

International Electronic Journal of Algebra Published Online: December 2023

DOI: 10.24330/ieja.1411145

ON AUTOMORPHISM-INVARIANT MULTIPLICATION MODULES OVER A NONCOMMUTATIVE RING

Le Van Thuyet and Truong Cong Quynh

Received: 24 July 2023; Accepted: 5 October 2023 Communicated by Sait Halicioğlu

ABSTRACT. One of the important classes of modules is the class of multiplication modules over a commutative ring. This topic has been considered by many authors and numerous results have been obtained in this area. After that, Tuganbaev also considered the multiplication module over a noncommutative ring. In this paper, we continue to consider the automorphism-invariance of multiplication modules over a noncommutative ring. We prove that if R is a right duo ring and M is a multiplication, finitely generated right R-module with a generating set $\{m_1,\ldots,m_n\}$ such that $r(m_i)=0$ and $[m_iR:M]\subseteq C(R)$ the center of R, then M is projective. Moreover, if R is a right duo, left quasi-duo, CMI ring and M is a multiplication, non-singular, automorphism-invariant, finitely generated right R-module with a generating set $\{m_1,\ldots,m_n\}$ such that $r(m_i)=0$ and $[m_iR:M]\subseteq C(R)$ the center of R, then $M_R\cong R$ is injective.

Mathematics Subject Classification (2020): 16D40, 16D50, 16D80, 16D99, 16E50

Keywords: Automorphism-invariant module, duo ring, quasi-duo ring, multiplication module, commutative multiplication of ideals

1. Introduction

Throughout this paper, all rings are associative rings with unit and all modules are right unital modules. We use $N \leq M$ ($N \leq M$) to mean that N is a submodule (respectively, a proper submodule) of M. E(M), C(R), J(R) denote the injective envelope of M, the center of the ring R and the Jacobson radical of R, respectively. A submodule N of a module M is said to be essential if $N \cap X \neq 0$ for every nonzero submodule X of M, denoted by $N \leq^e M$. In this case, M is called an essential extension of N.

A ring R is called *right duo* if every right ideal is an ideal. A right R-module M is called *multiplication* if for every submodule N of M, there exists an ideal R of R such that R is right duo if and only if R is multiplication. Indeed, if R is right duo, then for every right ideal R is R is multiplication.

I is an ideal of R, so we can write I = RI, i.e., R_R is multiplication. Conversely, if R_R is multiplication and I is a right ideal of R, then there exists an ideal J of R such that I = RJ = J. So I is an ideal of R, i.e., R is right duo. A ring R is called right multiplication if R_R is multiplication. Note that over a right duo (or a right multiplication) ring, every cyclic right R-module is multiplication. In [19], Tuganbaev gave the definition of concept "commutative multiplication of ideals" (briefly CMI) and obtained many results on multiplication modules over a right duo ring or a ring with CMI. A ring R is called commutative multiplication of ideals if AB = BA for any ideals A, B of R. Two above conditions are followed from commutativity of a ring but the converses are not true, in general. So it makes sense if we consider a multiplication module over a right duo rings (or a ring with CMI).

For a subset X of a right R-module M over a ring R, we denote that $r_R(X)$ or r(X) the right annihilator of X in R. A right R-module M is said to be faithful if r(M) = 0. Now let X and Y be two subsets of a right R-module M, the subset $\{r \in R | Xr \subseteq Y\}$ of R is denoted by [Y:X]. Recall that if $Y \leq M_R$, then $[Y:X] \leq R_R$ and if $X \leq M_R$ and $Y \leq M_R$, then [Y:X] is an ideal of R. A submodule N of the module M is said to be closed in M if N' is an essential extension of N in M, then N = N'. A module M is called square-free if M does not have nonzero submodules of the form $X \oplus Y$ with $X \cong Y$. Recall that $Z(M) = \{m \in M | r(m) \leq^e R_R\}$ is called the singular submodule of M, and if Z(M) = M (resp. Z(M) = 0), then M is called singular (resp. non-singular). A ring R is said to be right non-singular if R_R is non-singular. A ring is said to be reduced if each of its nilpotent elements is equal to zero. Left-sided for these notations are defined similarly.

For a module N, a module M is said to be injective with respect to N or N-injective if for any submodule $X \leq N$, every homomorphism $X \to M$ can be extended to a homomorphism $N \to M$. A module is said to be injective if it is injective with respect to each module. A module is said to be quasi-injective if it is injective with respect to itself. It is well known that a module M is quasi-injective if and only if $f(M) \leq M$ for any endomorphism f of the injective envelope of the module M (see [7]). A module M is said to be automorphism-invariant if $f(M) \leq M$ for any automorphism f of the injective envelope of M. Automorphism-invariant modules are studied in [4], [6], [17], [21], and [22].

Multiplication modules over a commutative ring were considered by many authors, for examples, see [3], [10], [12], and [13]. However, when we consider this

kind of modules over a noncommutative ring, we will meet many difficulties. Although many difficulties arise, many results about the multiplication modules over a noncommutative ring were obtained, for example see [18], [19], and [20]. In [10], S. Singh and Y. Al-Shaniafi obtained many results on quasi-injective multiplication modules over a commutative ring. In this paper we continue to consider the quasi-injectivity of multiplication modules over a noncommutative ring. From this we obtain the result on automorphism-invariant multiplication modules over a noncommutative ring.

All terms such as "duo" and 'non-singular" when applied to a ring will apply all both sided. For any terms not defined here the reader is referred to [1], [2], [8], [9], [15] and [23].

2. Results

The following properties are interesting when considering a multiplication module over a noncommutative ring.

Proposition 2.1. The following statements are equivalent for a right R-module M:

- (1) M is a multiplication module.
- (2) $N \leq M.[N:M]$ for every $N \leq M_R$.
- (3) N = M.[N:M] = Mr(M/N) for every $N \leq M_R$.

Proof. See [19, Note 1.3].

Proposition 2.2. Let R be a right duo ring with commutative multiplication of ideals. Then the following conditions are equivalent for a right R-module M:

- (1) M is a multiplication module.
- (2) For every nonempty collection of right ideals $\{B_i\}_{i\in I}$ of R, we have

$$\bigcap_{i \in I} (MB_i) = M[\bigcap_{i \in I} (B_i + r(M))],$$

and for any submodule N of M and each right ideal C of R with $N \subsetneq MC$, there exists an ideal B of R such that $B \subsetneq C$ and $N \subsetneq MB$.

Proof. See [19, Theorem 4.3].

Proposition 2.3. Let M be a non-singular automorphism-invariant right R-module. Then there exists a direct decomposition $M = X \oplus Y$ such that X is a quasi-injective non-singular module, Y is a square-free non-singular automorphism-invariant module, the modules X and Y are injective with respect to each other, any sum of closed

submodules of the module Y is an automorphism-invariant module, Hom(X,Y) = Hom(Y,X) = 0, and $Hom(Y_1,Y_2) = 0$ for any two submodules Y_1 and Y_2 in Y with $Y_1 \cap Y_2 = 0$.

Proof. See [11, Theorem 3.6].

Next, we study the non-singularity of rings and faithful multiplication modules over a right duo ring.

Proposition 2.4. Let R be a right duo (or right multiplication) ring. Then the following conditions hold.

- (1) R is right non-singular if and only if R is reduced.
- (2) Let M_R be a faithful multiplication module. Then M is non-singular if and only if R is right non-singular.
- (3) Let M_R be a non-singular faithful multiplication module and N be a closed submodule of M. Then [N:M] is a closed ideal of R.

Proof. (1) It's clear that "reduced" \Rightarrow 'right non-singular".

To prove the converse, let a be an element of R such that $a^2=0$. Then for aR there exists a right ideal B of R such that $B\cap aR=0$ and $B\oplus aR$ is an essential right ideal of R. Since B is an ideal of R, $aB \leq B \cap A = 0$, and so aB = 0. From this, a(B+aR)=0 and $B\oplus aR \leq^e R_R$, it follows that a=0. Hence R is reduced.

(2) Let R be a right non-singular ring. Take $x \in Z(M)$. Then there exists an essential right ideal I of R such that xI = 0. Since M is multiplication, there exists an ideal A of R such that xR = MA. Then 0 = xI = xRI = MAI = 0. It follows that AI = 0. We have that I is essential in R and obtain A = 0, and so x = 0 or Z(M) = 0.

To prove the converse, if Z(M) = 0, then by [19, Proposition 3.13], $Z(M) = MZ_r(R)$, it follows that $MZ_r(R) = 0$. But M is faithful, and so $Z_r(R) = 0$.

(3) By (2), R is right non-singular. Since $N \leq M_R$, [N:M] is an ideal of R. We have R/[N:M] is a cyclic right R-module, so it is multiplication. Note that since N is a closed submodule of a non-singular module M, by [15, Corollary 4.2], M/N is non-singular. Now, let $r + [N:M] \in Z(R/[N:M])$. Then there exists an essential right ideal I of R such that (r + [N:M])I = 0, so $rI \leq [N:M]$ and hence $MrI \leq N$. It follows that $Mr + N \leq Z(M/N) = 0$, so $Mr \leq N$ or $r \in [N:M]$. Thus Z(R/[N:M]) = 0 or R/[N:M] is a non-singular right R-module.

Assume that $[N:M] \leq^e I$ for some ideal I of R. Then, I/[N:M] is singular. It follows that

$$0 \neq Z(I/[N:M]) \leq Z(R/[N:M]) = 0.$$

It contradicts, and so [N:M] is closed in R.

Corollary 2.5. If R a right duo (or right multiplication) right non-singular ring, then $r_R(x) = l_R(x)$ for all $x \in R$.

Proof. Let x be an element of R. If $y \in r_R(x)$, then xy = 0 and so $(yx)^2 = 0$. By Proposition 2.4(2), it immediately infers that yx = 0. This means that $y \in l_R(x)$. It is shown that $r_R(x) \subseteq l_R(x)$. \square

Proposition 2.6. Let R be a right duo, CMI ring and M be a faithful, multiplication right R-module. Then for any closed ideal A of R and N = MA, N is a closed submodule of M and A = [N : M].

Proof. Let K be a closed closure of N in M. Then by Proposition 2.1, K = MB, where B = [K : M]. It implies that $A \leq B$. We show that A is essential in B. In fact, take b an arbitrary nonzero element in B. Then, we have $Mb \leq K$. Since M is faithful, $Mb \neq 0$ and so $MbR \leq K$ and $MbR \neq 0$. We have that K is an essentially extension of N and obtain that $MbR \cap N \neq 0$ and $MbR \cap MA \neq 0$. By Proposition 2.2, $M(bR \cap A) = MbR \cap MA \neq 0$. It follows $bR \cap A \neq 0$. Thus, A is essential in B. Since A is closed in A0 and so A1 and so A2.

By the same above proof, we show that A = [N:M]. One can check that $A \leq [N:M]$. Let y be an arbitrary nonzero element in [N:M]. Then, $My \leq N = MA$ and so $MyR \leq MA$. We have, from Proposition 2.2, that

$$M(yR \cap A) = MyR \cap MA = MyR \neq 0.$$

It follows $yR \cap A \neq 0$. It is shown that A is essential in [N:M]. Since A is closed in R_R , A = [N:M].

Corollary 2.7. Let R be a ring with commutative multiplication of right ideals. If M is a faithful, multiplication right R-module, then for any closed ideal A of R and N = MA, N is a closed submodule of M and A = [N:M].

Proposition 2.8. Let R be a right duo ring and M be a faithful, non-singular, multiplication right R-module. Then $E(R) \cong E(M)$.

Proof. By Proposition 2.4(1), R is right non-singular. Then, there exists an embedding of M into E(R). By Zorn's Lemma, there exists a maximal embedding of $K \leq M_R$ into E(R), that is $t: K \longrightarrow E(R)$. It is easy to see that K is a closed submodule of M. Let N be a complement of K in M, then $N \cap K = 0$. Let A = [K: M] and B = [N: M]. Then by Proposition 2.4(3), A and B are closed ideals of R. Now if $r \in A \cap B$, then $Mr \subseteq K, Mr \subseteq N$, and so

 $Mr \subseteq K \cap N = 0$ and since M is faithful, r = 0. It means that $A \cap B = 0$. This gives $AB \subseteq A \cap B = 0 \Rightarrow AB = 0$, BA = 0, BA = 0. Hence $A \subseteq r(B)$. Now if BA = 0, then BA = 0 = 0. It follows that BA = r(B) = r(A). Now let AA = r(B) = r(A). So AA = r(B) = r(A). Similarly, AA = r(B) = r(A). Similarly, AA = r(B) = r(A).

Assume that $N \neq 0$. Then $A = r(N) \neq R$. So it is easy to see that R/A is a right non-singular ring and N is a non-singular, faithful right R/A-module. Now we consider any $y \neq 0, y \in N$. Then by Zorn's Lemma, there exists a nonzero ideal of C such that $C \cap A = 0$. Let $\theta : C \to yC$ defined by $c \longmapsto yc$. Then if y(c-c') = 0 and $c \neq c'$ in C, then $c-c' \in r(y) \geq N = A$. It follows that yA = 0, and so $y \in Z(N) = 0$, a contradiction. Thus, we have $C \cong yC$.

We can consider an embedding $\mu: yC \longrightarrow E(R)$. Now if $x \in t(K) \cap \mu(yC) \le E(R)$, then $x(A+B) \le K \cap N = 0$. Therefore, x(A+B) = 0 or $x \in Z(E(R) = 0$. So x = 0. It follows that $t(K) \cap \mu(yC) = 0$. So we obtain a large embedding, a contradiction. Thus, N = 0 and then K = M.

Assume that $E(M) \cong E(t(M)) \neq E(R)$. Then, there exists a nonzero right ideal C of R (and hence ideal) such that $t(M) \cap C = 0$. Take $L = t(M) \cap R$. Note that LR = L, then L is a right ideal and hence an ideal of R. So $CL \leq C$ and $CL = LC \leq t(M)C \leq t(M)$, hence CL = 0. Since R is right non-singular and $L \leq^e t(M) \leq R \leq^c E(R)$, $C \leq Z_r(R) = 0$, a contradiction. Hence $E(M) \cong E(t(M)) = E(R)$.

Proposition 2.9. Let R be a right duo ring with commutative multiplication of ideals and M be a faithful, multiplication right R-module. Then the following conditions hold.

- (1) There exists a smallest ideal $\tau(M)$ of R such that $M = M\tau(M)$. Moreover, $\tau(M) = R$ if and only if M is finitely generated.
- (2) Let $\tau(M)$ be in (1) and $M = N \oplus K$ for some submodules N and K of M, A = [N:M], B = [K:M].

Then

$$A \cap \tau(M) = A\tau(M) = (A\tau(M))^2, \tau(M) = \tau(M)A \oplus \tau(M)B.$$

Moreover

$$r(\tau(M)A) \cap \tau(M) = \tau(M)B, N = N\tau(M)A$$

and

$$r(\tau(M)B) \cap \tau(M) = \tau(M)A, K = K\tau(M)B.$$

Proof. (1) We have M = MB for some ideal B of R. Let τ be the set of all ideals B of R such that M = MB. Now we take $\tau(M)$ the intersection of all ideals in τ . By [19, Theorem 4.3],

$$M[\bigcap_{B\in\tau}B]=M(\tau(M))=\bigcap_{B\in\tau}(MB)=M.$$

We deduce that $\tau(M)$ is the smallest ideal such that $M = M\tau(M)$.

Now if M is finitely generated, faithful, then by [19, Theorem 3.11], $M \neq MB$ for every proper ideal B of R. So $\tau(M) = R$. Conversely, if $\tau(M) = R$, then R is the smallest ideal B of R such that M = MB. Then $M \neq MB$ for every proper ideal B of R. Also by [19, Theorem 3.11], M is finitely generated.

(2) From (1), it infers that $M=M\tau(M)$ and $\tau(M)=\tau(M)^2$. Assume that $M=N\oplus K$ for some submodules N and K of M, A=[N:M], B=[K:M]. Then, N=MA and K=MB. We have $A\cap B=0$ and obtain $M=N\oplus K=MA\oplus MB=M\tau(M)A\oplus M\tau(M)B$. It follows that $M=M(\tau(M)A\oplus \tau(M)B)$ and $\tau(M)A\oplus \tau(M)B\le \tau(M)$. Since $\tau(M)$ is the smallest ideal of R such that $M=M.\tau(M)$, $\tau(M)=\tau(M)A\oplus \tau(M)B$. From this, it immediately infers that $A\cap \tau(M)=\tau(M)A$ and $B\cap \tau(M)=\tau(M)B$. We have $AB=BA\le A\cap B=0$ and so

$$(\tau(M)A)^2 < \tau(M)A = [\tau(M)A \oplus \tau(M)B]A = \tau(M)A^2 = \tau(M)^2A^2 = (\tau(M)A)^2.$$

It follows that $A \cap \tau(M) = A\tau(M) = (A\tau(M))^2$. Next, we show that $r(\tau(M)A) \cap \tau(M) = \tau(M)B$. In fact, let $x \in \tau(M)B = B \cap \tau(M)$. Then, $(\tau(M)A)x \subseteq (\tau(M)A) \cap (\tau(M)B) \subseteq A \cap B = 0$ and so $x \in r(\tau(M)A) \cap \tau(M)$. Thus, $\tau(M)B$ is contained in $r(\tau(M)A)$. To prove the converse, take $x \in r(\tau(M)A) \cap \tau(M)$, and so $Mx = M\tau(M)x = M(\tau(M)A \oplus \tau(M)B)x = M\tau(M)Bx \subseteq K$, since $\tau(M)Ax = 0$. It follows that $x \in B \cap \tau(M) = \tau(M)B$.

Moreover, we have

$$\begin{split} N &= MA &= (M\tau(M)A \oplus M\tau(M)B)A \\ &= M\tau(M)A^2 = MA\tau(M)A \\ &= N\tau(M)A. \end{split}$$

Similarly, we have $r(\tau(M)B) \cap \tau(M) = \tau(M)A, K = K\tau(M)B.$

Theorem 2.10. Let R be a right duo ring and M be a multiplication, finitely generated right R-module with a generating set $\{m_1, \ldots, m_n\}$ such that $r(m_i) = 0$ and $[m_i R : M] \subseteq C(R)$ for every $i = 1, 2, \ldots, n$. Then, M is projective.

Proof. By [19, Theorem 3.11],

$$R = \sum_{i=1}^{n} [m_i R : M].$$

Thus, there exist elements $r_i \in C(R)$ $(1 \le i \le n)$ such that $Mr_i \subseteq m_i R$ and

$$1 = r_1 + r_2 + \cdots + r_n$$
.

We show that

$$R = \sum_{i=1}^{n} r_i^2 R.$$

In fact, assume that $B = \sum_{i=1}^{n} r_i^2 R$ and $B \neq R$. Then, there exists a maximal ideal P of A containing B. So for every element $r_i^2 \in P$, $r_i \in P$, since R/P is a division ring. Thus

$$P\ni \sum_{i=1}^n r_i=1\not\in P.$$

It contradicts. We deduce that R = B.

From this, there exist $s_i \in R \ (1 \le i \le n)$ such that

$$1 = \sum_{i=1}^{n} r_i^2 s_i.$$

Now for each $1 \leq i \leq n$, we define $\theta_i : M \longrightarrow R$ as follows: for each $m \in R$, $\theta_i(m) = r_m.r_i.s_i$ where $r_m \in R$ is any element such that satisfying the condition $mr_i = m_i r_m$.

Assume that $m_i r_m = m_i r'_m$ with $r_m, r'_m \in R$. From this $r_i (r_m - r'_m) = 0$. Then $r_m = r'_m$. Hence θ_i is well defined.

Now we show that θ_i is a homomorphism. Indeed, for all $m, m' \in M$, $\theta_i(m+m') = r_{m+m'}r_is_i$ such that $(m+m')r_i = m_ir_{m+m'}$ and $\theta_i(m) = r_mr_is_i$, $\theta_i(m') = r_{m'}r_is_i$, such that $mr_i = m_ir_m$, $m'r_i = m_ir_{m'}$. Then, $m_i(r_{m+m'} - r_m - r_{m'}) = 0$. It follows that $r_{m+m'} = r_m + r_{m'}$. Moreover, for all $a \in R$, $\theta_i(ma) = r_{ma}r_is_i$ such that $mar_i = m_ir_{ma}$. Since $mar_i = mr_ia$, $m_i(r_{ma} - r_{ma}) = 0$. Hence $r_{ma} = r_{ma}a$. Now, $Mr_1s_i \subseteq m_1Rs_i \subseteq m_1R$, and so $r_1s_i \in C(R)$. Similarly $r_ns_i \in C(R)$. From this, $s_i \in C(R)$. One can check that $\theta_i(ma) = \theta_i(m)a$ for all $a \in R$.

It is shown that θ_i is an R-homomorphism for each $1 \leq i \leq n$. Now, for each $m \in M$, we can write

$$m = m.1 = m(r_1^2 s_1) + \dots + m s_n^2 s_n$$

= $m r_1 r_1 s_1 + \dots + m r_n r_n s_n$
= $m_1 r_1 m r_1 s_1 + \dots + m_n r_{nm} r_n s_n$
= $m_1 \theta_1(m) + \dots + m_n \theta_n(m)$.

By the Dual Basis Lemma, it infers that M is projective.

From this result, we can obtain the following general case.

Corollary 2.11. Let R be a right duo ring and M be a multiplication, finitely generated right R-module with a generating set $\{m_1, \ldots, m_n\}$ such that $r(m_i) = eR$ for every $i = 1, 2, \ldots, n$ and for some central idempotent $e \in R$ with $[m_i(1 - e)R] : M_{(1-e)R}] \subseteq C((1-e)R)$. Then, M is projective.

Proof. Note that $r(M) \leq r(m_i) = eR$, and so M is a finitely generated multiplication right $(R/eR \cong) (1-e)R$ -module such that $r(m_i) = 0_{R/eR}$ and $[m_i(1-e)R : M_{(1-e)R}] \subseteq C((1-e)R)$] for every i = 1, 2, ..., n. By Theorem 2.10, M is a projective (1-e)R-module. Since a right R-module and homomorphism are also a right (1-e)R-module and homomorphism respectively, M is a projective right R-module.

P. Smith ([12, Theorem 11]) proved the following result for a multiplication module over a commutative ring and A. A. Tuganbaev reproved it in [19, Theorem 7.6].

Corollary 2.12. Let R be a commutative ring with identity and M be a multiplication, finitely generated R-module such that r(M) = eR for some idempotent e in R. Then, M is projective.

Proof. See [12, Theorem 11] and [19, Theorem 7.6]. \Box

Let R be a right duo ring and P be a maximal ideal of R. Then it is easy to prove that $R \setminus P$ is multiplicatively closed and satisfies the following condition

 $(S1): \forall s \in R \setminus P \text{ and } r \in R, \text{ there exist } t \in R \setminus P \text{ and } u \in R \text{ such that } su = rt.$

Moreover, if R satisfies ACC on right annihilators, then by [15, Proposition 1.5], $R \setminus P$ is a right denominator set. In this case, the ring $R(R \setminus P)^{-1}$ is called the right localization with respect to P and we write R_P and M_P instead of $R(R \setminus P)^{-1}$ and $M(R \setminus P)^{-1} = M \otimes_R R_P$, respectively. A ring R is called right localizable if for each maximal right ideal P of R, the right localization R_P exists. A ring R is said to be left quasi-duo if each of its maximal left ideals is an ideal of R. Now we give another condition for $R \setminus P$ to be a right denominator set.

Lemma 2.13. Let R be a right duo right non-singular ring and P be a maximal ideal of R. Then, $R \setminus P$ is a right denominator set, i.e., the right localization R_P exists.

Proof. We show that $R \setminus P$ satisfies the condition (S2): If $x \in R \setminus P$ and $a \in R$ with xa = 0, then there exists $y \in R \setminus P$ such that ay = 0. Indeed, we take y = x. \square

Corollary 2.14. [19, Theorem 4.18] Let R be a right duo ring with commutative multiplication of ideals. Then, for every maximal right ideal P of R, the right localization R_P exists and R_P is a right duo ring with commutative multiplication of ideals.

Proof. We show that R satisfies the condition: l(x) = r(x) for all $x \in R$. Indeed, we take $a \in R, a \in l(x)$. Then ax = 0 and RaxR = 0. Since R is a right duo ring, RaRxR = 0 and RaRxR = 0. We have that R has the commutative multiplication of ideals and obtain RxRRaR = 0, and so xa = 0 or $a \in r(x)$.

Conversely, let $b \in r(x)$. Then xbR = 0 and so 0 = xRbR = RxRRbR, since R is a right duo ring. And hence RbRxR = 0. It follows that bx = 0 or $b \in l(x)$. \square

Recall that a ring R is called right QF-3⁺ (see [16]) if the injective envelope E = E(R) of R is a projective right R-module.

Proposition 2.15. Let R be a right duo right non-singular ring. If R is a right $QF-3^+$, then E_P is a free right R_P -module.

Proof. Let P be a maximal ideal of R and $\theta: E \to E_P$ be the canonical map. By Lemma 2.13, the right localization R_P exists. We have that E is projective and obtain $E \oplus A = R^{(X)}$ with some A_R and index set X. It is well-known $E_P = E \otimes_R R_P$, and so

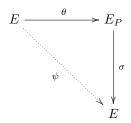
$$(E \oplus A) \otimes_R R_P = (E \otimes_R R_P) \oplus (A \otimes_R R_P)$$
$$= R^{(X)} \otimes_R R_P \cong R^{(X)}_P$$

Hence E_P is a projective right R_P -module.

Let $F = \{x \in E | [EP : x] \not\subseteq P\}$. With assumption $\theta(1) \in E_PP$ and by [19, Lemma 3.17], it infers that $[EP : 1] \not\subseteq P$. It means that $1 \in F$. Similarly, by [19, Lemma 3.17], $\theta(x) \in E_PP$ if and only if $[EP : x] \not\subseteq P$. It follows that $F = \{x \in E | \theta(x) \in E_PP\}$. Because θ is an R-homomorphism, we can prove easily that F is a submodule of E.

Now we will prove that F is quasi-injective. This is equivalent to F being invariant under all endomorphisms of injective envelope E(F). Since E(F) is a direct summand of E, we show that F is invariant under all endomorphisms of E. Let $\psi : E \longrightarrow E$ be an endomorphism of E. There exists an R_P -homomorphism

 $\sigma: E_P \longrightarrow E$ such that $\sigma\theta = \psi$, i.e., the following diagram is commutative:



Now, let t be an element in F. Then $t \in E$ and there exists $r \notin P$ such that $tr \in EP$. Moreover, $\theta(t) \in E_PP$. Hence there exist $p \in P, e_t \in E_p$ such that $\theta(t) = e_t p$. So $\psi(t) = (\sigma\theta)(tr) = \sigma(\theta(t))r = (\sigma\theta)(e_t p)r = (\sigma\theta)(e_t)pr \in EP$. It follows that $\psi(t) \in L$.

Since F is invariant under any homomorphism of E, F is quasi-injective. Now since $1 \in F$, there exists $r \in EP$ such that $r \notin P$. Let $e \in E$. We have $r \in (EP) \cap R$ and obtain $er \in E[(EP) \cap R] \leq EP$, and so $e \in F$. It follows that E = F.

Note that $E_P \neq E_P P$. So there exists $e \in E$ such that $\theta(e) \not\in E_P P$. We have E = L, $e \in L$ and obtain that $[EP : e] \not\subseteq P$. Then there is $v \not\in P$ with $ev \in EP$. Hence $\theta(e) \in EP$, a contradiction. It follows that $\theta(1) \not\in E_P P$. Since R_P is a local ring and E_P is a nonzero projective R_P -module, so it is free and then

$$E_P = \bigoplus_{i \in I} A_i, \quad A_i \cong R_P.$$

S. Singh and Y. Al-Shaniafi (see [10, Theorem 1.10]) proved that if R is a commutative, QF-3⁺ ring with identity, then R is self-injective. We will extend this result to the noncommutative case as follows.

Lemma 2.16. Let R be a right duo right non-singular, right QF-3⁺, left quasi-duo ring. Then, R is right self-injective.

Proof. Now we show that E/R is a flat right R-module. By [15, Exercise 39, p. 48] we need to show that for every maximal left ideal P of R, $EP \neq E$. Note that P is an ideal and since $\theta(1) \notin E_PP$, $R \cap EP \leq P$. Assume that EP = E. Then $x \in R \Rightarrow x \in E \Rightarrow x \in EP \Rightarrow x \in P$. So R = P, a contradiction. Since E is projective and by [9, Lemma 7.30], E is also finitely generated, so for some $n \in \mathbb{N}$, we obtain that E is projective. We deduce that E is E and so E is right self-injective. E

From Lemma 2.16 and [24, Theorem 2.7], we have the following result.

Theorem 2.17. Let R be a right non-singular, right $QF-3^+$ ring. Then R is right self-injective if and only if R is right automorphism-invariant.

Proof. Assume that R is a right non-singular, right QF-3⁺, right automorphism-invariant ring. Then, R has a ring decomposition $R = S \oplus T$, where S is a right self-injective and T_T is square-free by [14, Theorem 4.12]. It follows, from the [5, Theorem 15], that T is a right and left quasi-duo ring. Note that T is also a right non-singular, right QF-3⁺, right automorphism-invariant ring. Thus, T is a von Neumann regular ring by Proposition 1 in [4]. Applying Theorem 2.7 in [24] we have that T is a right and left duo ring. From Lemma 2.16, we deduce that T is a right self-injective ring. \square

Corollary 2.18. The following conditions are equivalent for a ring R:

- (1) R is a right automorphism-invariant right non-singular, right QF-3⁺ ring.
- (2) R is a right automorphism-invariant regular, right QF- 3^+ ring.
- (3) R is a right self-injective regular ring.

Lemma 2.19. Every idempotent element of a right duo ring is central.

Proof. Let e be an idempotent element of a right duo ring R. We have that 1 - e is in r(e) and obtain that $R(1 - e) \subseteq r(e)$, since R is a right duo ring. It follows that eR(1 - e) = 0. It is similar to see that (1 - e)Re = 0. Thus, e is central. \square

S. Singh and Y. Al-Shaniafi (see [10, Theorem 1.11]) proved that if R is a commutative ring with identity and M is a finitely generated, faithful, quasi-injective multiplication right R-module, then $M \cong R$ (and M is injective). We will extend this result to the noncommutative case as follows.

Theorem 2.20. Let R be a right duo, left quasi-duo, CMI ring and M be a multiplication, quasi-injective, finitely generated right R-module with a generating set $\{m_1, \ldots, m_n\}$ such that $r(m_i) = 0$ and $[m_i R : M] \subseteq C(R)$. Then $M_R \cong R$ is injective.

Proof. For some $n \geq 1$, R is embedded in M^n . We have that M is quasi-injective and obtain that M^n is injective and so $M^n = E(R_R) \oplus L$ for some injective right R-module L. By Theorem 2.10, M is projective and then so is M^n . Then $E(R_R)$ is projective. From Lemma 2.16, we infer that R = E(R). Since L is injective, by [8, Theorem 1.21] we can apply the exchange property to the injective module L, so we obtain that

$$L \oplus R = L \oplus \bigoplus_{i=1}^{n} B_i,$$

where each B_i is a direct summand of M. And then $R \cong \bigoplus_{i=1}^n B_i$.

So there exists a direct summand of R is embedded in M. By Zorn's Lemma, there exists a maximal embedding $\alpha: A \to M$, where A = eR is a direct summand of R_R for some idempotent e of R. We obtain

$$M = \alpha(A) \oplus N$$
,

for some submodule N of M. Suppose that $e \neq 1$. Now if $m(1-e) \in \alpha(eR)$, then $m(1-e) = \alpha(eR)$ for some $R \in R$. Then, we have

$$m(1-e)(1-e) = \alpha(er)(1-e) = \alpha(er(1-e)) = \alpha(0) = 0.$$

So $M(1-e) \cap \alpha(A) = 0$.

Now take any $m \in M$. Then, $m = \alpha(er) + n$ for some $r \in R, n \in N$. From this we have $m(1-e) = \alpha(er)(1-e) + n(1-e)$ and by Lemma 2.19, m(1-e) = n(1-e). We write $m = \alpha(er) + n(1-e) + ne \Rightarrow m - m(1-e) = \alpha(er')$ for some $r' \in R$. And then $\alpha(er') - \alpha(er) = ne$. It follows that ne = 0. Hence $m = \alpha(er) + m(1-e)$ and then $M = \alpha(A) \oplus M(1-e)$ and M(1-e) is finitely generated by $\{m_i(1-e) | i = 1, \ldots, n\}$ since

$$M(1-e) = M(1-e)^2 R = \sum_{i=1}^n m_i R(1-e) R = \sum_{i=1}^n m_i (1-e) R = \sum_{i=1}^n m_i (1-e) (1-e) R.$$

Moreover, M(1-e) is a quasi-injective, multiplication module over the ring (1-e)R. We also have

$$r_{(1-e)R}(m_i(1-e)) = \{(1-e)r | m_i(1-e)(1-e)r = 0\} = 0,$$

since $r(m_i) = 0$. Let $(1-e)r \in [m_i(1-e)(1-e)R : M(1-e)]$ for some $r \in R$. Then, $m(1-e)r \in m_i(1-e)R \le m_iR$ for every $m \in M$. It means that $(1-e)r \in [m_i : M] \subseteq C(R)$, and so $(1-e)r \in C(R)$. Of course, $(1-e)r \in C((1-e)R)$. It follows that $[m_i(1-e)(1-e)R : M(1-e)] \subseteq C((1-e)R)$. So a nonzero direct summand of (1-e)R embeds in M(1-e). This contradicts the maximality of α .

Hence e=1. We deduce that $M=K\oplus N$, where $R\stackrel{\varphi}{\cong} K$. From Proposition 2.9(2), it infers that $R=A\oplus B, N=NA, K=KB$, where A=[N:M], B=[K:M]. Therefore, $K=KB=\varphi(R)B=\varphi(RB)=\varphi(BR)=\varphi(B)$. Inasmuch as $\varphi(R)=\varphi(A)\oplus\varphi(B)$ we have $K=\varphi(R)=\varphi(A)\oplus K$. It follows $\varphi(A)=0$ so that A=0. From this, we have N=0. It is shown that M=K and so $M\cong R$.

Now we will give a condition for an automorphism-invariant module to be injective. In this case it is isomorphic to the ring R.

Theorem 2.21. Let R be a right duo, left quasi-duo, CMI ring and M be a multiplication, non-singular automorphism-invariant, finitely generated right R-module with a generating set $\{m_1, \ldots, m_n\}$ such that $r(m_i) = 0$ and $[m_i R : M] \subseteq C(R)$. Then $M_R \cong R$ is injective.

Proof. By Proposition 2.3, there exists a direct decomposition $M = X \oplus Y$ such that X is a quasi-injective non-singular module, Y is a square-free non-singular automorphism-invariant module, the modules X and Y are injective with respect to each other, any sum of closed submodules of the module Y is an automorphism-invariant module, Hom(X,Y) = Hom(Y,X) = 0. By [19, Note 1.7], X is a multiplication module satisfying Theorem 2.20. It follows that $X_R \cong R$. We have $0 = Hom(X,Y) \cong Hom(R,Y) \cong Y$, and so Y = 0. Thus $M_R \cong R$ is injective. \square

Acknowledgement. The authors would like to thank the referee for the valuable suggestions and comments. Le Van Thuyet and Truong Cong Quynh acknowledge the support/partial support of the Core Research Program of Hue University, Grant No. NCTB.DHH.2024.01.

References

- [1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.
- [2] N. V. Dung, D.V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Longman Scientific & Technical, 1994.
- [3] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16(4) (1988), 755-779.
- [4] P. A. Guil Asensio and A. K. Srivastava, Automorphism-invariant modules satisfy the exchange property, J. Algebra, 388 (2013), 101-106.
- [5] P. A. Guil Asensio and A. K. Srivastava, Automorphism-invariant modules, in: Noncommutative Rings and Their Applications, Contemp. Math., vol. 634 (2015), 19-30.
- [6] P. A. Guil Asensio, D. K. Tütüncü and A. K. Srivastava, Modules invariant under automorphisms of their covers and envelopes, Israel J. Math., 206 (2015), 457-482.
- [7] R. E. Johnson and E. T. Wong, Quasi-injective modules and irreducible rings,
 J. London Math. Soc., 36 (1961), 260-268.
- [8] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, Cambridge University Press, Cambridge, 1990.

- [9] W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge University Press, Cambridge, 2003.
- [10] S. Singh and Y. Al-Shaniafi, Quasi-injective multiplication modules, Comm. Algebra, 28(7) (2000), 3329-3334.
- [11] S. Singh and A. K. Srivastava, Rings of invariant module type and automorphism-invariant modules, in: Ring Theory and Its Applications, Contemp. Math., vol. 609 (2014), 299-311.
- [12] P. F. Smith, Some remarks on multiplication modules, Arch. Math. (Basel), 50(3) (1988), 223-235.
- [13] P. F. Smith, Multiplication modules and projective modules, Period. Math. Hungar., 29(2) (1994), 163-168.
- [14] A. K. Srivastava, A. A. Tuganbaev and P. A. Guil Asensio, Invariance of Modules Under Automorphisms of Their Envelopes and Covers, Cambridge University Press, Cambridge, 2021.
- [15] B. Stenström, Rings of Quotients, Springer-Verlag, 1975.
- [16] H. Tachikawa, On left QF-3 rings, Pacific J. Math., 32 (1970), 255-268.
- [17] L. V. Thuyet, P. Dan and T. C. Quynh, Modules which are invariant under idempotents of their envelopes, Collog. Math., 143 (2016), 237-250.
- [18] A. A. Tuganbaev, Multiplication modules over noncommutative rings, Sb. Math., 194(11-12) (2003), 1837-1864.
- [19] A. A. Tuganbaev, Multiplication modules, J. Math. Sci. (N.Y.), 123(2) (2004), 3839-3905.
- [20] A. A. Tuganbaev, Multiplication modules and ideals, J. Math. Sci. (N.Y.), 136(4) (2006), 4116-4130.
- [21] A. A. Tuganbaev, Automorphism-invariant modules, J. Math. Sci. (N.Y.), 206 (2015), 694-698.
- [22] A. A. Tuganbaev, Automorphism-invariant non-singular rings and modules, J. Algebra, 485 (2017), 247-253.
- [23] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
- [24] H. P. Yu, On quasi-duo rings, Glasgow Math. J., 37 (1995), 21-31.

Le Van Thuyet

Department of Mathematics College of Education - Hue University 34 Le Loi, Hue city, Vietnam e-mail: lvthuyet@hueuni.edu.vn

${\bf Truong~Cong~Quynh~(Corresponding~Author)}$

Department of Mathematics The University of Danang - University of Science and Education 459 Ton Duc Thang, Danang city, Vietnam e-mail: tcquynh@ued.udn.vn