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Abstract. An integral domain R is a GCD-Bezout domain if the Bezout

identity holds for any finite set of nonzero elements of R whose gcd exists.

Such domains are characterized as the DW-domains having the PSP-property.

Using the notion of primitive and superprimitive ideals, we define a (semi)star

operation, the q-operation, which is closely related to the w-operation and the

p-operation introduced by Anderson. We use q-operation to characterize the

GCD-Bezout domains and study various properties of these domains.
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1. Introduction

Throughout R is an integral domain with quotient field K. To avoid triviality,

we assume that R is not a field.

For a finite set {a1, · · · , an} of nonzero elements of R, if (a1, · · · , an)v = (z)

(where Iv is the divisorial closure of an I ideal defined in the following), then z

is defined to be a v-gcd of a1, · · · , an. It is easy to check that if z is a v-gcd of

a1, · · · , an, then z is a greatest common divisor of a1, · · · , an, but the converse is

not always true. For instance, take R = F [X2, X3], where F is a field, and consider

the ideal (X2, X3). Then (X2, X3)v = (X2, X3) is not principal, but 1 is a greatest

common divisor of X2, X3. Thus gcd(X2, X3) exists but v-gcd(X2, X3) does not.

We will see later that the notions of “primitive” and “superprimitive” ideals are

closely related to those of “gcd” and “v-gcd”, respectively.

The third concept that will be central in our discussion is the “Bezout iden-

tity”. Given nonzero elements a1, · · · , an ∈ R, the Bezout identity holds for

a1, · · · , an if gcd(a1, · · · , an) exists and it is expressible as a linear combination
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on R of a1, · · · , an. It is evident that the Bezout identity holds for a1, · · · , an if

and only if (a1, · · · , an) is a principal ideal.

Thus we consider the relations among the following conditions on an integral

domain R: given a finite set {a1, · · · , an} of nonzero elements of R,

(i) the Bezout identity holds for a1, · · · , an;

(ii) v-gcd(a1, · · · , an) exists;

(iii) gcd(a1, · · · , an) exists.

We observed that (i) implies (ii), (ii) implies (iii), but (iii) does not imply (ii).

On the other hand, it is well-known that if a gcd exists for each finite set of

nonzero elements of R (or equivalently, if a gcd exists for any two nonzero elements

of R), then a v-gcd exists and it is equal to a gcd. Thus, in a GCD-domain, the

two concepts of “gcd” and “v-gcd” are the same. But, even in this case, the Bezout

identity is still a stronger property. To show this, consider a Noetherian, GCD-

domain which is not a PID: for instance, take R = F [X,Y ], where F is a field. It

is well-known that R is not a Bezout domain, but it is a GCD-domain and so the

v-gcd exists for any two nonzero elements of R.

We denote by F(R) the set of nonzero R-submodules of K, by f(R) the set of

nonzero finitely generated R-submodules of K, and by F(R) the set of nonzero

fractional ideals of R.

Recall (cf. [7] and [15]) that a mapping E 7→ E? of F(R) into F(R) is called a

semistar operation if the following conditions hold for all x ∈ K \ {0} and E,F ∈
F(R):

(?1) (xE)? = xE?;

(?2) E ⊆ F implies E? ⊆ F ?;

(?3) E ⊆ E? and E?? := (E?)
?

= E?.

Moreover, if R? = R, then the semistar operation restricted to the set F(R) is

called a star operation.

Given a semistar operation ?, a nonzero ideal I of R such that I = I? is called

a ?–ideal.

The most important examples of semistar operations are the d-operation, the

v-operation, and the t-operation:

• The d-operation is the identity mapping E 7→ E.

• The v-operation is defined by

E 7→ Ev =

{
(R : (R : E)) if E ∈ F(R)

K if E ∈ F(R) \ F(R)

where (R : E) = {x ∈ K;xE ⊆ R}.
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• The t-operation is given by E 7→ Et =
⋃

J∈f(R), J⊆E Jv.

A nonzero ideal J of R is called a Glaz-Vasconcelos ideal, in short, a GV-ideal, if

J is finitely generated and Jv = R (cfr. [10]). The set of GV-ideals of R is denoted

by GV(R). For each E ∈ F(R), define Ew to be the R-module

Ew := {x ∈ K |xJ ⊆ E, for some J ∈ GV(R)} =
⋃

J∈GV(R)

(E : J).

Then the operation E 7→ Ew is a semistar operation, called the w-operation.

A semistar operation ? is of finite type if for each E ∈ F(R):

E? =
⋃

H⊆E,H∈f(R)

H?,

and ? is stable if for each E,F ∈ F(R):

(E ∩ F )? = E? ∩ F ?.

For each semistar operation ?, ?̃ usually denotes the stable semistar operation of

finite type associated to ?, which is defined as follows (see [7, p 185]): for E ∈ F(R),

E?̃ :=
⋃
{(E : F ) | F ∈ f(R), F ? = R?}.

According to this notation, w = ṽ.

Given a semistar operation ?, a ?–maximal ideal is an ideal that is a maximal

element in the set of proper integral ?–ideals. If ? is of finite type, then each proper

integral ?–ideal is contained in a ?–maximal ideal and each ?–maximal ideal is

prime ([7, Lemma 4.20]).

It is well-known that the v-operation is maximal among the star operations on

R in the sense that I? ⊆ Iv for each I ∈ F(R) and each star operation ?. Moreover,

the t-operation is maximal among the finite-type star operations on R and the w-

operation is maximal among the star operations on R which are stable and of finite

type.

In [14] and [16], the authors studied the domains in which the star operations

w and d coincide, which are called the DW-domains. They investigated the multi-

plicative ideal properties of these domains, such as their behavior with respect to

localizations, their integral closure, their relations with Prüfer domains and Noe-

therian domains.

In Section 2 of this paper, we will see that the DW-domains are exactly the do-

mains in which for any finite set {a1, · · · , an} of nonzero elements, the existence of

v-gcd(a1, · · · , an) implies that the Bezout identity holds for a1, · · · , an (cfr. Propo-

sition 2.1). Thus we have a connection between the ideal property “w = d” and

the arithmetic property “Bezout identity⇔ v-gcd”. By substituting the v-gcd with
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the gcd, we find that the equivalence “Bezout identity⇔ gcd” characterizes a class

of domains which are very similar to DW-domains (cfr. Proposition 2.6). We call

such domains GCD-Bezout domains (cfr. Definition 2.4). Bezout domains are of

course GCD-Bezout. An interesting example of a GCD-Bezout domain is given by

a non-Bezout Prüfer domain in which all maximal ideals are principal (cfr. [1], [5],

[13]).

In order to study GCD-Bezout domains as a subclass of DW-domains, we will use

the concepts of primitive and superprimitive ideals (Definition 2.2), introduced by

J. Arnold & P. Sheldon in a 1975’s paper ([1]). This will bring us to study GCD-

Bezout domains by means of semistar and star operations (Section 2). In this

context we will also investigate the p-operation introduced by D.F. Anderson in

1981 ([2]), which is in a close connection with the gcd concept. We will manipulate

the p-operation in order to “make it” a semistar operation suitable to characterize

GCD-Bezout domains (cfr. Corollaries 3.6 and 3.15).

In Section 3, we will give several results concerning the GCD-Bezout property

in pullback constructions. Lastly, in Section 4, we will briefly consider the Nagata

ring to construct examples of nontrivial GCD-Bezout domains.

2. GCD-Bezout domains

In this section we introduce the notion of GCD-Bezout domain and study some

properties of this class of domains (among others, connections with Noetherian and

Prüfer domains). We start with a result concerning DW-domains, from which the

definition of GCD-Bezout domain arises naturally.

Proposition 2.1. Let R be an integral domain. The following conditions are equiv-

alent:

(i) R is a DW-domain.

(ii) There do not exist proper finitely generated ideals I such that Iv = R.

(iii) For any finite set {a1, · · · , an} of nonzero elements of R such that

v-gcd(a1, · · · , an) exists, the Bezout identity holds for a1, · · · , an.

Proof. (i) ⇔ (ii) It follows from [16, Corollary 2.6].

(ii) ⇒ (iii) If d is a v-gcd of a1, · · · , an, then (a1, · · · , an)v = (d) and hence

(a1

d , · · · , an

d )v = R. By (ii), (a1

d , · · · , an

d ) = (1), i.e., (a1, · · · , an) = (d). Therefore,

the Bezout identity holds for a1, · · · , an.

(iii) ⇒ (ii) Let I := (a1, · · · , an) be a finitely generated ideal such that Iv = R.

This implies that 1 is a v-gcd(a1, · · · , an), and hence by (iii), (a1, · · · , an) = (1).

Thus we have I = R. �
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J. Arnold and P. Sheldon in [1] give the following definition:

Definition 2.2. Let I be a nonzero finitely generated ideal in R. Then I is called

primitive if I * aR for any nonunit element a ∈ R, and it is called superprimitive

if Iv = R.

Proposition 2.3. For a nonzero finitely generated ideal I = (a1, · · · , an) in R, the

following equivalences hold:

(1) I is primitive if and only if gcd(a1, · · · , an) = 1;

(2) I is superprimitive if and only if v-gcd(a1, · · · , an) = 1 if and only if I is a

GV-ideal.

Proof. The proof follows directly from the definitions. �

Thus a DW-domain is an integral domain in which there do not exist proper

superprimitive ideals. In Proposition 2.1 we have seen that these domains may be

characterized in terms of some divisibility properties.

Now it is natural to ask whether the integral domains in which there do not exist

proper primitive ideals also satisfy some relevant divisibility properties. For this

purpose we give the following definition.

Definition 2.4. An integral domain R is a GCD-Bezout domain if given nonzero

elements a1, · · · , an ∈ R, the existence of a gcd(a1, · · · , an) implies that the Bezout

identity holds for a1, · · · , an.

We compare the Bezout domains and the GCD-Bezout domains. In a Bezout

domain R, the Bezout identity holds for any finite set of elements (and hence R is

a GCD-domain).

In a GCD-Bezout domain R, the Bezout identity holds only for the finite sets of

elements having a gcd (and hence R is not necessarily a GCD-domain).

By replacing gcd with v-gcd in Definition 2.4, we can also give the following

definition:

Definition 2.5. An integral domain R is a v-GCD-Bezout domain if given nonzero

elements a1, · · · , an ∈ R, the existence of a v-gcd(a1, · · · , an) implies that the Be-

zout identity holds for a1, · · · , an.

By Proposition 2.1, we have that the v-GCD-Bezout domains are exactly the

DW-domains. Therefore, the class of GCD-Bezout domains is a subclass of DW-

domains.

Proposition 2.6. Let R be an integral domain. The following conditions are equiv-

alent:
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(i) R is a GCD-Bezout domain.

(ii) There do not exist proper primitive ideals in R.

(iii) For any finite set {a1, · · · , an} of nonzero elements of R such that

gcd(a1, · · · , an) exists, the Bezout identity holds for a1, · · · , an.

Proof. (i) ⇔ (iii) It follows from Definition 2.4.

(ii) ⇒ (iii) Let d be a gcd of a1, · · · , an. Then 1 is a gcd of a1

d , · · · , an

d , and

hence the ideal (a1

d , · · · , an

d ) is primitive. By the assumption (ii), we have that

(a1

d , · · · , an

d ) = (1), whence (a1, · · · , an) = (d). Thus, the Bezout identity holds for

a1, · · · , an.

(iii) ⇒ (ii) Let I := (a1, · · · , an) be a primitive ideal of R. Then 1 is a gcd

of a1, · · · , an. By the assumption (iii), (a1, · · · , an) = (1) = R. Thus, I is not a

proper ideal. �

Since the DW-domains are a very natural generalization of the domains in which

t = d (in the integrally closed case, these are exactly the Prüfer domains), we

ask whether there is any relationship between the GCD-Bezout domains and the

domains in which t = d.

The following examples show that these two concepts are not related (even in the

integrally closed case). Recall first that an integral domain R is called a pseudo-

valuation domain if there is a valuation overring V such that Spec(R) = Spec(V ).

In this case, V is uniquely determined and called the associated valuation domain

of R.

Example 2.7. Let R be an integrally closed pseudo-valuation (not valuation) do-

main with associated valuation domain V and idempotent maximal ideal M . (We

will construct such a domain specifically using a pullback diagram in Example 4.3.)

Then t 6= d on R, otherwise R would be a valuation domain against the assumption.

Now let I be a proper finitely generated ideal of R. Then IV is a principal ideal

of V , say aV for some a ∈ M . Since M = M2, a ∈ bM for some b ∈ M . Then

we have I ⊆ aV ⊆ bMV = bM ⊆ bR ( R. It follows that R does not have proper

primitive ideals. Thus, by Proposition 2.6, R is a GCD-Bezout domain in which

t 6= d.

Example 2.8. Take a Dedekind domain R with a nonprincipal maximal ideal M .

(It is enough to consider a Dedekind domain which is not a PID; for instance,

Z[
√
−5].) Then, M is a proper primitive ideal and by Proposition 2.6 whence R is

not a GCD-Bezout domain. But t = d, because R is a Prüfer domain.

The above example suggests the following:
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Lemma 2.9. Let R be a GCD-Bezout domain. A maximal ideal of R is finitely

generated if and only if it is principal.

Proof. Let M be a finitely generated maximal ideal of R. Since R is a GCD-

Bezout domain, M cannot be a primitive ideal, and hence M ⊆ (a) for some

nonunit element a ∈ R. By maximality of M , M must be equal to (a). �

Corollary 2.10. Let R be a Noetherian domain. Then R is a GCD-Bezout domain

if and only if R is a PID.

Proof. By Lemma 2.9, if R is a Noetherian GCD-Bezout domain, then every maxi-

mal ideal of R is principal, and hence R is a PID. The other direction is obvious. �

Thus, for a Noetherian domain, R being GCD-Bezout is equivalent to R being

Bezout, whereas there exist Noetherian GCD-domains which are not Bezout; for

example, consider R = Z[X].

Following [1], we will say that an integral domain R satisfies the PSP-property,

or that R is a PSP-domain, if each primitive ideal of R is superprimitive (that a

superprimitive ideal is primitive does always hold).

Proposition 2.11. An integral domain R is a PSP-domain if and only if for any

finite set {a1, · · · , an} of nonzero elements of R, the existence of gcd(a1, · · · , an)

implies the existence of v-gcd(a1, · · · , an).

Proof. (⇒) Let d be a gcd of a1, · · · , an. Then 1 is a gcd of a1

d , · · · , an

d . This im-

plies that the ideal (a1

d , · · · , an

d ) is primitive. Since R is a PSP-domain, (a1

d , · · · , an

d )

is superprimitive, i.e., (a1

d , · · · , an

d )v = R. Therefore, (a1, · · · , an)v = (d), whence

d is a v-gcd of a1, · · · , an.

(⇐) Let (a1, · · · , an) be a primitive ideal of R. Then 1 is a gcd of a1, · · · , an. By

the assumption, a v-gcd of a1, · · · , an exists. It is obvious that 1 is a v-gcd(a1, · · · , an)

and hence that (a1, · · · , an) is a superprimitive ideal. Thus R is a PSP-domain. �

Corollary 2.12. An integral domain R is a GCD-Bezout domain if and only if R

is a DW-domain satisfying the PSP-property.

Proof. It follows directly from Propositions 2.1, 2.6, and 2.11. �

Remark 2.13. Examples 2.7 and 2.8 show that there is no relation between inte-

grally closed GCD-Bezout domains and Prüfer domains. One of our interests is to

give characterizations of Prüfer domains with the GCD-Bezout property. By Corol-

lary 2.12, we know that a Prüfer domain R is a GCD-Bezout domain if and only
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if R is a PSP-domain (because a Prüfer domain is always a DW-domain). There-

fore, our question is equivalent to looking for characterizations of Prüfer domains

with the PSP-property. This is a quite old problem considered, at first, in [1], and

then for some particular cases, in [5] and [13]. We leave the question open so far,

but the following argument shows that the investigation of such domains could be

interesting.

In [1], the authors ask whether a Prüfer domain with the PSP-property is a

Bezout domain. (They are motivated by some results linking Bezout-, PSP-, and

GL-property.) In order to answer this question, they suggest to consider the Prüfer

domains in which all maximal ideals are principal, defined in the next section.

Even though A. Loper showed later that such Prüfer domains are not necessarily

Bezout domains ([13]), this case is also very interesting to us in the “GCD-Bezout

context”, because a domain whose maximal ideals are all principal is a GCD-Bezout

domain, by Proposition 2.6. Thus, in a Prüfer domain, the GCD-Bezout property

does not necessarily imply that the given domain is a Bezout domain, unlike in the

Noetherian case (see Corollary 2.10).

In [14] and in [16], the authors investigate some questions about the localization

of DW-domains. They show that if RM is a DW-domain for each maximal ideal

M of R, then R is a DW-domain, and that the converse also holds when R is v-

coherent [14, Theorem 2.9]. (Recall that an integral domain R is v-coherent if for

each nonzero finitely generated ideal J of R, Jv = H−1 = (R : H) for some finitely

generated ideal H in R.) Moreover, in [16, Proposition 3.11], the last statement is

proven for a class of domains larger than the v-coherent domains.

But, for an arbitrary domain R, it is not known yet whether the DW-property

is preserved under the localization at each maximal ideal. In the following, we

give a positive answer in the case where the representation R =
⋂

M∈Max(R) RM

is locally finite (i.e., each nonzero element of R is contained in only finitely many

maximal ideals of R). Nextly, we will give some results about the localization of

GCD-Bezout domains.

Proposition 2.14. Let R be an integral domain with the representation R =⋂
M∈Max(R) RM being locally finite. Then R is a DW-domain if and only if RM

is a DW-domain for each M ∈ Max(R).

Proof. If RM is a DW-domain for each M ∈ Max(R), then R is a DW-domain by

[14, Theorem 2.9].

Conversely, assume that R is a DW-domain and let M be a maximal ideal of

R. We will show that RM is a DW-domain, i.e., GV(RM ) = {RM}. Suppose, on
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the contrary, that there exists a proper GV-ideal J of RM . Then J = IRM for

some finitely generated ideal I of R contained in M . Let S = {M1, · · · ,Mr} be

the set of maximal ideals of R containing I and let M = M1. Choose an element

a ∈M\
⋃r

i=2 Mi and put J ′ = (I, a)RM . Then J ⊆ J ′, whence RM = J−1 ⊇ J ′−1 =

(I, a)−1RM ⊇ RM . Thus we have (I, a)−1RM = RM . Moreover, by construction,

(I, a)RN = RN , so (I, a)−1RN = ((I, a)RN )−1 = RN for each N ∈ Max(R) \ {M}.
Therefore, (I, a)−1 = R, i.e., (I, a) ∈ GV(R). But (I, a) ⊆ M ( R and this

contradicts that R is a DW-domain. �

Proposition 2.15. Let R be an integral domain with the representation R =⋂
M∈Max(R) RM being locally finite. If R is a GCD-Bezout domain, then RM is

a GCD-Bezout domain for each M ∈ Max(R).

Proof. Let M be a maximal ideal of R and consider the ring RM . Let J be a

proper finitely generated integral ideal of RM ; then J = IRM for some finitely

generated ideal I of R contained in M . As in the proof of Proposition 2.14, let

S = {M1, · · · ,Mr} be the set of maximal ideals of R containing I and let M = M1.

Take a ∈ M \
⋃r

i=2 Mi and consider the ideal I ′ = (I, a) of R. Since R is a GCD-

Bezout domain and I ′ is a proper finitely generated ideal of R, I ′ is not primitive,

i.e., I ′ ⊆ bR for some nonunit element b ∈ R. By construction of I ′, b ∈ M , and

hence J ⊆ bRM ( RM . Thus any proper finitely generated ideal of RM is not

primitive. Therefore, RM is a GCD-Bezout domain by Proposition 2.6. �

Remark 2.16. The converse of Proposition 2.15 does not hold in general. Consider

a Dedekind domain R which is not a PID. Then RM is a GCD-Bezout domain for

each M ∈ Max(R), but R is not (Example 2.8).

As a consequence of Remark 2.16 and Corollary 2.12 combined with the fact that

a locally DW-domain is DW, we have that a locally PSP-domain is not necessarily

a PSP-domain.

3. A semistar approach

In [2] D.F.Anderson introduced the p-operation. For a nonzero integral ideal I

of R, Ip is the intersection of all the principal integral ideals of R containing I. It

is well-known that for any star operation ?, I? ⊆ Iv ⊆ Ip. Since Rp = R, the p-

operation defines a semistar operation on R if and only if it defines a star operation

on R, if and only if p = v. An easy observation is that an ideal I is primitive if and

only if I is finitely generated and Ip = R.



62 MI HEE PARK AND FRANCESCA TARTARONE

Modeling after the construction of the w-operation, which is equal to ṽ, we define

another operation associated to the p-operation.

Definition 3.1. For each nonzero R-module E ∈ F(R), we define the p̃-closure of

E to be the set

Ep̃ : =
⋃
{(E : J) | J ∈ f(R), Jp = R}

=
⋃
{(E : J) | J is primitive}.

Like the p-operation, the p̃-operation, E 7→ Ep̃, is not in general a semistar

operation. It may happen even the case that Ep̃ is not an R-module for some

E ∈ F(R). We will investigate the domains in which the p̃-operation is a semistar

or a star operation.

For all x ∈ K \ {0} and E,F ∈ F(R), it is easy to check that:

• (xE)p̃ = xEp̃;

• E ⊆ F implies Ep̃ ⊆ F p̃;

• E ⊆ Ep̃.

Thus, in order to have that p̃ is semistar it remains to determine when:

(p̃ 1) the set Ep̃ is an R-module;

(p̃ 2) (Ep̃)p̃ = Ep̃, for each E ∈ F(R).

Let us look into the reasons why Ep̃ may not be an R-module. For elements

x, y ∈ Ep̃, we have that xJ ⊆ E and yH ⊆ E for some primitive ideals J and H. It

is obvious that for any element d ∈ R, (dx)J ⊆ dE ⊆ E and hence that dx ∈ Ep̃.

The problem occurs with x ± y. In fact, it is not guaranteed that there exists a

primitive ideal L such that (x ± y)L ⊆ E. The best candidate for L is the ideal

JH. If the product JH is a primitive ideal, then clearly (x ± y)JH ⊆ E and so

x ± y ∈ Ep̃. But, while it is well-known that the product of superprimitive ideals

is superprimitive, this is not the case for the primitive ideals.

In [1], the authors introduce the notion of Gauss Lemma domain, in short, GL-

domain. This is an integral domain in which the product of primitive ideals is also

a primitive ideal.

It is straightforward that PSP-domains are GL-domains.

Thus, in GL-domains, the first condition (p̃ 1) for p̃ to be semistar is verified.

Moreover, it will be shown in the next proposition that the second point (p̃ 2) is

also settled.

Proposition 3.2. Let R be a GL-domain. Then the p̃-operation is a semistar

operation which is stable and of finite type.
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Proof. In the paragraph above, we have seen that if R is a GL-domain then (p̃ 1)

holds. To prove that the p̃-operation is a semistar operation it only remains to

show that (p̃ 2) holds, that is (Ep̃)p̃ = Ep̃ for all E ∈ F(R). Since Ep̃ ∈ F(R) as

shown above, Ep̃ ⊆ (Ep̃)p̃. Now let x ∈ (Ep̃)p̃. Then, xJ ⊆ Ep̃ for some primitive

ideal J = (a1, · · · , an) of R. Then for each i = 1, · · · , n, xai ∈ Ep̃ and hence

xaiHi ⊆ E for some primitive ideal Hi of R. Put H := H1H2 · · ·Hn. Since R is a

GL-domain, H is primitive and xaiH ⊆ E for all i = 1, · · · , n. This implies that

xJH ⊆ E. Again by the assumption that R is a GL-domain, JH is primitive and

hence x ∈ Ep̃. Thus we have (Ep̃)p̃ = Ep̃.

That the p̃-operation is of finite type follows at once from the equality (E : J) =⋃
{(F : J) | F ⊆ E, F ∈ f(R)} for each E ∈ F(R) and primitive ideal J of R.

As regards the stability, we have to prove that (E ∩ F )p̃ = Ep̃ ∩ F p̃ for each

E,F ∈ F(R). The inclusion (⊆) is obvious (it is an easy consequence of the fact

that if F ⊆ E, then F p̃ ⊆ Ep̃). For the opposite inclusion (⊇), let x ∈ Ep̃ ∩ F p̃.

Then xJ ⊆ E, xH ⊆ F for some primitive ideals J , H of R. Put L = JH, then L

is primitive and xL ⊆ E ∩ F . Thus we have x ∈ (E ∩ F )p̃. �

The next proposition states that the condition R is a GL-domain is not only

sufficient but also necessary for the p̃-operation to be a semistar operation.

Proposition 3.3. An integral domain R is a GL-domain if and only if the p̃-

operation is a semistar operation on R.

Proof. The “only if” part was shown in Proposition 3.2.

For the “if” part, suppose that R is not a GL-domain. Then there exist primitive

ideals J and H in R such that their product JH is not primitive. Thus JH ⊆ aR

for some nonunit element a ∈ R. Then (JH)p̃ ( Rp̃, i.e., 1 /∈ (JH)p̃. Otherwise,

there would exist a primitive ideal L contained in JH. But then L ⊆ aR, which

contradicts that L is primitive.

Since the p̃-operation is a semistar operation on R, it is a star operation on Rp̃.

By the same argument used in the proof of Proposition 3.2, the p̃-operation is of

finite type. So every proper p̃-ideal of Rp̃ is contained in a p̃-maximal ideal and

each p̃-maximal ideal is a prime ideal. Let N be a p̃-maximal ideal of Rp̃ containing

(JH)p̃. Then JH ⊆ (JH)p̃ ⊆ N , and hence J ⊆ N or H ⊆ N . It follows that

J p̃ ⊆ N p̃ = N or H p̃ ⊆ N p̃ = N . But, either case is impossible, because J and H

are primitive and hence J p̃ = Rp̃ = H p̃, while N ( Rp̃. �

From Propositions 3.2 and 3.3 we deduce the following corollary:
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Corollary 3.4. In an integral domain R, if the p̃-operation is a semistar operation,

then p̃ is stable and of finite type.

We can also characterize the domains R in which the p̃-operation (restricted to

F(R)) is a star operation.

Proposition 3.5. Let R be an integral domain. The following conditions are equiv-

alent:

(i) R is a PSP-domain;

(ii) R is a GL-domain and Rp̃ = R;

(iii) the p̃-operation is a star operation on R; in this case, p̃ = w.

Proof. (i) ⇒ (ii) PSP-domains are always GL-domains. Moreover,

Rp̃ =
⋃
{(R : J) | J is primitive}

=
⋃
{(R : J) | J is superprimitive}

= Rw = R.

(ii) ⇒ (iii) It directly follows from Proposition 3.3.

(iii) ⇒(i) Assume that the p̃-operation is a star operation. Then

Rp̃ =
⋃
{(R : J) | J is primitive} = R,

and hence (R : J) = R for each primitive ideal J of R. This implies that each

primitive ideal J is superprimitive (since Jv = (R : (R : J))). Therefore, R is a

PSP-domain. �

[1, Example 2.5] is an example of a GL-domain which does not have the PSP-

property. So it may happen that p̃ is semistar but not star.

Corollary 3.6. An integral domain R is a GCD-Bezout domain if and only if

p̃ = d as star operations on R.

Proof. It follows directly from Corollary 2.12 and Proposition 3.5. �

Remark 3.7. If p is a star operation, i.e., p = v, then from the definition of p̃, it

follows that p̃ = ṽ = w. But the converse does not hold, i.e., the condition p = v

is not necessary to have that p̃ = w. An example is given in [2, p 171]: Let K

be a field and let V = K + M be a 1-dimensional nondiscrete valuation domain,

where M is the maximal ideal of V . For a proper subfield F of K, let R = F +M .

Then R is a PSP-domain ([1, Lemma 3.8]) and hence p̃ = w = ṽ, but p 6= v by [2,

Proposition 2.3]. Thus we can have that p̃ is a star operation even if p is not a star

operation.
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Next, we will provide new characterizations of UFDs in terms of the p̃-operation.

Theorem 3.8. Let R be an integral domain. The following conditions are equiva-

lent:

(i) R is a UFD;

(ii) R is a completely integrally closed domain and p̃ = v.

(iii) R is a Krull domain and p̃ = v.

Proof. (i) ⇒ (ii) If R is a UFD, then it is a Krull domain. Hence R is completely

integrally closed and v = t = w. Moreover, since R is a GCD-domain, it is a

PSP-domain (Corollary 2.12). By Proposition 3.5, p̃ = w, whence p̃ = v.

(ii) ⇒ (iii) By Corollary 3.4, the hypothesis p̃ = v implies that v is stable and

of finite type. Hence v = w. By [4, Proposition 3.7], R is a Krull domain.

(iii) ⇒ (i) By [12, Theorem 5], it is enough to show that each nonzero prime

ideal contains a prime element. Since p̃ = v and p̃ is stable and of finite type,

it follows that v = t = w. By [4, Theorem 3.3], each t-maximal ideal P of R

is t-invertible, whence P is t-finite, i.e., P = It for some finitely generated ideal

I of R. Since P = Pt = P p̃, each finitely generated ideal contained in P is not

primitive (otherwise 1 ∈ P p̃). Hence I ⊆ (a) for some nonunit element a ∈ R. Now,

P = It ⊆ (a)t = (a). By the t-maximality of P , P = (a). Thus any t-maximal

ideal of R is principal. Also, since R is a Krull domain, the t-maximal ideals of R

are exactly the height-one primes. It follows that each nonzero prime ideal of R

contains a prime element, and so R is a UFD. �

Remark 3.9. We notice that the condition “completely integrally closed” (respec-

tively, “p̃ = v”) in the theorem above cannot be weakened by using the condition

“integrally closed” (respectively “p̃ = t”). Take a nondiscrete rank-one valuation

domain V . Then V is completely integrally closed and t = d. Since V is a Bezout

domain (hence a GCD-Bezout domain), p̃ = d, so p̃ = t. But V is not a UFD.

Now consider a valuation domain V with principal maximal ideal M and dimV >

1. Then V is integrally closed but not completely integrally closed. Since p̃ = d (as

V being a Bezout domain) and d = v (as M being principal), we have that p̃ = v.

But, also in this case, V is not a UFD.

The following proposition gives a relationship between the GCD-domains and

the integrally closed domains in which p̃ = v or p̃ = t.
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Proposition 3.10. Let R be an integral domain and consider the following condi-

tions:

(i) R is integrally closed and p̃ = v;

(ii) R is a GCD-domain;

(iii) R is integrally closed and p̃ = t.

Then (i) ⇒ (ii) ⇒ (iii), but (iii) 6⇒ (ii) 6⇒ (i).

Proof. (i) ⇒ (ii) The condition p̃ = v implies that v is stable and of finite type.

Hence v = t = w. By [4, Theorem 3.3] R is a PvMD and each t-maximal ideal

of R is t-invertible. Following the same argument used in the proof of (iii) ⇒ (i)

of Theorem 3.8, we have that all the t-maximal ideals of R are principal. By [8,

Corollary 1.10], the class group of R is generated by the classes of the t-maximal

ideals, so the class group of R is trivial. Therefore, R is a GCD-domain ([3]).

(ii) ⇒ (iii) It is obvious that a GCD domain is integrally closed. Moreover, a

GCD-domain is PSP and PvMD, whence p̃ = w (Proposition 3.5) and t = w ([11,

Theorem 3.5]). It follows that p̃ = t.

We will give two counterexamples to show that (iii) 6⇒ (ii) 6⇒ (i).

(ii) 6⇒ (i) A valuation domain is always a GCD-domain since it is Bezout, hence

p̃ = d. If we take a valuation domain V with nonprincipal maximal ideal, then

v 6= d; whence p̃ 6= v.

(iii) 6⇒ (ii) We have mentioned that there exist Prüfer domains which are GCD-

Bezout but not Bezout (see Remark 2.13). Take one of these domains R. Then R

is integrally closed and p̃ = t = d, but R is not a GCD-domain, because this would

force R to be Bezout. �

Remark 3.11. It is an open question to decide whether a completely integrally

closed domain in which p = v is necessarily a GCD-domain ([2, p 169]).

Next, our intent is to study GCD-Bezout domains by using semistar operations,

as we have done with the PSP-domains. In view of Propositions 2.1 and 2.6, we

need to define another operation closely related to primitive ideals.

Definition 3.12. For each nonzero R-module E ∈ F(R), we define

Eq :=
⋃
{(E : J) | J = H1 · · ·Hn, where each Hi is primitive}.

Note that for each E ∈ F(R), Ep̃ ⊆ Eq (i.e., p̃ ≤ q).
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Lemma 3.13. Let R be an integral domain. Then the q-operation is a semistar

operation which is stable and of finite type.

Proof. We follow the same arguments used in Proposition 3.2.

We only need to show that if I and J are nonzero finitely generated ideals in R

which are finite products of primitive ideals, then the same holds for IJ . But this

is straightforward. �

Proposition 3.14. Let R be an integral domain. The following conditions are

equivalent:

(i) R is a PSP-domain;

(ii) q is a star operation;

(iii) p̃ is a star operation;

(iv) q = w = p̃.

Proof. (i)⇒ (ii) Assume that R is a PSP-domain. Then R is a GL-domain and by

Proposition 3.5 we have that p̃ = w. Moreover, since in a GL-domain the product

of primitive ideals is primitive we also have that p̃ = q (this follows directly from

the definitions of p̃ and q). Therefore q = w is a star operation.

(ii) ⇒ (i) Assume that the q-operation is a star operation. Then Rq = R. Thus

(R : H1 · · ·Hn) = R for each finite set {H1, · · · , Hn} of primitive ideals of R. In

particular, (R : H) = R for each primitive ideal H of R. Thus R is a PSP-domain.

(ii) ⇔ (iii) From Proposition 3.5, p̃ is a star operation if and only if R is PSP.

From the equivalence (i) ⇔ (ii), we have that p̃ is a star operation if and only if q

is a star operation.

(iv) ⇒ (iii) It is obvious.

(iii) ⇒ (iv) From Proposition 3.5 p̃ = w. From (ii), q is a star operation and

from Lemma 3.13 q is stable and of finite type. Since w = p̃ ≤ q, and w is maximal

among the star operations on a domain R which are stable and of finite type, it

follows that q = w. �

Corollary 3.15. An integral domain R is a GCD-Bezout domain if and only if

q = d as star operations on R.

Proof. It follows directly from Corollary 2.12 and Proposition 3.14. �

In the following diagram, we summarize the principal implications among the

classes of domains that we have considered:
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GCD-Bezout domain ⇔ DW-domain + PSP-domain ⇔ p̃ = d

⇓ 6⇑
PSP-domain ⇔ p̃ is a star operation ⇔ p̃ = w

m
q is a star operation ⇔ q = w

⇓ 6⇑
GL-domain ⇔ p̃ is a semistar operation

4. Pullbacks

In this section we are interested in the GCD-Bezout-property of the integral

domain R arising from the following pullback diagram of canonical homomorphisms:

R := ϕ−1(D) −−−−→ Dy y
T

ϕ−−−−→ k = T/M

(�)

where T is an integral domain, M a nonzero maximal ideal of T , k the residue field

T/M , ϕ : T → k the canonical projection, and D a proper subring of k.

We start with the case in which T is a quasi-local domain.

Proposition 4.1. Consider a pullback diagram of type (�), where T is quasi-local

and D is a field. Then R is a GCD-Bezout domain if and only if T is a GCD-Bezout

domain and M = M2.

Proof. (⇒) Suppose that M 6= M2. Take a ∈ M \M2, x ∈ T \ R, and consider

the ideal I = (a, ax) of R. Then I ⊆M , and moreover, I is a primitive ideal of R.

In fact, if I is not primitive, then I ⊆ bR for some nonunit element b ∈ R. Since T

is quasi-local and D is a field, R is quasi-local with maximal ideal M . Therefore,

b ∈ M . Since a = bc for some c ∈ R and a 6∈ M2, we have c /∈ M , i.e., c is a unit

element of R. Then ax ∈ I ⊆ bR = aR, which contradicts that x 6∈ R. Thus if we

assume that M 6= M2, then R has a proper primitive ideal, which contradicts that

R is a GCD-Bezout domain (Proposition 2.6).

Now let J be a proper finitely generated ideal of T . Then J ⊆ M , and hence

J = IT for some proper finitely generated ideal I of R. Since R is a GCD-Bezout

domain, I ⊆ aR for some a ∈ M . Then J ⊆ aT and hence J is not primitive.

Therefore, T is a GCD-Bezout domain (Proposition 2.6).

(⇐) Take a nonzero proper finitely generated ideal I of R. Since T is a GCD-

Bezout domain, IT ⊆ aT for some a ∈ M . By the assumption that M = M2,
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a =
∑n

i=1 bici, where bi, ci ∈M . From the fact that T is a GCD-Bezout domain, it

follows that (b1, · · · , bn) ⊆ bT for some b ∈M . Thus I ⊆ aT ⊆ bM ⊆ bR, and hence

I is not primitive. Therefore, R is a GCD-Bezout domain (Proposition 2.6). �

A particularly interesting case is when T is a valuation domain and D is a field.

Note that the integral domain R arising from a pullback diagram of such type is a

pseudo-valuation domain with associated valuation domain T .

Since a valuation domain is a Bezout domain, it is always a GCD-Bezout domain.

Thus we get the following corollary to Proposition 4.1.

Corollary 4.2. Let R be a pseudo-valuation domain which is not a valuation do-

main and let M be the maximal ideal of R. Then R is a GCD-Bezout domain if

and only if M = M2.

We will now give an example of an integrally closed GCD-Bezout domain in

which t 6= d (cf. Example 2.7). Hence, this domain is not a Prüfer domain.

Example 4.3. Let V be a 1-dimensional nondiscrete valuation domain with residue

field k = V/M containing Q(X). (For the existence of such a valuation domain,

see [9, Proposition 18.4 and Corollary 18.5].) Let F be the algebraic closure of Q
in k, then F is a proper subfield of k.

Consider the pullback diagram of type (�) with T = V , D = F . Then R =

ϕ−1(D) is an integrally closed pseudo-valuation domain which is not a valuation

domain, and hence t 6= d on R.

Since V is a 1-dimensional nondiscrete valuation domain, M = M2. Therefore,

by Corollary 4.2, R is a GCD-Bezout domain.

In the next result, we will see that if T is quasi-local and D is not a field, then any

other condition on T and on M is not needed for R to be a GCD-Bezout domain.

Proposition 4.4. Consider a pullback diagram of type (�), where T is quasi-local

and D is not a field. Then R is a GCD-Bezout domain if and only if D is a

GCD-Bezout domain.

Proof. (⇒) Let J be a nonzero proper finitely generated ideal of D. Then ϕ−1(J)

is a proper finitely generated ideal of R containing M by [6, Corollary 1.7 (b)].

Since R is a GCD-Bezout domain, ϕ−1(J) ⊆ aR ( R for some a ∈ R. Thus we

have J = ϕ(ϕ−1(J)) ⊆ ϕ(a)D ( D. This proves that D does not have proper

primitive ideals, and hence D is a GCD-Bezout domain (Proposition 2.6).

(⇐) Note first that since T is quasi-local, every ideal of R is comparable with

M , and that since D is not a field, M is not a maximal ideal of R.
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Let I be a nonzero proper finitely generated ideal of R. Consider the case

I ⊆ M . Choose a nonunit element a ∈ R \M . Then I ⊆ M ⊆ aR ( R, whence

I is not primitive. Now assume that M ( I. Then ϕ(I) is a nonzero proper

finitely generated ideal of D. Since D is a GCD-Bezout domain, ϕ(I) ⊆ dD for

some nonunit element d ∈ D. Let a be an element of R such that ϕ(a) = d.

Then I = ϕ−1(ϕ(I)) ⊆ ϕ−1(dD) = aR + M = aR ( R. Thus I is not primitive.

Therefore, R is a GCD-Bezout domain. �

Remark 4.5. (1) The fact that R is a GCD-Bezout domain does not imply that

the integral closure R̄ of R is a GCD-Bezout domain, even in the case when R̄ is a

finite R-module : Let T = k[X](X), where k is a number field such that its ring of

integers A is a Dedekind domain that is not a PID. (For instance, if k = Q(
√
−5),

then A = Z[
√
−5] is not a PID.) Consider the pullback diagram of type (�) with

D = Z. Then since Z is a GCD-Bezout domain, R = ϕ−1(Z) is also a GCD-Bezout

domain by Proposition 4.4. But, since A, the integral closure of Z in k, is not a

GCD-Bezout domain (Corollary 2.10), R̄ = ϕ−1(A) is not a GCD-Bezout domain

by Proposition 4.4 again.

(2) The GCD-Bezout-property is not preserved by localization : Let V = R[[X]] =

R+M , where M = XR[[X]]. Consider the pullback diagram of type (�) with T = V ,

D = Z. Then R = ϕ−1(Z) is a GCD-Bezout domain by Proposition 4.4. Let

S = Z \ {0}. Then RS = ϕ−1(Q) is a pseudo-valuation domain. Since M 6= M2,

RS is not a GCD-Bezout domain by Corollary 4.2.

The next example shows that in a pullback diagram of type (�), the fact that

R is a GCD-Bezout domain does not necessarily imply that T is a GCD-Bezout

domain.

Example 4.6. Let T be a Noetherian local domain which is not a PID. (For

instance, T := k[X,Y ](X,Y ).) Then T is not a GCD-Bezout domain by Corol-

lary 2.10. Take a PID D which is a subring of the residue field k of T . Then

R = ϕ−1(D) is a GCD-Bezout domain.

Assume, now, that T is not necessarily quasi-local and D is not a field.

Proposition 4.7. With the above hypotheses and notation, we have that if R is a

GCD-Bezout domain, then D is a GCD-Bezout domain.

Proof. It follows from the same argument used in the proof of the “only if” part

of Proposition 4.4. �
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The next result deals with the relationship among the GCD-Bezout-properties

of the domains R, D, and T , in the classical pullback situation with T = k + M .

In this case, the domain R is of the form D + M .

Proposition 4.8. Consider a pullback diagram of type (�) with T = k +M . If D

and T are GCD-Bezout domains, then R = D + M is a GCD-Bezout domain.

Proof. Let I be a nonzero proper finitely generated ideal of R. We will show that

I is contained in a proper principal ideal of R.

Case 1. M ( I.

Then I/M is a nonzero proper finitely generated ideal of D. Since D is a GCD-

Bezout domain, we have that I/M ⊆ aD ( D for some nonzero nonunit element

a ∈ D. Thus I ⊆ ϕ−1(aD) = aD + M = a(D + M) = aR ( R.

Case 2. M 6⊂ I.

By [6, Proposition 1.1], IT 6= T . So, IT is a nonzero proper finitely generated

ideal of T . Since T is a GCD-Bezout domain, IT ⊆ xT ( T for some nonunit

element x ∈ T . Write x = a + m, with a ∈ k and m ∈ M . If a = 0, then I ⊆ M .

Choose any nonunit element d ∈ D \ {0}. Then I ⊆ M ⊆ dD + M = dR ( R.

Thus we may assume that a 6= 0. Then x = a(1 + m
a ), where a is a unit in T . Thus

m
a ∈M . Let c = 1 + m

a ∈ R. Then cT = xT ( T and hence c is a nonunit element

of R.

Case 2.1. k is the quotient field of D.

Put R(M) := D + MTM , that is, R(M) is the integral domain arising from the

following pullback diagram:

R(M) −−−−→ Dy y
TM = k + MTM −−−−→ k

By [6, Lemma 1.3],

I = IR(M) ∩ IT ⊆ R(M) ∩ cT = cR(M) ∩ cT = cR ( R,

because c is a unit in R(M).

Case 2.2. k is not a quotient field of D.

Then

I ⊆ IT ∩R ⊆ cT ∩R = cR ( R.

In fact:



72 MI HEE PARK AND FRANCESCA TARTARONE

cT ∩R =(
⋂

N∈Max(T )

cTN ) ∩R

=(
⋂

P∈Max(R),P+M

cRP ) ∩ cTM ∩R

=(
⋂

P∈Max(R),P+M

cRP ) ∩ cTM ∩ (
⋂

P∈Max(R)

RP )

=(
⋂

P∈Max(R),P+M

cRP ) ∩ cTM ∩ (
⋂

P∈Max(R),P⊇M

RP )

=(
⋂

P∈Max(R),P+M

cRP ) ∩ cTM ∩ (
⋂

P∈Max(R),P⊇M

cRP )

=cR ∩ cTM

=cR.

The third to last equality follows from the observation that for each P ∈ Max(R)

with P ⊇M , c = 1 + m
a ∈ R \ P and hence cRP = RP . �

The converse of Proposition 4.8 does not hold in general. In fact, we have

already shown that if R is a GCD-Bezout domain, then D is always a GCD-Bezout

domain (Proposition 4.7). But the GCD-Bezout-property for R does not imply the

GCD-Bezout-property for T as shown in Example 4.6.

5. The Nagata and the polynomial rings

In this last section we consider the Nagata ring R(X) and study the GCD-

Bezout-property in R(X). We recall that the Nagata ring (see, for instance, [9,

§ 33]) is defined as follows:

R(X) := {f
g
| f, g ∈ R[X], c(g) = R},

where c(g) is the content of the polynomial g ∈ R[X], i.e., the ideal generated by

the coefficients of g.

The Nagata ring is often considered in order to give new examples of domains

with some desired properties, by carefully manipulating some aspects of the struc-

ture of R which is reflected on the structure of R(X). For instance, it is well-known

that R is a Prüfer domain if and only if R(X) is a Prüfer domain ([9, Theorem 33.4])

and that R is a DW-domain if and only if R(X) is a DW-domain ([16, Proposition

3.1]). In the following we will show that the GCD-Bezout-property transfers from

R to R(X).
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Proposition 5.1. Let R be an integral domain.

(1) If R is a GCD-Bezout domain, then so is R(X).

(2) R[X] is a GCD-Bezout domain if and only if R is a field.

Proof. (1) Let J be a proper finitely generated ideal of R(X). Then we can write

J = (f1, · · · , fm)R(X), where fi ∈ R[X] for each i = 1, · · · ,m. Let

f := f1 + f2X
deg(f1)+1 + · · ·+ fmX(deg(f1)+···+deg(fm−1)+m−1).

Then J ⊆ (c(f1), · · · , c(fm))R(X) = c(f)R(X) and f ∈ J . Since J is a proper

ideal of R(X), f is not invertible in R(X) and hence c(f) 6= R. Thus c(f) is a

proper finitely generated ideal of the GCD-Bezout domain R, and hence c(f) ⊆ aR

for some nonunit element a ∈ R. Then J ⊆ c(f)R(X) ⊆ aR(X) ( R(X), and so J

is not primitive. Thus it follows that R(X) is GCD-Bezout.

(2) If R[X] is a GCD-Bezout domain, then R[X] is DW by Corollary 2.12. But

it is known that R[X] is DW if and only if R is a field ([14, Proposition 2.12]).

Conversely, if R is a field, then R[X] is a PID and hence a GCD-Bezout domain. �

Finally, we notice that R(X) being a GCD-Bezout domain does not imply that

R is a GCD-Bezout domain. Take a Prüfer domain R which is not GCD-Bezout,

as in Example 2.8. Then R(X) is a Bezout domain by [9, Theorems 32.7 & 33.4],

whence it is GCD-Bezout, but R is not.
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