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Abstract. A module M over a ring is called simple-separable if every simple

submodule of M is contained in a finitely generated direct summand of M .

While a direct sum of any family of simple-separable modules is shown to be

always simple-separable, we prove that a direct summand of a simple-separable

module does not inherit the property, in general. It is also shown that an

injective module M over a right noetherian ring is simple-separable if and

only if M = M1 ⊕M2 such that M1 is separable and M2 has zero socle. The

structure of simple-separable abelian groups is completely described.
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1. Introduction

Throughout this article, R is an associative ring with an identity element and all

modules considered are unital right R-modules unless stated otherwise. Let M be

an R-module. By E(M) we denote the injective hull of M . The notations N ⊆ M

and N ≤ M mean that N is a subset and N is a submodule of M , respectively. By

Q, Z and N we denote the ring of rational numbers, the ring of integer numbers and

the set of natural numbers, respectively. In 1937 [2], Baer introduced the notion

of separable abelian groups to mean torsion-free abelian groups G for which every

finite subset of G can be embedded in a completely decomposable direct summand

of G. The first example given by Baer of groups satisfying this property was the

direct product of countably many copies of Z. In 1973 [9, p. 1], Fuchs called an

abelian group G for which every finite subset of G can be embedded in a direct

summand A of G such that A is a direct sum of groups of rank 1 a separable group.

On the other hand, another version of separability was introduced in 1968 [10] by

Griffith who called an abelian groupG separable if every finitely generated subgroup

of G is contained in a finitely generated direct summand of G. This variation of

separable groups was extended by Zöschinger in 1979 [24] to the general module

theoretic setting. Following Zöschinger, a module M over an arbitrary ring R is
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called separable if every finitely generated submodule of M is contained in a finitely

generated direct summand of M .

In this paper, we study the “simple”version of separable modules. A module M

is called simple-separable if every simple submodule of M is contained in a finitely

generated direct summand of M . Note that this notion can also be considered as

the dual of the notion of m-coseparable modules studied in [5]. In Section 2, we

present some basic properties of these modules. It is shown that the property of

being simple-separable is closed under direct sums, while a direct summand of a

simple-separable module may not inherit the property. We investigate the class of

rings R for which every injective R-module is simple-separable. We also prove that

the class of commutative rings R for which every finitely cogenerated R-module

is simple-separable is precisely that of the π-V-rings. Moreover, we determine the

structure of simple-separable abelian groups. In Section 3, we shed some light on

the modules M for which every direct summand of M is simple-separable. We

conclude the paper by a short section on modules M for which every proper simple

submodule of M is contained in a proper finitely generated direct summand.

2. Simple-separable modules

Definition 2.1. A module M is called simple-separable if every simple submodule

of M is contained in a finitely generated direct summand of M .

Clearly, every separable module is simple-separable. However, the converse is

not true, in general. To see this, we can consider the Z-module Q which is simple-

separable since Q has no simple submodules. On the other hand, Q is not separable

since Q has no nonzero finitely generated direct summands.

Recall that a submodule N of a module M is called small in M (denoted by

N ≪ M) if M ̸= N +X for any proper submodule X of M .

Remark 2.2. Let M be an R-module. It is well known that a simple submodule

of M is either small in M or a direct summand of M . It follows that M is simple-

separable if and only if every simple small submodule of M is contained in a finitely

generated direct summand of M . For example, if M is a module with Rad(M) = 0,

then M is a simple-separable module.

Example 2.3. (i) It is obvious that any module M with Soc(M) = 0 is

simple-separable.

(ii) It is clear that finitely generated modules are simple-separable. Also, any

module which is a direct sum of finitely generated submodules (e.g., a free
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module) is simple-separable. On the other hand, note that a module with

small radical need not be simple-separable (see Example 2.23).

(iii) Let a module M =
∑

i∈I Li such that {Li | i ∈ I} is a chain of finitely

generated direct summands of the moduleM . It is clear thatM is separable

and hence M is simple-separable.

(iv) It is easily seen that for any separable module M1 and any module M2 with

Soc(M2) = 0, the module M = M1 ⊕M2 is simple-separable.

The proof of the next result is straightforward and hence is omitted.

Proposition 2.4. Let M be an indecomposable module. Then the following state-

ments are equivalent:

(i) M is simple-separable;

(ii) Soc(M) = 0 or M is finitely generated.

The following corollary is an immediate consequence of Proposition 2.4.

Corollary 2.5. Let S be a simple module. Then E(S) is simple-separable if and

only if E(S) is a finitely generated module.

In the following example, we present some indecomposable simple-separable

modules. Moreover, we provide an example of a simple-separable module which

has a factor module which is not simple-separable.

Example 2.6. (i) Let p be a prime number. From Proposition 2.4, it follows

that the indecomposable Z-module Z(p∞) is not simple-separable but the

indecomposable Z-modules Q, Z and Z/pkZ (k ∈ N) are simple-separable.

(ii) Let p be a prime number. Then the Z-module Z(p∞) is not simple-

separable. On the other hand, there exists a free Z-module F such that

Z(p∞) ∼= F/L for some submodule L of F . It is clear that F is simple-

separable since F is a direct sum of cyclic submodules.

Next, we will be concerned with direct summands of simple-separable modules.

We begin by providing an example which shows that being simple-separable is not

preserved by taking direct summands.

Example 2.7. It was shown in [16, Proposition 3.3] that there is a cyclic artinian

module M over a ring R and a direct summand N of M (N) such that N has

no nonzero finitely generated direct summands. Since M is artinian, its socle is

essential. Therefore M (N) has an essential socle by [1, Propositions 6.17 and 9.19].

This implies that Soc(N) ̸= 0. It follows that N is not simple-separable.
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A module M is called a D3-module if for every pair (M1,M2) of direct summands

of M with M1 + M2 = M , M1 ∩ M2 is also a direct summand of M . It is well

known that quasi-projective modules are D3-modules (see [17, Proposition 4.38]).

In contrast to Example 2.7, we next exhibit some sufficient conditions under

which some special direct summands of a simple-separable module inherit the prop-

erty.

Proposition 2.8. Let M be a simple-separable R-module such that M = M1 ⊕
M2 is a direct sum of submodules M1 and M2 where M2 is finitely generated and

semisimple. Assume that one of the following conditions is satisfied:

(i) M is a D3-module, or

(ii) M2 is projective.

Then M1 is simple-separable.

Proof. Note that M2 is a finite direct sum of simple submodules. Then by in-

duction, we can assume that M2 is a simple module. Now to prove that M1 is

simple-separable, assume that Soc(M1) ̸= 0 and let S1 be a simple submodule of

M1. Since M is simple-sparable, there exists a finitely generated direct summand

K of M such that S1 ⊆ K. If K ⊆ M1, we are done. Suppose now that K is not

contained in M1. Then K +M1 = M as M1 is a maximal submodule of M .

(i) Since M is a D3-module, K ∩ M1 is a direct summand of M . Therefore

K ∩M1 is a direct summand of K.

(ii) Note that M2
∼= M/M1 = (K +M1)/M1

∼= K/(K ∩M1) is projective. Then

K ∩M1 is a direct summand of K (see [1, Proposition 17.2]).

Hence K ∩ M1 is a finitely generated direct summand of M1 such that S1 ⊆
K ∩M1. It follows that M1 is a simple-separable module. □

Recall that a submodule N of a module M is called fully invariant if f(N) ⊆ N

for every endomorphism f of M . A module M is said to have the SIP (Summand

Intersection Property) if the intersection of any two direct summands of M is again

a direct summand of M .

Proposition 2.9. Let N be a submodule of a simple-separable R-module M . As-

sume that one of the following conditions is satisfied:

(i) N is a direct summand of M and M has the SIP, or

(ii) N is a direct summand of M and K ∩ N is a direct summand of M for

every finitely generated direct summand K of M , or

(iii) N is a fully invariant direct summand of M , or
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(iv) R is a right noetherian ring and N is a fully invariant submodule of M .

Then N is a simple-separable module.

Proof. Let N be a submodule of M and let S be a simple submodule of N . Since

M is simple-separable, there exists a finitely generated direct summand K of M

such that S ⊆ K and M = K ⊕ K ′ for some submodule K ′ of M . Moreover,

S ⊆ K ∩N . The proof is completed by showing that K ∩N is a direct summand

of N which is finitely generated.

(i)-(ii) Suppose that N is a direct summand of M . By hypothesis, K ∩ N is a

direct summand of M and hence of K. Therefore K ∩ N is a finitely generated

direct summand of N .

To prove (iii)-(iv), note that N = (K ∩N)⊕ (K ′ ∩N) since N is fully invariant

in M .

(iii) As N is a direct summand of M , K ∩N is a direct summand of K and so

K ∩N is finitely generated.

(iv) Since R is right noetherian, K is a noetherian module and so K ∩ N is

finitely generated. This proves the proposition. □

Next, we will show that being simple-separable is preserved under direct sums.

Theorem 2.10. Every direct sum of simple-separable modules is simple-separable.

Proof. First note that without loss of generality, we can only prove the result for

a finite direct sum of simple-separable modules. Let a module M = M1 ⊕ M2

be a direct sum of simple-separable submodules M1 and M2. Let S be a simple

submodule of M . If S ⊆ Mi for some i ∈ {1, 2}, then clearly S is contained in a

finitely generated direct summand of M . Now suppose that S ∩M1 = S ∩M2 = 0.

Then S⊕M1 = M1⊕[(S⊕M1)∩M2]. Hence (S⊕M1)∩M2 is a simple submodule of

M2. Since M2 is simple-separable, there exists a finitely generated direct summand

K2 of M2 such that (S ⊕ M1) ∩ M2 ⊆ K2. Thus S ⊕ M1 ⊆ M1 ⊕ K2. On the

other hand, S ⊕ M2 = [(S ⊕ M2) ∩ M1] ⊕ M2. Hence (S ⊕ M2) ∩ M1 is a simple

submodule of M1. Since M1 is simple-separable, there exists a finitely generated

direct summand K1 of M1 such that (S⊕M2)∩M1 ⊆ K1. Thus S⊕M2 ⊆ K1⊕M2.

Therefore

S ⊆ (S ⊕M1) ∩ (S ⊕M2) ⊆ (M1 ⊕K2) ∩ (K1 ⊕M2) = K1 ⊕K2.

Note that K1⊕K2 is a finitely generated direct summand of M . The result follows.

□
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Corollary 2.11. Let N be a fully invariant direct summand of a module M . Then

the following conditions are equivalent:

(i) M is simple-separable;

(ii) N and M/N are both simple-separable modules.

Proof. (i) ⇒ (ii) First note that N is simple-separable by Proposition 2.9(iii). To

prove that M/N is simple-separable, let U be a submodule of M such that N ⊆ U

and U/N is simple. By hypothesis, there exists a submodule K of M such that

M = N ⊕ K. Then U = N ⊕ (U ∩ K) and S = U ∩ K is simple. Since M is

simple-separable, there exist submodules A and B of M such that M = A⊕ B, A

is finitely generated and S ⊆ A. As N is fully invariant in M , we have

M/N = [(A+N)/N ]⊕ [(B +N)/N ].

Moreover, U/N ⊆ (A+N)/N and (A+N)/N ∼= A/(A ∩N) is finitely generated.

(ii) ⇒ (i) This follows from Theorem 2.10. □

Recall that a module M is called separable if every finitely generated submodule

ofM is contained in a finitely generated direct summand ofM . Next, we investigate

simple-separable injective modules.

Proposition 2.12. The following are equivalent for an injective R-module M :

(i) M is a simple-separable module;

(ii) Either Soc(M) = 0 or E(S) is finitely generated for any simple submodule

S of M .

If, moreover, R is right noetherian, then (i)-(ii) are equivalent to:

(iii) M = (⊕i∈IMi)⊕N such that each Mi is an indecomposable finitely gener-

ated submodule of M and Soc(N) = 0;

(iv) M = (⊕i∈IMi)⊕N such that each Mi is a finitely generated submodule of

M and Soc(N) = 0;

(v) M = L⊕N such that L is a separable submodule of M and Soc(N) = 0.

Proof. (i) ⇒ (ii) Assume that Soc(M) ̸= 0 and let S be a simple submodule of

M . By (i), there exist submodules K and K ′ of M such that M = K ⊕K ′, S ⊆ K

and K is finitely generated. Since K is injective, E(S) is a direct summand of K.

Hence E(S) is finitely generated.

(ii) ⇒ (i) This is immediate.

(ii) ⇒ (iii) Since M is injective, there exists a submodule N ≤ M such that

M = E(Soc(M)) ⊕ N . Set Soc(M) = ⊕i∈ISi where Si (i ∈ I) are simple sub-

modules of M . Then M = (⊕i∈IE(Si)) ⊕ N since R is right noetherian (see [1,
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Proposition 18.13]). Moreover, note that each E(Si) (i ∈ I) is a finitely generated

indecomposable submodule of M and Soc(N) = 0.

(iii) ⇒ (iv) This is obvious.

(iv) ⇒ (v) This follows from the fact that any module which is a direct sum of

finitely generated submodules is separable.

(v) ⇒ (i) This follows from Theorem 2.10. □

Following Caldwell’s terminology in [3], a ring R is called hypercyclic if each cyclic

right R-module has a cyclic injective hull. It was shown in [7, Theorems 4.1 and

4.2] that any artinian principal ideal ring is hypercyclic (see also [3, Theorem 1.5]).

Commutative hypercyclic rings are characterized in [3]. From Proposition 2.12, we

infer that every injective module over a hypercyclic ring is simple-separable.

In the next two corollaries, we describe simple-separable injective modules over

commutative domains and over right artinian rings.

Corollary 2.13. Let R be a commutative domain which is not a field. Then the

following are equivalent for an injective R-module M :

(i) M is a simple-separable R-module;

(ii) Soc(M) = 0.

Proof. Let E be an injective R-module. It is clear that E is divisible and hence

Rad(E) = E.

(i) ⇒ (ii) Suppose that Soc(M) ̸= 0. Then M contains a simple submodule S.

By Proposition 2.12, E(S) is finitely generated. This contradicts the fact that E(S)

has no maximal submodules (see also [11, Corollary 2]).

(ii) ⇒ (i) This is clear. □

Corollary 2.14. Let M be an injective module over a right artinian ring R. Then

the following are equivalent:

(i) M is a simple-separable R-module;

(ii) M is a direct sum of finitely generated submodules.

Proof. This follows from Proposition 2.12 and [22, Theorem 4.5]. □

As exhibited in Example 2.6, for any prime number p, Z(p∞) ∼= E(Z/pZ) is not
simple-separable. Next, we will be concerned with the class of rings R for which

every injective R-module is simple-separable.

Proposition 2.15. The following are equivalent for a ring R:

(i) Every injective R-module is simple-separable;
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(ii) E(S) is simple-separable for any simple R-module S;

(iii) E(S) is finitely generated for any simple R-module S.

Proof. (i) ⇒ (ii) This is immediate.

(ii) ⇒ (iii) By Corollary 2.5.

(iii) ⇒ (i) Let M be an injective R-module and let S be a simple submodule of

M . By (iii), E(S) is a finitely generated direct summand of M which contains S.

Therefore M is simple-separable. This completes the proof. □

Recall that a module M is said to be finitely cogenerated (or finitely embedded)

if for any family of submodules {Ni : i ∈ I} in M , if ∩i∈INi = 0, then ∩i∈JNi = 0

for some finite subset J ⊆ I. This is equivalent to the fact that E(M) ∼= E(S1) ⊕
E(S2)⊕ · · ·⊕E(Sk) for some finitely many simple modules S1, S2, . . ., Sk (see [14,

Proposition 19.1] and [22, p. 70]).

Corollary 2.16. Let R be a commutative noetherian local ring with maximal ideal

m. Then the following are equivalent:

(i) Every injective R-module is simple-separable;

(ii) E(R/m) is finitely generated;

(iii) R is an artinian ring.

Proof. (i) ⇔ (ii) This follows from Proposition 2.15.

(ii) ⇒ (iii) Using Proposition 2.15, we see that E(R/m) is finitely generated.

Since R is noetherian, it follows that every finitely cogenerated R-module is finitely

generated. Thus R is an artinian ring by [23, Theorem 3].

(iii) ⇒ (ii) This follows by using again [23, Theorem 3]. □

Remark 2.17. Not every two-sided artinian ring satisfies the conditions in Propo-

sition 2.15. In fact, even a two-sided artinian ring R may have a simple right

R-module S such that E(S) is not finitely generated as illustrated in an example

constructed in [15, Ex. 3.34] (see also [21, Theorem 2]).

A ring R is called a left (right) π-V-ring if, for every simple left (right) R-

module S, the injective hull E(S) is of finite length (see [12]). Note that left and

right artinian PI-rings and quasi-Frobenius rings are left and right π-V-rings by

[21, p. 372] (see also [20, Lemma 6 and Proposition 10]).

Example 2.18. Using Proposition 2.15, it follows that over any right π-V-ring R

(e.g., we can take R to be any commutative artinian ring), every injective R-module

is simple-separable.
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Next, we characterize the class of rings R for which every finitely cogenerated

R-module is simple-separable. First we need the following lemma.

Lemma 2.19. Let S be a simple module. Then the following are equivalent for

M = E(S):

(i) Every submodule of M is simple-separable;

(ii) M is a noetherian module.

If, moreover, R is commutative, then (i)-(ii) are equivalent to:

(iii) M has finite length.

Proof. (i) ⇒ (ii) Let U be a nonzero submodule of M . Note that M is a uniform

module with essential socle. Then U is indecomposable and Soc(U) ̸= 0. Since U

is simple-separable, U is finitely generated by Proposition 2.4. Therefore M is a

noetherian module.

(ii) ⇒ (i) This is clear.

(ii) ⇔ (iii) Clearly, M is finitely cogenerated. The equivalence follows from [23,

Proposition 4]. □

Proposition 2.20. The following statements are equivalent for a commutative ring

R:

(i) Every finitely cogenerated R-module is simple-separable;

(ii) R is a π-V-ring;

(iii) Rm is an artinian ring for every maximal ideal m of R.

Proof. (i) ⇒ (ii) This follows by using Lemma 2.19.

(ii) ⇒ (iii) This follows from [21, Theorem 5].

(iii) ⇒ (i) Let M be a finitely cogenerated R-module. From [23, Theorem 3], we

infer that M is finitely generated. Hence M is simple-separable. This completes

the proof. □

The next result is presumably well known but is included for completeness.

Lemma 2.21. Let R be a commutative semilocal ring such that Rm is an artinian

ring for every maximal ideal m of R. Then R is an artinian ring.

Proof. Let m be a maximal ideal of R and put Sm = R \m. Let I1 ⊇ I2 ⊇ . . . be a

descending chain of ideals of R. Since Rm is an artinian ring, there exists an integer

nm ≥ 1 such that S−1
m Inm

= S−1
m Inm+i for each i ≥ 1. But R has only finitely many

maximal ideals. So let n be the maximum of all the integers nm’s (where m ranges

over all of the maximal ideals of R). It follows that S−1
m In = S−1

m In+i for every
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maximal ideal m of R and all i ≥ 1. This implies that S−1
m (In/In+i) = 0 for every

maximal ideal m of R and all i ≥ 1. Consequently, In = In+i for all i ≥ 1. This

shows that R is artinian. □

Corollary 2.22. The following are equivalent for a commutative semilocal ring R:

(i) Every finitely cogenerated R-module is simple-separable;

(ii) R is an artinian ring.

Proof. (i) ⇒ (ii) This is obvious by Proposition 2.20 and Lemma 2.21.

(ii) ⇒ (i) This is clear by Proposition 2.20. □

In the next example we provide a module with small radical which is not simple-

separable. This example also shows that both Corollaries 2.16 and 2.22 are not

true, in general, if R is not a commutative ring.

Example 2.23. LetK = F (x1, x2, . . .) with F a field. Consider the field monomor-

phism σ : K → K defined by σ(xi) = xi+1 for all i and σ is equal to the iden-

tity on F . Then R = K × K with coordinate-wise addition and multiplication

(x, y)(x′, y′) = (xx′, xy′ + σ(x′)y) is a ring with identity. It is shown in [21, p. 375]

that R is a local left artinian ring with maximal left ideal L = {0} ×K such that

the left R-module E(R/L) is not of finite length. This implies that E(R/L) is not

finitely generated since R is left artinian. Now Proposition 2.12 shows that E(R/L)

is not simple-separable. On the other hand, note that Rad(E(R/L)) ≪ E(R/L)

by [1, Corollary 15.21].

Remark 2.24. There exist some commutative rings which satisfy the conditions in

Proposition 2.15 but do not satisfy the statements in Proposition 2.20. For example,

consider the ring R constructed in [3, Example p. 42]. In fact, R is a commutative

local nonartinian hypercyclic ring. So every injective R-module is simple-separable

by Proposition 2.12. On the other hand, it follows from Corollary 2.22 that not

every finitely cogenerated R-module is simple-separable.

The following result shows that a simple-separable moduleM with Rad(M) = M

contains no simple submodules.

Proposition 2.25. Let M be a nonzero module with Rad(M) = M . Then M is

simple-separable if and only if Soc(M) = 0.

Proof. (⇒) Assume that Soc(M) ̸= 0 and let S be a simple submodule of M .

Since M is simple-separable, there exists a finitely generated direct summand K of

M such that S ⊆ K and M = K ⊕ K ′ for some submodule K ′ of M . Hence K
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contains a maximal submodule U with S ⊆ U . It is easily seen that U ⊕ K ′ is a

maximal submodule of M , a contradiction.

(⇐) This implication is immediate. □

Let G be an abelian group. We denote the torsion subgroup of G by T (G). For

any prime number p, let Tp(G) = {x ∈ G | pnx = 0 for some non-negative integer

n} which is a subgroup of G called the p-primary component of G. Note that if G

is a torsion abelian group, then G is a direct sum of its p-primary components. An

abelian group G is said to be a primary group (or p-group) if G = Tp(G) for some

prime p.

Let G be an abelian p-group (for some prime p), x ∈ G, and n be a non-negative

integer. Then x is said to have height n if x is divisible by pn but not by pn+1 (i.e.

x ∈ pnG but x ̸∈ pn+1G). In this case, we write h(x) = n. If x is divisible by pk

for every non-negative integer k (i.e. x ∈ ∩k≥1p
kG), then x is called an element of

infinite height and we write h(x) = ∞. If x is an element of a subgroup U of G,

then we can define two heights for x. When it is necessary, we will write hU (x) and

hG(x) for the height of x in U and G, respectively. We always have hU (x) ≤ hG(x).

Recall that a subgroup U of an abelian group G is called pure if nU = U ∩ nG

for every non-negative integer n. An abelian group G is said to be of bounded if

nG = 0 for some positive integer n.

In the next theorem, we determine the structure of simple-separable abelian

groups. First, we give the following four lemmas. The proof of the second one is

adapted from that of [13, Theorem 9] (see also [8, Corollary 27.2]).

Lemma 2.26. Let K be a finitely generated subgroup of an abelian group G with

K ⊆ T (G). Then K is a direct summand of T (G) if and only if K is a direct

summand of G.

Proof. The sufficiency follows by modularity. Conversely, suppose that K is a

direct summand of T (G). Then K is a pure subgroup of T (G) which is itself a

pure subgroup of G. Thus K is pure in G. Moreover, note that K is a direct sum

of a finite number of finite cyclic abelian groups since K is finitely generated and

K ⊆ T (G) (see [8, Theorem 15.5]). Hence K is bounded. Now using [13, Theorem

7], we conclude that K is a direct summand of G. □

Lemma 2.27. Let G be an abelian group such that ∩n≥1p
nTp(G) = 0 for every

prime number p. Then every simple subgroup of G is contained in a finite cyclic

primary direct summand of G.
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Proof. Suppose that Soc(G) ̸= 0 and let S be a simple subgroup of G. Then

there exist a prime number p and 0 ̸= x ∈ G such that S = Zx ∼= Z/pZ. Since

∩n≥1p
nTp(G) = 0, it follows that the subgroup U = Tp(G) has no elements of

infinite height. Therefore x has finite height in U . Let hU (x) = m for some non-

negative integer m. Then there exists y ∈ U such that x = pmy. Put H = Zy.
Clearly, S ⊆ H and H ∼= Z/pm+1Z is primary. It is easily seen that the only

elements of order p in H are the multiples of x by integers prime to p. So these

elements have the same height in H as in U . Thus H is a pure subgroup of U by

[13, Lemma 7]. Note that pm+1H = 0. It follows from [13, Theorem 7] that H

is a direct summand of U . But U is a direct summand of T (G), so H is a direct

summand of T (G). From Lemma 2.26, it follows that H is a direct summand of G.

This completes the proof. □

Lemma 2.28. Let G be a simple-separable abelian group. Then ∩n≥1p
nTp(G) = 0

for every prime number p.

Proof. Assume that ∩n≥1p
n(Tp(G)) ̸= 0 for some prime number p. Then there

exists in ∩n≥1p
n(Tp(G)) a nonzero element x of order p. Clearly, Zx is a simple

subgroup of G. Since G is simple-separable, there exists a decomposition G = K⊕L

such that K is finitely generated and Zx ⊆ K. Note that Zx ⊆ Tp(K). Moreover,

since T (K) is finitely generated, there exists an integer n ≥ 1 such that nT (K) = 0.

But T (K) is a pure subgroup of K, so T (K) is a direct summand of K by [13,

Theorem 7]. Note that Tp(K) is a direct summand of T (K). Then Tp(K) is a

direct summand of K which is finitely generated. Therefore there exists an integer

s ≥ 1 such that psTp(K) = 0. Since x ∈ ∩n≥1p
n(Tp(G)), we have x = psy for some

y ∈ Tp(G). Now, since G = K ⊕ L, y = a + b for some a ∈ K and b ∈ L. Clearly,

a ∈ Tp(K). Therefore psa ∈ psTp(K) = 0 and hence x = psb ∈ L. But x ∈ K, so

x ∈ K ∩ L = 0, a contradiction. □

Lemma 2.29. Let G be a torsion abelian group. Then G is separable if and only

if G is simple-separable.

Proof. The necessity is obvious. Conversely, suppose that G is simple-separable

and let A be a finitely generated subgroup of G. Clearly A = ⊕n
i=1Tpi(A) for

some positive integer n and distinct prime numbers pi (1 ≤ i ≤ n). Note that for

every 1 ≤ i ≤ n, Tpi
(A) is a finitely generated subgroup of Tpi

(G). Since each

Tpi
(G) is a fully invariant direct summand of G, it follows from Proposition 2.9

that each Tpi(G) is a simple-separable abelian group. Moreover, ⊕n
i=1Tpi(G) is

a direct summand of G. The proof is completed by showing that each Tpi(A) is
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contained in a finitely generated direct summand of Tpi
(G). So there is no loss of

generality in assuming that G is a p-group for some prime number p. Since A is

finitely generated, A is a finite direct sum of finite cyclic subgroups. This implies

that A itself is a finite group. Since G has no nonzero elements of infinite height by

Lemma 2.28, it follows that the heights of the nonzero elements of A (relative to G)

are bounded. Applying [8, Corollary 27.8], we see that A ⊆ B for some bounded

direct summand B of G. Note that B is a direct sum of finite cyclic subgroups by

[8, Theorem 17.2]. Since A is finitely generated, there exist subgroups B1 and B2

of B such that B = B1 ⊕B2, B1 is finitely generated and A ⊆ B1. It is clear that

B1 is a direct summand of G. This finishes the proof. □

The next result should be compared with [9, Proposition 65.1] which character-

ized reduced abelian p-groups satisfying another variation of separability.

Theorem 2.30. The following are equivalent for an abelian group G:

(i) G is simple-separable;

(ii) For every prime number p, ∩n≥1p
n(Tp(G)) = 0 (i.e. Tp(G) has no nonzero

elements of infinite height);

(iii) Every simple subgroup of G is contained in a finite cyclic primary direct

summand of G;

(iv) T (G) is simple-separable;

(v) T (G) is separable.

Proof. (i) ⇒ (ii) This implication is proved in Lemma 2.28.

(ii) ⇒ (iii) This is clear by Lemma 2.27.

(iii) ⇒ (iv) This follows immediately from Lemma 2.26 and the fact that a cyclic

abelian group is either torsion or torsion-free.

(iv) ⇒ (v) This follows from Lemma 2.29.

(v) ⇒ (i) This is an immediate consequence of Lemma 2.26. □

3. Completely simple-separable modules

Motivated by Example 2.7, we introduce the following notion.

Definition 3.1. A module M is called completely simple-separable if every direct

summand of M is simple-separable.

Recall that a module M is called a duo module (resp., weak duo module) if every

submodule (resp., every direct summand) of M is fully invariant (see for example

[19]).
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Example 3.2. (i) It is clear that every moduleM with Soc(M)∩Rad(M) = 0

is completely simple-separable.

(ii) Every finitely generated module is completely simple-separable.

(iii) Using Proposition 2.9(iii), we see that every simple-separable weak duo

module is completely simple-separable.

(iv) Let R be a semiperfect ring or a simple right noetherian ring or a one-

sided semihereditary ring or a one-sided principal ideal ring. Then every

projective R-module is a direct sum of finitely generated submodules by

[18, Theorem 3] and [16, Fact 3.4, Corollary 5.5 and Proposition 6.3]. It

follows that every projective R-module is completely simple-separable.

Proposition 3.3. Let R be a ring and let M be a completely simple-separable

R-module. Assume that M has the ascending chain condition (ACC) on finitely

generated direct summands (e.g., M is noetherian). Then M = M1⊕M2 is a direct

sum of submodules M1 and M2 such that Soc(M1) = 0 and M2 is finitely generated.

Proof. Suppose, to the contrary, that the module M does not have such a decom-

position. Then Soc(M) ̸= 0. Let S1 be a simple submodule of M . Since M is

simple-separable, there exists a finitely generated direct summand K1 of M such

that S1 ⊆ K1. Let N1 be a submodule of M such that M = K1 ⊕N1. Note that

N1 is simple-separable and Soc(N1) ̸= 0. By similar arguments as before, it follows

that N1 = K2 ⊕N2 such that K2 is finitely generated and N2 is a simple-separable

submodule with Soc(N2) ̸= 0. By continuing this process, we get a strictly ascend-

ing chain of finitely generated direct summands K1 ⊊ K1 ⊕K2 ⊊ · · · of M . This

contradicts our assumption. □

Recall that a module M is said to have finite uniform dimension if M does not

contain an infinite independent set of submodules. Dually, a module M is said to

have finite hollow dimension if M does not contain an infinite coindependent family

of submodules; that is, for some n ∈ N, there exists an epimorphism from M to a

direct sum of n nonzero modules but no epimorphism from M to a direct sum of

more than n nonzero modules (see, for example [4, p. 47]).

It is well known that a module M has ACC on direct summands if and only if

S = EndR(M) has ACC on right direct summands if and only if S contains no

infinite set of nonzero orthogonal idempotents (see e.g., [5, Lemma 3.12]). Next, we

present some sufficient conditions for a module to satisfy ACC on direct summands.

Remark 3.4. Let R be a ring and let M be an R-module. Then M has the ACC

on direct summands when one of the following conditions holds.
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(i) M is artinian or noetherian (see [1, Proposition 10.14]);

(ii) M has either finite uniform dimension or finite hollow dimension (see [4,

5.3] and [14, Proposition (6.30)′]);

(iii) EndR(M) is a semilocal ring (see [4, 5.3 and Corollary 18.7]).

In the following two results, we provide more examples of completely simple-

separable modules.

Proposition 3.5. Every injective simple-separable R-module is completely simple-

separable.

Proof. This follows directly from Proposition 2.12. □

Proposition 3.6. If G is a simple-separable abelian group, then so is every sub-

group of G. In particular, G is completely simple-separable.

Proof. Let G be a simple-separable abelian group. From Theorem 2.30, we see

that ∩n≥1p
n(Tp(G)) = 0 for all primes p. This implies that ∩n≥1p

n(Tp(N)) = 0 for

any subgroup N of G and for all primes p. Now the result follows by using again

Theorem 2.30. □

Proposition 3.7. Let M be an artinian module. Then M is completely simple-

separable if and only if M is finitely generated.

Proof. The sufficiency is clear. Conversely, assume that M is completely simple-

separable. From Proposition 3.3, we conclude that M = M1 ⊕ M2 such that

Soc(M1) = 0 and M2 is finitely generated. As M is artinian, Soc(M) = Soc(M2)

is an essential submodule of M . This yields M1 = 0. The result follows. □

Proposition 3.8. Let M be a completely simple-separable module. Then any

finitely generated semisimple submodule of M is contained in a finitely generated

direct summand of M .

Proof. Let n be a positive integer. We will prove that every semisimple submod-

ule of M having uniform dimension n is contained in a finitely generated direct

summand of M . This is clearly true for n = 1. Now assume that n ≥ 2 and

every semisimple submodule of M having uniform dimension n − 1 is contained

in a finitely generated direct summand of M . Let U = S1 ⊕ S2 ⊕ · · · ⊕ Sn be a

submodule of M which is a direct sum of n simple submodules Si (1 ≤ i ≤ n). By

hypothesis, S1 ⊕ S2 ⊕ · · · ⊕ Sn−1 is contained in a finitely generated direct sum-

mand K of M . Hence M = K ⊕N for some submodule N of M . If Sn ⊆ K, then
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U ⊆ K. Suppose now that Sn ⊈ K. In this case we have Sn ∩K = 0 and hence

Sn ⊕K = K ⊕ [(Sn ⊕K) ∩N ]. Therefore (Sn ⊕K) ∩N is a simple submodule of

N . Since N is simple-separable, there exists a finitely generated direct summand

L of N such that (Sn ⊕K)∩N ⊆ L. Hence U ⊆ K ⊕ [(Sn ⊕K)∩N ] ⊆ K ⊕L and

K ⊕L is a finitely generated direct summand of M . This completes the proof. □

The following corollary is an immediate consequence of Proposition 3.8.

Corollary 3.9. If M is a completely simple-separable module such that Soc(M) is

finitely generated, then M = N ⊕K is a direct sum of submodules N and K such

that Soc(N) = 0 and K is finitely generated.

Remark 3.10. The module M of Example 2.7 shows also that an infinite di-

rect sum of completely simple-separable modules need not be completely simple-

separable.

The next result deals with a special case of direct sums of two completely simple-

separable modules.

Proposition 3.11. Let M = M1 ⊕M2 be a direct sum of submodules M1 and M2

such that M1 is completely simple-separable and M2 is semisimple. Assume that

one of the following conditions is satisfied:

(i) M2 is projective, or

(ii) M2 is finitely generated and M is a D3-module.

Then M is completely simple-separable.

Proof. Note first that every direct summand of a D3-module is also a D3-module

by [17, Lemma 4.7]. Thus by induction it is sufficient to prove (ii) when M2 is a

simple module. To prove the result, let N be a direct summand of M and let S be

a simple submodule of N . We need only consider two cases:

Case 1: Assume that S is not contained inM1. Then S⊕M1 = M1⊕[(S⊕M1)∩M2]

is a direct summand of M since M2 is semisimple. Hence S is a direct summand

of N .

Case 2: Assume that S ⊆ M1. Then S ⊆ N ∩ M1. If we prove that N ∩ M1

is a direct summand of M , the assertion follows. Indeed, in this case N ∩ M1 is

a direct summand of M1. This implies that N ∩M1 is simple-separable since M1

is completely simple-separable. Therefore there exists a finitely generated direct

summand K of N ∩M1 such that S ⊆ K. Clearly, K is a direct summand of N .



SIMPLE-SEPARABLE MODULES 17

(i) Note that N + M1 = M1 ⊕ [(N + M1) ∩ M2] and hence N/(N ∩ M1) ∼=
(N +M1)/M1

∼= (N +M1)∩M2. Since (N +M1)∩M2 is a direct summand of M2,

(N +M1) ∩M2 is projective. Therefore N ∩M1 is a direct summand of M .

(ii) Suppose thatM2 is a simple module. If N ⊆ M1, then N∩M1 = N is a direct

summand of M . Now assume that N is not contained in M1. Then N +M1 = M

since M1 is a maximal submodule of M . As M is a D3-module, it follows that

N ∩M1 is a direct summand of M . This completes the proof. □

4. Strongly simple-separable modules

In this section, we introduce the following stronger form of simple-separability.

Definition 4.1. A module M is called strongly simple-separable if every proper

simple submodule of M is contained in a proper finitely generated direct summand

of M .

Note that the above notion can be considered as the “simple” version of the

concept of A-separable modules (see [6]).

Example 4.2. (i) It is easily seen that for any finitely generated module M1

and any nonzero module M2 with Soc(M2) = 0, the module M = M1⊕M2

is strongly simple-separable.

(ii) Every regular module M (i.e., every cyclic submodule of M is a direct

summand) is strongly simple-separable. In particular, every semisimple

module is strongly simple-separable.

(iii) If R is a right V-ring, then every R-module is strongly simple-separable

since every simple R-module is injective.

Remark 4.3. If a module M is not finitely generated, then M is strongly simple-

separable if and only if M is simple-separable.

The proof of the following proposition is straightforward.

Proposition 4.4. Let M be an indecomposable module. Then the following condi-

tions are equivalent:

(i) M is strongly simple-separable;

(ii) Soc(M) = 0 or M is a simple module.

Remark 4.5. Let S be a simple module. From the preceding proposition, it follows

that E(S) is strongly simple-separable if and only if S is an injective module.
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Next, we provide an example to show that the class of simple-separable modules

and the class of strongly simple-separable modules are different.

Example 4.6. Let R be a commutative local artinian ring which is not a field. Let

m be the maximal ideal of R. Clearly, R is not a V-ring and hence the R-module

R/m is not injective. Note that E(R/m) is a finitely generated R-module by [23,

Theorem 3]. Then E(R/m) is simple-separable. On the other hand, E(R/m) is

not strongly simple-separable by Remark 4.5. For example, we can take the ring

R = Z/pnZ for some prime number p and some integer n ≥ 2. Note that in this case

S = pn−1Z/pnZ is the unique simple R-module (up to isomorphism). Moreover,

E(S) = R (see [22, Theorem 6.7]).

Proposition 4.7. The following are equivalent for a ring R:

(i) Every R-module is strongly simple-separable;

(ii) Every injective R-module is strongly simple-separable;

(iii) Every finitely cogenerated R-module is strongly simple-separable;

(iv) R is a right V-ring.

Proof. This follows from Example 4.2(iii) and Remark 4.5. □

In the next example, we show that the strongly simple-separable property does

not always transfer from a module to each of its direct summands.

Example 4.8. (i) Let M = ⊕i≥1Mi be a direct sum of nonzero nonsimple inde-

composable finitely generated submodules Mi (i ≥ 1) such that Soc(Mi0) ̸= 0 for

some i0 ≥ 1 (for example, for each i ≥ 1, we can take Mi to be the Z-module

Z/pni
i Z where pi is a prime number and ni ≥ 2 is an integer). It is clear that M

is strongly simple-separable. On the other hand, using Proposition 4.4, it follows

that Mi0 is not strongly simple-separable.

(ii) We can also consider the module M (N) given in Example 2.7. In fact, it is

easily seen that M (N) is strongly simple-separable. But M (N) has a direct summand

which is not simple-separable.

Proposition 4.9. Every direct sum of strongly simple-separable modules is strongly

simple-separable.

Proof. The proof can be adapted from that of Theorem 2.10 by taking into account

the fact that any semisimple module is strongly simple-separable. □

The following corollary is a direct consequence of Proposition 4.9.

Corollary 4.10. The following conditions are equivalent for a ring R:
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(i) The R-module RR is strongly simple-separable;

(ii) Every free R-module is strongly simple-separable.

In the next result, we characterize finitely generated duo strongly simple-separable

modules.

Proposition 4.11. Let M be a finitely generated duo R-module which is not sim-

ple. Then M is strongly simple-separable if and only if Soc(M) = 0 or M is not

indecomposable.

Proof. To prove the necessity, assume that Soc(M) ̸= 0 and let S be a simple

submodule of M . Since M is strongly simple-separable and S ̸= M , there exists

a finitely generated proper direct summand K of M such that S ⊆ K. Hence M

is not indecomposable as K ̸= 0. Conversely, suppose that M = A ⊕ B for some

proper nonzero submodules A and B of M . Let T be a simple submodule of M .

Since M is duo, T is fully invariant in M . This implies that T = (T ∩A)⊕ (T ∩B).

Since T is simple, we have T ⊆ A or T ⊆ B. This proves that M is strongly

simple-separable. □

Recall that a ring R is called right duo if the right R-module RR is duo. The

next corollaries are direct consequences of Proposition 4.11.

Corollary 4.12. Let R be a right duo ring which is not a division ring. Then the

R-module RR is strongly simple-separable if and only if Soc(RR) = 0 or R has at

least one non-trivial idempotent element.

A prime ideal p of a commutative ring R is said to be an associated prime ideal

of an R-module M provided p = AnnR(x) for some nonzero element x of M . The

set of associated prime ideals of M is denoted by Ass(M).

Corollary 4.13. Let R be a commutative ring which is not a field and let Ω be the

set of all maximal ideals of R. Then the R-module R is strongly simple-separable if

and only if Ass(R) ∩ Ω = ∅ or R has at least one non-trivial idempotent element.

We finally give the structure of strongly simple-separable abelian groups.

Proposition 4.14. Let G be a simple-separable abelian group. Then the following

conditions are equivalent:

(i) G is strongly simple-separable;

(ii) G is not isomorphic to Z/pnZ for every prime number p and any integer

n ≥ 2.
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Proof. (i) ⇒ (ii) Given a prime number p and an integer n ≥ 2, it is clear that the

indecomposable nonsimple Z-module Z/pnZ is not strongly simple-separable since

Soc(Z/pnZ) ̸= 0 (see Proposition 4.4).

(ii) ⇒ (i) Let G be a simple-separable abelian group which is not isomorphic to

Z/pnZ for every prime number p and any integer n ≥ 2. If G contains no simple

proper subgroups, then clearly G is strongly simple-separable. Now assume that

G contains a simple proper subgroup S. Then S is isomorphic to Z/p0Z for some

prime number p0. By Theorem 2.30, S is contained in a direct summand H of G

with H ∼= Z/pk0Z for some positive integer k. If k = 1, then H = S and hence

H ̸= G. Moreover, if k ≥ 2, then H ̸= G by (ii). This completes the proof. □
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[19] A. Ç. Özcan, A. Harmanci and P. F. Smith, Duo modules, Glasg. Math. J.,

48(3) (2006), 533-545.

[20] M. Rayar, On small and cosmall modules, Acta Math. Acad. Sci. Hungar.,

39(4) (1982), 389-392.

[21] A. Rosenberg and D. Zelinsky, Finiteness of the injective hull, Math. Z., 70

(1958/59/1959), 372-380.
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