

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA

Published Online: 12 April 2022 DOI: 10.24330/ieja.1102363

WHEN DOES A QUOTIENT RING OF A PID HAVE THE CANCELLATION PROPERTY?

Gyu Whan Chang and Jun Seok Oh

Received: 16 May 2021; Revised: 12 December 2021; Accepted: 10 February 2022 Communicated by Pace Nielsen

ABSTRACT. An ideal I of a commutative ring is called a cancellation ideal if IB = IC implies B = C for all ideals B and C. Let D be a principal ideal domain (PID), $a,b \in D$ be nonzero elements with $a \nmid b$, (a,b)D = dD for some $d \in D$, $D_a = D/aD$ be the quotient ring of D modulo aD, and $bD_a = (a,b)D/aD$; so bD_a is a nonzero commutative ring. In this paper, we show that the following three properties are equivalent: (i) $\frac{a}{d}$ is a prime element and $a \nmid d^2$, (ii) every nonzero ideal of bD_a is a cancellation ideal, and (iii) bD_a is a field.

Mathematics Subject Classification (2020): 13A15 Keywords: Principal ideal domain, cancellation ideal

1. Introduction

Let S be a commutative semigroup under multiplication. The zero element of S (if it exists) is an element $0 \in S$ such that $a \cdot 0 = 0 \cdot a = 0$ for all $a \in S$. An element $a \in S$ is said to be cancellative if ab = ac implies b = c for all $b, c \in S$. Clearly if S has an identity, then every invertible element of S is cancellative, so the cancellation property is a natural generalization of invertibility. We say that S is cancellative if every nonzero element of S is cancellative. Let $S^{\bullet} = S \setminus \{0\}$. Then S^{\bullet} is not a semigroup in general, while S is cancellative if and only if S^{\bullet} is a cancellative semigroup. The cancellation property plays an important role for the study on algebra. For example, assume that S^{\bullet} is a semigroup. Then (i) S is cancellative if and only if S^{\bullet} can be embedded in a group (i.e., S^{\bullet} has a quotient group) [5, Theorem 1.2], (ii) S is torsion-free and cancellative if and only if S^{\bullet} admits a total order compatible with its semigroup operation [5, Corollary 3.4], and (iii) several kinds of factorization properties of a semigroup (e.g., atomic, factorial, half-factorial, bounded factorization) have been studied under the assumption that it is cancellative (see [3] for a survey).

This work was supported by the Incheon National University Research Grant in 2021.

Let R be a commutative ring (not necessarily having an identity), $\mathcal{I}(R)$ be the set of ideals of R, and $\mathcal{P}(R)$ be the set of principal ideals of R. Then $\mathcal{I}(R)$ becomes a commutative semigroup with zero element under the usual ideal multiplication, $\mathcal{P}(R)$ is a subsemigroup of $\mathcal{I}(R)$, and if R has an identity, then $\mathcal{I}(R)$ has an identity. We say that an ideal I of R is a cancellation ideal if I is cancellative as an element of $\mathcal{I}(R)$. It is easy to see that a principal ideal (a) of R generated by $a \in R$ is a cancellation ideal if and only if a is a regular element of R (i.e., a is not a zerodivisor). Furthermore, if R has an identity distinct from the zero element, then a nonzero ideal I of R is a cancellation ideal if and only if IR_M is a regular principal ideal for all maximal ideals M of R [1, Theorem, p. 2853], and $\mathcal{P}(R)$ is cancellative if and only if R is an integral domain, if and only if $\mathcal{I}(R)^{\bullet}$ is a semigroup with an identity. It is well known that if R is an integral domain, then (i) $\mathcal{P}(R)$ is factorial if and only if R is a unique factorization domain, (ii) $\mathcal{I}(R)$ is factorial if and only if R is a Dedekind domain [4, Theorem 37.8], (iii) $\mathcal{I}(R)$ is cancellative if and only if R is an almost Dedekind domain (i.e., R_M is a principal ideal domain (PID) for all maximal ideals M of R) [4, Theorem 36.5], and (iv) every nonzero finitely generated ideal of R is a cancellation ideal if and only if R is a Prüfer domain, (i.e., every nonzero finitely generated ideal of R is invertible) [4, Theorem 24.3].

Now let \mathbb{Z} be the ring of integers, m and n be positive integers, $\gcd(m,n)$ denote the greatest common divisor of m and n, \mathbb{Z}_n be the ring of integers modulo n, and $m\mathbb{Z}_n$ be the ideal of \mathbb{Z}_n generated by m; so $m\mathbb{Z}_n$ is a commutative ring. Then $\mathcal{I}(\mathbb{Z}_n) = \mathcal{P}(\mathbb{Z}_n)$, and hence $\mathcal{I}(\mathbb{Z}_n)$ is cancellative if and only if \mathbb{Z}_n is an integral domain, if and only if n is a prime number. Moreover, in [2, Theorem 2.5], the authors showed that if $n \nmid m$, then every nonzero ideal in $m\mathbb{Z}_n$ is a cancellation ideal, i.e., $\mathcal{I}(m\mathbb{Z}_n)$ is a cancellative semigroup, if and only if $\frac{n}{\gcd(n,m)}$ is a prime number and $n \nmid \gcd(n,m)^2$, which motivated the main result of this paper.

Let D be a PID, a and b be nonzero elements of D, and $d \in D$ be such that (a,b)D = dD. We define D_a to be the quotient ring D/aD, $d = \gcd(a,b)$, and $bD_a = (a,b)D/aD$. Then bD_a is a commutative ring, d is determined only up to units, and since $\gcd(a,b) = d$, we have that $\gcd(a/d,b/d) = 1$ and $bD_a = dD_a$. In this paper, we show that every nonzero ideal of bD_a is a cancellation ideal if and only if $\frac{a}{\gcd(a,b)}$ is a prime element and $a \nmid \gcd(a,b)^2$. This result is applied in two special cases, i.e., the ring of integers and the polynomial ring over a field. The former case was provided previously in [2, Theorem 2.5]; our work can be viewed as a direct generalization of the results of that paper, passing from $\mathbb Z$ to arbitrary PIDs.

2. Results

Let R be a commutative ring with identity. Then two ideals I, J of R are said to be *comaximal* if I + J = R, and we say that two elements a, b of R are *comaximal* if the principal ideals aR and bR are comaximal. Clearly, a, b are comaximal if and only if ar + bs = 1 for some $r, s \in R$.

Lemma 2.1. Let D be a PID and $a, b \in D$ be nonzero elements. Then bD_a has an identity if and only if b and $\frac{a}{\gcd(a,b)}$ are comaximal.

Proof. Let $d = \gcd(a, b)$, $a_1 = \frac{a}{d}$, and $b_1 = \frac{b}{d}$.

 (\Rightarrow) Let bx + aD be the identity of bD_a for some $x \in D$. Then

$$(bx + aD)(b + aD) = b + aD,$$

whence $a \mid b(bx-1)$. Also, $gcd(a_1, b_1) = 1$ implies $a_1 \mid bx-1$, and hence $bx + a_1y = 1$ for some $y \in D$. Thus, b and a_1 are comaximal.

(\Leftarrow) By assumption, $bx + a_1y = 1$ for some $x, y \in D$, and hence $bx = 1 - a_1y$. So, for every $z \in D$, we have

$$(bx + aD)(bz + aD) = (1 - a_1y)(bz) + aD = (bz - a_1byz) + aD$$

= $(bz + aD) - (ab_1yz + aD)$
= $bz + aD$.

Thus, bx + aD is the identity of bD_a .

We now give the main result of this paper.

Theorem 2.2. Let D be a PID and $a, b \in D$ be nonzero elements with $a \nmid b$. Then the following statements are equivalent:

- (1) $\frac{a}{\gcd(a,b)}$ is a prime element and $a \nmid \gcd(a,b)^2$.
- (2) bD_a is a field.
- (3) Every nonzero ideal of bD_a is a cancellation ideal.

Proof. Let $d = \gcd(a, b)$, $a_1 = \frac{a}{d}$, and $b_1 = \frac{b}{d}$. Clearly, $bD_a = dD_a$, $(a_1, b_1)D = D$, a_1 is a nonunit, and $bD_a \neq (0)$ because $a \nmid b$.

 $(1) \Rightarrow (2)$ Note that bD_a is a commutative ring; so bD_a is a field if and only if bD_a has an identity and bD_a does not have a proper nonzero ideal.

We first show that bD_a has an identity. Note that $a = da_1$ and $b = db_1$; so $a \nmid d^2$ implies $a_1 \nmid d$. Hence, $a_1 \nmid b$ because $gcd(a_1, b_1) = 1$ and $b = db_1$. Since $a_1 = \frac{a}{d}$ is a prime element by assumption, it follows that a_1 and b are comaximal. Hence, by Lemma 2.1, bD_a has an identity. Next, let A be an ideal of bD_a . Then

 $D_a A = D_a (bD_a A) = bD_a A = A$ because bD_a has an identity. Thus, A is an ideal of D_a , so there exists $e \in D$ such that

$$aD \subseteq eD \subseteq dD$$
 and $A = eD/aD \subseteq bD_a$.

Hence, e = dx and a = ey for some $x, y \in D$, and thus a = dxy or $a_1 = xy$. By assumption, $a_1 = xy$ is a prime element of D, whence either x or y is a unit of D. If x is a unit, then eD = dD, and hence $A = eD/aD = dD_a = bD_a$. If y is a unit, then eD = aD, whence A = eD/aD = aD/aD is the zero ideal of bD_a . Therefore, bD_a does not have a proper nonzero ideal.

- $(2) \Rightarrow (3)$ Clear.
- (3) \Rightarrow (1) If $a \mid d^2$, then $(dD_a)^2 = d^2D_a = (0)$, and since dD_a is a cancellation ideal in bD_a , $dD_a = (0)$, a contradiction. Thus, $a \nmid d^2$.

Next, assume to the contrary that $a_1 = pq$ for some nonunit elements p, q of D. Let $I = pdD_a$ and $J = qdD_a$. Then I and J are ideals of dD_a . If I = (0), then pd + aD = aD, and hence $a \mid pd$. Note that $a = a_1d$; so $a_1 \mid p$, and thus q is a unit, a contradiction. Similarly, we have $J \neq (0)$. However,

$$IJ = pdqdD_a = a_1d^2D_a = adD_a = (0).$$

Thus, I and J are not cancellation ideals, a contradiction.

As a corollary of Theorem 2.2, we have the following result.

Corollary 2.3. Let D be a PID and $a \in D$ be a nonzero element. Then every nonzero ideal in D_a is a cancellation ideal if and only if a is a prime element.

We have two applications of Theorem 2.2: one is to the ring of integers and the other is to the polynomial ring over a field.

Corollary 2.4. Let $n, m \in \mathbb{Z}$ be positive integers with $n \nmid m$.

- (1) ([2, Theorem 2.5]) Every nonzero ideal in $m\mathbb{Z}_n$ is a cancellation ideal if and only if $\frac{n}{\gcd(n,m)}$ is a prime number and $n \nmid \gcd(n,m)^2$.
- (2) ([2, Corollary 2.6]) Every nonzero ideal in \mathbb{Z}_n is a cancellation ideal if and only if n is a prime number.

Corollary 2.5. Let F be a field, X be an indeterminate over F, F[X] be the polynomial ring over F, $f, g \in F[X]$ be nonzero polynomials with $f \nmid g$ in F[X], and (f,g)F[X] = hF[X] for some $h \in F[X]$.

(1) Every nonzero ideal in (f,g)F[X]/fF[X] is a cancellation ideal if and only if $\frac{f}{h}$ is irreducible over F and $f \nmid h^2$ in F[X].

(2) Every nonzero ideal in F[X]/fF[X] is a cancellation ideal if and only if f is irreducible over F.

Proof. This follows directly from Theorem 2.2 and Corollary 2.3, because an irreducible polynomial of F[X] is a prime element.

Acknowledgement. The authors would like to thank the anonymous referee for his/her suggestions and comments.

References

- [1] D. D. Anderson and M. Roitman, A characterization of cancellation ideals, Proc. Amer. Math. Soc., 125 (1997), 2853-2854.
- [2] S. Chaopraknoi, K. Savettaseranee and P. Lertwichitsilp, *Some cancellation ideal rings*, Gen. Math., 13 (2005), 39-46.
- [3] A. Geroldinger and Q. Zhong, Factorization theory in commutative monoids, Semigroup Forum, 100 (2020), 22-51.
- [4] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
- [5] R. Gilmer, Commutative Semigroup Rings, Univ. Chicago Press, Chicago, 1984.

Gyu Whan Chang

Department of Mathematics Education Incheon National University 22012 Incheon, Republic of Korea e-mail: whan@inu.ac.kr

Jun Seok Oh (Corresponding Author) Department of Mathematics Education Jeju National University 63243 Jeju, Republic of Korea e-mail: junseok.oh@jejunu.ac.kr