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Abstract. Let R be a commutative ring. An R-module M is called min-

projective if Ext1R(M,
R

I
) = 0, for every simple ideal I. In this paper, we first

give some results of min-projective R-modules on the some specific rings such

as cotorsion rings, von Neumann regular rings and coherent rings. Then we

investigate min-projective covers on universally min-projective rings. Finally,

we deal with some characterizations of min-projective modules over a perfect

ring.
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1. Introduction

Throughout this paper, R denotes a commutative ring. Let C be a class of R-

modules and G be an element of C. The homomorphism θ : G −→ K with G ∈ C
is called a C-precover of K if for any homomorphism f : G

′ −→ K with G
′ ∈ C,

there exists a homomorphism g : G
′ −→ G such that θog = f . Moreover, if the

mapping g is automorphism of G when G = G
′
and f = g then C-precover θ is

called the C-cover of G. One can similarly define the dual of the C-preenvelope and

C-envelope, see [6], for more details. An R-module C is said to be cotorsion if

Ext1R(F,C) = 0, for all flat R-module F , see [15, Definition 3.1.1]. There are many

papers which deal with to the concept of projective modules and injective modules

and the related topics, see for instance [2,4,10,11]. An R-module N is called finitely

presented if there exists the exact sequence R(n) −→ R(m) −→ N −→ 0 and an

R-module M is called FP -injective if Ext1R(N,M) = 0 for any finitely presented

R-module N . Also, an R-module N is called FP -projective if Ext1R(N,M) = 0

for any FP -injective R-module M . We refer the reader to [4] for more details

about FP -projective and FP -injective modules. Note that for any R-module M ,

σM : M −→ C(M), τM : M −→ FE(M) and ξM : F (M) −→ M will denote,

respectively, a cotorsion envelope, an FP -injective preenvelope and a flat cover for
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M . An R-module M is called min-projective if Ext1R(M,
R

I
) = 0 for any simple

ideal I. An R-module N is called min-flat if TorR1 (N,
R

I
) = 0 for any simple ideal

I and if every R-module is min-projective or min-flat, then R is called a universally

min-projective ring or a universally min-flat ring. Recall that a ring R is called

coherent if every finitely generated ideal is finitely presented, see [15, Definition

1.1.4]. The socle of R, denoted by Soc(R), is the direct sum of nonzero simple

ideals of R. We use Soc(R) ≤e R to mean that Soc(R) is an essential ideal of R

and r ∈ R is singular if AnnR(r) ≤e R. A ring R is called von Neumann regular

if for each r ∈ R, there is r′ ∈ R with rr′r = r, see [12]. A ring R is said to

be perfect when every R-module has a projective cover, see [15]. In this paper,

some characterizations of min-projective modules on cotorsion rings, von Neumann

regular rings, coherent rings, universally min-projective rings and perfect rings are

given. For instance, it is shown that R is a cotorsion ring if and only if every flat

R-module is min-projective; R is a von Neumann regular ring if and only if R is a

coherent ring and every FP -projective R-module is min-projective; on universally

min-flat rings with Soc(R) ≤e R, R is a universally min-projective ring if and only

if every min-flat R-module has an Ω-cover with the unique mapping property if

only if R is a cotorsion ring with Z(R) = 0, where Ω is the class of min-projective

R-modules and Z(R) is the set of all singular elements. Also, we prove that R

is a perfect ring if and only if every min-projective R-module is cotorsion if and

only if every flat R-module is min-projective and every min-projective R-module

has a cotorsion envelope with the unique mapping property if and only if for each

R-homomorphism f : M1 −→ M2 with M1 and M2 min-projective , ker(f) is

cotorsion.

2. Main Results

We start by the following definition.

Definition 2.1. Let R be a ring. An R-module M is called min-projective if

Ext1R(M,
R

I
) = 0 for any simple ideal I.

It is well-known that if R is a cotorsion R-module, then R is a cotorsion ring.

The following propositon shows that, on cotorsion rings, every flat module is a

min-projective module.

Proposition 2.2. Let R be a ring. Then the following statements are equivalent:

(1) R is a cotorsion ring;

(2) Every flat R-module is a min-projective.
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Proof. (1) ⇒ (2) It is known from [5, Lemma 2.14], which I is a cotorsion ring.

Now consider the exact sequence 0 −→ I −→ R −→ R

I
−→ 0. Then for every flat

R-module M , we get the exact sequence 0 = Ext1R(M,R) −→ Ext1R(M,
R

I
) −→

Ext2R(M, I) = 0. Hence Ext1R(M,
R

I
) = 0 and so M is min-projective R-module.

(2) ⇒ (1) is clear. �

It is obvious that every projective module is a min-projective module. However,

the following example shows that the converse is not true in general. Before this,

we recall that a ring is said to be hereditary if all of its ideals are projective, see [12].

If R has no simple ideal, then the socle of R is defined to be zero and in this case

it is clear that every R-module is a min-projective module. The following example

shows that the definition of min-projective R-modules is a proper generalization of

projective modules.

Example 2.3. Let R be a ring.

(a) If R is a non-hereditary ring such that Soc(R) = (0), then some of ideals

of R are min-projective, while they are not projective R-modules. In partic-

ular, if R ∼= K[xn :n≥1]
(xixj : i≥1 and j≥1) , then Soc(R) = (0) and so for every n ≥ 1,

the ideal (xn) is a min-projective module but it is not projective.

(b) Let R be a reduced ring, that is R has no non-zero nilpotent element which

is not decomposable (for example R can be an integral domain which is not

a field). We show that R contains no simple ideal. By contrary, suppose

that R contains a simple ideal, say Re. Then since R is reduced, we deduce

that e is an idempotent element and so by Brauer’s lemma (see [8, 10.22]),

R is decomposable that is a contradiction. Hence every R-module is min-

projective, because R contains no simple ideal. But not all R-modules are

projective.

(c) Let R ∼= D1 × · · · ×Dn, where every Di, 1 ≤ i ≤ n, is an integral domain

which is not field. Then every R-module is min-injective. But there are

R-modules which are not projective.

(d) From Part (c), we conclude that any module over the ring Z of integers is

min-projective. But not all Z-modules are projective.

In the following proposition, some properties of modules on cotorsion ring are

studied.

It is trivial that min-projective modules are closed under extensions over any

ring. So, we have the following proposition.
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Proposition 2.4. Let R be a cotorsion ring. Then

(1) Let α : N −→ M be a monomorphism. Then coker(α) is min-projective if

and only if coker(σMα) is min-projective.

(2) Let N be a submodule of M . If M is min-projective and
M

N
is flat, then N

is also min-projective.

(3) Every cotorsion envelope of a min-projective R-module is min-projective.

Proof. (1) and (3) are clear, by the fact which was mentioned before the proposi-

tion. Now, we prove (2). Let I be a simple ideal. Then the short exact sequence

0 −→ N −→M −→ M

N
−→ 0 induces the exact sequence

0 = Ext1R(M,
R

I
) −→ Ext1R(N,

R

I
) −→ Ext2R(

M

N
,
R

I
) = 0.

The first equality follows by Proposition 2.2. Hence Ext1R(N,
R

I
) = 0 and so N is

min-projective. �

Proposition 2.5. A min-flat R-module M is min-projective if and only if the
R
I -module M

MI is min-projective, for every simple ideal I.

Proof. This follows from the isomorphism Ext1R(M,
R

I
) ≃ Ext1R

I
(
M

MI
,
R

I
), see [13,

Lemma 5.1]. �

In the following proposition, we give some conditions under which the direct sum

of a family of min-flat R-modules is min-projective. Before this, we recall that for

any R-module M , the R-module HomZ(M,
Q

Z
) is denoted by M+.

Proposition 2.6. Let { Mi

MiI
: i ∈ I} and { M++

i

M++
i I

: i ∈ I} be two indexed sets of

min-projective R
I -modules, where I is a simple ideal. If every Mi is min-flat, then

(1)
⨿
i∈IMi is min-projective.

(2)
⨿
i∈IM

++
i is min-projective.

Proof. (1) By Proposition 2.5, we have Ext1R(Mi,
R

I
) = 0. Thus by [12, Theorem

7.13], Ext1R(
⨿
i∈IMi,

R

I
) ≃

∏
i∈I

Ext1R(Mi,
R

I
) = 0 and so

⨿
i∈IMi is min-projective.

(2) This follows from [3, Lemma 3.2]. �

Remark 2.7. Let R be a coherent ring. By [6, Theorem 7.4.1], every R-module has

a special FP -injective pre-envelope, i.e; there is an exact sequence 0 −→ M −→
F −→ L −→ 0, where F is FP -injective and L is FP -projective and every R-

module has a special FP -projective precover, i.e; there is an exact sequence 0 −→
K −→ P −→M −→ 0, where P is FP -projective and K is FP -injective.
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It is well-known that R is a von Neumann regular ring if and only if every

R-module is flat, see [12, Theorem 4.9]. In the following theorem, we give a char-

acterization of a von Neumann regular ring.

Recall that a C-cover ϕ : M −→ N has the unique mapping property if for any

homomorphism f : A −→ N with A ∈ C, there exists a unique g : A −→ M such

that ϕg = f. One can similarly define the dual of the C-envelope, see [6].

Theorem 2.8. Let R be a ring. Then the following statements are equivalent:

(1) R is a von Neumann regular ring;

(2) R is a coherent ring and every FP -projective R-module is min-projective.

Proof. (1) ⇒ (2) By [2, Corollary 4.3], R is a coherent ring. LetN be anR-module.

Then by Remark 2.7, there is an exact sequence 0 −→ K −→ P −→ N −→ 0, where

P is FP -projective and K is FP -injective. Therefore, for every FP -projective R-

module M , we obtain the exact sequence

0 = Ext1R(M,P ) −→ Ext1R(M,N) −→ Ext2R(M,K) = 0.

Thus Ext1R(M,N) = 0 and so every FP -projective R-module is min-projective.

(2) ⇒ (1) By [15, Theorem 2.3.1], every R-module has a FP -injective envelope and

by Remark 2.7 and (2), its cokernel is FP -projective. Let M be a min-projective

R-module. Then there exists a commutative diagram with the exact rows:

0

↓
0 −→M

τM−→ FE(M)
γ−→ L −→ 0

0↘ ↓τLγ ↙τL

FE(L)

Note that by [12, Proposition 7.24] and Remark 2.7, for every FP -injective R-

module N , there exists a split exact sequence 0 −→ N −→ D −→ C −→ 0,

where D is an FP -injective R-module and C is an FP -projective R-module. So

for every R-module K, Ext1R(K,N) = 0. Therefore by [5, Corollary 2.12] and [12,

Theorem 3.56], every finitely presented R-module is projective. Hence every R-

module is FP -injective. So the FP -injective envelopes τL and τM satisfy unique

mapping property. Since τLγτM = 0 = 0τM , from (2), we have τLγ = 0. Thus

L = im(γ) ⊆ ker(τL) = 0 and hence L = 0. Therefore, M = FE(M) and so

every min-projective R-module is FP -injective. Thus (1) follows from (2) and [2,

Corollary 4.3] and the proof completes. �
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Definition 2.9. Let R be a ring. A ring R is called universally min-projective if

every R-module is min-projective.

Definition 2.10. Let R be a ring. A ring R is called universally min-flat when

every R-module is min-flat.

Now, we present the following characterizations of the universally min-projective

rings. From now and for simplicity, we denote the class of min-projective R-modules

by Ω.

Theorem 2.11. Let R be a ring. Then the following statements are equivalent:

(1) For any simple ideal I and any flat R-module M , the R
I -module M

MI is

min-projective;

(2) R is a cotorsion ring;

Moreover, if R is a universally min-flat ring with Soc(R) ≤e R, then the

above conditions are equivalent to:

(3) R is a cotorsion ring with Z(R) = 0;

(4) For every simple ideal I of R, RI is cotorsion and J(R) = 0;

(5) R is a universally min-projective ring;

(6) Every min-flat R-module has an Ω-cover with the unique mapping property;

(7) Every min-flat R-module is min-projective.

Proof. (1) ⇒ (2) We shall show that Ext1R(M,R) = 0, for every flat R-moduleM .

Let I be a simple ideal of R. Then we have the short exact sequence 0 −→ I −→
R −→ R

I
−→ 0. By [5, Lemma 2.14], Ext1R(M, I) = 0. Since every flat module is

min-flat, Proposition 2.5 implies thatM is min-projective. Hence Ext1R(M,
R

I
) = 0.

Therefore, the above exact sequence induces the exact sequence

0 = Ext1R(M, I) −→ Ext1R(M,R) −→ Ext1R(M,
R

I
) = 0,

for every flat R-module M . Thus Ext1R(M,R) = 0, as desired.

(2) ⇒ (1) This follows from Propositions 2.2 and 2.5.

(2) ⇒ (3) R is a cotorsion ring by (2). Note that R
I is flat and so by [5, Theorem

2.16] R is a PS ring (every simple ideal of R is projective). Therefore, Soc(R) is

projective and hence by [9, Exercise 12 (A), p.269], Z(Soc(R)) = 0. Therefore, by

[1, Lemma 7.2], Z(Soc(R)) = Z(R)∩Soc(R) = 0 and so Z(R) = 0.

(3) ⇒ (4) Let I be a simple ideal of R and M be a flat R-module. Then we obtain

the exact sequence 0 −→ I −→ R −→ R

I
−→ 0 which gives rise to the exactness of

· · · −→ Ext1R(M,R) −→ Ext1R(M,
R

I
) −→ Ext2R(M, I) −→ · · ·
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By (3), R is cotorsion. So, Ext1R(M,R) = 0. Also, from [5, Lemma 2.14], we

conclude that Ext2R(M, I) = 0. Therefore, Ext1R(M,
R

I
) = 0 and so R

I is cotorsion.

Now, we claim that J(R) = AnnR(Soc(R)) = Z(R). Since the annihilator of any

simple ideal is a maximal ideal, we deduce that J(R) = AnnR(Soc(R)). It is

clear that Soc(R)2 = 0. Thus Soc(R) ⊆ Ann(Soc(R)). Now, since Soc(R) ≤e R,
we deduce that AnnR(Soc(R)) ≤e R and so AnnR(Soc(R)) ⊆ Z(R). Since R

is a cotorsion ring, we deduce that R
J(R) is semisimple, by [7, Theorem 6]. Thus

Z( R
J(R) ) = 0 and hence Z(R) ⊆ J(R). So, by (3), J(R) = 0.

(4) ⇒ (5) Note that R is a von Neumann regular ring by [5, Theorem 2.16] and so

by [5, Corollary 2.12], RI is injective. Hence (5) follows.

(5) ⇒ (6) This is clear.

(6) ⇒ (7) Let M be a min-flat R-module. Then there is a commutative diagram

with exact rows:
N

′

ϕ↙ αϕ↓ ↘ 0

0 −→ K
α−→ N

ψ−→M −→ 0,

↓
0

where ψ and ϕ are Ω-cover with the unique mapping property. Since ψαϕ = 0 = ψ,

we have αϕ = 0 by (6). Therefore, K = im(ϕ) ⊆ ker(α) = 0 and so K = 0. Thus

M = N and hence every min-flat R-module is min-projective.

(7) ⇒ (1) Let I be a simple ideal of R and M be a flat R-module. Then it is

clear that M is a min-flat R-module. So, by (7), M is a min-projective R-module.

Thus Proposition 2.5 implies that M
MI is min-projective R

I -module and so we are

done. �

Corollary 2.12. Let R be a coherent ring. Then the following statements are

equivalent:

(1) R is a universally min-projective ring;

(2) Every R-module has an Ω-cover with the unique mapping property;

(3) For every simple ideal I, RI is cotorsion and every FP -projective R-module

is min-projective.

Proof. (1) ⇒ (2) It is trivial.

(2) ⇒ (3) By (2) and (7) of Theorem 2.11, R
I is cotorsion. Let M be a FP -

projective R-module, similar to proof (6) ⇒ (7) of Theorem 2.11, R-module M is

min-projective and so (3) follows.

(3) ⇒ (1) This follows from Theorem 2.8 and [5, Corollary 2.12]. �
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Corollary 2.13. Let R be a coherent ring such that R
I be an injective R-module,

for every simple ideal of R. If h : M −→ N is a homomorphism of min-projective

R-modules, coker(h) is min-projective.

Proof. By Theorem 2.8 and Corollary 2.12,M is FP -injective. So, the short exact

sequence 0 −→M
h−→ N −→ N

im(h)
−→ 0 is pure. Therefore, for every R-module

B, TorR1 (B,
N

im(h)
) = 0 and so by Proposition 2.2, N

im(h) is min-projective. �

Corollary 2.14. Let R be a coherent ring and R
I be a cotorsion module, for ev-

ery simple ideal I. Then R is a von Neumann regular ring if and only if R a is

universally min-projective ring.

Proof. This is a direct consequence of Theorem 2.8 and Corollary 2.12. �

From [14, Proposition 9.43], we know that R is a perfect ring if and only if

every flat R-module is projective. In the following theorem, we give some other

characterizations of perfect rings.

Theorem 2.15. Let R be a ring. Then the following statements are equivalent:

(1) R is a perfect ring;

(2) Every min-projective R-module is cotorsion;

(3) Every flat R-module is min-projective and every min-projective R-module

has a cotorsion envelope with the unique mapping property;

(4) For each R-homomorphism f :M1 −→M2 withM1 andM2 min-projective,

ker(f) is cotorsion;

(5) For each min-projective R-module M , the functor HomR(−,M) is exact

with respect to each pure exact sequence 0 −→ K −→ P −→ L −→ 0 in

which P is projective. In addition, L and R
I -module K

KI are min-projective,

for every simple ideal I.

Proof. (1) ⇒ (2) For every flat R-module F and every min-projective R-module

M , Ext1R(F,M) = 0. So (2) follows.

(2) ⇒ (1) In the short exact sequence 0 −→ K −→ P
ξL−→ L −→ 0 with L flat, P

projective and ξL projective cover of L, K is cotorsion. Thus (2) implies that P is

cotorsion. So, for every flat R-module F , we obtain the exact sequence

0 = Ext1R(F, P ) −→ Ext1R(F,L) −→ Ext2R(F,K) = 0.

Hence Ext1R(F,L) = 0 and so every flat R-module is cotorsion and by [15, Propo-

sition 3.3.1], (1) follows.
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(1) ⇒ (3) This is a direct consequence of [14, Proposition 9.43] and [5, Theorem

2.18].

(3) ⇒ (1) Let C(M) be the cotorsion envelope of min-projective R-module M .

There is the following commutative diagram:

0

↓
0 −→M

σM−→ C(M)
γ−→ L −→ 0

0↘ ↓σLγ ↙σL

C(L)

Note that by [15, Theorem 3.4.2], L is flat and so σL exists. Hence σLγσM = 0 =

0σM and so σLγ = 0. Therefore, L = im(γ) ⊆ ker(σL) = 0 and so M = C(M).

Thus by (2), R is a perfect ring.

(1) ⇒ (4) This follows from the fact that every module is cotorsion over perfect

rings.

(4) ⇒ (1) Let M be a min-projective R-module. From the above commutative

diagram, we have M = ker(γ) = ker(σLγ). Thus by (4), M is cotorsion. So, (1)

follows from (2).

(1) ⇒ (5) For every R-module B, we obtain the exact sequence

0 −→ B ⊗R K −→ B ⊗R P −→ B ⊗R L −→ 0.

Hence TorR1 (L,B) = 0 and so L is flat. Then for any min-projective R-module M ,

we have the following exact sequence

HomR(P,M) −→ HomR(K,M) −→ Ext1R(L,M) = 0.

By (2), M is cotorsion; therefore, the functor HomR(−,M) is exact. By [14,

Proposition 9.43], L is min-projective. Thus for every simple ideal I, we get the

exact sequence

0 = Ext1R(P,
R

I
) −→ Ext1R(K,

R

I
) −→ Ext2R(L,

R

I
) = 0.

Hence Ext1R(K,
R

I
) = 0 and hence K is min-projective. Since P and L are flat, we

deduce that K is flat and subsequently by Proposition 2.5, K
KI is min-projective.

(5) ⇒ (1) For every min-projective R-module M and every flat R-module L, we

have Ext1R(L,M) = 0. So, every min-projective R-module is cotorsion. Thus (1)

follows from (2). �

Example 2.16. Let Z be the ring of integer numbers. Then we show that the

Z-module Z is min-projective which is not cotorsion. Suppose to the contrary, Z
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is cotorsion. Then by Proposition 2.2, every flat R-module is min-projective and

so every flat R-module is cotorsion. Hence [15, Proposition 3.3.1] implies that Z
is a perfect ring and this contradicts this fact that Z is not a perfect ring, see [12,

Example 4.61].
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