

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA Published Online: December 2023 DOI: 10.24330/ieja.1411161

STRONGLY J-N-COHERENT RINGS

Zhanmin Zhu

Received: 30 September 2023; Revised: 28 October 2023; Accepted: 28 October 2023 Communicated by Burcu Üngör

ABSTRACT. Let R be a ring and n a fixed positive integer. A right R-module M is called strongly J-n-injective if every R-homomorphism from an n-generated small submodule of a free right R-module F to M extends to a homomorphism of F to M; a right R-module V is said to be strongly J-n-flat, if for every n-generated small submodule T of a free left R-module F, the canonical map $V \otimes T \rightarrow V \otimes F$ is monic; a ring R is called left strongly J-n-coherent if every n-generated small submodule of a free left R-module is finitely presented; a ring R is said to be left J-n-semihereditary if every n-generated small left ideal of R is projective. We study strongly J-n-injective modules, strongly J-n-flat modules and left strongly J-n-coherent rings. Using the concepts of strongly J-n-injectivity and strongly J-n-coherent rings and J-n-semihereditary rings.

Mathematics Subject Classification (2020): 16D40, 16D50, 16P70, 16E60 Keywords: Strongly *J*-*n*-injective module, strongly *J*-*n*-flat module, strongly *J*-*n*-coherent ring, *J*-*n*-semihereditary ring

1. Introduction

Throughout this paper, m and n are positive integers unless otherwise specified, R is an associative ring with identity, I is an ideal of R, J = J(R) is the Jacobson radical, and all modules considered are unitary.

Recall that a ring R is called *left coherent* [2,14] (resp., *left semihereditary* [1]) if every finitely generated left ideal of R is finitely presented (resp., projective). Left coherent rings, left semihereditary rings and their generalizations have been studied by many authors. For example, a ring R is said to be *left J-coherent* [6] (resp., *left J-semihereditary* [6]) if every finitely generated left ideal in J(R) is finitely presented (resp., projective); a ring R is said to be *left n-coherent* [13] (resp., *left n-semihereditary* [18,19]) if every *n*-generated left ideal of R is finitely presented (resp., projective). By [19, Theorem 1], a ring R is left *n*-semihereditary if and only

This research was supported by the Natural Science Foundation of Zhejiang Province, China (LY18A010018).

if every *n*-generated submodule of a projective left *R*-module is projective. Let *I* be an ideal of *R*. Then according to [20], *R* is called *left I-n-coherent* (resp., *left I-n-semihereditary*) if every *n*-generated left ideal in *I* is finitely presented (resp., projective).

In this article, we extend the concept of left J-n-coherent rings to left strongly J-n-coherent rings. We call a ring R left strongly J-n-coherent if every n-generated small submodule of a free left R-module is finitely presented, and we call a ring R left J-n-semihereditary if every n-generated small left ideal of R is projective. To characterize left strongly J-n-coherent rings, in Section 2 and Section 3, strongly J-n-injective modules and strongly J-n-flat modules are introduced and studied respectively. In Section 4 and Section 5, left strongly J-n-coherent rings and left J-n-semihereditary rings are investigated respectively.

For any *R*-module M, M^* denotes $\operatorname{Hom}_R(M, R)$, and M^+ denotes $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$, where \mathbb{Q} is the set of rational numbers, and \mathbb{Z} is the set of integers. In general, for a set S, we write S^n for the set of all formal $1 \times n$ matrices whose entries are elements of S, and S_n for the set of all formal $n \times 1$ matrices whose entries are elements of S. Let N be a left *R*-module, $X \subseteq N_n$ and $A \subseteq R^n$. Then we define $\mathbf{r}_{N_n}(A) = \{u \in N_n : au = 0, \forall a \in A\}$ and $\mathbf{l}_{R^n}(X) = \{a \in R^n : ax = 0, \forall x \in X\}.$

2. Strongly *J*-*n*-injective modules

Recall that a submodule U' of a right *R*-module *U* is called a *pure* submodule of U if the canonical map $U' \otimes_R M \to U \otimes_R M$ is a monomorphism for every left R-module M, equivalently, if the canonical map $U' \otimes_R V \to U \otimes_R V$ is a monomorphism for every finitely presented left R-module V. Let I be an ideal of R. Then following [21], a left R-module V is said to be I(m,n)-presented, if there is an exact sequence of left R-modules $0 \to K \to R^m \to V \to 0$ with K an n-generated submodule of I^m ; a left R-module V is said to be I-finitely presented, if it is I(m, n)-presented for a pair of positive integers m, n. In [21], we extend the concept of pure submodules to I(m, n)-pure submodules, $I(m, \infty)$ pure submodules, $I_{-}(\infty, n)$ -pure submodules and I_{-} pure submodules respectively. Given a right *R*-module U with submodule U', according to [21], U' is called I-(m, n)-pure in U if the canonical map $U' \otimes_R V \to U \otimes_R V$ is a monomorphism for every I(m, n)-presented left R-module V; U' is said to be $I(m, \infty)$ -pure (resp., $I_{-}(\infty, n)$ -pure) in U in case U' is $I_{-}(m, n)$ -pure in U for all positive integers n (resp., m); U' is said to be I-pure in U in case U' is I(m, n)-pure in U for all positive integers m and n. By [21, Theorem 2.4], we have immediately the following two lemmas.

Lemma 2.1. Let $U'_R \leq U_R$. Then the following statements are equivalent:

- (1) U' is $J(n, \infty)$ -pure in U.
- (2) For every finitely generated free right R-module F and each n-generated small submodule T of F, the canonical map

$$\operatorname{Hom}_R(F/T, U) \to \operatorname{Hom}_R(F/T, U/U')$$

is surjective.

Lemma 2.2. Let $U'_R \leq U_R$. Then the following statements are equivalent:

- (1) U' is $J(\infty, n)$ -pure in U.
- (2) For every finitely generated small submodule T of R_R^n , the canonical map $\operatorname{Hom}_R(R^n/T, U) \to \operatorname{Hom}_R(R^n/T, U/U')$ is surjective.

Recall that a right *R*-module *M* is called $I \cdot (m, n)$ -injective [21], if every *R*-homomorphism from an *n*-generated submodule *T* of I^m to *M* extends to one from R^m to *M*. A right *R*-module *M* is called *I*-*n*-injective [20] if it is $I \cdot (1, n)$ -injective. Inspired by these concepts, we introduce the concept of strongly *J*-*n*-injective modules as follows.

Definition 2.3. A right *R*-module *M* is called strongly *J*-*n*-injective if every *R*-homomorphism from an *n*-generated small submodule of a free right *R*-module *F* to *M* extends to a homomorphism of *F* to *M*. A right *R*-module *M* is called *J*-FP-injective if every *R*-homomorphism from a finitely generated small submodule of a free right *R*-module *F* to *M* extends to a homomorphism of *F* to *M*. A ring *R* is called right strongly *J*-*n*-injective (resp., right *J*-FP-injective) if the right *R*-module R_R is strongly J-n-injective (resp., *J*-FP-injective).

It is easy to see that a right *R*-module *M* is strongly *J*-*n*-injective if and only if it is J-(m, n)-injective for every positive integer *m*; a right *R*-module *M* is *J*-FPinjective if and only if it is strongly *J*-*n*-injective for every positive integer *n*.

Theorem 2.4. Let *M* be a right *R*-module. Then the following statements are equivalent:

- (1) M is strongly J-n-injective.
- (2) $\operatorname{Ext}^{1}(F/T, M) = 0$ for every free right *R*-module *F* and every *n*-generated small submodule *T* of *F*.
- (3) $\operatorname{Ext}^{1}(F/T, M) = 0$ for every finitely generated free right R-module F and every n-generated small submodule T of F.
- (4) $\mathbf{l}_{M^n} \mathbf{r}_{R_n} \{ \alpha_1, \cdots, \alpha_m \} = M \alpha_1 + \cdots + M \alpha_m$ for every positive integer m and any $\alpha_1, \cdots, \alpha_m \in (J(R))^n$.

- (5) *M* is J- (n, ∞) -pure in every module containing *M*.
- (6) M is J- (n, ∞) -pure in E(M).

Proof. It follows from [21, Theorem 3.2].

Corollary 2.5. Every J- (n, ∞) -pure submodule of a strongly J-n-injective module is strongly J-n-injective.

Proof. Let N be a J- (n, ∞) -pure submodule of a strongly J-n-injective right R-module M. For any n-generated small submodule T of a finitely generated free right R-module F, we have the exact sequence

 $\operatorname{Hom}(F/T, M) \to \operatorname{Hom}(F/T, M/N) \to \operatorname{Ext}^{1}(F/T, N) \to \operatorname{Ext}^{1}(F/T, M) = 0.$

Since N is J- (n, ∞) -pure in M, by Lemma 2.1, the sequence

 $\operatorname{Hom}(F/T, M) \to \operatorname{Hom}(F/T, M/N) \to 0$

is exact. Hence $\operatorname{Ext}^{1}(F/T, N) = 0$, and so N is strongly J-n-injective.

Theorem 2.6. The following statements are equivalent for a ring R:

- (1) R is right strongly J-n-injective.
- (2) Every finitely generated small submodule T of the left R-module R^n is a left annihilator of a subset X of R_n .
- (3) If $\mathbf{r}_{R_n}(T) \subseteq \mathbf{r}_{R_n}(\alpha)$ for a finitely generated small submodule T of the left *R*-module R^n and $\alpha \in R^n$, then $\alpha \in T$.
- (4) Rⁿ/T is a torsionless left R-module for every finitely generated small submodule T of Rⁿ.
- (5) $\mathbf{l}_{R^n} \mathbf{r}_{R_n}(T) = T$ for every finitely generated small submodule T of the left *R*-module R^n .

Proof. $(1) \Rightarrow (2)$ follows from Theorem 2.4(4).

 $(2) \Leftrightarrow (4) \Leftrightarrow (5)$ follows from [22, Lemma 2.3].

(5) \Rightarrow (3) If $\mathbf{r}_{R_n}(T) \subseteq \mathbf{r}_{R_n}(\alpha)$, then $\alpha \in \mathbf{l}_{R^n} r_{R_n}(\alpha) \subseteq \mathbf{l}_{R^n} r_{R_n}(T) = T$ by (5).

(3) \Rightarrow (1) Let $F = (R_R)^m, K = \beta_1 R + \dots + \beta_n R$ be an *n*-generated small submodule of F, and f be a right *R*-homomorphism from K to R. Write

$$\beta_j = (b_{1j}, \cdots, b_{mj}), \ j = 1, \cdots, n;$$

$$\alpha_i = (b_{i1}, \cdots, b_{in}), \ i = 1, \cdots, m;$$

$$\alpha = (f(\beta_1), \cdots, f(\beta_n));$$

$$T = R\alpha_1 + \cdots + R\alpha_m.$$

Then T is a small submodule of the left R-module R^n and $\mathbf{r}_{R_n}(T) \subseteq \mathbf{r}_{R_n}(\alpha)$. By (3), $\alpha \in T$, so $\alpha = c_1\alpha_1 + \cdots + c_m\alpha_m$ for some $c_1, \cdots, c_m \in R$. Now we

define $g: F \to R; (r_1, \dots, r_m) \mapsto c_1 r_1 + \dots + c_m r_m$, then it is easy to check that $f(\beta_j) = g(\beta_j), j = 1, \dots, n$, and therefore g extends f.

Recall that a ring R is called *semiregular* [11] if for any $a \in R$, there exists $e^2 = e \in aR$ such that $(1 - e)a \in J(R)$. By [11, Theorem B.44], R is semiregular if and only if R/J(R) is regular and idempotents lift modulo J(R). A right R-module M is called *semiregular* if for any $m \in M$, we have $M = P \oplus K$, where P is projective, $P \subseteq mR$, and $mR \cap K$ is small in K. It is easy to see that a ring R is semiregular if and only if the right R-module R_R is semiregular. By [11, Theorem B.51], a module M is semiregular if and only if, for any finitely generated submodule N of M, we have $M = P \oplus K$, where P is projective, $P \subseteq N$, and $N \cap K$ is small in K; and by [11, Theorem B.54], direct sums and direct summands of semiregular modules are semiregular. We recall also that a right R-module M is called *strongly n-injective* [22] if every R-homomorphism from an n-generated submodule of a free right R-module F to M extends to a homomorphism of F to M.

Proposition 2.7. If R is a semiregular ring, then a right R-module M is strongly n-injective if and only if it is strongly J-n-injective.

Proof. Necessity is clear. To prove the sufficiency, let N be an n-generated submodule of a finitely generated free right R-module F and $f: N \to M$ be a right R-homomorphism. Since R is semiregular, by [11, Lemma B.54], F is semiregular. So, by [11, Lemma B.51], $F = P \oplus K$, where P is projective, $P \subseteq N$ and $N \cap K$ is small in K. Hence F = N + K, $N = P \oplus (N \cap K)$, and so $N \cap K$ is n-generated and small in F. Since M is J-n-injective, there exists a homomorphism $g: F \to M$ such that g(x) = f(x) for all $x \in N \cap K$. Now let $h: F \to M; x \mapsto f(n) + g(k)$, where $x = n + k, n \in N, k \in K$. Then h is a well-defined left R-homomorphism and h extends f.

3. Strongly *J*-*n*-flat modules

Recall that a right *R*-module *V* is said to be *n*-flat [13,7], if for every *n*-generated left ideal *T* of *R*, the canonical map $V \otimes T \to V \otimes R$ is monic; a right *R*-module *V* is said to be *J*-flat [6], if for every finitely generated left ideal *T* in *J*(*R*), the canonical map $V \otimes T \to V \otimes R$ is monic; a right *R*-module *V* is said to be *J*-*n*-flat [20], if for every *n*-generated left ideal *T* in *J*(*R*), the canonical map $V \otimes I \to V \otimes R$ is monic. Inspired by these concepts, we introduce the concepts of strongly *J*-*n*-flat modules and strongly *J*-flat modules as follows. **Definition 3.1.** A right *R*-module *V* is said to be strongly *J*-*n*-flat, if for every *n*-generated small submodule *T* of a free left *R*-module *F*, the canonical map $V \otimes T \rightarrow V \otimes F$ is monic. A right *R*-module *V* is said to be strongly *J*-flat if it is strongly *J*-*n*-flat for every positive integer *n*.

Theorem 3.2. For a right R-module V, the following statements are equivalent:

- (1) V is strongly J-n-flat.
- (2) $\operatorname{Tor}_1(V, F/L) = 0$ for every finitely generated free left R-module F and any n-generated small submodule L of F.
- (3) $\operatorname{Tor}_1(V, F/L) = 0$ for every free left R-module F and any n-generated small submodule L of F.
- (4) V^+ is strongly J-n-injective.
- (5) If the sequence of right R-modules 0 → U' → U → V → 0 is exact, then U' is J-(∞, n)-pure in U.
- (6) For every finitely generated small submodule T of the right R-module Rⁿ and any homomorphism f : Rⁿ/T → V, f factors through a finitely generated free right R-module F, that is, there exist a homomorphism g : Rⁿ/T → F and a homomorphism h : F → V such that f = hg.
- (7) For every finitely generated small submodule T of the right R-module \mathbb{R}^n and any homomorphism $f: \mathbb{R}^n/T \to V$, f factors through a finitely generated projective right R-module P.
- (8) For every finitely generated small submodule T of the right R-module Rⁿ, if g: M → V is an epimorphism, then for any homomorphism f: Rⁿ/T → V, there exists a homomorphism h: Rⁿ/T → M such that f = gh.

Proof. (1) \Leftrightarrow (2) follows from the exact sequence $0 \to \text{Tor}_1(V, F/L) \to V \otimes L \to V \otimes F$.

 $(2) \Leftrightarrow (3)$, and $(6) \Leftrightarrow (7)$ are obvious.

(2) \Leftrightarrow (4) follows from the isomorphism $\operatorname{Tor}_1(M, F/L)^+ \cong \operatorname{Ext}^1(F/L, M^+)$.

 $(2) \Rightarrow (5)$ Let $0 \rightarrow U' \rightarrow U \rightarrow V \rightarrow 0$ be an exact sequence of right *R*-modules. By (2), the canonical map $U' \otimes F/L \rightarrow U \otimes F/L$ is monic for any finitely generated free left *R*-module *F* and any *n*-generated small submodule *L* of *F*, and so *U'* is J- (∞, n) -pure in *U*.

 $(5) \Rightarrow (2)$ Let $0 \to K \to F_1 \to V \to 0$ be an exact sequence of right *R*-modules, where F_1 is free. Then by (5), *K* is J-(∞, n)-pure in F_1 . So it follows from the exact sequence

$$0 = \operatorname{Tor}_{1}^{R}(F_{1}, F/L) \to \operatorname{Tor}_{1}^{R}(V, F/L) \to K \otimes F/L \to F_{1} \otimes F/L$$

that $\operatorname{Tor}_{1}^{R}(V, F/L) = 0$ for every finitely generated free left *R*-module *F* and any *n*-generated small submodule *L* of *F*.

 $(5) \Rightarrow (6)$ Let $0 \to K \to F_1 \to V \to 0$ be an exact sequence of right *R*-modules, where F_1 is free. Then by (5), *K* is J- (∞, n) -pure in F_1 . And so, by Lemma 2.2, we have that the canonical map $\operatorname{Hom}(\mathbb{R}^n/T, F_1) \to \operatorname{Hom}(\mathbb{R}^n/T, V)$ is surjective for any finitely generated small submodule *T* of \mathbb{R}^n_R . This follows that *f* factors through a finitely generated free right *R*-module *F* since \mathbb{R}^n/T is finitely generated.

 $(6) \Rightarrow (5)$ Let $0 \to U' \to U \xrightarrow{\pi} V \to 0$ be an exact sequence of right *R*-modules with U *J*-*n*-flat. Then for any finitely generated small submodule *T* of R_R^n and any homomorphism $f: R^n/T \to V$, by (6), there exist a finitely generated free module *F*, two homomorphisms $g \in \operatorname{Hom}_R(R^n/T, F)$ and $h \in \operatorname{Hom}_R(F, V)$ such that f = hg. Since *F* is projective, there exists a homomorphism $\alpha : F \to U$ such that $h = \pi \alpha$. Thus, αg is a homomorphism from R^n/T to *U* and $f = \pi(\alpha g)$. So, the canonical map $\operatorname{Hom}_R(R^n/T, U) \to \operatorname{Hom}_R(R^n/T, V)$ is surjective, and then the canonical map $\operatorname{Hom}_R(R^n/T, U) \to \operatorname{Hom}_R(R^n/T, U/U')$ is surjective. By Lemma 2.2, U' is J-(∞, n)-pure in U.

 $(7) \Rightarrow (8)$ Let $g: M \to V$ be an epimorphism and $f: R^n/T \to V$ be any homomorphism, where T is a finitely generated small submodule of R^n . By (7), ffactors through a finitely generated projective right R-module P, i.e., there exist $\varphi: R^n/T \to P$ and $\psi: F \to V$ such that $f = \psi\varphi$. Since P is projective, there exists a homomorphism $\theta: P \to M$ such that $\psi = g\theta$. Now write $h = \theta\varphi$, then h is a homomorphism from R^n/T to M, and $f = \psi\varphi = g(\theta\varphi) = gh$. And so (8) follows.

(8) \Rightarrow (7) Let F_1 be a free module and $\pi : F_1 \to V$ be an epimorphism. By (8), there exists a homomorphism $g : \mathbb{R}^n/T \to F_1$ such that $f = \pi g$. Note that Im(g) is finitely generated, so there is a finitely generated free module F such that Im(g) $\subseteq F \subseteq F_1$. Let $\iota : F \to F_1$ be the inclusion map and $h = \pi \iota$. Then h is a homomorphism from F to V and f = hg.

Corollary 3.3. For a right *R*-module *V*, the following statements are equivalent:

- (1) V is strongly J-flat.
- (2) $\operatorname{Tor}_1(V, F/L) = 0$ for every finitely generated free left R-module F and any finitely generated small submodule L of F.
- (3) $\operatorname{Tor}_1(V, F/L) = 0$ for every free left *R*-module *F* and any finitely generated small submodule *L* of *F*.
- (4) V^+ is J-FP-injective.
- (5) If the sequence of right R-modules 0 → U' → U → V → 0 is exact, then U' is J-pure in U.

- (6) For every finitely generated small submodule T of a finitely generated free right R-module F, any homomorphism f : F/T → V factors through a finitely generated free right R-module F₁, that is, there exist a homomorphism g : F/T → F₁ and a homomorphism h : F₁ → V such that f = hg.
- (7) For every finitely generated small submodule T of a free right R-module F, any homomorphism $f : F/T \to V$ factors through a finitely generated projective right R-module P.
- (8) For every finitely generated small submodule T of a free right R-module F, if g: M → V is an epimorphism, then for any homomorphism f: F/T → V, there exists a homomorphism h: F/T → M such that f = gh.

Proposition 3.4. Every J- (n, ∞) -pure submodule of a strongly J-n-flat module is strongly J-n-flat.

Proof. Suppose that V_R is strongly J-n-flat, K is J- (n, ∞) -pure in V. Let $X \in K^n$, $A \in J^{n \times m}$ satisfy XA = 0. Then by the strongly J-n-flatness of V, there exist positive integer l, $U \in V^l$ and $C \in R^{l \times n}$ such that CA = 0 and X = UC. Since K is J- (n, ∞) -pure in V and hence J-(n, l)-pure, by [21, Theorem 2.4(3)], we have X = YC for some $Y \in K^l$. So K is J-(m, n)-flat for any positive integer m by [21, Theorem 4.2(5)], and hence K is strongly J-n-flat.

Corollary 3.5. Every *J*-pure submodule of a strongly *J*-flat module is strongly *J*-flat.

Remark 3.6. From Theorem 3.2, the strongly *J*-*n*-flatness of V_R can be characterized by the strongly *J*-*n*-injectivity of V^+ . On the other hand, by [5, Lemma 2.7(1)], the sequence $\text{Tor}_1(V^+, M) \to \text{Ext}^1(M, V)^+ \to 0$ is exact for all finitely presented left *R*-module *M*, so if V^+ is strongly *J*-*n*-flat, then *V* is strongly *J*-*n*-injective.

Proposition 3.7. If R is a semiregular ring, then a left R-module M is strongly n-flat if and only if it is strongly J-n-flat.

Proof. Theorem 3.2(4), Proposition 2.7 and [22, Theorem 3.1(4)] give the desired result. $\hfill \Box$

4. Strongly *J*-*n*-coherent rings

Recall that a ring R is called left (m, n)-coherent [17] if every *n*-generated submodule of R^m is finitely presented; a ring R is called left *J*-coherent [6] if every finitely generated left ideal in J(R) is finitely presented; a ring R is called left *J*-*n*coherent [20] if every *n*-generated left ideal in J(R) is finitely presented. Inspired by these concepts, we introduce the concepts of strongly J-n-coherent rings and J-(m, n)-coherent rings as follows.

Definition 4.1. A ring R is called left strongly J-n-coherent if every n-generated small submodule of a free left R-module is finitely presented. A ring R is called left J-(m, n)-coherent if every n-generated small submodule of R^m is finitely presented.

Recall that a left R-module A is called 2-presented if there exists an exact sequence $F_2 \to F_1 \to F_0 \to A \to 0$ in which every F_i is a finitely generated free module. It is easy to see that a ring R is left strongly J-n-coherent if and only if it is left J-(m, n)-coherent for all positive integers m, if and only if every J-(m, n)presented left R-module is 2-presented for all positive integers m.

Theorem 4.2. Let R be a ring. Then the following statements are equivalent:

- (1) R is a left J-coherent ring.
- (2) Every finitely generated small submodule A of a finitely generated free left R-module F is finitely presented.
- (3) Every finitely generated small submodule A of a free left R-module F is finitely presented.
- (4) Every finitely generated small submodule A of a projective left R-module F is finitely presented.
- (5) For every finitely generated free left R-module F and any finitely generated small submodule A of F, F/A is 2-presented.

Proof. (1) \Rightarrow (2) Let $F = R^m$. We prove by induction on m. If m = 1, then A is a finitely generated left ideal in J(R), by hypothesis, A is finitely presented. Assume that every finitely generated small submodule of the left R-module R^{m-1} is finitely presented. Then for any finitely generated small submodule A of the left R-module R^m , let $B = A \cap (Re_1 \oplus \cdots \oplus Re_{m-1})$, where $e_j \in R^m$ with 1 in the *j*th position and 0's in all other positions. Then each $a \in A$ has a unique expression $a = b + re_m$, where $b \in (J(R))^{m-1} \oplus 0, r \in J(R)$. If $\varphi : A \to R$ is defined by $a \mapsto r$, then there is an exact sequence $0 \to B \to A \xrightarrow{\varphi} L \to 0$, where $L = \operatorname{Im}(\varphi)$ is a finitely generated left ideal in J(R). By hypothesis, L is finitely presented, and so B is finitely generated. Since B is isomorphic to a small submodule of R^{m-1} , the induction hypothesis gives B is finitely presented. Therefore, A is also finitely presented by [16, 25.1(2)(ii)].

$$(2) \Rightarrow (1)$$
, and $(2) \Leftrightarrow (3) \Leftrightarrow (4)$, as well as $(2) \Rightarrow (5)$ are obvious.

Remark 4.3. By Theorem 4.2, it is easy to see that R is left J-coherent if and only if R is left strongly J-n-coherent for each positive integer n.

Theorem 4.4. The following statements are equivalent for a ring R:

- (1) R is left strongly J-n-coherent.
- (2) If $0 \to K \xrightarrow{f} R^n \xrightarrow{g} T$ is an exact sequence of left *R*-modules, where *T* is a finitely generated small submodule of a free left *R*-module, then *K* is finitely generated.
- (3) 1_{Rⁿ}(X) is a finitely generated submodule of _RRⁿ for any finite subset X of J_n.
- (4) For any finitely generated small submodule S of the right R-module R_n, the dual module (R_n/S)* is a finitely generated left R-module.

Proof. (1) \Rightarrow (2) Since *R* is left strongly *J*-*n*-coherent and im(*g*) is an *n*-generated small submodule of a free left *R*-module, im(*g*) is finitely presented. Noting that the sequence $0 \rightarrow \ker(g) \rightarrow R^n \rightarrow \operatorname{im}(g) \rightarrow 0$ is exact, we have that $\ker(g)$ is finitely generated. Thus $K \cong \operatorname{im}(f) = \ker(g)$ is finitely generated.

(2) \Rightarrow (3) Let $X = \{\alpha_1, \dots, \alpha_m\}$. Then we have an exact sequence of left R-modules $0 \rightarrow \mathbf{l}_{R^n}(X) \rightarrow R^n \xrightarrow{g} J^m$, where $g(\beta) = (\beta \alpha_1, \dots, \beta \alpha_m)$. By (2), $\mathbf{l}_{R^n}(X)$ is a finitely generated left R-module.

(3) \Rightarrow (1) Let $T = Rt_1 + \cdots + Rt_n$ be an *n*-generated small submodule of R_m , where $t_j = (a_{1j}, \cdots, a_{mj})', j = 1, \cdots, n$. Write $\alpha_i = (a_{i1}, \cdots, a_{in})', i = 1, \cdots, m, X = \{\alpha_1, \cdots, \alpha_m\}$. Then we have an exact sequence of left *R*-modules $0 \rightarrow \mathbf{l}_{R^n}(X) \rightarrow R^n \rightarrow T \rightarrow 0$. By (3), $\mathbf{l}_{R^n}(X)$ is finitely generated, so *T* is finitely presented.

 $(3) \Leftrightarrow (4)$ follows from [22, Lemma 4.1].

Let \mathcal{F} be a class of right *R*-modules and *M* a right *R*-module. Following [9], we say that a homomorphism $\varphi : M \to F$ where $F \in \mathcal{F}$ is an \mathcal{F} -preenvelope of *M* if for any morphism $f : M \to F'$ with $F' \in \mathcal{F}$, there is a $g : F \to F'$ such that $g\varphi = f$. An \mathcal{F} -preenvelope $\varphi : M \to F$ is said to be an \mathcal{F} -envelope if every endomorphism $g : F \to F$ such that $g\varphi = \varphi$ is an isomorphism. Dually, we have the definitions of an \mathcal{F} -precover and an \mathcal{F} -cover. \mathcal{F} -envelopes (\mathcal{F} -covers) may not exist in general, but if they exist, they are unique up to isomorphism.

Theorem 4.5. The following statements are equivalent for a ring R:

(1) R is left strongly J-n-coherent.

- (2) $\varinjlim \operatorname{Ext}^1(F/T, M_\alpha) \cong \operatorname{Ext}^1(F/T, \varinjlim M_\alpha)$ for every n-generated small submodule T of a finitely generated free left R-module F and direct system $(M_\alpha)_{\alpha \in A}$ of left R-modules.
- (3) $\operatorname{Tor}_1(\prod N_\alpha, F/T) \cong \prod \operatorname{Tor}_1(N_\alpha, F/T)$ for any family $\{N_\alpha\}$ of right *R*-modules and any *n*-generated small submodule *T* of a finitely generated free left *R*-module *F*.
- (4) Any direct product of copies of R_R is strongly J-n-flat.
- (5) Any direct product of strongly J-n-flat right R-modules is strongly J-n-flat.
- (6) Any direct limit of strongly J-n-injective left R-modules is strongly J-ninjective.
- (7) Any direct limit of injective left R-modules is strongly J-n-injective.
- (8) A left R-module M is strongly J-n-injective if and only if M⁺ is strongly J-n-flat.
- (9) A left R-module M is strongly J-n-injective if and only if M⁺⁺ is strongly J-n-injective.
- (10) A right R-module M is strongly J-n-flat if and only if M^{++} is strongly J-n-flat.
- (11) For any ring S, $\operatorname{Tor}_1(\operatorname{Hom}_S(B,C), F/T) \cong \operatorname{Hom}_S(\operatorname{Ext}^1(F/T,B),C)$ for the situation $(_R(F/T),_R B_S, C_S)$ with F a finitely generated free left R-module and T an n-generated small submodule of F and C_S injective.
- (12) Every right R-module has a strongly J-n-flat preenvelope.
- (13) For every finitely generated small submodule S of the right R-module R_n , the right R-module R_n/S has a finitely generated projective preenvelope.

Proof. (1) \Rightarrow (2) follows from [5, Lemma 2.9(2)].

- $(1) \Rightarrow (3)$ follows from [5, Lemma 2.10(2)].
- $(2) \Rightarrow (6) \Rightarrow (7), (3) \Rightarrow (5) \Rightarrow (4)$ are trivial.

 $(7) \Rightarrow (1)$ Let F be a finitely generated free left R-module and T be an ngenerated small submodule of F, and let $(E_{\alpha})_{\alpha \in A}$ be a direct system of injective
left R-modules (with A directed). Then $\underline{lim}E_{\alpha}$ is strongly J-n-injective by (7), and
so $\operatorname{Ext}^{1}(F/T, \underline{lim}M_{\alpha}) = 0$. Thus we have a commutative diagram with exact rows:

Since f and g are isomorphism by [16, 25.4(d)], h is an isomorphisms by the Five Lemma. Now, let $(M_{\alpha})_{\alpha \in A}$ be any direct system of left *R*-modules (with A directed). Then we have a commutative diagram with exact rows:

$$0 \longrightarrow \underset{\varphi_1}{\underbrace{\lim}} \operatorname{Hom}(T, M_{\alpha}) \longrightarrow \underset{\varphi_2}{\underbrace{\lim}} \operatorname{Hom}(T, E(M_{\alpha})) \longrightarrow \underset{\varphi_3}{\underbrace{\lim}} \operatorname{Hom}(T, E(M_{\alpha})/M_{\alpha}) \xrightarrow{\varphi_3} \\ 0 \longrightarrow \operatorname{Hom}(T, \underset{\chi_1}{\underbrace{\lim}} M_{\alpha}) \longrightarrow \operatorname{Hom}(T, \underset{\chi_1}{\underbrace{\lim}} E(M_{\alpha})) \longrightarrow \operatorname{Hom}(T, \underset{\chi_1}{\underbrace{\lim}} E(M_{\alpha})/M_{\alpha}) \xrightarrow{\varphi_3}$$

where $E(M_{\alpha})$ is the injective hull of M_{α} . Since T is finitely generated, by [16, 24.9], the maps ϕ_1 , ϕ_2 and ϕ_3 are monic. By the above proof, ϕ_2 is an isomorphism. Hence ϕ_1 is also an isomorphism by Five Lemma again, so T is finitely presented by [16, 25.4(d)] again. Therefore R is left strongly J-n-coherent.

(4) \Rightarrow (1) Let *T* be an *n*-generated small submodule of a finitely generated free left *R*-module *F*. By (4), Tor₁($\Pi R, F/T$) = 0. Thus we have a commutative diagram with exact rows:

Since f_2 and f_3 are isomorphisms by [16, 25.4(g)], f_1 is an isomorphism by the Five Lemma. So T is finitely presented by [16, 25.4(g)] again. Hence R is left strongly J-n-coherent.

 $(5) \Rightarrow (12)$ Let N be any right R-module. By [9, Lemma 5.3.12], there is a cardinal number \aleph_{α} dependent on $\operatorname{Card}(N)$ and $\operatorname{Card}(R)$ such that for any homomorphism $f: N \to F$ with F strongly J-n-flat, there is a pure submodule S of F such that $f(N) \subseteq S$ and $\operatorname{Card} S \leq \aleph_{\alpha}$. Thus f has a factorization $N \to S \to F$ with S strongly J-n-flat by Proposition 3.3. Now let $\{\varphi_{\beta}\}_{\beta \in B}$ be all such homomorphisms $\varphi_{\beta}: N \to S_{\beta}$ with $\operatorname{Card} S_{\beta} \leq \aleph_{\alpha}$ and S_{β} strongly J-n-flat. Then any homomorphism $N \to F$ with F strongly J-n-flat has a factorization $N \to S_i \to F$ for some $i \in B$. Thus the homomorphism $N \to \Pi_{\beta \in B} S_{\beta}$ induced by all φ_{β} is a strongly J-n-flat preenvelope since $\Pi_{\beta \in B} S_{\beta}$ is strongly J-n-flat by (5).

 $(12) \Rightarrow (5)$ follows from [4, Lemma 1].

 $(1) \Rightarrow (11)$ For any finitely generated free left *R*-module *F* and each *n*-generated small submodule *T* of *F*, since *R* is left strongly *J*-*n*-coherent, *F*/*T* is 2-presented. And so (11) follows from [5, Lemma 2.7(2)].

 $(11) \Rightarrow (8)$ Let $S = \mathbb{Z}, C = \mathbb{Q}/\mathbb{Z}$ and B = M. Then $\operatorname{Tor}_1(M^+, F/T) \cong \operatorname{Ext}^1(F/T, M)^+$ for any *n*-generated small submodule T of a finitely generated free left R-module F by (11), and hence (8) holds.

 $(8) \Rightarrow (9)$ Let M be a left R-module. If M is strongly J-n-injective, then M^+ is strongly J-n-flat by (8), and so M^{++} is strongly J-n-injective by Theorem 3.2. Conversely, if M^{++} is strongly J-n-injective, then M, being a pure submodule of M^{++} (see [15, Exercise 41, p.48]), is strongly J-n-injective by Corollary 2.5.

 $(9) \Rightarrow (10)$ If M is a strongly J-n-flat right R-module, then M^+ is a strongly J-n-injective left R-module by Theorem 3.2, and so M^{+++} is strongly J-n-injective by (9). Thus M^{++} is strongly J-n-flat by Theorem 3.2 again. Conversely, if M^{++} is strongly J-n-flat, then M is strongly J-n-flat by Corollary 3.3 as M is a pure submodule of M^{++} .

(10) \Rightarrow (5) Let $\{N_{\alpha}\}_{\alpha \in A}$ be a family of strongly *J*-*n*-flat right *R*-modules. Then $\bigoplus_{\alpha \in A} N_{\alpha}$ is strongly *n*-flat, and so $(\prod_{\alpha \in A} N_{\alpha}^{+})^{+} \cong (\bigoplus_{\alpha \in A} N_{\alpha})^{++}$ is strongly *n*-flat by (10). Since $\bigoplus_{\alpha \in A} N_{\alpha}^{+}$ is a pure submodule of $\prod_{\alpha \in A} N_{\alpha}^{+}$ by [3, Lemma 1(1)], $(\prod_{\alpha \in A} N_{\alpha}^{+})^{+} \rightarrow (\bigoplus_{\alpha \in A} N_{\alpha}^{+})^{+} \rightarrow 0$ splits, and hence $(\bigoplus_{\alpha \in A} N_{\alpha}^{+})^{+}$ is strongly *J*-*n*-flat. Thus $\prod_{\alpha \in A} N_{\alpha}^{++} \cong (\bigoplus_{\alpha \in A} N_{\alpha}^{+})^{+}$ is strongly *J*-*n*-flat. Since $\prod_{\alpha \in A} N_{\alpha}$ is a pure submodule of $\prod_{\alpha \in A} N_{\alpha}^{++}$ by [3, Lemma 1(2)], $\prod_{\alpha \in A} N_{\alpha}$ is strongly *J*-*n*-flat by Corollary 3.3.

(12) \Rightarrow (13) Let *S* be a finitely generated small submodule of the right *R*module R_n . Then by (12), R_n/S has a strongly *n*-flat preenvelope $f: R_n/S \to N$. Since *N* is strongly *n*-flat, by Theorem 3.2, there exist a free right *R*-module *F*, a homomorphism $g: R_n/S \to F$ and a homomorphism $h: F \to N$ such that f = hg. Now let $\alpha: R_n/S \to A$ be any right *R*-homomorphism. Then there exists a homomorphism $\beta: N \to A$ such that $\alpha = \beta f$. So we have a homomorphism βh from *F* to *A* such that $\alpha = (\beta h)g$. Hence, $g: R_n/S \to F$ is a finitely generated projective preenvelope of R_n/S .

 $(13) \Rightarrow (1)$ Let S be a finitely generated small submodule of the right R-module R_n . Then R_n/S has a finitely generated projective preenvelope $f : R_n/S \rightarrow P$ by (13). So the sequence $\operatorname{Hom}(P, R) \rightarrow \operatorname{Hom}(R_n/S, R) \rightarrow 0$ is exact, and hence $(R_n/S)^* = \operatorname{Hom}(R_n/S, R)$ is finitely generated since P is finitely generated and projective. Therefore, by Theorem 4.4, R is left strongly J-n-coherent.

Corollary 4.6. The following statements are equivalent for a ring R:

- (1) R is left J-coherent.
- (2) $\varinjlim \operatorname{Ext}^1(F/T, M_\alpha) \cong \operatorname{Ext}^1(F/T, \varinjlim M_\alpha)$ for every finitely generated small submodule T of a finitely generated free left R-module F and a direct system $(M_\alpha)_{\alpha \in A}$ of left R-modules.

- (3) $\operatorname{Tor}_1(\prod N_\alpha, F/T) \cong \prod \operatorname{Tor}_1(N_\alpha, F/T)$ for any family $\{N_\alpha\}$ of right *R*-modules and any finitely generated small submodule *T* of a finitely generated free left *R*-module *F*.
- (4) Any direct product of copies of R_R is strongly J-flat.
- (5) Any direct product of strongly J-flat right R-modules is strongly J-flat.
- (6) Any direct limit of J-FP-injective left R-modules is J-FP-injective.
- (7) Any direct limit of injective left R-modules is J-FP-injective.
- (8) A left R-module M is J-FP-injective if and only if M^+ is strongly J-flat.
- (9) A left R-module M is J-FP-injective if and only if M^{++} is J-FP-injective.
- (10) A right R-module M is strongly J-flat if and only if M^{++} is strongly J-flat.
- (11) For any ring S, $\operatorname{Tor}_1(\operatorname{Hom}_S(B,C), F/T) \cong \operatorname{Hom}_S(\operatorname{Ext}^1(F/T,B),C)$ for the situation $(_R(F/T),_R B_S, C_S)$ with F a finitely generated free left R-module and T a finitely generated small submodule of F and C_S injective.
- (12) Every right R-module has a strongly J-flat preenvelope.
- (13) For every finitely generated small submodule S of a finitely generated right R-module F, the right R-module F/S has a finitely generated projective preenvelope.

Corollary 4.7. Let R be a semiregular ring. Then it is left strongly n-coherent if and only if it is left strongly J-n-coherent.

Proof. We need only to proof the sufficiency. Let R be left strongly J-n-coherent. Then by Theorem 4.5(4), any direct product of copies of R_R is strongly J-n-flat. Note that R is a semiregular ring, by Proposition 3.7, any direct product of copies of R_R is strongly n-flat. And so, by [22, Theorem 4.2(4)], R is left strongly ncoherent.

Corollary 4.8. Let R be a left strongly J-n-coherent ring. Then every left R-module has a strongly J-n-injective cover.

Proof. Let $0 \to A \to B \to C \to 0$ be a pure exact sequence of left *R*-modules with *B* strongly *J*-*n*-injective. Then $0 \to C^+ \to B^+ \to A^+ \to 0$ is split. Since *R* is left strongly *J*-*n*-coherent, B^+ is strongly *J*-*n*-flat by Theorem 4.5(8), so C^+ is strongly *J*-*n*-flat, and hence *C* is strongly *J*-*n*-injective by Remark 3.4. Thus, the class of strongly *J*-*n*-injective modules is closed under pure quotients, and so by [10, Theorem 2.5], every left *R*-module has a strongly *J*-*n*-injective cover.

Proposition 4.9. Let R be a left J-coherent ring. Then every left R-module has a J-FP-injective cover.

Proof. It is similar to the proof of Corollary 4.8.

Corollary 4.10. *The following are equivalent for a left strongly J-n-coherent ring R:*

- (1) Every strongly J-n-flat right R-module is strongly J-flat.
- (2) Every strongly J-n-injective left R-module is J-FP-injective.

In this case, R is left J-coherent.

Proof. (1) \Rightarrow (2) Let M be any strongly J-n-injective left R-module. Then M^+ is strongly J-n-flat by Theorem 4.5(8), and so M^+ is strongly J-flat by (1). Thus M^{++} is J-FP-injective. Since M is a pure submodule of M^{++} , and a pure submodule of a J-FP-injective module is J-FP-injective, M is strongly J-FP-injective.

 $(2) \Rightarrow (1)$ Let M be a strongly J-n-flat right R-module. Then M^+ is a strongly J-n-injective left R-module by Theorem 3.2, and so M^+ is J-FP-injective by (2). Thus M is strongly J-flat.

In this case, any direct product of strongly J-flat right R-modules is strongly J-flat by Theorem 4.5(5), and so R is left J-coherent by Corollary 4.6. \Box

Proposition 4.11. The following statements are equivalent for a ring R:

- (1) R is left strongly J-n-coherent and $_{R}R$ is strongly J-n-injective.
- (2) Every right R-module has a monic strongly J-n-flat preenvelope.
- (3) *R* is left strongly *J*-n-coherent and every left *R*-module has an epic strongly *J*-n-injective cover.
- (4) R is left strongly J-n-coherent and every injective right R-module is strongly J-n-flat.
- (5) R is left strongly J-n-coherent and, for any finitely generated small submodule S of the right R-module R_n , R_n/S embeds in a finitely generated free module.
- (6) R is left strongly J-n-coherent and, for any finitely generated small submodule S of the right R-module R_n , R_n/S has a monic finitely generated projective preenvelope.
- (7) R is left strongly J-n-coherent and every flat left R-module is strongly J-ninjective.

Proof. (1) \Rightarrow (2) Let M be any right R-module. Then M has a strongly J-n-flat preenvelope $f: M \to F$ by Theorem 4.5(12). Since $(_RR)^+$ is a cogenerator, there exists an exact sequence $0 \to M \xrightarrow{g} \prod(_RR)^+$. Since $_RR$ is strongly J-n-injective, by Theorem 4.5, $\prod(_RR)^+$ is strongly J-n-flat, and so there exists a right R-homomorphism $h: F \to \prod(_RR)^+$ such that g = hf, which shows that f is monic.

 $(2) \Rightarrow (4)$ Assume (2) holds. Then R is left strongly J-n-coherent by Theorem 4.5(12). Now, let E be an injective right R-module E. Then E has a monic strongly J-n-flat preenvelope F, so E is isomorphic to a direct summand of F, and thus E is strongly J-n-flat.

 $(4) \Rightarrow (1)$ Since $(_RR)^+$ is injective, by (4), it is strongly *J*-*n*-flat. Thus $_RR$ is strongly *J*-*n*-injective by Theorem 4.5(8).

 $(1)\Rightarrow(3)$ Let M be a left R-module. Then M has a strongly J-n-injective cover $\varphi : C \to M$ by Corollary 4.8. On the other hand, there is an exact sequence $F \xrightarrow{\alpha} M \to 0$ with F free. Since $_RR$ is strongly J-n-injective by (1), F is strongly J-n-injective, so there exists a homomorphism $\beta : F \to C$ such that $\alpha = \varphi\beta$. This follows that φ is epic.

 $(3) \Rightarrow (1)$ Let $f : N \to {}_{R}R$ be an epic strongly *J*-*n*-injective cover. Then the projectivity of ${}_{R}R$ implies that ${}_{R}R$ is isomorphic to a direct summand of N, and so ${}_{R}R$ is strongly *J*-*n*-injective.

 $(1) \Rightarrow (5)$ Let S be any finitely generated small submodule of the right R-module R_n . Since $_RR$ is strongly J-n-injective, by Theorem 2.6(4), M is torsionless. Note that R is left strongly J-n-coherent, by Theorem 4.6(4), R_n/S embeds in a strongly J-n-flat right R-module V. And so R_n/S embeds in a finitely generated free right R-module F by Theorem 3.2(6).

 $(5) \Rightarrow (1)$ It follows from Theorem 2.6(4).

 $(2) \Rightarrow (6)$ Clearly, R is left strongly J-n-coherent. Let S be any finitely generated small submodule of the right R-module R_n . By (2), R_n/S has a monic strongly J-n-flat preenvelope $f: R_n/S \to V$. And so, by Theorem 3.2(6), f factors through a finitely generated free right R-module F, that is, there exist a homomorphism $g: R_n/S \to F$ and a homomorphism $h: F \to V$ such that f = hg. Now let P be a projective right R-module and φ be a homomorphism from R_n/S to P. Then there exists a homomorphism $\theta: V \to P$ such that $\varphi = \theta f$. Thus, θh is a homomorphism from F to P and $\varphi = (\theta h)g$. Therefore, $g: R_n/S \to F$ is a monic finitely generated projective preenvelope of R_n/S .

 $(6) \Rightarrow (1)$ It follows from Theorem 2.6(4).

 $(4) \Rightarrow (7)$ Let M be a flat left R-module. Then M^+ is injective, and so M^+ is strongly J-n-flat by (4). Hence M is strongly J-n-injective by Theorem 4.5(8).

 $(7) \Rightarrow (1)$ It is obvious.

Proposition 4.12. The following statements are equivalent for a ring R:

- (1) R is left J-coherent and $_{R}R$ is J-FP-injective.
- (2) Every right R-module has a monic strongly J-flat preenvelope.

- (3) R is left J-coherent and every left R-module has an epic J-FP-injective cover.
- (4) R is left J-coherent and every injective right R-module is strongly J-flat.
- (5) R is left J-coherent and, for any finitely generated small submodule S of a finitely generated free right R-module F, F/S embeds in a finitely generated free module.
- (6) R is left J-coherent and, for any finitely generated small submodule S of a finitely generated free right R-module F, F/S has a monic finitely generated projective preenvelope.
- (7) R is left J-coherent and every flat left R-module is J-FP-injective.

Proof. It is similar to the proof of Proposition 4.11.

Theorem 4.13. The following statements are equivalent for a ring R:

- (1) R is left strongly J-n-coherent.
- (2) $\operatorname{Ext}_{R}^{1}(T, N) = 0$ for any n-generated small submodule T of a free left R-module F and any FP- injective left R-module N.
- (3) $\operatorname{Ext}_{R}^{2}(F/T, N) = 0$ for any finitely generated free left R-module F and its n-generated small submodule T and any FP-injective left R-module N.
- (4) If N is a strongly J-n-injective left R-module, N₁ is an FP-injective submodule of N, then N/N₁ is strongly J-n-injective.
- (5) For any FP-injective left R-module N, E(N)/N is strongly J-n-injective.

Proof. $(1) \Rightarrow (2)$ and $(4) \Rightarrow (5)$ are obvious.

(2) \Rightarrow (3) It follows from the isomorphism $\operatorname{Ext}^2_R(F/T, N) \cong \operatorname{Ext}^1_R(T, N)$.

 $(3) \Rightarrow (4)$ Let F be a finitely generated free left R-module and T its n-generated small submodule. The exact sequence $0 \rightarrow N_1 \rightarrow N \rightarrow N/N_1 \rightarrow 0$ induces the exactness of the sequence

$$0 = \operatorname{Ext}^{1}(F/T, N) \to \operatorname{Ext}^{1}(F/T, N/N_{1}) \to \operatorname{Ext}^{2}(F/T, N_{1}) = 0.$$

Therefore $\operatorname{Ext}^{1}(F/T, N/N_{1}) = 0$, as desired.

 $(5) \Rightarrow (1)$ Let F be a finitely generated free left R-module and T its n-generated small submodule. Then for any FP-injective module N, E(N)/N is strongly J-n-injective by (5). From the exactness of the two sequences

$$0 = \operatorname{Ext}^{1}(F, N) \to \operatorname{Ext}^{1}(T, N) \to \operatorname{Ext}^{2}(F/T, N) \to \operatorname{Ext}^{2}(F, N) = 0$$

and

$$0 = \operatorname{Ext}^{1}(F/T, E(N)) \to \operatorname{Ext}^{1}(F/T, E(N)/N) \to \operatorname{Ext}^{2}(F/T, N) \to \operatorname{Ext}^{2}(F/T, E(N)) = 0,$$

we have

$$\operatorname{Ext}^{1}(T, N) \cong \operatorname{Ext}^{2}(F/T, N) \cong \operatorname{Ext}^{1}(F/T, E(N)/N) = 0,$$

so $\text{Ext}^1(T, N) = 0$. By [8], T is finitely presented. Therefore, R is left strongly J-n-coherent.

Corollary 4.14. The following statements are equivalent for a ring R:

- (1) R is left J-coherent.
- (2) $\operatorname{Ext}_{R}^{1}(T, N) = 0$ for any finitely generated small submodule T of a free left *R*-module F and any FP-injective left *R*-module N.
- (3) $\operatorname{Ext}_{R}^{2}(F/T, N) = 0$ for any finitely generated free left R-module F and its finitely generated small submodule T and any FP-injective left R-module N.
- (4) If N is a J-FP-injective left R-module, N₁ is an FP-injective submodule of N, then N/N₁ is J-FP-injective.
- (5) For any FP-injective left R-module N, E(N)/N is J-FP-injective.

5. *J-n*-semihereditary rings

Definition 5.1. A ring R is said to be left *J*-*n*-semihereditary if every *n*-generated small left ideal of R is projective.

Theorem 5.2. Let R be a ring. Then the following statements are equivalent:

- (1) R is a left J-n-semihereditary ring.
- (2) Every n-generated small submodule A of a finitely generated free left Rmodule F is projective.
- (3) Every n-generated small submodule A of a free left R-module is projective.
- (4) If 0 → K → P → V → 0 is exact, where V is a J-finitely presented left R-module and P is projective, then K is projective.

Proof. (1) \Rightarrow (2) Let $F = R^m$. We prove by induction on m. If m = 1, then A is an n-generated small left ideal of R, by (1), A is projective. Assume that every n-generated small submodule of the left R-module R^{m-1} is projective. Then for any n-generated small submodule A of the left R-module R^m , let $B = A \cap (Re_1 \oplus \cdots \oplus Re_{m-1})$, where $e_j \in R^m$ with 1 in the jth position and 0's in all other positions. Then each $a \in A$ has a unique expression $a = b + re_m$, where $b \in J(R)^{m-1}, r \in J(R)$. If $\varphi : A \to R$ is defined by $a \mapsto r$, then there is an exact sequence $0 \to B \to A \xrightarrow{\varphi} L \to 0$, where $L = \operatorname{Im}(\varphi)$ is an n-generated small left ideal of R. By (1), L is projective, so $A \cong B \oplus L$ and then B is n-generated. Since B is isomorphic to a small submodule of R^{m-1} , the induction hypothesis gives B, hence A, is projective.

 $(2) \Rightarrow (1)$ and $(2) \Leftrightarrow (3)$ are clear.

(2) \Leftrightarrow (4) By the Schanuel's Lemma [12, Theorem 3.62].

Corollary 5.3. If R is a left J-semihereditary ring, then every finitely generated small submodule of a free left R-module is projective.

Theorem 5.4. The following statements are equivalent for a ring R:

- (1) R is a left J-n-semihereditary ring.
- (2) R is left strongly J-n-coherent and every submodule of a strongly J-n-flat right R-module is strongly J-n-flat.
- (3) R is left strongly J-n-coherent and every right ideal is strongly J-n-flat.
- (4) R is left strongly J-n-coherent and every finitely generated right ideal is strongly J-n-flat.
- (5) Every quotient module of a strongly J-n-injective left R-module is strongly J-n-injective.
- (6) Every quotient module of an injective left R-module is strongly J-n-injective.
- (7) Every left R-module has a monic strongly J-n-injective cover.
- (8) Every right R-module has an epic strongly J-n-flat envelope.
- (9) For every finitely generated small submodule of the right R-module Rⁿ, Rⁿ/S has an epic finitely generated projective envelope.
- (10) Every torsionless right R-module is strongly J-n-flat.

Proof. $(2) \Rightarrow (3) \Rightarrow (4)$, and $(5) \Rightarrow (6)$ are trivial.

 $(1)\Rightarrow(2)$ Assume (1). Then by Theorem 5.2(2), R is left strongly *J*-*n*-coherent. Let A be a submodule of a strongly *J*-*n*-flat right R-module B and L an n-generated small submodule of a finitely generated free left R-module F. Then L is projective and hence flat. Thus the exactness of the sequence $0 = \text{Tor}_2(B/A, F) \rightarrow \text{Tor}_2(B/A, F/L) \rightarrow \text{Tor}_1(B/A, L) = 0$ implies that $\text{Tor}_2(B/A, F/L) = 0$. And so, from the exactness of the sequence $0 = \text{Tor}_2(B/A, F/L) \rightarrow \text{Tor}_1(A, F/L) \rightarrow \text{Tor}_1(A, F/L) = 0$ we have that $\text{Tor}_1(A, F/L) = 0$, it shows that A is strongly n-flat.

 $(4) \Rightarrow (1)$ Let L be an n-generated small submodule of a finitely generated free left R-module F. Then L is finitely presented as R is left strongly J-n-coherent. Let I be any finitely generated right ideal of R. The exact sequence $0 \rightarrow I \rightarrow R \rightarrow R/I \rightarrow 0$ implies the exact sequence $0 \rightarrow \text{Tor}_2(R/I, F/L) \rightarrow \text{Tor}_1(I, F/L) = 0$ since I is strongly J-n-flat. So $\text{Tor}_2(R/I, F/L) = 0$, and hence we obtain an exact sequence $0 = \text{Tor}_2(R/I, F/L) \rightarrow \text{Tor}_1(R/I, L) \rightarrow 0$. Thus, $\text{Tor}_1(R/I, L) = 0$, and so L is a finitely presented flat left R-module. Therefore, L is projective.

 $(1) \Rightarrow (5)$ Let M be a strongly J-n-injective left R-module and N be a submodule of M. Then for any n-generated small submodule L of a finitely generated free left R-module F, since L is projective, the exact sequence $0 = \text{Ext}^1(L, N) \rightarrow$ $\text{Ext}^2(F/L, N) \rightarrow \text{Ext}^2(F, N) = 0$ implies that $\text{Ext}^2(F/L, N) = 0$. Thus the exact sequence $0 = \text{Ext}^1(F/L, M) \rightarrow \text{Ext}^1(F/L, M/N) \rightarrow \text{Ext}^2(F/L, N) = 0$ implies that $\text{Ext}^1(F/L, M/N) = 0$. Therefore, M/N is strongly J-n-injective.

 $(6) \Rightarrow (1)$ Let L be an n-generated small submodule of a finitely generated free left R-module F. Then for any left R-module M, by (6), E(M)/M is strongly Jn-injective, and so $\operatorname{Ext}^1(F/L, E(M)/M) = 0$. Thus, the exactness of the sequence $0 = \operatorname{Ext}^1(F/L, E(M)/M) \to \operatorname{Ext}^2(F/L, M) \to \operatorname{Ext}^2(F/L, E(M)) = 0$ implies that $\operatorname{Ext}^2(F/L, M) = 0$. Hence, the exactness of the sequence $0 = \operatorname{Ext}^1(F, M) \to \operatorname{Ext}^2(F/L, M) \to \operatorname{Ext}^2(F/L, M) = 0$ implies that $\operatorname{Ext}^1(L, M) \to \operatorname{Ext}^2(F/L, M) = 0$ implies that $\operatorname{Ext}^1(L, M) = 0$, this shows that Lis projective, as required.

 $(5) \Rightarrow (7)$ Since R is left strongly J-n-coherent by (2), for any left R-module M, there is a strongly J-n-injective cover $f: E \to M$ by Corollary 4.8. Note that im(f)is strongly J-n-injective by (5), and $f: E \to M$ is a strongly J-n-injective precover, so for the inclusion map $i: im(f) \to M$, there is a homomorphism $g: im(f) \to E$ such that i = fg. Hence f = f(gf). Observing that $f: E \to M$ is a strongly J-n-injective cover and gf is an endomorphism of E, gf is an automorphism of E, and thus $f: E \to M$ is a monic strongly J-n-injective cover.

 $(7) \Rightarrow (5)$ Let M be a strongly J-n-injective left R-module and N be a submodule of M. By (7), M/N has a monic strongly J-n-injective cover $f : E \to M/N$. Let $\pi : M \to M/N$ be the natural epimorphism. Then there exists a homomorphism $g : M \to E$ such that $\pi = fg$. Thus f is an isomorphism, and therefore $M/N \cong E$ is strongly J-n-injective.

 $(2) \Leftrightarrow (8)$ Since the class of strongly *J*-*n*-flat right *R*-modules is closed under direct summands and isomorphisms, so by [4, Theorem 2], the class of strongly *J*-*n*-flat right *R*-modules is closed under direct product and submodules if and only if every right *R*-module has an epic strongly *J*-*n*-flat envelope.

 $(8) \Rightarrow (9)$ Let $M = R^n/S$, where S is a finitely generated small submodule of R^n . Then by (8), M has an epic strongly J-n-flat envelope $f: M \to N$. By Theorem 3.2(6), f factors through a finitely generated free right R-module F, that is, there exist $g: M \to F$ and $h: F \to N$ such that f = hg. Since F is strongly J-n-flat, there exists $\varphi: N \to F$ such that $g = \varphi f$. So $f = (h\varphi)f$, and hence $h\varphi = 1$ since f is epic. Hence, N is isomorphic to a direct summand of F, and thus N is finitely generated projective. Therefore, $f: M \to N$ is a finitely generated projective envelope of M.

 $(9) \Rightarrow (2)$ Clearly R is left strongly J-n-coherent by Theorem 4.5(13). Now suppose that A is a submodule of a strongly J-n-flat right R-module B and $\iota : A \to B$ is the inclusion. Let L be a finitely generated small submodule of R_R^n . Then for any homomorphism $f : R^n/L \to A$, ιf factors through a finitely generated free right R-module F by Theorem 3.2(6). So there exists homomorphism $g : R^n/L \to F$ and $h : F \to B$ such that $\iota f = hg$. By (9), R^n/L has an epic finitely generated projective envelope $\alpha : R^n/L \to P$. So there exists a homomorphism $\beta : P \to F$ such that $g = \beta \alpha$. It is easy to see that $Ker(\alpha) \subseteq Ker(f)$. Now we define $\gamma : P \to A$ by $\gamma(x) = f(y)$, where $x = \alpha(y)$, then γ is a right R-homomorphism and $f = \gamma \alpha$. Therefore, A is strongly J-n-flat by Theorem 3.2(6).

 $(2) \Rightarrow (10)$ Let M be a torsionless right R-module. Then there exists an exact sequence $0 \to M \to \prod R_R$. By (2), R is left strongly J-n-coherent and every sub-module of a strongly J-n-flat right R-module is strongly J-n-flat, so M is strongly J-n-flat by Theorem 4.6(4).

 $(10) \Rightarrow (3)$ Assume (10). Then $\prod R_R$ is strongly *J*-*n*-flat, and hence *R* is left strongly *J*-*n*-coherent by Theorem 4.5(4). Moreover, every right ideal of *R* is torsionless and so is strongly *J*-*n*-flat.

Corollary 5.5. The following statements are equivalent for a ring R:

- (1) R is a left J-semihereditary ring.
- (2) R is left J-coherent and submodules of strongly J-flat right R-modules are strongly J-flat.
- (3) R is left J-coherent and every right ideal is strongly J-flat.
- (4) R is left strongly J-coherent and every finitely generated right ideal is strongly J-flat.
- (5) Every quotient module of a J-FP-injective left R-module is J-FP-injective.
- (6) Every quotient module of an injective left R-module is J-FP-injective.
- (7) Every left R-module has a monic J-FP-injective cover.
- (8) Every right R-module has an epic strongly J-flat envelope.
- (9) For every finitely generated small submodule S of a free right R-module F, F/S has an epic finitely generated projective envelope.
- (10) Every torsionless right R-module is strongly J-flat.

Corollary 5.6. Let R be a semiregular ring. Then it is left n-semihereditary if and only if it is left J-n-semihereditary.

Proof. We need only to prove the sufficiency. Suppose R is left *J*-*n*-semihereditary, then by Theorem 5.4(6), every quotient module of an injective left R-module is

strongly *J*-*n*-injective. Since *R* is semiregular, every strongly *J*-*n*-injective left *R*-module is strongly *n*-injective by Proposition 2.7. So every quotient module of an injective left *R*-module is strongly *n*-injective and hence *n*-injective. Hence, by [17, Theorem 3(2)], *R* is left *n*-semihereditary.

Acknowledgement. The author would like to thank the referee for the valuable suggestions and comments.

References

- H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, NJ, 1956.
- [2] S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc., 97 (1960), 457-473.
- [3] T. J. Cheatham and D. R. Stone, *Flat and projective character modules*, Proc. Amer. Math. Soc., 81 (1981), 175-177.
- [4] J. L. Chen and N. Q. Ding, A note on existence of envelopes and covers, Bull. Austral. Math. Soc., 54 (1996), 383-390.
- [5] J. L. Chen and N. Q. Ding, On n-coherent rings, Comm. Algebra, 24 (1996), 3211-3216.
- [6] N. Q. Ding, Y. L. Li and L. X. Mao, *J-coherent rings*, J. Algebra Appl., 8 (2009), 139-155.
- [7] D. D. Dobbs, On n-flat modules over a commutative ring, Bull. Austral. Math. Soc., 43 (1991), 491-498.
- [8] E. E. Enochs, A note on absolutely pure modules, Canad. Math. Bull., 19 (1976), 361-362.
- [9] E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter & Co., Berlin, 2000.
- [10] H. Holm and P. Jørgensen, Covers, precovers, and purity, Illinois. J. Math., 52 (2008), 691-703.
- [11] W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge University Press, Cambridge, 2003.
- [12] J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York-London, 1979.
- [13] A. Shamsuddin, n-injective and n-flat modules, Comm. Algebra, 29 (2001), 2039-2050.
- [14] B. Stenström, Coherent rings and FP-injective modules, J. London. Math. Soc., 2 (1970), 323-329.

- [15] B. Stenström, Rings of Quotients, Springer-Verlag, New York-Heidelberg, 1975.
- [16] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
- [17] X. X. Zhang, J. L. Chen and J. Zhang, On (m, n)-injective modules and (m, n)coherent rings, Algebra Colloq., 12 (2005), 149-160.
- [18] X. X. Zhang and J. L. Chen, On n-semihereditary and n-coherent rings, Int. Electron. J. Algebra, 1 (2007), 1-10.
- [19] Z. M. Zhu and Z. S. Tan, On n-semihereditary rings, Sci. Math. Jpn., 62 (2005), 455-459.
- [20] Z. M. Zhu, I-n-coherent rings, I-n-semihereditary rings, and I-regular rings, Ukrainian Math. J., 66 (2014), 857-883.
- [21] Z. M. Zhu, *I-pure submodules*, *I-FP-injective modules and I-flat modules*, Br. J. Math. Comput. Sci., 8 (2015), 170-188.
- [22] Z. M. Zhu, Strongly n-coherent rings, Chinese Ann. Math. Ser. A, 38 (2017), 313-326.

Zhanmin Zhu

Department of Mathematics College of Data Science Jiaxing University Jiaxing, Zhejiang Province, 314001, P. R. China e-mail: zhuzhanminzjxu@hotmail.com