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1. Introduction

Let k be an algebraically closed field with char(k) = 0, and let P3 be the three

dimensional projective space over k. Let S ⊂ P3 be a rational surface which is

given as the image of the generic 1-to-1 parametrization

φ : P2 −→ S

[s; t;u] 7→ [f0; f1; f2; f3]
(1)

where f0, f1, f2, f3 are linearly independent homogeneous quadratic polynomials

in the standard Z-graded algebra R := k[s, t, u], and gcd(f0, f1, f2, f3) = 1. We

define the ideal I = 〈f0, f1, f2, f3〉 ⊂ R.

An inversion map of the rational surfaces S is a dominant rational map

ψ : S −→ P2

[x; y; z;w] 7→ [F0(x, y, z, w);F1(x, y, z, w);F2(x, y, z, w)]
(2)

such that ψ◦φ = idP2 and ψ◦φ = idS , where F0(x, y, z, w), F1(x, y, z, w), F2(x, y, z, w)

are homogeneous polynomials (forms) of k[x, y, z, w] with gcd(F0, F1, F2) = 1.

The birationality of ψ means:

φ(ψ[x; y; z;w]) = [x; y; z;w], for almost all [x; y; z;w] ∈ S (3)

and

ψ(φ[s; t;u]) = [s; t;u], for almost all [s; t;u] ∈ P2. (4)

In this paper, our focus is to describe a method of finding the inversion map ψ of

rational surfaces given by the quadratically parametrization φ. We proceed in the
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following fashion. In Section 2, we review some important information concerning

quadratically parametrized surfaces. In particular, we recall some known results

concerning the syzygies of quadratically parametrized surfaces. In Section 3, we

use the syzygies to find the inversion map. Finally, we will provide some illustrative

examples.

2. Syzygies of Parametrized Surfaces

A point [s0; t0;u0] ∈ P2 is called a base point of the parametrization given by

Equation (1), if [s0; t0;u0] ∈ Z = V(I), i.e., [s0; t0;u0] is a common root of the

polynomials fi for i = 0, 1, 2, 3. Base points play an important role in studying the

image of the parametrization. Bézout’s Theorem stated below (see [2] for detailed

proof) provides a relationship between the multiplicity of base points and the degree

of a variety.

Theorem 2.1. (Bézout’s Theorem) Let S be a surface in projective 3-space given

by the image of a generic 1-to-1 rational parametrization as in Equation (1) with

deg(fi) = d, then

deg(S) = d2 −
∑
p∈Z

ep,

where Z = V(f0, f1, f2, f3) is the set of base points, and ep is the algebraic multi-

plicity of the base point p.

It is shown in [3] that if S be a surface in projective 3-space given by the image

of a generic 1-to-1 rational parametrization as in Equation (1) with deg(fi) = 2,

then

degZ =
∑
p∈Z

ep ≤ 2, where Z = V(f0, f1, f2, f3),

and hence

deg(S) = 2, or 3, or 4.

Moreover, in [3, Theorem 3.10], the detailed structures of the free resolutions of

quadratically parametrized surfaces with base points and their multiplicities were

given. Let I be the ideal generated by {f0, f1, f2, f3}, then the free resolution of

R/I has the form

1. If Z = ∅, then

0→ R2(−5)→ R2(−3)
⊕
R3(−4)

P1,P2,P3,P4,P5−−−−−−−−−−−→ R4(−2)→ R→ R/I → 0,

where deg(P1) = deg(P2) = 1, and deg(P3) = deg(P4) = deg(P5) = 2 in s, t, u.
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2. If degZ = 1, then

0→ R(−5)→ R3(−3)
⊕
R(−4)

P1,P2,P3,P4−−−−−−−−→ R4(−2)→ R→ R/I → 0,

where deg(P1) = deg(P2) = deg(P3) = 1, and deg(P4) = 2 in s, t, u.

3. If degZ = 2, then

0→ R(−4)→ R4(−3)
P1,P2,P3,P4−−−−−−−−→ R4(−2)→ R→ R/I → 0,

where deg(P1) = deg(P2) = deg(P3) = deg(P4) = 1 in s, t, u.

Note, the Pi are the generators of the first syzygy module Syz(I).

Now, recall a moving surface of degree r is given by a polynomial∑
i+j+`+k=r

Aij`k(s, t, u)xiyjz`wk, Aij`k ∈ R.

This follows the parametrization (1) if∑
i+j+`+k=r

Aij`k(s, t, u)f0(s, t, u)if1(s, t, u)jf2(s, t, u)`f3(s, t, u)k ≡ 0.

Hence, a moving surface of degree r follows the parametrization if and only if

(Aij`k)i+j+`+k=r ∈ Syz(Ir), where I is the ideal 〈f0, f1, f2, f3〉 ⊂ R.

The set of all moving surfaces that follow the parametrization is an ideal in

k[s, t, u, x, y, z, w]. This is called the moving surface ideal. When r = 1, the

moving surface is a moving plane.

From the structure of the free resolution of quadratically parametrized surfaces

S, we obtain the following moving planes that follow the parametrization (1) of

degree one in s, t, u:

1. If Z = ∅, then

P1 = P1 · (x, y, z, w) = p1s(x, y, z, w)s+ p1t(x, y, z, w)t+ p1u(x, y, z, w)u,

P2 = P2 · (x, y, z, w) = p2s(x, y, z, w)s+ p2t(x, y, z, w)t+ p2u(x, y, z, w)u.

2. If degZ = 1, then

P1 = P1 · (x, y, z, w) = p1s(x, y, z, w)s+ p1t(x, y, z, w)t+ p1u(x, y, z, w)u,

P2 = P2 · (x, y, z, w) = p2s(x, y, z, w)s+ p2t(x, y, z, w)t+ p2u(x, y, z, w)u,

P3 = P3 · (x, y, z, w) = p3s(x, y, z, w)s+ p3t(x, y, z, w)t+ p3u(x, y, z, w)u.
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3. If degZ = 2, then

P1 = P1 · (x, y, z, w) = p1s(x, y, z, w)s+ p1t(x, y, z, w)t+ p1u(x, y, z, w)u,

P2 = P2 · (x, y, z, w) = p2s(x, y, z, w)s+ p2t(x, y, z, w)t+ p2u(x, y, z, w)u,

P3 = P3 · (x, y, z, w) = p3s(x, y, z, w)s+ p3t(x, y, z, w)t+ p3u(x, y, z, w)u,

P4 = P4 · (x, y, z, w) = p4s(x, y, z, w)t+ p4t(x, y, z, w)t+ p4u(x, y, z, w)u,

where pis, pit, piu are linear forms in x, y, z, w.

It is shown in [3] that for any quadratically parametrized surface S, there are at

least two linearly independent moving planes P1 and P2, and the implicit equation

F for the parametrized surface are given by
F = Sylvs,t,u(P1, P2, Q), if Z = ∅,

F = Sylvs,t,u(P1, P2, P3), if degZ = 1,

F = gcd(Sylvs,t,u(P1, P2, P3),Sylvs,t,u(P1, P2, P4)), if degZ = 2,

(5)

where Sylvs,t,u(f, g, h) stands for the Sylvester determinant of the polynomials

f, g, h with respect to s, t, u.

It is proven by [1] that in the non-homogenous setting, there are three moving

planes p,q, r in s, t forming a µ-basis for the rational surface such that

[p,q, r] = κ [f0(s, t); f1(s, t); f2(s, t); f3(s, t)] (6)

for some nonzero constant κ, where p = (p1, p2, p3, p4),q = (q1, q2, q3, q4), r =

(r1, r2, r3, r4), and

[p,q, r] =

det


p2 q2 r2

p3 q3 r3

p4 q4 r4

 ,−det


p1 q1 r1

p2 q2 r2

p3 q3 r3

 ,det


p1 q1 r1

p2 q2 r2

p4 q4 r4

 ,−det


p1 q1 r1

p2 q2 r2

p3 q3 r3


 .

(7)

Moreover, [1] provided an algorithm to obtain the µ-basis. Thus, in the homogenous

setting, we may choose P1, P2 as the homogenous forms of p,q.

3. Inversion Map Via Syzygies

We conclude with our main result and illustrative examples.

Theorem 3.1. Let φ : P2 −→ P3 : [s; t;u] 7→ [f0; f1; f2; f3] ∈ P3 be a generic

one-to-one parametrization of a surface S, where f0, f1, f2, f3 ∈ R = k[s, t, u]

are homogenous polynomials of degree d = 2, and gcd(f0, f1, f2, f3) = 1. If I =
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〈f0, f1, f2, f3〉 ⊂ R, the inversion map ψ is given as the determinant of the 2 × 2

minor of the matrix

[
p1s p1t p1u

p2s p2t p2u

]
, that is

[s; t;u] = ψ(x, y, z, w) =

[
det

(
p1t p1u

p2t p2u

)
; −det

(
p1s p1u

p2s p2u

)
; det

(
p1s p1t

p2s p2t

)]
where pis, pit, piu are the linear forms in x, y, z, w of the two linearly independent

moving planes P1, P2.

Proof. First of all, we note that the parametrization is parametrization is a generic

one-to-one map, hence the surface is of degree two, three or four according to the

total multiplicity of the base points. In any case, based on the free resolution results

obtained in [3], there are at least two linearly independent moving planes that follow

the parametrization. Without loss of generality, let P1 and P2 be two linearly

independent moving planes that follow the parametrization (1) of the following

forms

P1 = p1s(x, y, z, w)s+ p1t(x, y, z, w)t+ p1u(x, y, z, w)u,

P2 = p2s(x, y, z, w)s+ p2t(x, y, z, w)t+ p2u(x, y, z, w)u.

Now, we claim at the general point of the surface S

rank

[
p1s(x, y, z, w) p1t(x, y, z, w) p1u(x, y, z, w)

p2s(x, y, z, w) p2t(x, y, z, w) p2u(x, y, z, w)

]
= 2.

Otherwise, if the rank was one, then

det

(
p1t p1u

p2t p2u

)
= det

(
p1s p1u

p2s p2u

)
= det

(
p1s p1t

p2s p2t

)
= 0.

But by the formula provided by Hoffman-Wang [3] stated in Equation (5), this

would imply that the implicit equation of the surfaces were identically zero, which

is absurd.

Hence, the matrix equation

[
p1s(x, y, z, w) p1t(x, y, z, w) p1u(x, y, z, w)

p2s(x, y, z, w) p2t(x, y, z, w) p2u(x, y, z, w)

]
s

t

u

 =

[
0

0

]
,

have a unique solution up to scalar multiples

[s; t;u] =

[
det

(
p1t p1u

p2t p2u

)
; −det

(
p1s p1u

p2s p2u

)
; det

(
p1s p1t

p2s p2t

)]
,
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at the general point [x; y; z;w] ∈ S. Therefore, the map given by the minors of the

matrix is the desired inversion map. �

Example 3.2. Given a quadratic parametrization φ = [t2− u2; st; su; tu], we com-

pute the moving planes of degree 1 and obtain

P1 = zt− yu, P2 = xs− yt+ zu, P3 = ws− yu.

It is easy to check that the first two moving planes P1 and P2 are linearly indepen-

dent. Then the inversion map is given by the determinant of the 2× 2 minor of the

matrix

[
0 z −y
x −y z

]
, that is

ψ : [x; y; z;w] = [z2 − y2; −xy; −xz].

Hence,

ψ(φ[s; t;u]) = [(s2u2−s2t2;−st(t2−u2);−su(t2−u2)] = s(u2−t2)[s; t;u] = [s; t;u].

For the other composition, we need the implicit equation of the parametrization

which is F = xyz − y2w+ z2w = 0. Equivalently w(y2 − z2) = xyz. It follows that

φ(ψ[x; y; z;w]) = [x2(y2 − z2);xy(y2 − z2);xz(y2 − z2);x2yz]

= [xy(y2 − z2);xz(y2 − z2);xw(y2 − z2)]

= x(y2 − z2)[x; y; z;w] = [x; y; z;w].

Example 3.3. Given a quadratic parametrization φ = [t2;u2; tu; su]. The moving

planes of degree 1 are

P1 = yt− zu, P2 = zt− xu, P3 = ys− wu, P4 = zs− wt.

The implicit equation of the surface is z2 − xy = 0. Note also that P1 and P2 are

linearly dependent over k[x, y, z, w] for all the points on the surface, since the rank

of the matrix

[
0 y −z
0 z −x

]
is one. This is because the determinants of the 2 × 2

minor of the matrix are all zeros on the surface. We need to choose two moving

planes P1 and P3 that are linearly independent over k[x, y, z, w] for all the points

on the surface. Thus the inversion map is given by the determinant of the 2 × 2

minor of the matrix

[
0 y −z
y 0 −w

]
. That is,

ψ : [x; y; z;w] = [−yw; −yz; −y2] = [w; z; y].
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It is easy to check that ψ(φ[s; t;u]) = [s; t;u], and

φ(ψ[x; y; z;w]) = y

[
z2

y
; y; z;w

]
= [x; y; z;w].

The last equality is true because the implicit equation is F = z2 − xy = 0, thus on

the surface x =
z2

y
.
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