be used in this study are modules and graph
theory.

2.1. Module theory. In this section, we will give some basic theories of modules
which are taken from [16]. Let M be an R-module. A nontrivial module M is
called a simple module if 0 and M are the only submodules of M . An R-module
M is called cyclic if there exists m ∈ M such that M = Rm. A torsion-free module
is a module in which 0 is the only element of M which is annihilated by a nonzero
element of a ring R. Let M1,M2, · · · ,Mn be any submodules of M . The module
M is called the direct sum of M1,M2, · · · ,Mn if it satisfies the following properties.

(1) M = Σn
i=1Mi.

(2) Mi

⋂
Σj ̸=iMj = 0.

If M is a direct sum of M1,M2, · · · ,Mn, then it can be denoted by M = ⊕n
i=1Mi.

Furthermore, for any element m ∈ M , it can be uniquely written as m1 + m2 +

· · ·+mn where mi ∈ Mi.
A uniserial module is a module in which any two submodules can be ordered by

inclusion [9]. An R-module M is called a multiplication module if for every nonzero
submodules N of M , N = IM for some ideal I of R. If we have an R-submodule
N of M , we can make an ideal of R, namely (N : M) = {a ∈ R|aM ⊆ N}. If M is
a multiplication module, then the submodule N can be written as N = (N : M)M

[4].
A relatively divisible submodule (RD-submodule) D of an R-module M is a sub-

module which satisfies rD = D ∩ rM for every r ∈ R [11]. An essential submodule
N is an R-submodule of M which meets the condition N ∩A ̸= 0 for every nonzero
submodule A of M [15]. An R-submodule N of M is called a minimal submodule
if N is simple as an R-module. Let M be a finite R-module. Then M contains
a minimal submodule. In this study, we will only consider finite modules over
commutative rings with unity.
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There are some lemmas which will be used in the main results. The lemmas are
taken from [10] and [14].

Lemma 2.1. Assume that A,B,N are nonzero proper submodules of M . If N ⊆ A

and N ⊆ B, then A/N ∩B/N = (A ∩B)/N .

Proof. It is obvious that (A ∩ B)/N ⊆ A/N ∩ B/N . Now take any element
x+N ∈ A/N ∩B/N . Then x+N = a+N = b+N for some a ∈ A, b ∈ B. We can
write (x − a) = n1, (x − b) = n2 for some n1, n2 ∈ N . From those equations and
the fact that N ⊆ A,N ⊆ B, we can make x = n1 + a ∈ A and x = n2 + b ∈ B. It
is proved that x ∈ A∩B which implies x+N ∈ (A∩B)/N . Hence A/N ∩B/N =

(A ∩B)/N . □

Lemma 2.2. Let N1, N2 be any nonzero submodules of an R-module M . Then the
following properties hold.

(1) If N1 ⊆ N2, then (N1 : M) ⊆ (N2 : M).
(2) (N1 ∩N2 : M) = (N1 : M) ∩ (N2 : M).

Proof. (1) Suppose that r ∈ (N1 : M) and m ∈ M . We have rm ∈ rM ⊆ N1 ⊆ N2.
Thus r ∈ (N2 : M).

(2) Let r ∈ (N1 ∩ N2 : M). Then rM ⊆ N1 ∩ N2 which means rM ⊆ N1 and
rM ⊆ N2. Thus r ∈ (N1 : M) ∩ (N2 : M). Now take any element s ∈ (N1 :

M) ∩ (N2 : M). We have sM ⊆ N1 and sM ⊆ N2 which implies sM ⊆ N1 ∩ N2.
Therefore, (N1 : M) ∩ (N2 : M) ⊆ (N1 ∩N2 : M). □

Lemma 2.3. Suppose that β : M −→ M ′ is an R-module homomorphism and
N1, N2 are submodules of M . If β is injective, then β(N1 ∩N2) = β(N1) ∩ β(N2).

Proof. It is clear that β(N1 ∩ N2) ⊆ β(N1) ∩ β(N2). Let β(x) be an arbitrary
element of β(N1) ∩ β(N2). We can write β(x) = β(n1) = β(n2) for some n1 ∈ N1

and n2 ∈ N2. By the injectivity of β, we get x = n1 = n2 ∈ N1 ∩ N2. Therefore,
β(N1 ∩N2) = β(N1) ∩ β(N2). □

2.2. Graph theory. There are some concepts of graph theory which will be used
in this study and referred from [8]. A graph G is a pair of sets V = V (G) and
E = E(G) where V is a nonempty set of objects that we call vertices and E is
a set of pair of vertices that we call edge. An edge of a graph G which connects
the vertices u and v will be denoted by (u, v), (v, u) or e. A graph G is said to be
simple if it does not contain loop and multiple edge. A null graph is a graph with
no edge. A bipartite graph is a graph in which the vertex set can be divided into
two disjoint sets and the endpoints of every edge belong to those two disjoint sets.
A complete bipartite graph is a bipartite graph with every two vertices in different
set are adjacent. A complete bipartite graph with n and m vertices is denoted by
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Kn,m. A star graph is a special case of complete bipartite graph and is denoted by
K1,n.

Walk form vertex u to v is a sequence u = u1 − u2 − u3 − · · · − uk = v where ui

and ui+1 are adjacent. In this case, the length of walk from u to v is equal to k−1.
A path is a walk with different vertices. A graph G is said to be connected if there
exists a path between any two vertices of the graph G. The distance between two
vertices u, v ∈ V , denoted by d(u, v), is defined to be the length of the shortest path
between u and v. The number of edges which connect to a vertex u is called degree
of u and is denoted by deg(u). The maximum degree of a graph G is denoted by
∆(G). Let G1, G2, · · · , Gn be subgraphs of G with E(Gi) ∩ E(Gj) = ∅ for i ̸= j.
The collection G1, G2, · · · , Gn is a decomposition of the graph G if every edge of G
belongs to one and only one of Gi [3].

3. Main results

We will start by defining a minimal submodules graph of modules over commu-
tative rings and by giving some examples of the graphs.

Definition 3.1. Let M be an R-module. The graph of minimal submodule of M is
a graph Γmin(M) with vertex set V (Γmin(M)) = {N |N is a submodule of M,N ̸=
0, N ̸= M} and two distinct vertices N1, N2 ∈ V (Γmin(M)) are adjacent if N1∩N2

is a minimal submodule.

By Definition 3.1, the graph of minimal submodule is a simple graph. In this
study, we only consider the graph of minimal submodule of non-simple modules.
The following are some examples of the graph of minimal submodule of modules.

Example 3.2. Given Z-module Z12. Note that

V (Γmin(Z12)) = {Z2,Z3,Z4,Z6}.

The graph of minimal submodule of Z12 is in Figure 1.

Z2

Z3 Z4

Z6

Figure 1. Γmin(Z12)
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Example 3.3. Consider the Z-module Z30. The set of vertices is

V (Γmin(Z30)) = {Z2,Z3,Z5,Z6,Z10,Z15}.

The graph of minimal submodule of Z30 is in Figure 2.

Z2

Z3

Z5

Z6 Z10 Z15

Figure 2. Γmin(Z30)

Example 3.4. Let Zpq be a Z-module where p and q are distinct prime numbers.
Then Γmin(Zpq) is a null graph. This is because the only nontrivial submodules of
Zpq are Zp and Zq. Therefore, the graph of minimal submodules of Zpq is a null
graph.

Theorem 3.5. Let M be an R-module and N be a nonzero proper submodule of
M . If N is not a minimal submodule, then Γmin(N) is a subgraph of Γmin(M).

Proof. Note that every submodule of N is also a submodule of M which implies
V (Γmin(N)) ⊆ V (Γmin(M)). Now take an arbitrary edge of Γmin(N), namely
(A,B). Since A ∩ B is a minimal submodule of N , we have that A ∩ B is also a
minimal submodule of M . Hence (A,B) ∈ E(Γmin(M)). □

Lemma 3.6. Let M be an R-module and S, T be any distinct minimal submodules
of M . Then S and T are not adjacent in Γmin(M).

Proof. Assume that S and T are adjacent. Then S ∩ T is a minimal submodule
satisfying 0 ⊂ S ∩ T ⊆ S and 0 ⊂ S ∩ T ⊆ T . Since S and T are also minimal
submodules, we have S ∩ T = S and S ∩ T = T . It implies S = T which is a
contradiction. Hence S and T are not adjacent. □

Theorem 3.7. Let M be an R-module. If Γmin(M) is connected, then M has a
non minimal proper submodule.

Proof. Let Γmin(M) be a connected graph. It implies E(Γmin(M)) ̸= ∅. We can
take any edge (A,B) ∈ E(Γmin(M)). By Lemma 3.6, either A or B are not minimal
submodules. Therefore the result follows. □
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Theorem 3.8. If M is a finite uniserial R-module, then Γmin(M) is a star graph.

Proof. Let 0 ̸= M1 ⊆ M2 ⊆ · · · ⊆ Mn = M be the chain of all submodules of M .
Then M1 is the unique minimal submodule of M . Hence for i = 2, 3, · · · , n, Mi

is adjacent to M1 and Mi is not adjacent to Mj for all j = 2, 3, · · · , n. Therefore,
Γmin(M) is a star graph with M1 as the center. □

Example 3.9. Let Zpn be a module over Z where p is a prime and n ≥ 2. Note that
the only nonzero submodules of Zpn are Zpn itself, Zpn−1,Zpn−2, · · · ,Zp. These
submodules form a chain

Zpn−1 ⊂ Zpn−2 ⊂ · · · ⊂ Zp2 ⊂ Zp1 ⊂ Zp0 = Zpn .

Hence Zpn is a uniserial Z-module. Note that the minimal submodule of Zpn is
unique, namely Zpn. The graph of minimal submodule of Zpn is represented on
Figure 3.

Zpn−1

Zp1
Zp2

Zp3

Zp4

. . .Zp5

Zpn−2

Figure 3. Γmin(Zpn) = K1,n−1

Theorem 3.10. Let N be a nonzero proper R-submodule of M .
(1) If (N,A) ∈ E(Γmin(M)) for every A ∈ V (Γmin(M)), then N is an essential

submodule of M .
(2) Assume that A,B ∈ V (Γmin(M)) where A ̸= B and A ∩ B ̸= 0. If (A +

N,B +N) ∈ E(Γmin(M)), then (A,B) ∈ E(Γmin(M)).

Proof. (1) Assume that N is adjacent to every nonzero proper submodule of M .
Then N ∩A is a minimal submodule which means N ∩A ̸= 0. We have thus proved
that N is an essential submodule of M .

(2) Suppose that (A+N,B +N) ∈ E(Γmin(M)). It implies (A+N)∩ (B +N)

is a minimal submodule. Note that since 0 ⊂ A ∩ B ⊆ (A + N) ∩ (B + N) and
(A+N)∩ (B +N) is minimal, A∩B = (A+N)∩ (B +N) which is also minimal.
Thus (A,B) ∈ E(Γmin(M)). □
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Theorem 3.11. Suppose that A,B,N be R-submodules of M where N is minimal
and N ⊆ A,N ⊆ B. If A/N is adjacent to B/N in Γmin(M/N), then A is not
adjacent to B in Γmin(M).

Proof. It is given that (A/N,B/N) ∈ Γmin(M/N) which means (A ∩ B)/N =

A/N ∩ B/N is a minimal submodule of M/N . Since (A ∩ B)/N is a minimal
submodule, A∩B ̸= N . Remember that 0 ⊂ N ⊂ A∩B, which implies that A∩B

cannot be a minimal submodule. Thus A is not adjacent to B in Γmin(M). □

Theorem 3.12. Suppose that M is a torsion-free R-module and M = Rm for some
m ∈ M,m ̸= 0. Let I and J be proper nonzero ideals of R. Then as submodules, I
is adjacent to J in Γmin(R) if and only if Im is adjacent to Jm in Γmin(M).

Proof. Let N be any submodule of M satisfying 0 ⊂ N ⊆ Im∩Jm. We can make
a nonempty set

K = {r ∈ R|rm ∈ N}
which is a nonzero ideal of R. It is evident that N = Km. Now we will prove that
K ⊆ I ∩ J . Let s ∈ K. Then sm ∈ N ⊆ Im ∩ Jm. We can write sm = αm and
sm = βm for some α ∈ I and β ∈ J or equivalently (s−α)m = 0 and (s−β)m = 0.
Since M is torsion-free, we have s = α = β ∈ I ∩ J . We thus have proved that
K ⊆ I ∩ J . As it is known that I ∩ J is minimal and K ̸= 0, we get K = I ∩ J .
Now take any element x ∈ Im ∩ Jm. Then we can write x = am and x = bm for
some a ∈ I and b ∈ J . From those two equations, we get

am = bm

am− bm = 0

(a− b)m = 0.

Since M is torsion-free, we can conclude that a = b ∈ I∩J = K. It implies x ∈ Km

which means Km = Im ∩ Jm. Thus Im ∩ Jm is a minimal submodule of M or
equivalently, (Im, Jm) ∈ Γmin(M).
Conversely, assume that (Im, Jm) ∈ E(Γmin(M)). Let L be any nonzero ideal of
R such that 0 ⊂ L ⊆ I ∩ J . Since M is a torsion-free module and L ̸= 0, we have
Lm ̸= 0. Moreover, it is also satisfied that Lm ⊆ Im∩ Jm since L ⊆ I ∩ J . By the
minimality of Im ∩ Jm and the fact that Lm ̸= 0, we have Lm = Im ∩ Jm. Now
take an arbitrary element r ∈ I ∩ J . Note that rm ∈ Im ∩ Jm = Lm. It implies
that we can write rm = lm for some l ∈ L. Then we get (r − l)m = 0. As M is a
torsion-free module, we can conclude that r = l ∈ L which means L = I ∩ J . Thus
I is adjacent to J in Γmin(R). □

Theorem 3.13. Assume that S, T be any nonzero proper R-submodules of torsion-
free multiplication module M . If every submodule of M is relatively divisible and
(S : M) is adjacent to (T : M) in Γmin(R), then S is also adjacent to T in Γmin(M).
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Proof. Let W be any nonzero submodule of M satisfying 0 ⊂ W ⊆ S∩T . Then by
Lemma 2.2, 0 ⊂ (W : M) ⊆ (S∩T : M) = (S : M)∩ (T : M). By the minimality of
(S : M)∩ (T : M) and (W : M) ̸= 0, we get (W : M) = (S : M)∩ (T : M). Assume
that x is an arbitrary element of S∩T and r ∈ (W : M) = (S : M)∩ (T : M) where
r ̸= 0. Note that rx ∈ rM ⊆ W . Since W is a relatively divisible submodule, we
have rx ∈ rW . We can write rx = rw for some w ∈ W or equivalently, r(x−w) = 0.
As M is a torsion-free module, we thus have x = w ∈ W which implies W = S ∩T .
Therefore, (S, T ) ∈ E(Γmin(M)). □

Theorem 3.14. If M is isomorphic to M ′ as R-modules, then Γmin(M) is iso-
morphic to Γmin(M

′).

Proof. Let α : M −→ M ′ be an R-module isomorphism. We define a map α̃ :

Γmin(M) −→ Γmin(M
′) where α̃(N) = α(N). Assume that N1 is adjacent to N2

in Γmin(M). It implies that N1 ∩N2 is a minimal submodule of M . We will show
that α(N1)∩α(N2) is a minimal submodule of M ′. Note that since N1, N2 ̸= 0 and
α is injective, α(N1), α(N2) ̸= 0. Suppose that there exists a nonzero submodule H

of M ′ such that 0 ⊂ H ⊆ α(N1)∩α(N2). By the bijectivity of α, we have a nonzero
submodule α−1(H) of M . Let x ∈ α−1(H). Then α(x) ∈ H ⊆ α(N1) ∩ α(N2).
We can write α(x) = α(n1) = α(n2) for some n1 ∈ N1 and n2 ∈ N2. By the
injectivity of α, we get x = n1 = n2 ∈ N1 ∩ N2. Hence α−1(H) ⊆ N1 ∩ N2.
By the minimality of N1 ∩ N2, we can conclude that α−1(H) = N1 ∩ N2 and
therefore H = α(α−1)(H) = α(N1∩N2). By Lemma 2.3, we thus have proved that
H = α(N1) ∩ α(N2) which means α(N1) is adjacent to α(N2) in Γmin(M

′). Hence
α̃ is a graph homomorphism. Since α is bijective, α̃ is also bijective. □

Corollary 3.15. Let θ : M −→ M ′ be an R-module monomorphism. If (N1, N2) ∈
E(Γmin(M)), then (θ(N1), θ(N2)) ∈ E(Γmin(M

′)).

Proof. Note that if θ is a monomorphism from M to M ′, then M is isomorphic
to θ(M). If (N1, N2) ∈ E(Γmin(M)), then by Theorem 3.14, (θ(N1), θ(N2)) ∈
E(Γmin(θ(M))). Furthermore, since θ(N1) ∩ θ(N2) is minimal in θ(M), we have
that θ(N1)∩θ(N2) is also minimal in M ′. Hence (θ(N1), θ(N2)) ∈ E(Γmin(M

′)). □

Theorem 3.16. Let θ : M −→ M ′ be an R-module monomorphism. If (L1, L2) ∈
E(Γmin(M

′)) and θ−1(L1), θ
−1(L2) are proper nonzero submodules of M , then

(θ−1(L1), θ
−1(L2)) ∈ E(Γmin(M)).

Proof. Assume that (L1, L2) ∈ E(Γmin(M
′)). Then by Definition 3.1, L1 ∩ L2 is

a minimal submodule in M ′. It is clear that θ−1(L1) and θ−1(L2) are submodules
of M . Assume that there exists a nonzero submodule N of M such that N ⊆
θ−1(L1)∩ θ−1(L2). Since N ̸= 0 and θ is injective, θ(N) ̸= 0 and especially θ(N) is
a proper submodule of M ′. Let θ(n) be an arbitrary element of θ(N). This means
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n ∈ N ⊆ θ−1(L1) ∩ θ−1(L2) which implies θ(n) ∈ L1 ∩ L2. Thus θ(N) ⊆ L1 ∩ L2.
Since L1 ∩ L2 is a minimal submodule, θ(N) = L1 ∩ L2. Now take any element
x ∈ θ−1(L1)∩θ−1(L2). It means θ(x) ∈ L1∩L2 = θ(N). We can write θ(x) = θ(n′)

for some n′ ∈ N . By the injectivity of θ, we can conclude that x = n′ ∈ N . Hence
N = θ−1(L1)∩θ−1(L2) which means θ−1(L1)∩θ−1(L2) is a minimal submodule. □

Theorem 3.17. If θ : M −→ M ′ is an R-module monomorphism and N is a
nonzero proper R-submodule of M , then deg(N) ≤ deg(θ(N)).

Proof. Note that since N ̸= 0 and θ is a monomorphism, θ(N) ̸= 0 and θ(N)

is a proper submodule of M ′. Let deg(N) = m and N be adjacent to distinct
proper submodules L1, L2, · · · , Lm of M . Then by Theorem 3.15, θ(N) is adjacent
to θ(Li) ̸= 0 for i = 1, 2, · · · ,m. Note that θ(Li) ̸= θ(Lj) for i ̸= j since θ is
a monomorphism. Now let S be any nonzero proper submodule of M ′ which is
adjacent to θ(N). If θ−1(S) = 0 or θ−1(S) = M , then θ−1(S) /∈ V (Γmin(M)).
It means θ−1(S) is not adjacent to N . If θ−1(S) ̸= 0, by Theorem 3.16 we have
θ−1(S) is adjacent to θ−1θ(N) = N . Hence deg(N) ≤ deg(θ(N)). □

Theorem 3.18. Let θ : M −→ M ′ be an R-module monomorphism and T be a
nonzero R-submodule of M ′. If θ−1(T ) is adjacent to submodule W of M , then T

is either adjacent to θ(W ) or θθ−1(T ) ∩ θ(W ).

Proof. Assume that θ−1(T ) is adjacent to W . According to Corollary 3.15, θθ−1(T )

is adjacent to θ(W ). This means θθ−1(T ) ∩ θ(W ) is a minimal submodule of M ′.
Note that θθ−1(T ) ∩ θ(W ) ⊆ T ∩ θ(W ). If θθ−1(T ) ∩ θ(W ) = T ∩ θ(W ), then
(T, θ(W )) ∈ E(Γmin(M

′)). Now let
(
θθ−1(T ) ∩ θ(W )

)
⊂

(
T ∩ θ(W )

)
. We will

prove that θθ−1(T )∩θ(W ) is adjacent to T by showing that
(
θθ−1(T )∩θ(W )

)
∩T =

θθ−1(T ) ∩ θ(W ). It is evident that
(
θθ−1(T ) ∩ θ(W )

)
∩ T ⊆ θθ−1(T ) ∩ θ(W ).

Now take any element z ∈ θθ−1(T ) ∩ θ(W ). It implies that z = θ(a) for some
a ∈ θ−1(T ) which means z = θ(a) ∈ T . It is proved that

(
θθ−1(T ) ∩ θ(W )

)
∩ T =

θθ−1(T ) ∩ θ(W ). Thus T is adjacent to θθ−1(T ) ∩ θ(W ). □

Theorem 3.19. Suppose that θ : M −→ M ′ is an R-module monomorphism. Then
(1) d(θ(N1), θ(N2)) ≤ d(N1, N2),
(2) ∆(Γmin(M)) ≤ ∆(Γmin(M

′)).

Proof. (1) Assume that N1 − A1 − A2 − · · · − An − N2 is a shortest path from
N1 to N2. Since θ is a monomorphism, θ(N1) ̸= θ(Ai) ̸= θ(Aj) ̸= θ(N2) for an
arbitrary i, j = 1, 2, · · · , n and i ̸= j. Then by Corollary 3.15, we have the path
θ(N1)− θ(A1)− θ(A2)− · · · − θ(An)− θ(N2). Thus d(θ(N1), θ(N2)) ≤ d(N1, N2).

(2) Let ∆(Γmin(M)) = deg(N) = m. Note that by Theorem 3.17,

deg(N) ≤ deg(θ(N))
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and we know that
deg(θ(N)) ≤ ∆(Γmin(M

′)).

Hence ∆(Γmin(M)) = deg(N) ≤ ∆(Γmin(M
′)). □

Let X = {Γ1,Γ2, · · · ,Γn} be a graph decomposition of Γmin(M) for an R-
module M . Suppose that θ is a module monomorphism from M to M ′. Since θ is a
monomorphism, for S, T nonzero proper submodules of M , it satisfies θ(S), θ(T ) ̸=
0 and θ(S), θ(T ) ̸= M ′. We define the graph θ(Γi) for i = 1, 2, · · · , n as

E(θ(Γi)) =
{(

θ(S), θ(T )
)∣∣∣(S, T ) ∈ E(Γi)

}
.

By Corollary 3.15, the set E(θ(Γi)) is not empty.

Theorem 3.20. Let θ be an R-module monomorphism from M to M ′ and X =

{Γ1,Γ2, · · · ,Γn} be a graph decomposition of Γmin(M). We define

Y =
{
θ(Γi)

∣∣∣i = 1, 2, · · · , n
}

and subgraph Ω of Γmin(M
′) in which

E(Ω) = E(Γmin(M
′))− E(θ(Γi)) for i = 1, 2, · · · , n.

Then Y ∪ {Ω} is a graph decomposition of Γmin(M
′).

Proof. It is obvious that E(θ(Γi)) ∩ E(Ω) = ∅ for every i. Suppose that(
θ(S), θ(T )

)
∈ E(θ(Γi)) ∩ E(θ(Γj))

for i ̸= j. Then by definition, (S, T ) ∈ E(Γi) ∩ E(Γj) which is a contradiction.
Thus E(θ(Γi)) ∩ E(θ(Γj)) = ∅. Now we will prove that every edge of Γmin(M

′) is
in one and only one θ(Γi) or Ω. Take any edge (A,B) of Γmin(M

′). We will divide
into some cases.

(1) If there are no 0 ⊂ S, T ⊂ M such that θ(S) = A and θ(T ) = B, then
(A,B) ∈ E(Ω).

(2) Now assume that there are submodules S, T with 0 ⊂ S, T ⊂ M such that
θ(S) = A and θ(T ) = B. By Theorem 3.16, (S, T ) ∈ E(Γmin(M)). There
exists Γj such that (S, T ) ∈ Γj . Therefore, (A,B) =

(
θ(S), θ(T )

)
∈ θ(Γj).

(3) Assume that there is no nonzero proper submodule S of M such that θ(S) =
A. Let θ(T ) = B for a nonzero proper submodule T of M . Then it is clear
that (A,B) ∈ E(Ω).

Therefore, Y ∪ {Ω} is a graph decomposition of Γmin(M
′). □

Let X be an R-module and Y, Z be R-submodules of X such that X = Y ⊕ Z.
Let A be any nonzero submodule of X. For every a ∈ A, we can write a = y + z

uniquely for some y ∈ Y, z ∈ Z. We define B = {y ∈ Y |y + z ∈ A, ∃z ∈ Z} and
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C = {z ∈ Z|y+ z ∈ A, ∃y ∈ Y }. It is obvious that B is a submodule of Y and C is
a submodule of Z. Moreover, we can see clearly that A = B ⊕ C.

Theorem 3.21. Let X be an R-module and Y, Z be R-submodules of X such that
X = Y ⊕Z. Assume that A1 = B1 ⊕C1, A2 = B2 ⊕C2 are submodules of X where
B1, B2 are nonzero submodules of Y and C1, C2 are nonzero submodules of Z. If
(A1, A2) ∈ E(Γmin(X)), then (B1, B2) ∈ E(Γmin(Y )) and (C1, C2) ∈ E(Γmin(Z)).

Proof. First, we will prove that B1 ∩ B2 is a minimal submodule of Y . Let D be
any submodule of Y in which 0 ⊆ D ⊆ B1 ∩ B2. Note that D ⊕ C1 ⊆ A1 and
D ⊕ C2 ⊆ A2. Since the sum is direct, we have

D ⊕ (C1 ∩ C2) =
(
D ⊕ C1

)
∩
(
D ⊕ C2

)
and (

B1 ⊕ C1

)
∩
(
B2 ⊕ C2

)
=

(
B1 ∩B2

)
⊕
(
C1 ∩ C2

)
.

Therefore, we have the following conditions

D ⊕ (C1 ∩ C2) ⊆
(
B1 ∩B2

)
⊕

(
C1 ∩ C2

)
.

Since A1∩A2 =
(
B1∩B2

)
⊕
(
C1∩C2

)
is a minimal submodule, D⊕ (C1∩C2) = 0

or D⊕(C1∩C2) =
(
B1∩B2

)
⊕
(
C1∩C2

)
. Hence D = 0 or D ∼= B1∩B2, especially,

D = B1 ∩B2. It implies (B1, B2) ∈ E(Γmin(Y )). By the similar way, we can show
that (C1, C2) ∈ E(Γmin(Z)). □

Corollary 3.22. If A1 = B1⊕C1 is adjacent to B′
1 ⊆ B1, then B1 is also adjacent

to B′
1.

Proof. We can write B′
1 = B′

1⊕0. Since A1 = B1⊕C1 is adjacent to B′
1 = B′

1⊕0,
by Theorem 3.21, B1 is also adjacent to B′

1.

Theorem 3.23. Assume that X = Y ⊕ Z is an R-module, X1, X2 are nonzero
submodules of X, Y1, Y2 are nonzero submodules of Y , and Z1, Z2 are nonzero
submodules of Z such that X1 = Y1 ⊕ Z1 and X2 = Y2 ⊕ Z2. If X2 is adjacent to
Y1, then X1 is adjacent to (Y1 ∩ Y2).

Proof. It is given that X2 = Y2 ⊕Z2 is adjacent to Y1. This means (Y2 ⊕Z2)∩ Y1

is a minimal submodule. Let a be an arbitrary element of (Y2 ⊕Z2)∩ Y1. Then we
can write a = y2 + z2 and a = y1 for some y2 ∈ Y2, z2 ∈ Z2, y1 ∈ Y1. Note that

y1 = y2 + z2

y1 − y2 = z2 ∈ Y ∩ Z = 0.

Thus z2 = 0 and a = y1 = y2 ∈ Y1 ∩ Y2 and we can conclude that (Y2 ⊕Z2) ∩ Y1 ⊆
Y2∩Y1. Now suppose that b ∈ Y1∩Y2. We can consider that b = b+0 where b ∈ Y2
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and 0 ∈ Z2. It implies that b ∈ (Y2 ⊕ Z2) ∩ Y1. Hence Y2 ∩ Y1 = (Y2 ⊕ Z2) ∩ Y1 is
minimal. Next we will prove that Y1 ∩ Y2 is adjacent to Y1 ⊕ Z1 by showing that
(Y1∩Y2)∩(Y1⊕Z1) = Y1∩Y2. It is clear that

(
(Y1∩Y2)∩(Y1⊕Z1)

)
⊆ Y1∩Y2. Now

take any element x ∈ (Y1 ∩Y2). Then we can write x = x+0 where x ∈ Y1, 0 ∈ Z1.
Hence Y1∩Y2 ⊆

(
(Y1∩Y2)∩(Y1⊕Z1)

)
and therefore

(
(Y1∩Y2)∩(Y1⊕Z1)

)
= Y1∩Y2

which is also a minimal submodule. We can conclude that Y1 ∩ Y2 is adjacent to
Y1 ⊕ Z1 = X1. □

Corollary 3.24. If a submodule Y ′
1 of Y1 is adjacent to Y1, then Y ′

1 is also adjacent
to Y1 ⊕ Z1.

Proof. We can assume that X2 = Y1 ⊕ 0. Then by Theorem 3.23, Y ′
1 ∩ Y1 = Y ′

1 is
adjacent to Y1 ⊕ Z1. □

Theorem 3.25. Let X = Y ⊕Z be an R-module and A be a nonzero R-submodule
of X. If A = B ⊕ C where B ⊆ Y,C ⊆ Z, then deg(A) ≤ deg(B) + deg(C).

Proof. Assume that deg(A) = m and A is adjacent to Ai = Bi ⊕ Ci for i =

1, 2, · · · ,m. If Bi, Ci ̸= 0 for every i, then by Theorem 3.21, we can conclude that
B is adjacent to Bi and C is adjacent to Ci for every i. Even though there exists j

such that Bj = 0, we still have the edge (C,Cj). Therefore m ≤ deg(B) + deg(C)

and the result follows. □
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