

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA Published Online: March 2024 DOI: 10.24330/ieja.1449459

SIMPLE-SEPARABLE MODULES

Rachid Ech-chaouy and Rachid Tribak

Received: 19 April 2023; Revised: 20 December 2023; Accepted: 26 December 2023 Communicated by A. Çiğdem Özcan

ABSTRACT. A module M over a ring is called simple-separable if every simple submodule of M is contained in a finitely generated direct summand of M. While a direct sum of any family of simple-separable modules is shown to be always simple-separable, we prove that a direct summand of a simple-separable module does not inherit the property, in general. It is also shown that an injective module M over a right noetherian ring is simple-separable if and only if $M = M_1 \oplus M_2$ such that M_1 is separable and M_2 has zero socle. The structure of simple-separable abelian groups is completely described.

Mathematics Subject Classification (2020): 16D10, 16D40, 16D80 Keywords: Separable module, simple-separable module, V-ring, π -V-ring

1. Introduction

Throughout this article, R is an associative ring with an identity element and all modules considered are unital right R-modules unless stated otherwise. Let M be an R-module. By E(M) we denote the injective hull of M. The notations $N \subseteq M$ and $N \leq M$ mean that N is a subset and N is a submodule of M, respectively. By \mathbb{Q}, \mathbb{Z} and \mathbb{N} we denote the ring of rational numbers, the ring of integer numbers and the set of natural numbers, respectively. In 1937 [2], Baer introduced the notion of separable abelian groups to mean torsion-free abelian groups G for which every finite subset of G can be embedded in a completely decomposable direct summand of G. The first example given by Baer of groups satisfying this property was the direct product of countably many copies of Z. In 1973 [9, p. 1], Fuchs called an abelian group G for which every finite subset of G can be embedded in a direct summand A of G such that A is a direct sum of groups of rank 1 a separable group. On the other hand, another version of separability was introduced in 1968 [10] by Griffith who called an abelian group G separable if every finitely generated subgroup of G is contained in a finitely generated direct summand of G. This variation of separable groups was extended by Zöschinger in 1979 [24] to the general module theoretic setting. Following Zöschinger, a module M over an arbitrary ring R is called separable if every finitely generated submodule of M is contained in a finitely generated direct summand of M.

In this paper, we study the "simple" version of separable modules. A module M is called simple-separable if every simple submodule of M is contained in a finitely generated direct summand of M. Note that this notion can also be considered as the dual of the notion of m-coseparable modules studied in [5]. In Section 2, we present some basic properties of these modules. It is shown that the property of being simple-separable is closed under direct sums, while a direct summand of a simple-separable module may not inherit the property. We investigate the class of rings R for which every injective R-module is simple-separable. We also prove that the class of commutative rings R for which every finitely cogenerated R-module is simple-separable is precisely that of the π -V-rings. Moreover, we determine the structure of simple-separable abelian groups. In Section 3, we shed some light on the modules M for which every direct summand of M is simple-separable. We conclude the paper by a short section on modules M for which every proper simple submodule of M is contained in a proper finitely generated direct summand.

2. Simple-separable modules

Definition 2.1. A module M is called *simple-separable* if every simple submodule of M is contained in a finitely generated direct summand of M.

Clearly, every separable module is simple-separable. However, the converse is not true, in general. To see this, we can consider the \mathbb{Z} -module \mathbb{Q} which is simple-separable since \mathbb{Q} has no simple submodules. On the other hand, \mathbb{Q} is not separable since \mathbb{Q} has no nonzero finitely generated direct summands.

Recall that a submodule N of a module M is called *small* in M (denoted by $N \ll M$) if $M \neq N + X$ for any proper submodule X of M.

Remark 2.2. Let M be an R-module. It is well known that a simple submodule of M is either small in M or a direct summand of M. It follows that M is simple-separable if and only if every simple small submodule of M is contained in a finitely generated direct summand of M. For example, if M is a module with Rad(M) = 0, then M is a simple-separable module.

Example 2.3. (i) It is obvious that any module M with Soc(M) = 0 is simple-separable.

(ii) It is clear that finitely generated modules are simple-separable. Also, any module which is a direct sum of finitely generated submodules (e.g., a free

module) is simple-separable. On the other hand, note that a module with small radical need not be simple-separable (see Example 2.23).

- (iii) Let a module $M = \sum_{i \in I} L_i$ such that $\{L_i \mid i \in I\}$ is a chain of finitely generated direct summands of the module M. It is clear that M is separable and hence M is simple-separable.
- (iv) It is easily seen that for any separable module M_1 and any module M_2 with $Soc(M_2) = 0$, the module $M = M_1 \oplus M_2$ is simple-separable.

The proof of the next result is straightforward and hence is omitted.

Proposition 2.4. Let M be an indecomposable module. Then the following statements are equivalent:

- (i) *M* is simple-separable;
- (ii) Soc(M) = 0 or M is finitely generated.

The following corollary is an immediate consequence of Proposition 2.4.

Corollary 2.5. Let S be a simple module. Then E(S) is simple-separable if and only if E(S) is a finitely generated module.

In the following example, we present some indecomposable simple-separable modules. Moreover, we provide an example of a simple-separable module which has a factor module which is not simple-separable.

- **Example 2.6.** (i) Let p be a prime number. From Proposition 2.4, it follows that the indecomposable \mathbb{Z} -module $\mathbb{Z}(p^{\infty})$ is not simple-separable but the indecomposable \mathbb{Z} -modules \mathbb{Q} , \mathbb{Z} and $\mathbb{Z}/p^k\mathbb{Z}$ ($k \in \mathbb{N}$) are simple-separable.
 - (ii) Let p be a prime number. Then the \mathbb{Z} -module $\mathbb{Z}(p^{\infty})$ is not simpleseparable. On the other hand, there exists a free \mathbb{Z} -module F such that $\mathbb{Z}(p^{\infty}) \cong F/L$ for some submodule L of F. It is clear that F is simpleseparable since F is a direct sum of cyclic submodules.

Next, we will be concerned with direct summands of simple-separable modules. We begin by providing an example which shows that being simple-separable is not preserved by taking direct summands.

Example 2.7. It was shown in [16, Proposition 3.3] that there is a cyclic artinian module M over a ring R and a direct summand N of $M^{(\mathbb{N})}$ such that N has no nonzero finitely generated direct summands. Since M is artinian, its socle is essential. Therefore $M^{(\mathbb{N})}$ has an essential socle by [1, Propositions 6.17 and 9.19]. This implies that $Soc(N) \neq 0$. It follows that N is not simple-separable.

A module M is called a D3-module if for every pair (M_1, M_2) of direct summands of M with $M_1 + M_2 = M$, $M_1 \cap M_2$ is also a direct summand of M. It is well known that quasi-projective modules are D3-modules (see [17, Proposition 4.38]).

In contrast to Example 2.7, we next exhibit some sufficient conditions under which some special direct summands of a simple-separable module inherit the property.

Proposition 2.8. Let M be a simple-separable R-module such that $M = M_1 \oplus M_2$ is a direct sum of submodules M_1 and M_2 where M_2 is finitely generated and semisimple. Assume that one of the following conditions is satisfied:

- (i) M is a D3-module, or
- (ii) M_2 is projective.

Then M_1 is simple-separable.

Proof. Note that M_2 is a finite direct sum of simple submodules. Then by induction, we can assume that M_2 is a simple module. Now to prove that M_1 is simple-separable, assume that $Soc(M_1) \neq 0$ and let S_1 be a simple submodule of M_1 . Since M is simple-sparable, there exists a finitely generated direct summand K of M such that $S_1 \subseteq K$. If $K \subseteq M_1$, we are done. Suppose now that K is not contained in M_1 . Then $K + M_1 = M$ as M_1 is a maximal submodule of M.

(i) Since M is a D3-module, $K \cap M_1$ is a direct summand of M. Therefore $K \cap M_1$ is a direct summand of K.

(ii) Note that $M_2 \cong M/M_1 = (K + M_1)/M_1 \cong K/(K \cap M_1)$ is projective. Then $K \cap M_1$ is a direct summand of K (see [1, Proposition 17.2]).

Hence $K \cap M_1$ is a finitely generated direct summand of M_1 such that $S_1 \subseteq K \cap M_1$. It follows that M_1 is a simple-separable module.

Recall that a submodule N of a module M is called *fully invariant* if $f(N) \subseteq N$ for every endomorphism f of M. A module M is said to have the SIP (Summand Intersection Property) if the intersection of any two direct summands of M is again a direct summand of M.

Proposition 2.9. Let N be a submodule of a simple-separable R-module M. Assume that one of the following conditions is satisfied:

- (i) N is a direct summand of M and M has the SIP, or
- (ii) N is a direct summand of M and K ∩ N is a direct summand of M for every finitely generated direct summand K of M, or
- (iii) N is a fully invariant direct summand of M, or

Proof. Let N be a submodule of M and let S be a simple submodule of N. Since M is simple-separable, there exists a finitely generated direct summand K of M such that $S \subseteq K$ and $M = K \oplus K'$ for some submodule K' of M. Moreover, $S \subseteq K \cap N$. The proof is completed by showing that $K \cap N$ is a direct summand of N which is finitely generated.

(i)-(ii) Suppose that N is a direct summand of M. By hypothesis, $K \cap N$ is a direct summand of M and hence of K. Therefore $K \cap N$ is a finitely generated direct summand of N.

To prove (iii)-(iv), note that $N = (K \cap N) \oplus (K' \cap N)$ since N is fully invariant in M.

(iii) As N is a direct summand of $M, K \cap N$ is a direct summand of K and so $K \cap N$ is finitely generated.

(iv) Since R is right noetherian, K is a noetherian module and so $K \cap N$ is finitely generated. This proves the proposition.

Next, we will show that being simple-separable is preserved under direct sums.

Theorem 2.10. Every direct sum of simple-separable modules is simple-separable.

Proof. First note that without loss of generality, we can only prove the result for a finite direct sum of simple-separable modules. Let a module $M = M_1 \oplus M_2$ be a direct sum of simple-separable submodules M_1 and M_2 . Let S be a simple submodule of M. If $S \subseteq M_i$ for some $i \in \{1, 2\}$, then clearly S is contained in a finitely generated direct summand of M. Now suppose that $S \cap M_1 = S \cap M_2 = 0$. Then $S \oplus M_1 = M_1 \oplus [(S \oplus M_1) \cap M_2]$. Hence $(S \oplus M_1) \cap M_2$ is a simple submodule of M_2 . Since M_2 is simple-separable, there exists a finitely generated direct summand K_2 of M_2 such that $(S \oplus M_1) \cap M_2 \subseteq K_2$. Thus $S \oplus M_1 \subseteq M_1 \oplus K_2$. On the other hand, $S \oplus M_2 = [(S \oplus M_2) \cap M_1] \oplus M_2$. Hence $(S \oplus M_2) \cap M_1$ is a simple submodule of M_1 . Since M_1 is simple-separable, there exists a finitely generated direct summand K_1 of M_1 such that $(S \oplus M_2) \cap M_1 \subseteq K_1$. Thus $S \oplus M_2 \subseteq K_1 \oplus M_2$. Therefore

$$S \subseteq (S \oplus M_1) \cap (S \oplus M_2) \subseteq (M_1 \oplus K_2) \cap (K_1 \oplus M_2) = K_1 \oplus K_2.$$

Note that $K_1 \oplus K_2$ is a finitely generated direct summand of M. The result follows.

Corollary 2.11. Let N be a fully invariant direct summand of a module M. Then the following conditions are equivalent:

- (i) *M* is simple-separable;
- (ii) N and M/N are both simple-separable modules.

Proof. (i) \Rightarrow (ii) First note that N is simple-separable by Proposition 2.9(iii). To prove that M/N is simple-separable, let U be a submodule of M such that $N \subseteq U$ and U/N is simple. By hypothesis, there exists a submodule K of M such that $M = N \oplus K$. Then $U = N \oplus (U \cap K)$ and $S = U \cap K$ is simple. Since M is simple-separable, there exist submodules A and B of M such that $M = A \oplus B$, A is finitely generated and $S \subseteq A$. As N is fully invariant in M, we have

$$M/N = [(A+N)/N] \oplus [(B+N)/N].$$

Moreover, $U/N \subseteq (A+N)/N$ and $(A+N)/N \cong A/(A \cap N)$ is finitely generated. (ii) \Rightarrow (i) This follows from Theorem 2.10.

Recall that a module M is called *separable* if every finitely generated submodule of M is contained in a finitely generated direct summand of M. Next, we investigate simple-separable injective modules.

Proposition 2.12. The following are equivalent for an injective *R*-module *M*:

- (i) M is a simple-separable module;
- (ii) Either Soc(M) = 0 or E(S) is finitely generated for any simple submodule S of M.

If, moreover, R is right noetherian, then (i)-(ii) are equivalent to:

- (iii) $M = (\bigoplus_{i \in I} M_i) \oplus N$ such that each M_i is an indecomposable finitely generated submodule of M and Soc(N) = 0;
- (iv) $M = (\bigoplus_{i \in I} M_i) \oplus N$ such that each M_i is a finitely generated submodule of M and Soc(N) = 0;
- (v) $M = L \oplus N$ such that L is a separable submodule of M and Soc(N) = 0.

Proof. (i) \Rightarrow (ii) Assume that $Soc(M) \neq 0$ and let S be a simple submodule of M. By (i), there exist submodules K and K' of M such that $M = K \oplus K', S \subseteq K$ and K is finitely generated. Since K is injective, E(S) is a direct summand of K. Hence E(S) is finitely generated.

(ii) \Rightarrow (i) This is immediate.

(ii) \Rightarrow (iii) Since M is injective, there exists a submodule $N \leq M$ such that $M = E(\operatorname{Soc}(M)) \oplus N$. Set $\operatorname{Soc}(M) = \bigoplus_{i \in I} S_i$ where S_i $(i \in I)$ are simple submodules of M. Then $M = (\bigoplus_{i \in I} E(S_i)) \oplus N$ since R is right noetherian (see [1,

Proposition 18.13]). Moreover, note that each $E(S_i)$ $(i \in I)$ is a finitely generated indecomposable submodule of M and Soc(N) = 0.

(iii) \Rightarrow (iv) This is obvious.

 $(iv) \Rightarrow (v)$ This follows from the fact that any module which is a direct sum of finitely generated submodules is separable.

 $(v) \Rightarrow (i)$ This follows from Theorem 2.10.

Following Caldwell's terminology in [3], a ring R is called *hypercyclic* if each cyclic right R-module has a cyclic injective hull. It was shown in [7, Theorems 4.1 and 4.2] that any artinian principal ideal ring is hypercyclic (see also [3, Theorem 1.5]). Commutative hypercyclic rings are characterized in [3]. From Proposition 2.12, we infer that every injective module over a hypercyclic ring is simple-separable.

In the next two corollaries, we describe simple-separable injective modules over commutative domains and over right artinian rings.

Corollary 2.13. Let R be a commutative domain which is not a field. Then the following are equivalent for an injective R-module M:

- (i) *M* is a simple-separable *R*-module;
- (ii) Soc(M) = 0.

Proof. Let *E* be an injective *R*-module. It is clear that *E* is divisible and hence $\operatorname{Rad}(E) = E$.

(i) \Rightarrow (ii) Suppose that Soc(M) \neq 0. Then M contains a simple submodule S. By Proposition 2.12, E(S) is finitely generated. This contradicts the fact that E(S) has no maximal submodules (see also [11, Corollary 2]).

(ii) \Rightarrow (i) This is clear.

Corollary 2.14. Let M be an injective module over a right artinian ring R. Then the following are equivalent:

- (i) *M* is a simple-separable *R*-module;
- (ii) M is a direct sum of finitely generated submodules.

Proof. This follows from Proposition 2.12 and [22, Theorem 4.5].

As exhibited in Example 2.6, for any prime number $p, \mathbb{Z}(p^{\infty}) \cong E(\mathbb{Z}/p\mathbb{Z})$ is not simple-separable. Next, we will be concerned with the class of rings R for which every injective R-module is simple-separable.

Proposition 2.15. The following are equivalent for a ring R:

(i) Every injective R-module is simple-separable;

- (ii) E(S) is simple-separable for any simple R-module S;
- (iii) E(S) is finitely generated for any simple R-module S.

Proof. (i) \Rightarrow (ii) This is immediate.

(ii) \Rightarrow (iii) By Corollary 2.5.

(iii) \Rightarrow (i) Let M be an injective R-module and let S be a simple submodule of M. By (iii), E(S) is a finitely generated direct summand of M which contains S. Therefore M is simple-separable. This completes the proof.

Recall that a module M is said to be finitely cogenerated (or finitely embedded) if for any family of submodules $\{N_i : i \in I\}$ in M, if $\bigcap_{i \in I} N_i = 0$, then $\bigcap_{i \in J} N_i = 0$ for some finite subset $J \subseteq I$. This is equivalent to the fact that $E(M) \cong E(S_1) \oplus$ $E(S_2) \oplus \cdots \oplus E(S_k)$ for some finitely many simple modules S_1, S_2, \ldots, S_k (see [14, Proposition 19.1] and [22, p. 70]).

Corollary 2.16. Let R be a commutative noetherian local ring with maximal ideal \mathfrak{m} . Then the following are equivalent:

- (i) Every injective *R*-module is simple-separable;
- (ii) $E(R/\mathfrak{m})$ is finitely generated;
- (iii) R is an artinian ring.

Proof. (i) \Leftrightarrow (ii) This follows from Proposition 2.15.

(ii) \Rightarrow (iii) Using Proposition 2.15, we see that $E(R/\mathfrak{m})$ is finitely generated. Since R is noetherian, it follows that every finitely cogenerated R-module is finitely generated. Thus R is an artinian ring by [23, Theorem 3].

(iii) \Rightarrow (ii) This follows by using again [23, Theorem 3].

Remark 2.17. Not every two-sided artinian ring satisfies the conditions in Proposition 2.15. In fact, even a two-sided artinian ring R may have a simple right R-module S such that E(S) is not finitely generated as illustrated in an example constructed in [15, Ex. 3.34] (see also [21, Theorem 2]).

A ring R is called a left (right) π -V-ring if, for every simple left (right) Rmodule S, the injective hull E(S) is of finite length (see [12]). Note that left and right artinian PI-rings and quasi-Frobenius rings are left and right π -V-rings by [21, p. 372] (see also [20, Lemma 6 and Proposition 10]).

Example 2.18. Using Proposition 2.15, it follows that over any right π -V-ring R (e.g., we can take R to be any commutative artinian ring), every injective R-module is simple-separable.

Next, we characterize the class of rings R for which every finitely cogenerated R-module is simple-separable. First we need the following lemma.

Lemma 2.19. Let S be a simple module. Then the following are equivalent for M = E(S):

- (i) Every submodule of M is simple-separable;
- (ii) M is a noetherian module.

If, moreover, R is commutative, then (i)-(ii) are equivalent to:

(iii) M has finite length.

Proof. (i) \Rightarrow (ii) Let U be a nonzero submodule of M. Note that M is a uniform module with essential socle. Then U is indecomposable and $\text{Soc}(U) \neq 0$. Since U is simple-separable, U is finitely generated by Proposition 2.4. Therefore M is a noetherian module.

(ii) \Rightarrow (i) This is clear.

(ii) \Leftrightarrow (iii) Clearly, M is finitely cogenerated. The equivalence follows from [23, Proposition 4].

Proposition 2.20. The following statements are equivalent for a commutative ring *R*:

- (i) Every finitely cogenerated *R*-module is simple-separable;
- (ii) R is a π -V-ring;
- (iii) $R_{\mathfrak{m}}$ is an artinian ring for every maximal ideal \mathfrak{m} of R.

Proof. (i) \Rightarrow (ii) This follows by using Lemma 2.19.

(ii) \Rightarrow (iii) This follows from [21, Theorem 5].

(iii) \Rightarrow (i) Let M be a finitely cogenerated R-module. From [23, Theorem 3], we infer that M is finitely generated. Hence M is simple-separable. This completes the proof.

The next result is presumably well known but is included for completeness.

Lemma 2.21. Let R be a commutative semilocal ring such that $R_{\mathfrak{m}}$ is an artinian ring for every maximal ideal \mathfrak{m} of R. Then R is an artinian ring.

Proof. Let \mathfrak{m} be a maximal ideal of R and put $S_{\mathfrak{m}} = R \setminus \mathfrak{m}$. Let $I_1 \supseteq I_2 \supseteq \ldots$ be a descending chain of ideals of R. Since $R_{\mathfrak{m}}$ is an artinian ring, there exists an integer $n_{\mathfrak{m}} \ge 1$ such that $S_{\mathfrak{m}}^{-1}I_{n_{\mathfrak{m}}} = S_{\mathfrak{m}}^{-1}I_{n_{\mathfrak{m}}+i}$ for each $i \ge 1$. But R has only finitely many maximal ideals. So let n be the maximum of all the integers $n_{\mathfrak{m}}$'s (where \mathfrak{m} ranges over all of the maximal ideals of R). It follows that $S_{\mathfrak{m}}^{-1}I_n = S_{\mathfrak{m}}^{-1}I_{n+i}$ for every

maximal ideal \mathfrak{m} of R and all $i \geq 1$. This implies that $S_{\mathfrak{m}}^{-1}(I_n/I_{n+i}) = 0$ for every maximal ideal \mathfrak{m} of R and all $i \geq 1$. Consequently, $I_n = I_{n+i}$ for all $i \geq 1$. This shows that R is artinian.

Corollary 2.22. The following are equivalent for a commutative semilocal ring R:

- (i) Every finitely cogenerated *R*-module is simple-separable;
- (ii) R is an artinian ring.
- **Proof.** (i) \Rightarrow (ii) This is obvious by Proposition 2.20 and Lemma 2.21.
 - (ii) \Rightarrow (i) This is clear by Proposition 2.20.

In the next example we provide a module with small radical which is not simpleseparable. This example also shows that both Corollaries 2.16 and 2.22 are not true, in general, if R is not a commutative ring.

Example 2.23. Let $K = F(x_1, x_2, ...)$ with F a field. Consider the field monomorphism $\sigma : K \to K$ defined by $\sigma(x_i) = x_{i+1}$ for all i and σ is equal to the identity on F. Then $R = K \times K$ with coordinate-wise addition and multiplication $(x, y)(x', y') = (xx', xy' + \sigma(x')y)$ is a ring with identity. It is shown in [21, p. 375] that R is a local left artinian ring with maximal left ideal $L = \{0\} \times K$ such that the left R-module E(R/L) is not of finite length. This implies that E(R/L) is not finitely generated since R is left artinian. Now Proposition 2.12 shows that E(R/L) is not simple-separable. On the other hand, note that $\text{Rad}(E(R/L)) \ll E(R/L)$ by [1, Corollary 15.21].

Remark 2.24. There exist some commutative rings which satisfy the conditions in Proposition 2.15 but do not satisfy the statements in Proposition 2.20. For example, consider the ring R constructed in [3, Example p. 42]. In fact, R is a commutative local nonartinian hypercyclic ring. So every injective R-module is simple-separable by Proposition 2.12. On the other hand, it follows from Corollary 2.22 that not every finitely cogenerated R-module is simple-separable.

The following result shows that a simple-separable module M with $\operatorname{Rad}(M) = M$ contains no simple submodules.

Proposition 2.25. Let M be a nonzero module with Rad(M) = M. Then M is simple-separable if and only if Soc(M) = 0.

Proof. (\Rightarrow) Assume that $Soc(M) \neq 0$ and let S be a simple submodule of M. Since M is simple-separable, there exists a finitely generated direct summand K of M such that $S \subseteq K$ and $M = K \oplus K'$ for some submodule K' of M. Hence K contains a maximal submodule U with $S \subseteq U$. It is easily seen that $U \oplus K'$ is a maximal submodule of M, a contradiction.

 (\Leftarrow) This implication is immediate.

Let G be an abelian group. We denote the torsion subgroup of G by T(G). For any prime number p, let $T_p(G) = \{x \in G \mid p^n x = 0 \text{ for some non-negative integer } n\}$ which is a subgroup of G called the p-primary component of G. Note that if G is a torsion abelian group, then G is a direct sum of its p-primary components. An abelian group G is said to be a primary group (or p-group) if $G = T_p(G)$ for some prime p.

Let G be an abelian p-group (for some prime p), $x \in G$, and n be a non-negative integer. Then x is said to have *height* n if x is divisible by p^n but not by p^{n+1} (i.e. $x \in p^n G$ but $x \notin p^{n+1}G$). In this case, we write h(x) = n. If x is divisible by p^k for every non-negative integer k (i.e. $x \in \bigcap_{k \ge 1} p^k G$), then x is called an *element of infinite height* and we write $h(x) = \infty$. If x is an element of a subgroup U of G, then we can define two heights for x. When it is necessary, we will write $h_U(x)$ and $h_G(x)$ for the height of x in U and G, respectively. We always have $h_U(x) \le h_G(x)$.

Recall that a subgroup U of an abelian group G is called *pure* if $nU = U \cap nG$ for every non-negative integer n. An abelian group G is said to be of *bounded* if nG = 0 for some positive integer n.

In the next theorem, we determine the structure of simple-separable abelian groups. First, we give the following four lemmas. The proof of the second one is adapted from that of [13, Theorem 9] (see also [8, Corollary 27.2]).

Lemma 2.26. Let K be a finitely generated subgroup of an abelian group G with $K \subseteq T(G)$. Then K is a direct summand of T(G) if and only if K is a direct summand of G.

Proof. The sufficiency follows by modularity. Conversely, suppose that K is a direct summand of T(G). Then K is a pure subgroup of T(G) which is itself a pure subgroup of G. Thus K is pure in G. Moreover, note that K is a direct sum of a finite number of finite cyclic abelian groups since K is finitely generated and $K \subseteq T(G)$ (see [8, Theorem 15.5]). Hence K is bounded. Now using [13, Theorem 7], we conclude that K is a direct summand of G.

Lemma 2.27. Let G be an abelian group such that $\cap_{n\geq 1}p^nT_p(G) = 0$ for every prime number p. Then every simple subgroup of G is contained in a finite cyclic primary direct summand of G.

Proof. Suppose that $\operatorname{Soc}(G) \neq 0$ and let S be a simple subgroup of G. Then there exist a prime number p and $0 \neq x \in G$ such that $S = \mathbb{Z}x \cong \mathbb{Z}/p\mathbb{Z}$. Since $\bigcap_{n\geq 1}p^nT_p(G) = 0$, it follows that the subgroup $U = T_p(G)$ has no elements of infinite height. Therefore x has finite height in U. Let $h_U(x) = m$ for some nonnegative integer m. Then there exists $y \in U$ such that $x = p^m y$. Put $H = \mathbb{Z}y$. Clearly, $S \subseteq H$ and $H \cong \mathbb{Z}/p^{m+1}\mathbb{Z}$ is primary. It is easily seen that the only elements of order p in H are the multiples of x by integers prime to p. So these elements have the same height in H as in U. Thus H is a pure subgroup of U by [13, Lemma 7]. Note that $p^{m+1}H = 0$. It follows from [13, Theorem 7] that His a direct summand of U. But U is a direct summand of T(G), so H is a direct summand of T(G). From Lemma 2.26, it follows that H is a direct summand of G. This completes the proof.

Lemma 2.28. Let G be a simple-separable abelian group. Then $\cap_{n\geq 1}p^nT_p(G) = 0$ for every prime number p.

Proof. Assume that $\cap_{n\geq 1}p^n(T_p(G)) \neq 0$ for some prime number p. Then there exists in $\cap_{n\geq 1}p^n(T_p(G))$ a nonzero element x of order p. Clearly, $\mathbb{Z}x$ is a simple subgroup of G. Since G is simple-separable, there exists a decomposition $G = K \oplus L$ such that K is finitely generated and $\mathbb{Z}x \subseteq K$. Note that $\mathbb{Z}x \subseteq T_p(K)$. Moreover, since T(K) is finitely generated, there exists an integer $n \geq 1$ such that nT(K) = 0. But T(K) is a pure subgroup of K, so T(K) is a direct summand of K by [13, Theorem 7]. Note that $T_p(K)$ is a direct summand of T(K). Then $T_p(K)$ is a direct summand of K which is finitely generated. Therefore there exists an integer $s \geq 1$ such that $p^sT_p(K) = 0$. Since $x \in \bigcap_{n\geq 1}p^n(T_p(G))$, we have $x = p^sy$ for some $y \in T_p(G)$. Now, since $G = K \oplus L$, y = a + b for some $a \in K$ and $b \in L$. Clearly, $a \in T_p(K)$. Therefore $p^sa \in p^sT_p(K) = 0$ and hence $x = p^sb \in L$. But $x \in K$, so $x \in K \cap L = 0$, a contradiction.

Lemma 2.29. Let G be a torsion abelian group. Then G is separable if and only if G is simple-separable.

Proof. The necessity is obvious. Conversely, suppose that G is simple-separable and let A be a finitely generated subgroup of G. Clearly $A = \bigoplus_{i=1}^{n} T_{p_i}(A)$ for some positive integer n and distinct prime numbers p_i $(1 \le i \le n)$. Note that for every $1 \le i \le n$, $T_{p_i}(A)$ is a finitely generated subgroup of $T_{p_i}(G)$. Since each $T_{p_i}(G)$ is a fully invariant direct summand of G, it follows from Proposition 2.9 that each $T_{p_i}(G)$ is a simple-separable abelian group. Moreover, $\bigoplus_{i=1}^{n} T_{p_i}(G)$ is a direct summand of G. The proof is completed by showing that each $T_{p_i}(A)$ is contained in a finitely generated direct summand of $T_{p_i}(G)$. So there is no loss of generality in assuming that G is a p-group for some prime number p. Since A is finitely generated, A is a finite direct sum of finite cyclic subgroups. This implies that A itself is a finite group. Since G has no nonzero elements of infinite height by Lemma 2.28, it follows that the heights of the nonzero elements of A (relative to G) are bounded. Applying [8, Corollary 27.8], we see that $A \subseteq B$ for some bounded direct summand B of G. Note that B is a direct sum of finite cyclic subgroups by [8, Theorem 17.2]. Since A is finitely generated, there exist subgroups B_1 and B_2 of B such that $B = B_1 \oplus B_2$, B_1 is finitely generated and $A \subseteq B_1$. It is clear that B_1 is a direct summand of G. This finishes the proof.

The next result should be compared with [9, Proposition 65.1] which characterized reduced abelian p-groups satisfying another variation of separability.

Theorem 2.30. The following are equivalent for an abelian group G:

- (i) G is simple-separable;
- (ii) For every prime number p, ∩_{n≥1}pⁿ(T_p(G)) = 0 (i.e. T_p(G) has no nonzero elements of infinite height);
- (iii) Every simple subgroup of G is contained in a finite cyclic primary direct summand of G;
- (iv) T(G) is simple-separable;
- (v) T(G) is separable.

Proof. (i) \Rightarrow (ii) This implication is proved in Lemma 2.28.

(ii) \Rightarrow (iii) This is clear by Lemma 2.27.

(iii) \Rightarrow (iv) This follows immediately from Lemma 2.26 and the fact that a cyclic abelian group is either torsion or torsion-free.

(iv) \Rightarrow (v) This follows from Lemma 2.29.

 $(v) \Rightarrow (i)$ This is an immediate consequence of Lemma 2.26.

3. Completely simple-separable modules

Motivated by Example 2.7, we introduce the following notion.

Definition 3.1. A module M is called *completely simple-separable* if every direct summand of M is simple-separable.

Recall that a module M is called a *duo module* (resp., *weak duo module*) if every submodule (resp., every direct summand) of M is fully invariant (see for example [19]).

- **Example 3.2.** (i) It is clear that every module M with $Soc(M) \cap Rad(M) = 0$ is completely simple-separable.
 - (ii) Every finitely generated module is completely simple-separable.
 - (iii) Using Proposition 2.9(iii), we see that every simple-separable weak duo module is completely simple-separable.
 - (iv) Let R be a semiperfect ring or a simple right noetherian ring or a onesided semihereditary ring or a one-sided principal ideal ring. Then every projective R-module is a direct sum of finitely generated submodules by [18, Theorem 3] and [16, Fact 3.4, Corollary 5.5 and Proposition 6.3]. It follows that every projective R-module is completely simple-separable.

Proposition 3.3. Let R be a ring and let M be a completely simple-separable R-module. Assume that M has the ascending chain condition (ACC) on finitely generated direct summands (e.g., M is noetherian). Then $M = M_1 \oplus M_2$ is a direct sum of submodules M_1 and M_2 such that $Soc(M_1) = 0$ and M_2 is finitely generated.

Proof. Suppose, to the contrary, that the module M does not have such a decomposition. Then $\operatorname{Soc}(M) \neq 0$. Let S_1 be a simple submodule of M. Since M is simple-separable, there exists a finitely generated direct summand K_1 of M such that $S_1 \subseteq K_1$. Let N_1 be a submodule of M such that $M = K_1 \oplus N_1$. Note that N_1 is simple-separable and $\operatorname{Soc}(N_1) \neq 0$. By similar arguments as before, it follows that $N_1 = K_2 \oplus N_2$ such that K_2 is finitely generated and N_2 is a simple-separable submodule with $\operatorname{Soc}(N_2) \neq 0$. By continuing this process, we get a strictly ascending chain of finitely generated direct summands $K_1 \subsetneq K_1 \oplus K_2 \subsetneq \cdots$ of M. This contradicts our assumption.

Recall that a module M is said to have finite uniform dimension if M does not contain an infinite independent set of submodules. Dually, a module M is said to have finite hollow dimension if M does not contain an infinite coindependent family of submodules; that is, for some $n \in \mathbb{N}$, there exists an epimorphism from M to a direct sum of n nonzero modules but no epimorphism from M to a direct sum of more than n nonzero modules (see, for example [4, p. 47]).

It is well known that a module M has ACC on direct summands if and only if $S = End_R(M)$ has ACC on right direct summands if and only if S contains no infinite set of nonzero orthogonal idempotents (see e.g., [5, Lemma 3.12]). Next, we present some sufficient conditions for a module to satisfy ACC on direct summands.

Remark 3.4. Let R be a ring and let M be an R-module. Then M has the ACC on direct summands when one of the following conditions holds.

- (i) M is artinian or noetherian (see [1, Proposition 10.14]);
- (ii) M has either finite uniform dimension or finite hollow dimension (see [4, 5.3] and [14, Proposition (6.30)']);
- (iii) $End_R(M)$ is a semilocal ring (see [4, 5.3 and Corollary 18.7]).

In the following two results, we provide more examples of completely simpleseparable modules.

Proposition 3.5. Every injective simple-separable *R*-module is completely simpleseparable.

Proof. This follows directly from Proposition 2.12.

Proposition 3.6. If G is a simple-separable abelian group, then so is every subgroup of G. In particular, G is completely simple-separable.

Proof. Let G be a simple-separable abelian group. From Theorem 2.30, we see that $\bigcap_{n\geq 1}p^n(T_p(G))=0$ for all primes p. This implies that $\bigcap_{n\geq 1}p^n(T_p(N))=0$ for any subgroup N of G and for all primes p. Now the result follows by using again Theorem 2.30.

Proposition 3.7. Let M be an artinian module. Then M is completely simpleseparable if and only if M is finitely generated.

Proof. The sufficiency is clear. Conversely, assume that M is completely simpleseparable. From Proposition 3.3, we conclude that $M = M_1 \oplus M_2$ such that $Soc(M_1) = 0$ and M_2 is finitely generated. As M is artinian, $Soc(M) = Soc(M_2)$ is an essential submodule of M. This yields $M_1 = 0$. The result follows.

Proposition 3.8. Let M be a completely simple-separable module. Then any finitely generated semisimple submodule of M is contained in a finitely generated direct summand of M.

Proof. Let *n* be a positive integer. We will prove that every semisimple submodule of *M* having uniform dimension *n* is contained in a finitely generated direct summand of *M*. This is clearly true for n = 1. Now assume that $n \ge 2$ and every semisimple submodule of *M* having uniform dimension n - 1 is contained in a finitely generated direct summand of *M*. Let $U = S_1 \oplus S_2 \oplus \cdots \oplus S_n$ be a submodule of *M* which is a direct sum of *n* simple submodules S_i $(1 \le i \le n)$. By hypothesis, $S_1 \oplus S_2 \oplus \cdots \oplus S_{n-1}$ is contained in a finitely generated direct summand *K* of *M*. Hence $M = K \oplus N$ for some submodule *N* of *M*. If $S_n \subseteq K$, then

 $U \subseteq K$. Suppose now that $S_n \nsubseteq K$. In this case we have $S_n \cap K = 0$ and hence $S_n \oplus K = K \oplus [(S_n \oplus K) \cap N]$. Therefore $(S_n \oplus K) \cap N$ is a simple submodule of N. Since N is simple-separable, there exists a finitely generated direct summand L of N such that $(S_n \oplus K) \cap N \subseteq L$. Hence $U \subseteq K \oplus [(S_n \oplus K) \cap N] \subseteq K \oplus L$ and $K \oplus L$ is a finitely generated direct summand of M. This completes the proof. \Box

The following corollary is an immediate consequence of Proposition 3.8.

Corollary 3.9. If M is a completely simple-separable module such that Soc(M) is finitely generated, then $M = N \oplus K$ is a direct sum of submodules N and K such that Soc(N) = 0 and K is finitely generated.

Remark 3.10. The module M of Example 2.7 shows also that an infinite direct sum of completely simple-separable modules need not be completely simple-separable.

The next result deals with a special case of direct sums of two completely simpleseparable modules.

Proposition 3.11. Let $M = M_1 \oplus M_2$ be a direct sum of submodules M_1 and M_2 such that M_1 is completely simple-separable and M_2 is semisimple. Assume that one of the following conditions is satisfied:

- (i) M_2 is projective, or
- (ii) M₂ is finitely generated and M is a D3-module. Then M is completely simple-separable.

Proof. Note first that every direct summand of a D3-module is also a D3-module by [17, Lemma 4.7]. Thus by induction it is sufficient to prove (ii) when M_2 is a simple module. To prove the result, let N be a direct summand of M and let S be a simple submodule of N. We need only consider two cases:

Case 1: Assume that S is not contained in M_1 . Then $S \oplus M_1 = M_1 \oplus [(S \oplus M_1) \cap M_2]$ is a direct summand of M since M_2 is semisimple. Hence S is a direct summand of N.

Case 2: Assume that $S \subseteq M_1$. Then $S \subseteq N \cap M_1$. If we prove that $N \cap M_1$ is a direct summand of M, the assertion follows. Indeed, in this case $N \cap M_1$ is a direct summand of M_1 . This implies that $N \cap M_1$ is simple-separable since M_1 is completely simple-separable. Therefore there exists a finitely generated direct summand K of $N \cap M_1$ such that $S \subseteq K$. Clearly, K is a direct summand of N.

(i) Note that $N + M_1 = M_1 \oplus [(N + M_1) \cap M_2]$ and hence $N/(N \cap M_1) \cong (N + M_1)/M_1 \cong (N + M_1) \cap M_2$. Since $(N + M_1) \cap M_2$ is a direct summand of M_2 , $(N + M_1) \cap M_2$ is projective. Therefore $N \cap M_1$ is a direct summand of M.

(ii) Suppose that M_2 is a simple module. If $N \subseteq M_1$, then $N \cap M_1 = N$ is a direct summand of M. Now assume that N is not contained in M_1 . Then $N + M_1 = M$ since M_1 is a maximal submodule of M. As M is a D3-module, it follows that $N \cap M_1$ is a direct summand of M. This completes the proof. \Box

4. Strongly simple-separable modules

In this section, we introduce the following stronger form of simple-separability.

Definition 4.1. A module M is called *strongly simple-separable* if every proper simple submodule of M is contained in a proper finitely generated direct summand of M.

Note that the above notion can be considered as the "simple" version of the concept of \mathcal{A} -separable modules (see [6]).

- **Example 4.2.** (i) It is easily seen that for any finitely generated module M_1 and any nonzero module M_2 with $Soc(M_2) = 0$, the module $M = M_1 \oplus M_2$ is strongly simple-separable.
 - (ii) Every regular module M (i.e., every cyclic submodule of M is a direct summand) is strongly simple-separable. In particular, every semisimple module is strongly simple-separable.
 - (iii) If R is a right V-ring, then every R-module is strongly simple-separable since every simple R-module is injective.

Remark 4.3. If a module M is not finitely generated, then M is strongly simpleseparable if and only if M is simple-separable.

The proof of the following proposition is straightforward.

Proposition 4.4. Let *M* be an indecomposable module. Then the following conditions are equivalent:

- (i) *M* is strongly simple-separable;
- (ii) Soc(M) = 0 or M is a simple module.

Remark 4.5. Let S be a simple module. From the preceding proposition, it follows that E(S) is strongly simple-separable if and only if S is an injective module.

Next, we provide an example to show that the class of simple-separable modules and the class of strongly simple-separable modules are different.

Example 4.6. Let R be a commutative local artinian ring which is not a field. Let \mathfrak{m} be the maximal ideal of R. Clearly, R is not a V-ring and hence the R-module R/\mathfrak{m} is not injective. Note that $E(R/\mathfrak{m})$ is a finitely generated R-module by [23, Theorem 3]. Then $E(R/\mathfrak{m})$ is simple-separable. On the other hand, $E(R/\mathfrak{m})$ is not strongly simple-separable by Remark 4.5. For example, we can take the ring $R = \mathbb{Z}/p^n\mathbb{Z}$ for some prime number p and some integer $n \geq 2$. Note that in this case $S = p^{n-1}\mathbb{Z}/p^n\mathbb{Z}$ is the unique simple R-module (up to isomorphism). Moreover, E(S) = R (see [22, Theorem 6.7]).

Proposition 4.7. The following are equivalent for a ring R:

- (i) Every *R*-module is strongly simple-separable;
- (ii) Every injective *R*-module is strongly simple-separable;
- (iii) Every finitely cogenerated R-module is strongly simple-separable;
- (iv) R is a right V-ring.

Proof. This follows from Example 4.2(iii) and Remark 4.5.

In the next example, we show that the strongly simple-separable property does not always transfer from a module to each of its direct summands.

Example 4.8. (i) Let $M = \bigoplus_{i \ge 1} M_i$ be a direct sum of nonzero nonsimple indecomposable finitely generated submodules M_i $(i \ge 1)$ such that $\operatorname{Soc}(M_{i_0}) \ne 0$ for some $i_0 \ge 1$ (for example, for each $i \ge 1$, we can take M_i to be the \mathbb{Z} -module $\mathbb{Z}/p_i^{n_i}\mathbb{Z}$ where p_i is a prime number and $n_i \ge 2$ is an integer). It is clear that Mis strongly simple-separable. On the other hand, using Proposition 4.4, it follows that M_{i_0} is not strongly simple-separable.

(ii) We can also consider the module $M^{(\mathbb{N})}$ given in Example 2.7. In fact, it is easily seen that $M^{(\mathbb{N})}$ is strongly simple-separable. But $M^{(\mathbb{N})}$ has a direct summand which is not simple-separable.

Proposition 4.9. Every direct sum of strongly simple-separable modules is strongly simple-separable.

Proof. The proof can be adapted from that of Theorem 2.10 by taking into account the fact that any semisimple module is strongly simple-separable. \Box

The following corollary is a direct consequence of Proposition 4.9.

Corollary 4.10. The following conditions are equivalent for a ring R:

- (i) The R-module R_R is strongly simple-separable;
- (ii) Every free R-module is strongly simple-separable.

In the next result, we characterize finitely generated duo strongly simple-separable modules.

Proposition 4.11. Let M be a finitely generated due R-module which is not simple. Then M is strongly simple-separable if and only if Soc(M) = 0 or M is not indecomposable.

Proof. To prove the necessity, assume that $Soc(M) \neq 0$ and let S be a simple submodule of M. Since M is strongly simple-separable and $S \neq M$, there exists a finitely generated proper direct summand K of M such that $S \subseteq K$. Hence M is not indecomposable as $K \neq 0$. Conversely, suppose that $M = A \oplus B$ for some proper nonzero submodules A and B of M. Let T be a simple submodule of M. Since M is duo, T is fully invariant in M. This implies that $T = (T \cap A) \oplus (T \cap B)$. Since T is simple, we have $T \subseteq A$ or $T \subseteq B$. This proves that M is strongly simple-separable.

Recall that a ring R is called *right duo* if the right R-module R_R is duo. The next corollaries are direct consequences of Proposition 4.11.

Corollary 4.12. Let R be a right duo ring which is not a division ring. Then the R-module R_R is strongly simple-separable if and only if $Soc(R_R) = 0$ or R has at least one non-trivial idempotent element.

A prime ideal \mathfrak{p} of a commutative ring R is said to be an associated prime ideal of an R-module M provided $\mathfrak{p} = Ann_R(x)$ for some nonzero element x of M. The set of associated prime ideals of M is denoted by Ass(M).

Corollary 4.13. Let R be a commutative ring which is not a field and let Ω be the set of all maximal ideals of R. Then the R-module R is strongly simple-separable if and only if $Ass(R) \cap \Omega = \emptyset$ or R has at least one non-trivial idempotent element.

We finally give the structure of strongly simple-separable abelian groups.

Proposition 4.14. Let G be a simple-separable abelian group. Then the following conditions are equivalent:

- (i) G is strongly simple-separable;
- (ii) G is not isomorphic to Z/pⁿZ for every prime number p and any integer n ≥ 2.

Proof. (i) \Rightarrow (ii) Given a prime number p and an integer $n \geq 2$, it is clear that the indecomposable nonsimple \mathbb{Z} -module $\mathbb{Z}/p^n\mathbb{Z}$ is not strongly simple-separable since $\operatorname{Soc}(\mathbb{Z}/p^n\mathbb{Z}) \neq 0$ (see Proposition 4.4).

(ii) \Rightarrow (i) Let *G* be a simple-separable abelian group which is not isomorphic to $\mathbb{Z}/p^n\mathbb{Z}$ for every prime number *p* and any integer $n \geq 2$. If *G* contains no simple proper subgroups, then clearly *G* is strongly simple-separable. Now assume that *G* contains a simple proper subgroup *S*. Then *S* is isomorphic to $\mathbb{Z}/p_0\mathbb{Z}$ for some prime number p_0 . By Theorem 2.30, *S* is contained in a direct summand *H* of *G* with $H \cong \mathbb{Z}/p_0^k\mathbb{Z}$ for some positive integer *k*. If k = 1, then H = S and hence $H \neq G$. Moreover, if $k \geq 2$, then $H \neq G$ by (ii). This completes the proof.

Acknowledgement. The authors would like to thank the referee for the valuable suggestions and comments which improved this paper.

Declarations

Disclosure statement: The authors report that there are no competing interests to declare.

References

- F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Grad. Texts in Math., 13, Springer-Verlag, New York-Heidelberg, 1974.
- [2] R. Baer, Abelian groups without elements of finite order, Duke Math. J., 3(1) (1937), 68-122.
- [3] W. H. Caldwell, Hypercyclic rings, Pacific J. Math., 24 (1968), 29-44.
- [4] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory, Front. Math., Birkhäuser, Verlag, Basel, 2006.
- [5] R. Ech-chaouy, A. Idelhadj and R. Tribak, On coseparable and m-coseparable modules, J. Algebra Appl., 20(3) (2021), 2150031 (20 pp).
- [6] R. Ech-chaouy, A. Idelhadj and R. Tribak, On a class of separable modules, Asian-Eur. J. Math., 15(2) (2022), 2250034 (17 pp).
- [7] C. Faith, On Köthe rings, Math. Ann., 164 (1966), 207-212.
- [8] L. Fuchs, Infinite Abelian Groups, vol. I, Pure Appl. Math., 36, Academic Press, New York-London, 1970.
- [9] L. Fuchs, Infinite Abelian Groups, vol. II, Pure Appl. Math., 36, Academic Press, New York-London, 1973.

- [10] P. Griffith, Separability of torsion free groups and a problem of J. H. C. Whitehead, Illinois J. Math., 12 (1968), 654-659.
- [11] H. Harui, On injective modules, J. Math. Soc. Japan, 21 (1969), 574-583.
- [12] Y. Hirano, On injective hulls of simple modules, J. Algebra, 225(1) (2000), 299-308.
- [13] I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1969.
- [14] T. Y. Lam, Lectures on Modules and Rings, Grad. Texts in Math., 189, Springer-Verlag, New York, 1999.
- [15] T. Y. Lam, Exercises in Modules and Rings, Probl. Books in Math., Springer, New York, 2007.
- [16] W. Wm. McGovern, G. Puninski and P. Rothmaler, When every projective module is a direct sum of finitely generated modules, J. Algebra, 315(1) (2007), 454-481.
- [17] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Ser., 147, Cambridge University Press, Cambridge, 1990.
- [18] B. J. Müller, On semi-perfect rings, Illinois J. Math., 14 (1970), 464-467.
- [19] A. Ç. Özcan, A. Harmanci and P. F. Smith, *Duo modules*, Glasg. Math. J., 48(3) (2006), 533-545.
- [20] M. Rayar, On small and cosmall modules, Acta Math. Acad. Sci. Hungar., 39(4) (1982), 389-392.
- [21] A. Rosenberg and D. Zelinsky, Finiteness of the injective hull, Math. Z., 70 (1958/59/1959), 372-380.
- [22] D. W. Sharpe and P. Vámos, Injective Modules, Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge University Press, London-New York, 1972.
- [23] P. Vámos, The dual of the notion of "finitely generated", J. London Math. Soc., 43 (1968), 643-646.
- [24] H. Zöschinger, Quasi-separable und koseparable moduln über diskreten bewertungsringen, Math. Scand., 44 (1979), 17-36.

Rachid Ech-chaouy

Department of Mathematics Faculty of Sciences Abdelmalek Essaâdi University BP. 2121 Tetouan, Morocco e-mail: echaouirachid@yahoo.fr

Rachid Tribak (Corresponding Author)

Centre Régional des Métiers de l'Education et de la Formation (CRMEF-TTH)-Tanger Avenue My Abdelaziz, Souani B.P. 3117, Tangier, Morocco e-mail: tribak12@yahoo.com