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ABSTRACT. The non-commuting graph V(G) of a non-abelian finite group G
is defined as follows: its vertex set is G — Z(G) and two distinct vertices z and
y are joined by an edge if and only if the commutator of z and y is not the
identity. In this paper we prove if G is a finite group with V(G) = V(Ap43),
then G 22 A3, where Ay 3 is the alternating group of degree p + 3, where p

is a prime number.
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1. Introduction

Let G be a finite group. The non-commuting graph V(G) of G is defined as
follows: the set of vertices of V(G) is G — Z(G), where Z(G) is the center of G and
two vertices are connected whenever they do not commute, also we define its prime
graph I'(G) of G as follows: the vertices of I'(G) are the prime divisors of the order
of G and two distinct vertices p, ¢ are joined by an edge, if there is an element in
G of order pg. In 2006, A. Abdollahi, S. Akbari and H. R. Maimani put forward a

conjecture in [1] as follows.

AAM’s Conjecture: If M is a finite non-abelian simple group and G is a group
such that V(G) 2 V(M), then G = M.

It has been proved that AAM’s conjecture is valid for all finite simple groups
with non connected prime graph (see [4]). This conjecture has been verified for the
group A in [5]. In this paper we will prove AAM’s conjecture for the alternating
groups A3 of degree p+ 3, where p is a prime number, and in this case A,;3 has
disconnected or connected prime graph depending on p. Therefor our proof does
not depend on the connectedness of the prime graph of A,3. In [6] some simple

groups with connected prime graphs are characterized by non-commuting graph.
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2. Preliminaries

Throughout this paper we assume that p is an arbitrary prime number and A, 3
is the alternating group of degree p 4+ 3. The following result was proved in part(2)
of Theorem 3.16 of [1]

Lemma 2.1. Let G be a finite group such that V(G) = V(A,y3). Then |G| =

‘AerS | :

Lemma 2.2. Let G and H be two non-abelian groups. If V(G) = V(H), then
V(Cq(A)) = V(Ch(p(A))) forall@ # A C G—Z(G), where ¢ is an isomorphism
from V(G) to V(H) and Cg(A) is non-abelian.

Proof. It is sufficient to show that ¢ |y (cya)) V(Ca(A)) — V(Cu(p(A))) is
s(4)) is the restriction of ¢ to V(Cg(A)) and V(Cg(A)) =
Ca(A) — Z(Ce(A)), V(Crlp(A)) = Crlp(4)) — Z(Cr(p(A))). Assume d is an
element of V(Cpg(¢(A))), then d € H — Z(H) and so there exists an element ¢
of G — Z(G) such that ¢(c) = d. From d = ¢(c) € Cy(p(A)), it follows that
[¢(c),¢(g)] =1 for all g € A and since ¢ is an isomorphism from V(G) to V(H),
[c,g] =1 for all g € A. Therefore ¢ € Cg(A). But d € Z(Cu(p(A))), so for an
element © € Cy(p(A)) we have [z,d] # 1. Hence z is an element of H that does
not commute with d € H. This implies that + € H — Z(H). Thus there exists
' € G — Z(Q), such that p(z') = . It is easy to see that [2/,¢] # 1 and therefore
¢ & Z(Cg(A)). Hence c € Cg(A) — Z(Cg(A)) =V (Ce(A)) and ¢(c) = d. O

onto, where ¢ |y

The following result was proved by E. Artin and together with the classification

of finite simple groups can be stated as follows.

Lemma 2.3. Let G and M be finite simple groups, |G| = |M|, then one of the
following holds:
(1) If IM| = |Ag| = |L3(4)|, then G = Ag or G = L3(4);
(2) If IM| = |Bn(q)] = |Cn(q)|, where n >3, and q is odd, then G = B,(q) or
G = Cn(q);
(3) If M is not the above cases of (1) and (2), then G = M. (see [2] and [3])

As an immediate consequence of Lemma 2.3, we get the following corollary.

Corollary 2.4. Let G be a finite simple group with |G| = |Apy3|, where p is a
prime number, p # 5. Then G = Ay 3.
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3. Characterization of A, 3 by its non-commuting graph

In this section we will prove our main result.

Theorem 3.1. Let G be a finite group with V(G) = V(Ap43), where Apis is the

alternating group of degree p + 3, p is a prime number, then G = Ay 3.

Proof. We can assume that p > 7, because As, Ag and Ag all have non connected
prime graph, and by [5, Theorem 1] the result is valid for Ajy. We know that
A, is isomorphic to a subgroup of Apys which is called D. If A = D — {1}, then
ACA3—Z(Apy3). Thus by Lemma 2.2 we have V(Cy,,,(A)) = V(Ca(p(A))),
where ¢ is an isomorphism from V(A 3) to V(G). It is easy to see that Cy, ,(A) =
A,_q thus Ce(p(A4)) = A,_1. Hence G has a subgroup isomorphic to A,_; i.e.
Ca(p(A)). Let H = Cg(p(A)). Now we assume that N is a normal subgroup
of G such that N # 1. Therefore N N H < H and since H is a simple group,
NNH=1or NNH = H. We will prove that NN H = H. If NN H =1, then
we have |NH| = {glfl = M = |Nj|H|||G] = @52 Thus ] @50 52
since |H| = @. This implies that |N|[p(p + 1)(p + 2)(p + 3). Moreover N
is a union of conjugacy classes of G and the size of each conjugacy class of G
and Ap43 is the same. But it is obvious that all conjugacy class sizes less than
plp+ 1(p+2)(p+3) are 1, (p+1)(p§2)(p+3) and p(erl)(p;z)(H?’). Therefore there
exists k, k' € N such that |[N| =1+ k[(p+1)(p'§2)(p+3)] + k’[p(p+1)(p;2)(p+3)] thus
1+ k[(p+1)(p;2)(p+3)] + k/[z)(p+1)(19;2)(p+3)”p(p+ )(p+2)(p+3). If k =0, then
14 k[P @E ) )y 0 4 1) (p+2) (p+3). Let ¢ = P@HEED@E) phon 14 k77 |
8¢. Thus 1+ k'¢ | 8 since 1 + k'¢ | 8 + 8k'¢ and 1 + k'¢ | 8k'¢. This implies that
k" = 0 because ¢ > 8 and so |N| = 1, a contradiction. Therefore there exists z € N

such that the size of conjugacy class of G containing z is equal to w.
(p+1) (p+2) (p+3)
3

So the size of conjugacy class of ¢~ (z) in A, 3 is equal to . Hence
o 1(x) is a 3-cycle. Now assume that o =1(x) = (a,b,¢) , a,b,c € {1,2,....,p + 3}
and B be a subgroup of A, 3 consisting of even permutations on four letters taken
from the set {1,2,...,p+3}, where non of the letters belongs to the set {a,b,c}.
Hence p~'(z) € B. It is easy to see that ¢~ !(x) € Cy,,,(B) = Ca, (B —{1}),
thus A,_1 = Cy,,,(B —{1}) = Ca(e(B — {1})) by Lemma 2.2. Since ¢~ *(z) €
Ca,,s(B —{1}) we conclude x € Cg(p(B — {1})). If L = Ca(¢(B — {1})), then
we have NN L # 1sincez € NN L. But NN L <L and L is a simple group
and so NN L = L. Therefore L C N. Let P be an arbitrary subgroup of G
isomorphic to A,_;. We assert that P C N. If P ¢ N, then PN N = 1 because

P is a simple group. It implies that PN L C PN N = 1. Therefore |PL |=



A CHARACTERIZATION OF THE GROUP A,43 163

\lgr‘wlﬂ = |P||L] = [@]2 But since PL C G, we have |PL| < |G| and so
[@]2 < w, which is a contradiction. Thus P C N for all subgroup P of G
isomorphic to A,_;. In particular, H € N and NN H = H. Now suppose that
g is a 3-cycle of Ap, 3, then [Cy, . ,(g9)| = ”!Tm. If M = NNCg(p(g)) then M is
a normal subgroup of Cqs(p(g)) and |M| > @3 Because Cy,,,(g) contains
a subgroup isomorphic to A,_; and ¢(m) € N for all 3-cycles m € Apis. If
(M| = 213 then M 2 A, ; x Zs. Therefore |[AutM| = |[Aut(A,_;)|.|AutZs|

and since &%HAMM\, we conclude %—%’ (p—1)1.3-2. Thusp | 3-2-2 which
3.p!

contradicts our assumption. Hence |M| > @.3. Since [M|[|Cq(p(9)) |= 3
and 3.@“]\4“, |M| = p'Tg Therefore M = Ca(p(g)). Now if x € Apys is not
a (p + 2)-cycle, then for a 3-cycle m € A3, we have x € Cy,,,(m). By a similar
argument we obtain that Cg(p(m)) = NN Cg(p(m)). Therefore p(z) € N and so
|N| > @—(the number of (p+2)-cyclesin Ap3). It is easy to see that the number
of (p + 2)-cycles in A5 is equal to (P13)[(p+2) — 1]! = %. Thus we obtain

p+2 2
IN| > (p‘;?’)! — (Zf;)! = “";3)!(%). But since N is a subgroup of G, there exists
an integer r > 1 such that |N| = @. It follows that that @ > @(ﬁ)
and so % > ﬁ. Hence (r—1)p < 2 and since p > 7 we must have r = 1. Therefore
|N| = @, which implies N = G. From what we have discussed above, it follows
that G does not have any non-trivial normal subgroup and so G is a simple group.
Hence G = A3 by Corollary 2.4 and Lemma, 2.1. O
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