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Abstract. Let R be a commutative ring without identity. The zero-divisor
graph of R, denoted by Γ(R) is a graph with vertex set Z(R)\{0} which is the
set of all nonzero zero-divisor elements of R, and two distinct vertices x and
y are adjacent if and only if xy = 0. In this paper, we characterize the rings
whose zero-divisor graphs are ring graphs and outerplanar graphs. Further, we
establish the planar index, ring index and outerplanar index of the zero-divisor
graphs of finite commutative rings without identity.
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1. Introduction

Throughout this paper, R is a finite commutative ring without identity. Let
Z(R) be the set of all zero-divisors and Z(R)∗ = Z(R) \ {0}. In [6], Beck defined
a simple graph from commutative rings, the vertex set of that graph is formed by
all the elements of a commutative ring R and two vertices x and y are adjacent if
and only if xy = 0. In [3], Anderson and Livingston modified that graph structure
and named it the zero-divisor graph Γ(R) of R whose vertex set is Z(R)∗ and two
distinct vertices x and y are adjacent if and only if xy = 0 for commutative rings.
In [2], Anderson and Weber studied the zero-divisor graph of a commutative ring
without identity.

Kuzmina and Maltsev characterized the planar zero-divisor graphs of nilpotent
rings and non-nilpotent rings, in [11] and [12], respectively. In [4], Barati gave a
full characterization of zero-divisor graphs associated to finite commutative rings
with identity with respect to their planar index and outerplanar index.

A ring R is called local if it has a unique maximal ideal. If R is a non local
commutative ring with identity, then Z(R) need not be an ideal. For every com-
mutative ring without identity, Z(R) = R, Z(R) is an ideal. Therefore, if we focus
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the study of zero divisor graphs of commutative ring without identity, then it re-
veals the properties of commutative ring without identity. Thus, the zero-divisor
graph of commutative rings without identity is a unique structure than commu-
tative rings with identity. Moreover, we obtain the planar index, ring index and
outerplanar index of the zero-divisor graphs of finite commutative rings without
identity.

2. Preliminaries

Let G be a graph with n vertices and m edges. A chord is an edge joining any
two non-adjacent vertices in a cycle. A primitive cycle is a cycle without chords.
The free rank of G is the number of primitive cycles of G and it is denoted by
frank(G). The cycle rank of G is defined as rank(G) = m − n + r where r is the
number of connected components of G. Note that the cycle rank is the dimension
of the cycle space of G and it satisfies the inequality rank(G) ≤ frank(G). The
family of graphs satisfying that rank(G) = frank(G) is called ring graphs.

The line graph of G (denoted by L(G)) is a graph whose vertex set consists of the
set of all edges of G and two vertices of L(G) are adjacent if the corresponding edges
of G are adjacent. The kth iterated line graph of G (denoted by Lk(G)) is defined
as Lk(G) = L(Lk−1(G)), for every positive integer k. In particular, L0(G) = G and
L1(G) = L(G). Kn and Pn denote the complete graph and the path of n vertices,
respectively. A set of vertices of the graph G is called an independent set if no two
vertices in the set are adjacent to each other. The join of two graphs G1 = (V1, E1)

and G2 = (V2, E2) is a graph G1 +G2 whose vertex set is V1 ∪ V2 and whose edge
set contains the edges joining every vertex from V1 to every vertex in V2. A vertex
v is said to be a cut vertex if removal of the vertex v disconnects the graph G.

For a class of graphs G, the graph G is said to be a forbidden subgraph for G if
no member of G has G as an induced subgraph. We can say that G is a minimal
forbidden subgraph for G if it is a forbidden subgraph for G but none of its proper
induced subgraphs are forbidden subgraphs.

For a graph G, the genus of G is the minimum positive integer n such that G can
be embedded in the surface Sn without edge crossings and it is denoted by g(G).

If a graph G can be embedded in the plane without edge crossings, then it is called
planar, i.e., g(G) = 0. If g(G) ̸= 0, then the graph G is non planar. An outerplanar
graph is a graph that can be embedded in the plane such that all vertices lie on the
outer face of the drawing; otherwise, the graph is non-outerplanar.
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The ring index of a graph G is the smallest integer k such that the kth iterated
line graph of G is not a ring graph and it is denoted by γr(G). The planar index of
a graph G is defined as the smallest k such that Lk(G) is non-planar. We denote
the planar index of G by γp(G). The outerplanar index of a graph G is the smallest
integer k such that the kth iterated line graph of G is non-outerplanar and it is
denoted by γo(G). If Lk(G) is outerplanar (respectively, ring graph or planar) for
all k ≥ 0, we define γo(G) = ∞ (respectively, γr(G) = ∞ or γp(G) = ∞).

Remark 2.1. In [10], I. Gitler et al. proved the relationship between outerplanar
graph, ring graph and planar graph as follows:

outerplanar ⇒ ring graph⇒ planar

(i.e. γo(G) ≤ γr(G) ≤ γp(G)).

In the literature, the notations for the commutative rings without identity are
used in many ways. In this paper, we follow the notations used by Anderson
and Weber in [2]. With respect to isomorphism, we identify the notations of the
commutative rings without identity used in [2] and [11] as follow: N0,2

∼= Z0
2,

N0,3
∼= Z0

3, N0,4
∼= Z0

4, N0,5
∼= Z0

5, N2,2
∼= xZ2[x]

x3Z2[x]
, N3,3

∼= xZ3[x]
x3Z3[x]

, N4
∼= xZ[x]

<4x,x2−2x> ,

N9
∼= xZ[x]

<9x,x2−3x> and N2,4
∼= xZ[x]

<8x,x2−2x> . We denote the ring of integers modulo
n by Zn and Z0

q is the ring with additive group (Zq,+q) and trivial multiplication
(i.e. ab = 0 for all a, b ∈ Zq). The following notations are useful for further reading
of this paper.

Q1 = < a, b | 4a = 0, 2b = 0, a2 = b, ab = ba = 2a, b2 = 0 >;

Q2 = < a, b | 4a = 0, 2b = 0, a2 = 0, ab = ba = 2a, b2 = 0 >;

Q3 = < a, b | 4a = 0, 2b = 0, a2 = 2a, ab = ba = 2a, b2 = 0 >;

Q4 = < a, b | 4a = 0, 2b = 0, a2 = 2a, ab = ba = 0, b2 = 2a >;

Q5 = < a, b, c | 2a = 2b = 2c = 0, a2 = b, b2 = 0, ab = c, c2 = 0 >;

Q6 = < a, b, c | 2a = 2b = 2c = 0, a2 = b2 = 0, ab = −ba = c,

ac = ca = bc = cb = c2 = 0 >;

Q7 = < a, b, c | 2a = 2b = 2c = 0, a2 = c, ab = ba = 0, b2 = c,

ac = ca = bc = cb = c2 = 0 > .

Remark 2.2. The characterization for planar zero-divisor graphs from all finite
rings were obtained in [11, Theorem 3.1] and [12, Theorem 1 and 2]. In this
characterization, we have exactly 24 (17 from Theorem 3.1 in [11] and 7 from
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Theorem 2 in [12]) non-isomorphic (up to isomorphism) commutative rings without
identity whose zero-divisor graphs are planar.

We have restated the notations and combined the results from Theorem 3.1 in
[11] and Theorem 2 in [12] with the restriction that rings are commutative without
identity. From these evidence, we get the following theorem.

Theorem 2.3. Let R be a finite commutative ring without identity and let Fpn be
a finite field with pn elements where p is a prime. Then Γ(R) is planar if and only
if R is isomorphic to one of the following rings:

Z0
2×Z2×Z2, Z0

2×Fpn , Z0
3×Fpn , Z0

2×Z4, Z0
2×

Z2[x]
<x2> , Z2× xZ[x]

<4x,x2−2x> , Z2× xZ2[x]
x3Z2[x]

,

Z0
2 × Z0

2, Z0
2, Z0

3, Z0
4, Z0

5,
xZ2[x]
x3Z2[x]

, xZ3[x]
x3Z3[x]

, xZ[x]
<4x,x2−2x> ,

xZ[x]
<9x,x2−3x> ,

xZ[x]
<8x,x2−2x> , Qi

where 1 ≤ i ≤ 7.

Let q be a prime number. Consider the ring R = Z0
q ×Fpn . Note that Z(R) = R.

Further, the subgraph of Γ(R) induced by (Z0
q)

∗ × {0} is Kq−1 and the subset
R \ (Z0

q × {0}) with (pn − 1)q elements induces an independent set in Γ(R). Also
every element in (Z0

q)
∗ × {0} is adjacent with every element in R \ (Z0

q × {0}) in
Γ(R). Hence we have the following lemma, which gives the structure of Γ(Z0

q×Fpn).

Lemma 2.4. Let p and q be prime numbers and R = Z0
q × Fpn . Then Γ(R) ∼=

Kq−1 +K(pn−1)q.

Lemma 2.5. Let R1 and R2 be finite commutative rings. If Γ(R1) ∼= Γ(R2), then
Γ(S ×R1) ∼= Γ(S ×R2) for any commutative ring S.

Proof. Let ψ : Γ(R1) → Γ(R2) be a graph isomorphism. Let S be a commutative
ring. Consider ϕ : Γ(S × R1) → Γ(S × R2) defined by ϕ((a, b)) = (a, ψ(b)). Let
(a, b) and (c, d) be two nonzero elements in S × R1 which are adjacent in Γ(S ×
R1). From this (ac, bd) = (0, 0) and so ψ(bd) = ψ(b)ψ(d) = 0. Now ϕ((ac, bd)) =

(ac, ψ(bd)) = (ac, ψ(b)ψ(d)) = (0, 0) and so (a, ψ(b))(c, ψ(d)) = (0, 0). Therefore,
ϕ((a, b))ϕ((c, d)) = (0, 0) and so ϕ((a, b)) and ϕ((c, d)) are adjacent in Γ(S × R2).

Similarly one can observe that ϕ((a, b)) and ϕ((c, d)) are not adjacent in Γ(S×R1)

whenever (a, b) and (c, d) are not adjacent in Γ(S × R1). Since ψ is bijective, ϕ is
bijective and so ϕ is a graph isomorphism. □

The following is useful in the sequel of the paper.

Corollary 2.6. Assume that R1 and R2 are finite commutative rings. If Γ(R1) ∼=
Γ(R2), then g(Γ(S ×R1)) = g(Γ(S ×R2)) for any commutative ring S.
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3. The planar index of zero-divisor graphs

In [8], Ghebleh and Khatirinejad characterized connected graphs with respect to
their planar index.

Theorem 3.1. [8, Theorem 10] Let G be a connected graph. Then:

(a) γp(G) = 0 if and only if G is non-planar;
(b) γp(G) = ∞ if and only if G is either a path, a cycle, or K1,3;

(c) γp(G) = 1 if and only if G is planar and either ∆(G) ≥ 5 or G has a vertex
of degree 4 which is not a cut-vertex;

(d) γp(G) = 2 if and only if L(G) is planar and G contains one of the graphs
Hi in Figure 1 as a subgraph;

(e) γp(G) = 4 if and only if G is one of the graphs Xk or Yk (Figure 1) for
some k ≥ 2;

(f) γp(G) = 3 otherwise.
bc
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Figure 1

In [11] and [12], Kuzmina studied planarity for all finite rings. Specially, the
planarity of zero divisor graphs with non zero identity was studied in [7] and ac-
cording to these results, the planar index and outerplanar index of these graphs
were studied in [4]. In this section, we characterize all zero divisor graphs with
respect to the planar index when R is a commutative ring without identity.

Theorem 3.2. Let R be a finite commutative ring without identity. Then

(1) γp(Γ(R)) = ∞ if and only if R is isomorphic to one of the following rings:
(a) Z0

2 × Z0
2, Z0

2 × Z2;
(b) Z0

2, Z0
3, Z0

4,
xZ[x]

<4x,x2−2x> ,
xZ2[x]
x3Z2[x]

;
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(2) γp(Γ(R)) = 1 if and only if R is isomorphic to one of the following rings:
(a) Z0

2 × Z2 × Z2;

(b) Z0
2×Fpn with pn ≥ 4, Z0

3×Fpn , Z0
2×Z4, Z0

2×
Z2[x]
<x2> , Z2× xZ[x]

<4x,x2−2x> ,

Z2 × xZ2[x]
x3Z2[x]

;
(c) xZ[x]

<9x,x2−3x> ,
xZ3[x]
x3Z3[x]

, xZ[x]
<8x,x2−2x> , Qi where 1 ≤ i ≤ 7;

(3) γp(Γ(R)) = 2 if and only if R is isomorphic to Z0
5;

(4) γp(Γ(R)) = 3 if and only if R is isomorphic to Z0
2 × Z3;

(5) γp(Γ(R)) = 0 otherwise.

Proof. For a non planar graph, the planar index is 0 because of Theorem 3.1.
Therefore, we should focused on the case Γ(R) is planar. Let R be a finite commu-
tative ring without identity. Then R ∼= R1 × R2 × · · · × Rn and Ri’s are indecom-
posable rings for all i such that 1 ≤ i ≤ n. By Theorem 2.3, it is enough to consider
n ≤ 3.

Case 1. Suppose n = 3. By Theorem 2.3, Γ(R1×R2×R3) is planar if and only
if R ∼= Z0

2 × Z2 × Z2. By Figure 2, ∆(Γ(Z0
2 × Z2 × Z2)) = 6. By Theorem 3.1, we

have γp(Γ(Z0
2 × Z2 × Z2)) = 1.

bc bc bc bc

bc

bc bc

(1,0,1) (1,1,0)(0,1,0) (0,0,1)

(1,0,0)

(1,1,1)(0,1,1)

Figure 2. Γ(Z0
2 × Z2 × Z2)

Case 2. Suppose n = 2. By Theorem 2.3, Γ(R1 × R2) is planar if and only
if R is isomorphic to one of the following rings: Z0

2 × Z0
2, Z0

2 × Fpn , Z0
3 × Fpn ,

Z2 × xZ[x]
<4x,x2−2x> , Z2 × xZ2[x]

x3Z2[x]
, Z0

2 × Z4, Z0
2 ×

Z2[x]
<x2> .

Suppose R ∼= Z0
2 ×Z0

2. The products of trivial multiplication yields that Γ(R) ∼=
K3. Now, by Theorem 3.1, we get that γp(Γ(Z0

2 × Z0
2)) = ∞.

For R ∼= Z0
2 × Fpn , by Lemma 2.4, we have Γ(Z0

2 × Fpn) ∼= K1,2pn−2. If pn ≥ 4,

then ∆(Γ(Z0
2 × Fpn)) ≥ 6. By Theorem 3.1, we have γp(Γ(Z0

2 × Fpn)) = 1 where
pn ≥ 4. If pn = 3, then Γ(Z0

2 × Z3) ∼= K1,4. Since the line graph of any star
graph is complete, we have L(Γ(Z0

2 × Z3)) ∼= K4 which is planar and H2 is a
subgraph of L(Γ(Z0

2×Z3)). By Theorem 3.1, γp(L(Γ(Z0
2×Z3))) = 2. It implies that
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γp(Γ(Z0
2 × Z3)) = 3. Suppose pn = 2. Then R ∼= Z0

2 × Z2. By Lemma 2.4, Γ(R) is
isomorphic to K1,2. Since it is a path, we have γp(Γ(Z0

2 × Z2)) = ∞.

Suppose R ∼= Z0
3 × Fpn . By Lemma 2.4, we have Γ(Z0

3 × Fpn) ∼= K2 +K3pn−3.

Suppose pn ≥ 3. It is easy to see that the graph Γ(Z0
3 × Fpn) is planar and ∆(Z0

3 ×
Fpn) ≥ 6. By Theorem 3.1, γp(Γ(Z0

3 × Fpn)) = 1 for pn ≥ 3. Suppose pn = 2 and
R ∼= Z0

3 × Z2. By Lemma 2.4, Γ(R) is isomorphic to K2 +K3. It is a planar graph
and it has two vertices of degree 4 which are not cut vertices. By Theorem 3.1,
γp(Γ(Z0

3 × Z2)) = 1.

It is not hard to see that

Γ(Z0
2 × Z2) ∼= Γ( xZ[x]

<4x,x2−2x> ) ∼= Γ( xZ2[x]
x3Z2[x]

).

By Corollary 2.6, we have that Γ(Z0
2 × Z2 × Z2) ∼= Γ(Z2 × Z0

2 × Z2) ∼= Γ
(
Z2 ×

xZ[x]
<4x,x2−2x>

) ∼= Γ
(
Z2 × xZ2[x]

x3Z2[x]

)
. We already proved that γp(Γ(Z0

2 × Z2 × Z2)) = 1.

Therefore,

γp(Γ
(
Z2 × xZ[x]

<4x,x2−2x>

)
) = γp(Γ

(
Z2 × xZ2[x]

x3Z2[x]

)
) = 1.

Assume that R is isomorphic to anyone of Z0
2 × Z4 or Z0

2 ×
Z2[x]
<x2> . Then Γ(R) is

isomorphic to G1 represented in Figure 3.

bc

bc

bc

bc

bc

bc

bc

Figure 3. The graph G1

The degree of the vertex (1, 0) in the graphs Γ
(
Z0
2 ×Z4

)
and Γ

(
Z0
2 ×

Z2[x]
<x2>

)
is 6.

By Theorem 3.1, we have

γp(Γ(Z0
2 × Z4)) = γp(Γ

(
Z0
2 ×

Z2[x]
<x2>

)
) = 1.

Case 3. Suppose n = 1. Since Γ(R) is planar, by Theorem 2.3, R is isomorphic
to one of the following rings: Z0

2, Z0
3, Z0

4, Z0
5,

xZ[x]
<4x,x2−2x> ,

xZ2[x]
x3Z2[x]

, xZ[x]
<9x,x2−3x> ,

xZ3[x]
x3Z3[x]

, xZ[x]
<8x,x2−2x> , Qi where 1 ≤ i ≤ 7.
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bcbc

bc

bcbc

bc
2x

3xx x x+ x2

x2

Figure 4(a). Γ( xZ[x]
<4x,x2−2x> ) Figure 4(b). Γ( xZ2[x]

x3Z2[x]
)

Suppose R is isomorphic to either Z0
2 or Z0

3 or Z0
4 or xZ[x]

<4x,x2−2x> or xZ2[x]
x3Z2[x]

.

The rings Z0
2, Z0

3 and Z0
4 have the zero-divisor graphs K1, K2 and K3 respectively.

Moreover, by Figure 4(a) and 4(b), we have that

Γ( xZ[x]
<4x,x2−2x> ) ∼= Γ( xZ2[x]

x3Z2[x]
) ∼= K1,2.

So, by Theorem 3.1, we can conclude that γp(Γ(R)) = ∞.
If R ∼= Z0

5, then Γ(Z0
5)

∼= K4. By Theorem 3.1, we have γp(Γ(Z0
5)) = 2.

bc

bc

bc

bc

bc

bc

bc

4x

3x2x

x

5x6x

7x

Figure 5. Γ( xZ[x]
<8x,x2−2x> )

Suppose that R is isomorphic to either xZ[x]
<8x,x2−2x> or Qi for all i, 1 ≤ i ≤ 7.

Note that, Γ(Q1), Γ(Q2), Γ(Q3), Γ(Q4), Γ(Q5), Γ(Q6) and Γ(Q7) are illustrated
in Figures 1.B, 2.A, 2.B, 3.A, 3.B, 4.A and 4.B of [11], respectively. From these
Figures 1.B to 4.B and by Figure 5, one can easily check that ∆(Γ(R)) = 6 and
Γ(R) is planar. By Theorem 3.1, γp(Γ(R)) = 1.
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7x

8x

x+ x2

2x+ x2
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x+ 2x2

2x2

2x+ 2x2

x2

x
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Figure 6(a). Γ( xZ[x]
<9x,x2−3x> ) Figure 6(b). Γ( xZ3[x]

x3Z3[x]
)

Suppose R is isomorphic to either xZ[x]
<9x,x2−3x> or xZ3[x]

x3Z3[x]
. By Figures 6(a) and

6(b), Γ(R) ∼= K2 + K6. Clearly, Γ
( xZ[x]
<9x,x2−3x>

)
and Γ

( xZ3[x]
x3Z3[x]

)
are planar and

∆
(
Γ
( xZ[x]
<9x,x2−3x>

))
= ∆

(
Γ
( xZ3[x]
x3Z3[x]

))
= 6. By Theorem 3.1, we get that

γp
(
Γ
( xZ[x]
<9x,x2−3x>

))
= γp

(
Γ
( xZ3[x]
x3Z3[x]

))
= 1. □

4. The ring index and outerplanar index of zero-divisor graphs

In this section, we characterize the rings whose zero-divisor graphs are either
ring graphs or outerplanar graphs. Further, we give a full characterization of zero-
divisor graphs with respect to their ring index and outerplanar index when R is a
commutative ring without identity. In [9], Gitler et al. characterized the forbidden
induced subgraphs for the family of ring graphs. We need some definitions to use
their theorem.

Definition 4.1. (a) A prism is a graph consisting of two vertex-disjoint triangles
C1 = (x1, x2, x3, x1) and C2 = (y1, y2, y3, y1), and three paths P1, P2 and P3 pair-
wise vertex-disjoint, such that each Pi is a path between xi and yi for i = 1, 2, 3

and the subgraph induced by V (Pi) ∪ V (Pj) is a cycle for 1 ≤ i < j ≤ 3 (Figure
7a).

(b) A pyramid is a graph consisting of a vertex w, a triangle C = (z1, z2,

z3, z1), and three paths P1, P2 and P3 such that Pi is between w and zi for i = 1, 2, 3;
V (Pi) ∩ V (Pj) = w and the subgraph induced by V (Pi) ∪ V (Pj) is a cycle for
1 ≤ i < j ≤ 3 and at least one of the P1, P2, P3 has at least two edges (Figure 7b).
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(c) A theta is a graph consisting of two non adjacent vertices x and y, and three
paths P1, P2 and P3 with ends x and y, such that the union of every two of P1, P2

and P3 is an induced cycle (Figure 7c).
(d) A partial wheel is a graph consisting of a cycle C and a vertex z disjoint

from C such that z is adjacent to some vertices of C. The cycle C is called the rim
of W and z is called the center of W. A partial wheel T with rim C and center z is
called a θ−partial wheel if |V (C)| ≥ 4 and there exist two non adjacent vertices in
V (C) ∩NT (z) (Figure 7d).
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Figure 7

Theorem 4.2. [9, Corollary 4.13] The minimal forbidden induced subgraphs for
ring graphs are: prisms, pyramids, theta graphs, θ−partial wheels and K4.

Let d1, d2, . . . , dt are positive integers with n ⪈ d1 + d2 + · · · + dt. We define
I(d1, d2, . . . , dt) as the tree obtained from Pn by adding a leaf to each vertex of Pn

that is at in distance of d1, d1 + d2, . . . , d1 + d2 + · · · + dt (as in Figure 8). In [5],
Barati completely characterized the graphs with respect to their ring index. It can
be recalled in the following theorem.

Theorem 4.3. [5, Theorem 1.3] Let G be a connected graph. Then:

(a) γr(G) = 0 if and only if G is not a ring graph if and only if it has an
induced subgraph which is prism, pyramid, theta graph, θ-partial wheel or
K4;

(b) γr(G) = ∞ if and only if G is either a path, a cycle, or K1,3;

(c) γr(G) = 1 if and only if G is a ring graph and G has a subgraph homeo-
morphic to K1,4 or K1 + P3 in Figure 8;

(d) γr(G) = 2 if and only if L(G) is ring graph and G has a subgraph isomorphic
to one of the graphs G2 or G3 in Figure 8;
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(e) γr(G) = 3 if and only if G ∈ I(d1, d2, . . . , dt) where di ≥ 2 for i = 2, . . . , t−
1, and d1 ≥ 1 (Figure 8).

d1 + d2 + · · ·+ dtd1 + d2 + d3d1 + d2d1

bcbcbcbc

bc bcbcbcbcbcbcbcbcbcbcbcbcbcbc

bce

k ≥ 3
Ck

G3

bc

e

G2
bcbc

bc

bc

bcbc

K1 + P3

bcbc

bc

bc

bc

Figure 8
In [13], Lin et al. studied the outerplanarity of the iterated line graphs and they
characterized all graphs with respect to their outerplanar index. Their theorem is
recalled in the following theorem which is useful for further reading of this paper.

Theorem 4.4. [13, Theorem 3.4] Let G be a connected graph. Then:

(a) γo(G) = 0 if and only if G is non-outerplanar;
(b) γo(G) = ∞ if and only if G is either a path, a cycle, or K1,3;

(c) γo(G) = 1 if and only if G is planar and G has a subgraph homeomorphic
to K2,3, K1,4 or K1 + P3 in Figure 8;

(d) γo(G) = 2 if and only if L(G) is planar and G has a subgraph isomorphic
to one of the graphs G2 or G3 in Figure 8;

(e) γo(G) = 3 if and only if G ∈ I(d1, d2, . . . , dt) where di ≥ 2 for i = 2, . . . , t−
1, and d1 ≥ 1 (Figure 8).

In [1], Afkhami classified all finite commutative rings with identity whose zero-
divisor graphs are ring graphs and outerplanar graphs. In the following theorems,
we classify all finite commutative rings without identity whose zero-divisor graphs
are ring graphs and outerplanar graphs.

Theorem 4.5. Let R be a finite commutative ring without identity. Then Γ(R) is
a ring graph if and only if R is isomorphic to one of the following rings:

Z0
2×Z0

2, Z0
2×Fpn , Z0

3×Fpn , Z0
2×Z4, Z0

2×
Z2[x]
<x2> , Z0

2, Z0
3, Z0

4,
xZ2[x]
x3Z2[x]

, xZ[x]
<4x,x2−2x> ,

xZ3[x]
x3Z3[x]

, xZ[x]
<9x,x2−3x> ,

xZ[x]
<8x,x2−2x> , Q1, Q2, Q5, Q6.
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Proof. Let R ∼= R1 ×R2 × · · · × Rn. We assume that Γ(R) is a ring graph. Since
every ring graph is planar, by Theorem 2.3, it is enough to consider n ≤ 3.

Case 1. Assume that n = 3 and R ∼= R1 ×R2 ×R3. So R ∼= Z0
2 × Z2 × Z2. Let

S = {(1, 0, 1), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 0)}. Now, by Figure 2, it is easy to see
that the induced subgraph of the graph Γ(Z0

2 ×Z2 ×Z2) by the set S is isomorphic
to a θ-partial wheel. By Theorem 4.2, Γ(Z0

2 × Z2 × Z2) is not a ring graph.
Case 2. Assume that n = 2 and R is isomorphic to one of the following rings:

Z0
2 × Z0

2, Z0
2 × Fpn , Z0

3 × Fpn , Z0
2 × Z4, Z0

2 ×
Z2[x]
<x2> .

Suppose R ∼= Z0
2×Z0

2. Since the multiplication of R is trivial, Γ(R) is isomorphic
to K3. By Theorem 4.2, Γ(R) is a ring graph.

By Lemma 2.4, the graph Γ(Z0
2 × Fpn) ∼= K1 + K2pn−2 and Γ(Z0

3 × Fpn) ∼=
K2+K3pn−3. Since Γ(Z0

2×Fpn) is a star graph, we can deduce that Γ(Z0
2×Fpn) is a

ring graph. Also, it is not hard to see that rank(Γ(Z0
3×Fpn)) = frank(Γ(Z0

3×Fpn)) =

3pn − 3. So, the graph Γ(Z0
3 × Fpn) is a ring graph.

Suppose R ∼= Z0
2 × Z4. Then Γ(R) is isomorphic to G1 in Figure 2 and so

rank(Γ(R)) = frank(Γ(R)) = 1. Therefore Γ(Z0
2×Z4) is a ring graph. Since Γ(Z4) ∼=

Γ( Z2[x]
<x2> ), by Corollary 2.6, we get Γ(Z0

2 × Z4) ∼= Γ(Z0
2 ×

Z2[x]
<x2> ). This implies that

Γ(Z0
2 ×

Z2[x]
<x2> ) is a ring graph.

We know that Γ(Z0
2 × Z2) ∼= Γ( xZ[x]

<4x,x2−2x> ) ∼= Γ( xZ2[x]
x3Z2[x]

). Now, by Corollary
2.6, Γ(Z0

2 × Z2 × Z2) ∼= Γ(Z2 × Z0
2 × Z2) ∼= Γ

(
Z2 × xZ[x]

<4x,x2−2x>

) ∼= Γ
(
Z2 × xZ2[x]

x3Z2[x]

)
.

Since Γ(Z0
2 ×Z2 ×Z2) is not a ring graph, we can conclude that the graphs Γ(Z2 ×

xZ[x]
<4x,x2−2x> ) and Γ(Z2 × xZ2[x]

x3Z2[x]
) are not ring graphs.

Case 3. Assume that n = 1 and R is isomorphic to one of the following rings:
Z0
2, Z0

3, Z0
4, Z0

5,
xZ2[x]
x3Z2[x]

, xZ[x]
<4x,x2−2x> ,

xZ3[x]
x3Z3[x]

, xZ[x]
<9x,x2−3x> ,

xZ[x]
<8x,x2−2x> , Q1, Q2, Q3,

Q4, Q5, Q6, Q7.
Since Γ(Z0

n)
∼= Kn−1, by Theorem 4.2, the graphs Γ(Z0

2), Γ(Z0
3), Γ(Z0

4) are ring
graphs and the graph Γ(Z0

5) is not a ring graph.
If R is isomorphic to either xZ2[x]

x3Z2[x]
or xZ[x]

<4x,x2−2x> , then by Figure 4(a) and 4(b),
Γ(R) is isomorphic to P3. Therefore rank(Γ(R)) = 0 = frank(Γ(R)). So the graphs
Γ( xZ2[x]

x3Z2[x]
) and Γ( xZ[x]

<4x,x2−2x> ) are ring graphs.
Suppose R is isomorphic to either xZ3[x]

x3Z3[x]
or xZ[x]

<9x,x2−3x> . By Figure 6(a) and
6(b), rank(Γ(R)) = 6 = frank(Γ(R)). Therefore Γ( xZ3[x]

x3Z3[x]
) and Γ( xZ[x]

<9x,x2−3x> ) are
ring graphs.

The zero-divisor graph of the rings xZ[x]
<8x,x2−2x> , Q1 and Q5 are isomorphic to the

graph given in Figure 5 and Figures 1.B, 3.B of [11]. Note that rank and frank of
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this graph is the same and both of them are equal to 1. So, these graphs are ring
graphs.

Suppose R is isomorphic to either Q2 or Q6. By Figure 2.A and 4.A of [11], we
have rank(Γ(R)) = 3 = frank(Γ(R)). Hence Γ(Q2) and Γ(Q6) are ring graphs.

Suppose R is isomorphic to either Q3 or Q4 or Q7. By Figure 2.B, 3.A and
4.B of [11], the graphs Γ(Q3), Γ(Q4) and Γ(Q7) are isomorphic. Now, by setting
S = {a, 2a, 3a, a+ b, 3a+ b}, it is easy to see that the induced subgraph by the set
S in the graph Γ(Q3) is a θ-partial wheel. So, the graphs Γ(Q3), Γ(Q4) and Γ(Q7)

are not ring graphs.
By the above arguments and by Theorem 2.3, the result holds. □

Theorem 4.6. Let R be a commutative ring without identity. Then Γ(R) is an
outerplanar graph if and only if R is isomorphic to one of the following:

Z0
2×Z0

2, Z0
2×Fpn , Z0

2×Z4, Z0
2×

Z2[x]
<x2> Z0

2, Z0
3, Z0

4,
xZ2[x]
x3Z2[x]

, xZ[x]
<4x,x2−2x> ,

xZ[x]
<8x,x2−2x> ,

Q1, Q2, Q5, Q6.

Proof. Since every outerplanar graph is a ring graph, it is enough to consider
the rings in Theorem 2.3 whose zero-divisor graphs are ring graphs. By similar
arguments used in Theorem 4.5, we can verify that the zero-divisor graphs of the
rings Z0

2 × Z0
2, Z0

2 × Fpn , Z0
2 × Z4, Z0

2 ×
Z2[x]
<x2> Z0

2, Z0
2, Z0

3, Z0
4,

xZ2[x]
x3Z2[x]

, xZ[x]
<4x,x2−2x> ,

xZ[x]
<8x,x2−2x> , Q1, Q2, Q5 and Q6 are outerplanar. Also, if R is isomorphic to either
xZ3[x]
x3Z3[x]

or xZ[x]
<9x,x2−3x> , then by Figures 7(a) and 7(b), Γ(R) contains K2,3 as a

subgraph. Also, since Γ(Z0
3 × Fpn) ∼= K2 + K3pn−3, the graph Γ(Z0

3 × Fpn) has
a copy of the graph K2,3, too. So, we can deduce that the graphs Γ( xZ3[x]

x3Z3[x]
),

Γ( xZ[x]
<9x,x2−3x> ) and Γ(Z0

3 × Fpn) are not outerplanar graphs. □

In the rest of this section, we study the ring index and outerplanar index of the
zero divisor graphs of commutative rings without identity. By Corollary 3.8 and
Proposition 3.9 of [5], we conclude that the outerplanar index and ring index are
the same when they are equal to 2,3 or ∞. From this classification, we get the
following theorem.

Theorem 4.7. Let R be a finite commutative ring without identity. Then

(a) γr(Γ(R)) = ∞ if and only if R is isomorphic to one of the following:
Z0
2 × Z2, Z0

2 × Z0
2, Z0

2, Z0
3, Z0

4,
xZ[x]

<4x,x2−2x> ,
xZ2[x]
x3Z2[x]

;

(b) γr(Γ(R)) = 1 if and only if R is isomorphic to one of the following: Z0
2×Fpn

where pn ≥ 3, Z0
3×Fpn , Z0

2×Z4, Z0
2×

Z2[x]
<x2> ,

xZ3[x]
x3Z3[x]

, xZ[x]
<9x,x2−3x> ,

xZ[x]
<8x,x2−2x> ,

Q1, Q2, Q5, Q6;

(c) γr(Γ(R)) = 0 otherwise.
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Proof. Let R ∼= R1×R2×· · ·×Rn. Since the planar index of a non planar graph is
0, we should focused on the case, Γ(R) is planar. For any graph G, by Remark 2.1,
γr(G) ≤ γp(G) together with Theorems 3.2 and Theorem 4.5, would prove assertion
(b). So, it is enough to focus on the proof of assertion (a). By Theorem 4.5, we
have the following cases.

Case 1. Suppose n = 2. Then R is isomorphic to one of the following rings:
Z0
2 × Z0

2, Z0
2 × Z2.

If R ∼= Z0
2 × Z0

2, then Γ(R) ∼= K3. By Theorem 4.3, γr(Γ(R)) = ∞.

Now, suppose R ∼= Z0
2×Fpn . By Lemma 2.4, Γ(R) is isomorphic to K1+K2pn−2.

Therefore if pn = 2, then γr(Γ(Z0
2 × Z2)) = ∞.

Case 2. Suppose n = 1. Then R is isomorphic to one of the following rings: Z0
2,

Z0
3, Z0

4,
xZ[x]

<4x,x2−2x> ,
xZ2[x]
x3Z2[x]

.

We know that if R ∼= Z0
n, then Γ(R) is a complete graph with n − 1 vertices.

Then Γ(Z0
2), Γ(Z0

3) and Γ(Z0
4) are isomorphic to either a path or a cycle, and so

γr(Γ(Z0
n)) = ∞ where n = 2, 3, 4.

The graph Γ( xZ[x]
<4x,x2−2x> ) and Γ( xZ[x]

x3Z2[x]
) are represented in Figures 4(a) and

4(b). By Theorem 4.3, γr(Γ( xZ[x]
<4x,x2−2x> )) = γr(Γ(

xZ[x]
x3Z2[x]

)) = ∞. □

In [4], Barati classified the outerplanar index of the zero divisor graphs of finite
commutative rings with identity. In the following theorem, we establish the same
idea for the zero divisor graphs of finite commutative rings without identity. In
fact, we give a full characterization of the zero divisor graphs with respect to their
outerplanar index when R is a finite commutative ring without identity.

Theorem 4.8. Let R be a finite commutative ring without identity. Then

(a) γo(Γ(R)) = ∞ if and only if R is isomorphic to one of the following:
Z0
2 × Z2, Z0

2 × Z0
2, Z0

2, Z0
3, Z0

4,
xZ[x]

<4x,x2−2x> ,
xZ2[x]
x3Z2[x]

;

(b) γo(Γ(R)) = 1 if and only if R is isomorphic to one of the following: Z0
2×Fpn

where pn ≥ 3, Z0
2 × Z4, Z0

2 ×
Z2[x]
<x2> ,

xZ[x]
<8x,x2−2x> , Q1, Q2, Q5, Q6;

(c) γo(Γ(R)) = 0 otherwise.

Proof. For any given graph G, by Remark 2.1 together with Theorems 4.4, 4.6
and 4.7, one can easily verify the assertion (b). By Theorems 4.3 and 4.4, for any
graph G, if γr(G) = ∞, then γo(G) = ∞ and by Theorem 4.7, the assertion (a)
holds. □
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5. Conclusion

In the literature, there are only some few research articles focusing on finite rings
without assuming the multiplicative identity. This paper provides the character-
ization of commutative rings without identity whose zero-divisor graphs are ring
graphs and outerplanar graphs. Also, we obtained the planar index, ring index and
outerplanar index of the zero-divisor graphs of finite commutative rings without
identity. The future work is to address the problem of obtaining various topolog-
ical indices (like Steiner index, Wiener index, etc.,) for zero-divisor graphs from
commutative ring without identity.
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