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Abstract. A ring R is called right F-injective if every right R-homomorphism

from a finitely generated right ideal of R to R extends to an endomorphism

of R. R is called a right FSE-ring if R is a right F-injective semiperfect ring

with essential right socle. The class of right FSE-rings is broader than that of

right PF-rings. In this paper, we study and provide some characterizations of

this class of rings. We prove that if R is left perfect, right F-injective, then

R is QF if and only if R/S is left finitely cogenerated where S = Sr = Sl if

and only if R is left semiartinian, Soc2(R) is left finitely generated. It is also

proved that R is QF if and only if R is left perfect, mininjective and J2 = r(I)

for a finite subset I of R. Some known results are obtained as corollaries.
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1. Introduction

Throughout the paper, R represents an associative ring with identity 1 6= 0

and all modules are unitary R-modules. We write MR (resp., RM) to indicate

that M is a right (resp., left) R-module. We also write J (resp., Zr, Sr) for the

Jacobson radical (resp., the right singular ideal, the right socle of R) and E(MR)

for the injective hull of MR. If X is a subset of R, the right (resp., left) annihilator

of X in R is denoted by rR(X) (resp., lR(X)) or simply r(X) (resp., l(X)) if

no confusion appears. If N is a submodule of M (resp., proper submodule) we

denote by N ≤ M (resp., N < M). Moreover, we write N ≤e M , N ≤⊕ M and

N ≤max M to indicate that N is an essential submodule, a direct summand and a

maximal submodule of M , respectively. A module M is called uniform if M 6= 0

and every non-zero submodule of M is essential in M .
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A ring R is called right F-injective (resp., P-injective) if every homomorphism

from a finitely generated (resp., principal) right ideal to R is given by left multipli-

cation by an element of R. R is called right mininjective if every homomorphism

from a minimal right ideal to R is given by left multiplication by an element of

R. R is called right Kasch if every simple right R-module embeds in R; or equiva-

lently, l(I) 6= 0 for every maximal right ideal I of R. A ring R is called a QF-ring

if it is right (or left) artinian and right (or left) self-injective. R is said to be a

right PF-ring if the right RR is an injective cogenerator in the category of right

R-modules.

We refer to the following conditions on a module MR:

C1: Every submodule of M is essential in a direct summand of M.

C2: Every submodule of M that is isomorphic to a direct summand of M is

itself a direct summand of M.

C3: M1 ⊕M2 is a direct summand of M for any two direct summand M1, M2

of M with M1 ∩M2 = 0.

Module MR is called extending (or CS) (resp., continuous) if it satisfies C1 (resp.,

both C1 and C2). R is called right CS (resp., continuous) if RR is a CS-module

(resp., continuous). A module M is called finitely continuous if it satisfies C2 and

every finitely generated submodule is essential in a summand of M . R is called

right finitely continuous if RR is a finitely continuous module. A module M is

called min-CS if every simple submodule is essential in a summand of M (see [24]).

R is called right min-CS if RR is a min-CS module. R is called a right IN-ring if

l(A ∩B) = l(A) + l(B) for all right ideals A and B of R.

General background material can be found in [1], [6], [7] and [24].

In this paper, we consider a generalization of right PF, namely the class of

semiperfect right F-injective rings with essential right socle (called right FSE). We

provide example of right FSE which are not right PF. Several characterizations of

right FSE rings are provided. For instance, it is shown that R is right FSE if and

only if R is left min-CS, right Kasch and right F-injective if and only if R is right

finitely continuous, right finitely cogenerated, and right F-injective. In [5], Chen,

Ding and Yousif proved that if R is left perfect, left and right F-injective then R is

QF if and only if R/S is left finitely cogenerated where S = Sr = Sl if and only if R

is right perfect, Soc2(R) is left finitely generated. In this paper, we will prove that

R is left perfect, right F-injective then R is QF if and only if R/S is left finitely

cogenerated where S = Sr = Sl if and only if R is left semiartinian and Soc2(R) is

left finitely generated.
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2. On semiperfect F-injective rings.

Lemma 2.1. Let R be a right Kasch, right F-injective ring. Then

(1) rl(I) = I for every right finitely generated ideal I of R. In particular, R is

left P-injective.

(2) Sr = Sl is essential in RR.

(3) l(J) is an essential left ideal.

(4) J = r(S) = rl(J), where S = Sr = Sl.

(5) Zr = Zl = J .

(6) xR is minimal if and only if Rx is minimal, for every x ∈ R.

(7) Minimal left and right ideal are annihilators.

(8) The map K 7−→ r(K) gives a bijection from the set of all minimal left

ideals of R onto the set of all maximal right ideals of R. The inverse map

is defined by I 7−→ l(I).

(9) If l(T ) = l(S), where T and S are right ideals, with T is finitely generated,

then T = S.

(10) If TR is a finitely generated right ideal, and l(T ) is small in RR, then TR

is essential in RR.

(11) r(Rb ∩ l(T )) = r(b) + T for every finitely generated right ideal T of R and

every b ∈ R.

Proof. (2), (3), (4), (5), (6) by [4, Theorem 2.3].

(1). Let T be a right finitely generated ideal of R. Always T ≤ rl(T ). If b ∈ rl(T )\T
let T ≤ I ≤max (bR + T ). Since R is right Kasch, we can find a monomorphism

σ : (bR + T )/I → R, and then define γ : bR + T → R via γ(x) = σ(x + I). Since

bR + I is a right finitely generated ideal of R and R is right F-injective, it follows

that γ = c., where c ∈ R. Hence cb = σ(b+ I) 6= 0 because b 6∈ I. But if t ∈ T then

ct = σ(t + I) = 0 because T ≤ I, so c ∈ l(I). Since b ∈ rl(T ) this gives cb = 0, a

contradiction. Thus T = rl(T ). It is clearly that R is left P-injective.

(7). Obvious because R is left and right mininjective.

(8). Let K = Ra be a minimal left ideal. Then aR is a minimal right ideal, and so

r(K) = r(a) is a maximal right ideal. Clearly, K = lr(K) since K is an annihilator.

Note that R is right Kasch and right F-injective. Thus for all maximal right ideal

T , T = rl(T ). So (8) follows.

(9). First S ≤ rl(S) = rl(T ) = T by (1). If S < T , by the same argument as in

(1), we receive the contradiction. Thus T = S.

(10). Let T ∩ aR = 0, where a ∈ R. Since R is right F-injective, R = l(T ∩ aR) =
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l(T ) + l(a). Thus l(a) = R by hypothesis, so a = 0.

(11). Clear from (1). �

Recall that if M is a module, the submodules Soc1(M) ≤ Soc2(M) ≤ ... are

defined by setting Soc1(M) = Soc(M) and, if Socn(M) has been specified, by

Socn+1(M)/Socn(M) = Soc(M/Socn(M)).

Lemma 2.2. Let R be a semilocal, right Kasch, right F-injective ring. Then

(1) R is left and right Kasch.

(2) R is left and right finitely cogenerated.

(3) Socn(RR) = Socn(RR) = l(Jn) = r(Jn) for all n ≥ 1.

Proof. By Lemma 2.1, R is left and right P-injective. Then by [15, Lemma 5.49],

R is right and left Kasch. Thus by [4, Theorem 2.8], R is left and right finitely

cogenerated. Thus (3) follows from [15, Lemma 3.36]. �

Corollary 2.3. Assume that R is a semiperfect, right F-injective ring in which

Soc(eR) 6= 0 for every local idempotent e of R. Then

(1) rl(I) = I for every right finitely generated ideal I of R.

(2) Sr = Sl = S is essential in RR and in RR.

(3) Soc(eR) = eS and Soc(Re) = Se are simple for every local idempotent

e ∈ R.

(4) If e1, ..., en are basic local idempotents, then {e1S..., enS} and {Se1..., Sen}
are systems of distinct representatives of the simple right and left R-modules,

respectively.

(5) Zr = Zl = J .

(6) R is left and right finite dimensional.

Proof. By the hypothesis R is right minfull (i.e., R is a semiperfect, right minin-

jective ring in which Soc(eR) 6= 0 for every local idempotent e of R), and then it is

a right Kasch ring by [17, Theorem 3.7]. Hence by Lemma 2.1 and Lemma 2.2 we

have (1), (2), (5) and (6). Thus R is also left minfull. It implies that Soc(Re) = Se

and Soc(eR) = eS are simple for every local idempotent e ∈ R by [17, Theorem

3.7], proving (3).

(4) follows from [17, Theorem 3.7 (7), (8)]. �

Corollary 2.4. The following conditions are equivalent for a ring R.

(1) R is left finitely cogenerated, right Kasch and right F-injective.

(2) R is left finite dimensional, right Kasch and right F-injective.
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(3) R is right Kasch, right F-injective and Sl is left finitely generated.

(4) R is semilocal, right Kasch and right F-injective.

(5) R is semilocal, right F-injective and J = r(k1, ..., kn), where ki ∈ R, i =

1, ..., n.

(6) R is right finitely cogenerated, right Kasch and right F-injective.

(7) R is right finite dimensional, right Kasch and right F-injective.

(8) R is right Kasch, right F-injective and Sr is a finitely generated left ideal.

Proof. (1)⇒ (2) and (2)⇒ (3). Obvious.

(3) ⇒ (4). By the hypothesis and Lemma 2.1, Sr = Sl, say Sr = Ra1 ⊕ ... ⊕ Ran
where Rai is a minimal left ideal of R, so aiR is a minimal right ideal of R by

Lemma 2.1(6) i.e., r(ai) is a maximal right ideal of R for all i = 1, 2, ..., n. Since R

is right Kasch, J = r(Sr) =
n⋂
i=1

r(ai). We construct a homomorphism

ϕ : R/J = R/
n⋂
i=1

r(ai) −→
n⊕
i=1

R/r(ai) defined by ϕ(r+
n⋂
i=1

r(ai)) = (r+r(ai))ni=1 for

all r ∈ R. Then ϕ is a monomorphism. Hence R/J is semisimple or R is semilocal.

(4)⇒ (1), (6) and (8) by Lemma 2.2.

(4)⇒ (5). By Lemma 2.2 and R is semilocal.

(5)⇒ (4). By [5, Corollary 3.2].

(6)⇒ (7). Clearly.

(7)⇒ (4) follows because a right P-injective and right finite dimensional is semilocal

by [16, Theorem 3.3].

(8)⇒ (4). By the same an argument as (3)⇒ (4). �

Next we consider ring which is semiperfect, right F-injective with essential right

socle.

Theorem 2.5. The following conditions are equivalent for a ring R.

(1) R is semiperfect, right Kasch and right F-injective.

(2) R is semiperfect, right F-injective and Sr ≤e RR.

(3) R is semiperfect, right F-injective and Sr ≤e RR.

(4) R is right finitely continuous, right finitely cogenerated and right F-injective.

(5) R is right min-CS, right finitely cogenerated and right F-injective.

(6) R is left min-CS, right Kasch and right F-injective.

Proof. (1) ⇔ (2) ⇔ (3) ⇔ (5) ⇔ (6). By the same argument as in [5, Theorem

3.3].

(3) ⇒ (4). By [15, Theorem 1.48], R is right Kasch, and so by Lemma 2.1 and
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Lemma 2.2, Sl ≤e RR and Sr ≤e RR. Hence rl(I) is essential in a summand

of RR for every right ideal I of R by [15, Lemma 4.2]. Furthermore, every right

finitely generated ideal is a right annihilator by Lemma 2.1. Thus R is right finitely

continuous.

(4)⇒ (5) is clearly. �

Definition 2.6. A ring R is called a right FSE-ring if it satisfies the equivalent

conditions in Theorem 2.5.

Remark 2.7. If R is right PF (i.e., R is semiperfect, right self-injective and Sr ≤e

RR), then R is right FSE, however the converse is not true in general. There is a

commutative FSE-ring which is not PF ([15, Example 5.45]): Let R = F [x1, x2...],

where F is a field and xi are commuting indeterminants satisfying the relations:

x3
i = 0 for all i, xixj = 0 for all i 6= j, and x2

i = x2
j for all i and j. Then R is a

commutative, semiprimary F-injective ring. But R is not a self-injective ring.

A right R-module M is said to be F-injective if each R-momorphism f : I −→M

from a right finitely generated ideal I into M extends to R; equivalently, f = m.,

for some m ∈M .

It is well-known that R is a right PF-ring iff R =
n⊕
i=1

eiR where e2
i = ei ∈ R and

each eiR is indecomposable injective with essential simple socle. We also have:

Theorem 2.8. The following conditions are equivalent for ring R.

(i) R is right FSE.

(ii) RR is finite direct sum R =
n⊕
i=1

eiR where e2
i = ei ∈ R and each eiR is

indecomposable F-injective with essential simple socle.

Proof. (i)⇒ (ii). Since R is right FSE, R = e1R⊕ ...⊕enR where {e1, e2, ..., en} is

a set of orthogonal local idempotents in R and each eiR is indecomposable. But R

is right finitely continuous, each eiR is uniform. Hence Soc(eiR) is essential simple

in eiR for all i = 1, 2, ..., n (because Soc(eiR) 6= 0). Now we will prove that eiRR
is F-injective. In fact, for every i ∈ {1, 2, ..., n} we consider the following diagram:

I
f−→ eiR

ιi
↪→←
pi

R

↘
ι

f̄i ↑ ↗
f̄

R

with IR is a finitely generated right ideal of R, ι, ιi are the canonical inclusions and

pi is the canonical projection. Since R is right F-injective, there exists f̄ : R −→ R
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such that f̄ ◦ ι = ιi ◦f . Let f̄i = pi ◦ f̄ . Therefore, f̄i(x) = pi ◦ f̄(x) = pi ◦ ιi ◦f(x) =

f(x) for all x ∈ I. Thus eiRR is F-injective for each i = 1, 2, ..., n.

(ii) ⇒ (i). Assume that R =
n⊕
i=1

eiR where e2
i = ei ∈ R and each eiR is indecom-

posable F-injective with essential simple socle. We consider the following diagram:

I
f−→ R

pi−→ eiR

↘
ι

f̄ ↑
f̄i
↗

R

with IR is a finitely generated right ideal ofR, ι, ιi are the canonical inclusions and pi
is the canonical projection. Since each eiRR is F-injective, there is f̄i : R −→ eiR

with f̄i ◦ ι = pi ◦ f for each i = 1, 2, ..., n. Let f̄ =
n⊕
i=1

f̄i : R −→ R via f̄(x) =
n∑
i=1

f̄i(x), for all x ∈ R. Then for all x ∈ I, f̄(x) =
n∑
i=1

f̄i(x) =
n∑
i=1

pi(f(x)) = f(x).

Thus R is right F-injective.

Now we will prove that R is semiperfect. In fact, let 0 6= K ≤ eiR. Since

Soc(eiR) ≤e eiR, K∩Soc(eiR) 6= 0. Furthermore, Soc(eiR) is simple. So Soc(eiR) =

K ∩Soc(eiR) i.e., Soc(eiR) ≤ K, from this it implies that K ≤e eiR. Hence eiR is

uniform for all i = 1, 2, . . . , n.

Note that R is right C2-ring (since R is right F-injective) and R is finite direct

sum of uniform right ideals. Thus, R is semiperfect by [15, Lemma 4.26]. On the

other hand, Soc(RR) =
n⊕
i=1

Soc(eiR) ≤e
n⊕
i=1

eiR = R. Thus R is right FSE by

Theorem 2.5. �

Proposition 2.9. If R is a right FSE ring and R/Sr is right Goldie, then R is

QF.

Proof. Since R is right FSE, R is left and right mininjective. Thus by [17, Propo-

sition 4.7] R is QF. �

Corollary 2.10. If R is a right FSE-ring satisfying ACC on essential right ideals,

then R is QF.

Proof. Since R has ACC on essential right ideals, R/Sr is right noetherian by [6,

5.15]. Hence R/Sr is right Goldie. �

Corollary 2.11. If R is a right F-injective, right CS ring and R/Sr is right Goldie,

then R is QF.

Proof. By the hypothesis, R is right continuous. So R is semiprimary by [22,

Theorem]. Therefore, R is a right FSE ring. Thus R is QF.
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A right FSE-ring is a left P-injective ring. Rutter ([20, Example 1]) has an

example of a left P-injective ring satisfying ACC on left annihilators but not left

F-injective, quasi-Frobenius. But the following proposition show that a right FSE-

ring satisfying ACC on left annihilators is QF. �

Proposition 2.12. Let R be a right FSE ring satisfying ACC on left annihilators.

Then R is QF.

Proof. By the hypothesis, R is right and left P-injective. So by [15, Proposition

5.15], R is left artinian. Hence R is QF by [21, Corollary 3] or [19, Theorem 2.7]. �

A ring R is called left semiartinian if every nonzero right R-module has an

essential socle.

Now we consider a right F-injective, left perfect ring in which Soc2(R) is left

finitely generated or R/S is left finitely cogenerated where S = Sr = Sl.

Lemma 2.13. (Osofsky’s Lemma) If R is a left perfect ring in which J/J2 is right

finitely generated, then R is right artinian.

From the Osofsky’s Lemma we have the following theorem extends the work in

[5, Theorem 3.9 (2), (3)] and [15, Theorem 5.66 (2), (3)]

Theorem 2.14. Let R be a left perfect, right F-injective ring. Then

(1) R is QF if and only if R/S is a finitely cogenerated left R-module where

S = Sr = Sl.

(2) R is QF if and only if R is left semiartinian and Soc2(R) is a finitely

generated left R-module.

Proof. (1). Clearly R is right FSE, R is left and right Kasch and S = Sr = Sl. So

S = l(J) and J = r(Sr) = r(S) (because R is semilocal and right Kasch). Hence

S = lr(S), then by [15, Lemma 1.40] R/S is torsionless as a left R-module. From

this and the hypothesis, there exists a monomorphism φ : R/S −→ Rn for some

positive integer n. Let φ(1 + S) = (a1, ..., an), then S = l(a1, ..., an).

We have J = r(S) = rl(a1, ..., an) = a1R + ... + anR by Lemma 2.1(1). Hence

JR is finitely generated. So is J/J2. Therefore, R is right artinian by Lemma 2.13.

Thus R is QF by Proposition 2.12.

(2). Since R is left semiartinian, R/S has an essential left socle. Note that

Soc(R/S) = Soc2(R)/S. If Soc2(R) is finitely generated left R-module, so is

Soc(R/S). Hence R/S is left finitely cogenerated. Thus by (1) R is QF. �
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Corollary 2.15. [5, Corollary 3.10 (2), (3)] Let R be a left perfect, right P-injective

and right IN ring. Then

(1) R is QF if and only if R/S is a finitely cogenerated left R-module where

S = Sr = Sl.

(2) R is QF if and only if R is left semiartinian and Soc2(R) is a finitely

generated left R-module.

The following theorem extends the work in [9, Theorem 2.7].

Theorem 2.16. Let R be a left perfect, right F-injective ring. If J2 = r(A) for a

finite subset A of R, then R is QF.

Proof. Since R is semilocal, J/J2 is a semisimple right R/J-module. Hence J/J2

is a semisimple right R-module.

Let J2 = r(a1, ..., an) where ai ∈ R, i = 1, 2, ..., n. Define

φ : R/J2 −→ Rn, via φ(a+ J2) = (a1a, ..., ana) for all a ∈ R.

Then φ is a monomorphism. Hence way may regard J/J2 as a submodule of Rn.

We have J/J2 = Soc(J/J2) ≤ Soc(RnR) = (Soc(RR))n = Snr . On the other hand,

R is right FSE, Sr is right finitely generated, so is (Sr)n, as a direct summand of

(Sr)n, J/J2 is right finitely generated. By Lemma 2.13, R is left artinian. Thus R

is QF by Proposition 2.12. �

Corollary 2.17. [9, Theorem 2.7] If R is left perfect, right self-injective, and if J2

is the right annihilator of a finite subset of R, then R is QF.

A ring R is called a right CPA-ring if every cyclic right R-module is a direct sum

of a projective and an artinian module (see [13]).

Theorem 2.18. If R is a right P-injective, right CPA-ring, then R is right artinian.

Proof. By [13, Theorem 2.1], R has a direct decomposition

RR = A⊕ U (1) ⊕ ...⊕ U (n)

where A is an ideal of R such that AR is artinian and each U (i) is a uniform right

R-module with Soc(U (i)
R ) = 0. We will prove that U (i) = 0 for every i. Assume on

the contrary that U (i) 6= 0 for some i. Take 0 6= x ∈ U (i), then xR = PR ⊕ BR
where PR is projective and BR is artinian; however Soc(xR) = 0, it follows that

B = 0. i.e., xR is projective. Then by [16, Corollary 1.2], xR is a direct summand

of R. So R = xR⊕ I where I ≤ RR. Therefore

U (i) = (xR⊕ I) ∩ U (i) = xR⊕ (I ∩ U (i)).



ON SEMIPERFECT F-INJECTIVE RINGS 27

On the other hand, since xR 6= 0 and U (i) is uniform, I ∩ U (i) = 0. So U (i) = xR

for each 0 6= x ∈ U (i), showing U (i) is simple, a contradiction to Soc(U (i)) = 0.

Hence U (i) = 0, i = 1, 2, ..., n. It implies that R = A i.e., R is right artinian. �

Corollary 2.19. If R is a right F-injective, right CPA-ring, then R is QF.

Now we provide a generalization of Theorem 2.16 and [5, Corollary 2.10(2)].

Theorem 2.20. Let R be a left perfect, left and right mininjective ring in which

J2 = r(A) for a finite subset A of R, then R is QF.

Proof. By using technique of proving Theorem 2.16, we have J/J2 = Soc(J/J2) ≤
Soc(RnR) = (Soc(RR))n = Snr . On the other hand, R is right minfull by hypothesis.

So Sr = Sl ≤e RR. For each local idempotent e ∈ R, Soc(Re) = Sl∩Re = Sr∩Re =

Sre 6= 0 by [15, Theorem 3.12]. Hence R is left minfull. It follows that Sr is right

finitely generated by [15, Proposition 3.17], so is (Sr)n, as a direct summand of

(Sr)n, J/J2 is right finitely generated. By Lemma 2.13, R is left artinian. Thus R

is QF. �

Recall that a ring R is called right pseudo-coherent if r(S) is finitely generated

for every finite subset S of R.

Theorem 2.21. Assume that R is a left perfect, left and right mininjective ring.

If R is right (or left) pseudo-coherent, then R is QF.

Proof. If R is left perfect, left and right mininjective ring, then R is right minfull

and Sr = Sl. On the other hand, for each local idempotent e ∈ R then Soc(eR) =

Sr ∩ eR = Sl ∩ eR = eSl. From this and [15, Theorem 3.12], it implies that R is

left and right minfull. Thus S = Sr = Sl is a finitely generated left and right ideal

and R is left and right Kasch.

Clearly, J ≤ l(S). Let M be any maximal left ideal. Then R/M
φ∼= I where I

is a minimal left ideal since R is left Kasch. If x ∈ l(S), then xI ≤ xS = 0. Thus

0 = xI = xφ(R/M) = φ(x(R/M)), and so x(R/M) = 0, whence x ∈M . Therefore

it follows that l(S) ≤ J , and hence J = l(S). Similarly, we have J = r(S) because

R is right Kasch. By hypothesis, R is left (or right) pseudo-coherent, and so J is a

finitely generated left (or right ) ideal. If J is a finitely generated right R-module,

then J/J2 is too. Consequently, R is right artinian by Lemma 2.13. If J is a finitely

generated left R-module, then J is nilpotent by [15, Lemma 5.64] or [14, Ex. 9,

P.305], and hence R is semiprimary. So R is left artinian by Lemma 2.13. Thus R

is QF. �
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Corollary 2.22. If R is a left perfect, right F-injective and right (or left) pseudo-

coherent ring, then R is QF.

Proof. By hypothesis, R is right FSE. Therefore R is left and right mininjective.

Thus R is QF. �
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