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Abstract. Let G be a finite group, p the smallest prime dividing the order

of G and P a Sylow p-subgroup of G with the smallest generator number d.

We consider such a set Md(P ) = {P1, P2, . . . , Pd} of maximal subgroups of P

such that ∩d
i=1Pi = Φ(P ). Groups with certain s-permutably embedded and

weakly c-normal subgroups of prime power order are studied. We present some

sufficient conditions for a group to be p-nilpotent or p-supersolvable.
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1. Introduction

All groups considered in this paper are finite. Terminology and notation em-
ployed agree with standard usage, as in Robinson [10].

In the present paper, we letM(G) be the set of all maximal subgroups of Sylow
subgroups of a group G. An interesting problem in group theory is to study the
influence of the elements of M(G) on the structure of G. A classical result in this
direction is attributed to Srinivasan [12]. Srinivasan proved that G is supersolv-
able provided that every member of M(G) is normal in G. This result has been
extensively generalized.

In investigating structures in finite groups, normal subgroups often play an im-
portant role. Recently, several notions generalizing normality were introduced.
Among them: two subgroupsH andK ofG are said to be permutable ifHK = KH.
A subgroup H of a group G is said to be s-permutable (or π-quasinormal) in G

if H permutes with every Sylow subgroups of G, i.e., HP = PH for any Sy-
low subgroup P of G. This concept was introduced by O.H.Kegel in [8] and has
been studied widely by many authors, such as [4,11]. Recently, Ballester-Bolinches
and Pedraza-Aquilera [3] generalized the notion of s-permutable subgroups to s-
permutably embedded subgroups. A subgroup H of G is said to be s-permutably
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embedded in G provided every Sylow subgroup of H is a Sylow subgroup of some
s-permutable subgroup of G. On the other hand, Wang [15] introduced the concept
of c-normal subgroups. A subgroup H of a group G is said to be c-normal in G if
there exists a normal subgroup K of G such that G = HK and H ∩K is contained
in HG, where HG is the maximal normal subgroup of G contained in H. In [6],
Guo and Shum showed the following result: Let p be the smallest prime dividing
the order of G and let P be a Sylow p-subgroup of G. If every member ofM(P ) is
c-normal in G, then G is p-nilpotent. More recently, Zhu [18] introduced the con-
cept of weakly c-normal subgroups. A subgroup H of a group G is called a weakly
c-normal subgroup of G if there exists a subnormal subgroup T of G such that
G = HT and H ∩ T ≤ HG. It should be apparent from the summary above that
there has been steady research in both the concepts of weakly c-normal subgroups
and of s-permutably embedded subgroups; however, the two concepts have been
considered independently of each other.

In this paper, we restrict the set of maximal subgroups of Sylow subgroups by
the following concept.

Definition 1.1. [9, Definition 1.1] Let d be the smallest generator number of
a p-group P, and let M(P ) be the set of all maximal subgroups of P. Then
Md(P ) denotes a subset Md(P ) = {P1, P2, . . . , Pd} of M(P ) with the property
that ∩d

i=1Pi = Φ(P ), the Frattini subgroup of P .

Observe that, then, there are (pd−1)/(p−1) maximal subgroups of P , and that
1
d (pd − 1)/(p− 1) tends to infinity with d. So Md(P ) usually (for large d) is much
smaller than M(P ). If |P | = 1, then Md(P ) is empty; whereas if |P | = p, then
Md(P ) contains the trivial subgroup as its unique element. The latter will occur,
for example, if G is any transitive permutation group of degree p (which may be
non-soluble, hence 2-transitive by a theorem of Burnside [7, Satz V.21.3], implying
that p − 1 is a divisor of |G|). For such a group, one cannot deduce much about
the structure of G from that of Md(P ). Thus, we will impose some additional
conditions on Md(P ) in our investigations.

We investigate the case in which, for P ∈ Sylp(G), there is a choice ofMd(P ) in
which every element ofMd(P ) is either weakly c-normal or s-permutably embedded
in G; we will be able to unify and improve on known results.

2. Preliminaries

We first collect some properties of weakly c-normal and s-permutably embedded
subgroup of a group.

Lemma 2.1. [18, Lemma 2.2] Let U be a weakly c-normal subgroup of G and N a
normal subgroup of G.
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(1) If U ≤ H ≤ G, then U is weakly c-normal in H;
(2) If N ≤ U , then U/N is weakly c-normal in G/N ;
(3) Let π be a set of primes, U a π-subgroup and N a π′-subgroup. Then UN/N

is weakly c-normal in G/N ;
(4) U is weakly c-normal in G if and only if there exists a subnormal subgroup

T of G such that G = UT and U ∩ T = UG.

Lemma 2.2. [3, Lemma 1] Suppose that H is an s-permutably embedded subgroup
of G, K ≤ G and N is a normal subgroup of G. Then we have the following:

(1) If H ≤ K, then H is an s-permutably embedded subgroup of K.
(2) HN/N is an s-permutably embedded subgroup of G/N .

Lemma 2.3. [8] (1) If H is an s-permutable subgroup of a group G, then H/HG

is nilpotent.
(2) Let K EG and K ≤ H. Then H is s-permutable in G if and only if H/K is

s-permutable in G/K.

The following lemmas play a crucial role in the proof of our results.

Lemma 2.4. [17, Lemma 2.8] Let G be a group and let p be a prime number
dividing |G| with (|G|, p− 1) = 1.

(1) If N is normal in G of order p, then N lies in Z(G);
(2) If G has cyclic Sylow p-subgroups, then G is p-nilpotent;
(3) If M is a subgroup of G with index p, then M is normal in G.

Lemma 2.5. [7, IV, Satz 4.7] If P is a Sylow p-subgroup of G and N E G such
that P ∩N ≤ Φ(P ), then N is p-nilpotent.

Lemma 2.6. [7, III, Satz 3.3] Let G be a group, and let N be a normal subgroup
of G and H ≤ G. If N ≤ Φ(H), then N ≤ Φ(G).

Lemma 2.7. [16, Lemma 2.6] Let N 6= 1 be a normal subgroup of a group G. If
N∩Φ(G) = 1, then the Fitting subgroup F (N) of N is the direct product of minimal
normal subgroups of G that are contained in F (N).

Lemma 2.8. [13, Lemma 2.5] (1) If A is subnormal in G and the index |G : A| is
a p′-number, then A contains all Sylow p-subgroups of G;

(2) If A is a subnormal Hall subgroup of G , then A is normal in G.

Lemma 2.9. [11] For a nilpotent subgroup H of G, the following two statements
are equivalent:

(1) H is s-permutable in G.
(2) The Sylow subgroups of H are s-permutable in G.
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Lemma 2.10. [2] Let P be a Sylow p-subgroup of G, and P1 a maximal subgroup
of P . Then the following two statements are equivalent:

(1) P1 is normal in G.
(2) P1 is s-permutable in G.

3. Main Results

We note that weakly c-normal subgroups and s-permutably embedded subgroups
are two distinct concepts. Let us observe the symmetric group S4. Let H = 〈(12)〉
and K = 〈(123)〉. Then H is weakly c-normal but not s-permutably embedded in
S4, while K is s-permutably embedded but not weakly c-normal in S4.

Our first result is to unify and improve the results of [1] and [6] on the p-
nilpotency of a group.

Theorem 3.1. Let P be a Sylow p-subgroup of a group G, where p is a prime
divisor of |G| with (|G|, p− 1) = 1. If every member of some fixed Md(P ) is either
weakly c-normal or s-permutably embedded in G, Then G is p-nilpotent.

Proof. Suppose that the theorem is false, and let G be a counter-example of min-
imal order. We write Md(P ) = {P1, . . . , Pd}. Then each Pi is either weakly c-
normal or s-permutably embedded inG. Without loss of generality, let k, 1 ≤ k ≤ d,
be such that (i) each Pi(1 ≤ i ≤ k) is weakly c-normal in G, and (ii) each
Pj(k+1 ≤ j ≤ d) is s-permutably embedded in G. Then for each i, 1 ≤ i ≤ k, there
exists a subnormal subgroup Ki of G such that G = PiKi and Pi ∩ Ki ≤ (Pi)G;
and for each j, k+ 1 ≤ j ≤ d, there exists an s-permutable subgroup Mj ≤ G such
that Pj is a Sylow p-subgroup of Mj .

Now we prove the theorem by the following several steps.
(1) Op′(G) = 1:
Consider the quotient group G/Op′(G). Since POp′(G)/Op′(G) is a Sylow p-

subgroup of G/Op′(G), which is isomorphic to P , POp′(G)/Op′(G) has the same
smallest generator number d as P . Set

Md(POp′(G)/Op′(G)) = {P1Op′(G)/Op′(G), . . . , PdOp′(G)/Op′(G)}.

Of course, each

PsOp′(G)/Op′(G), s ∈ {1, . . . , d}

is either s-permutably embedded or weakly c-normal in G/Op′(G) from Lemmas 2.2
and 2.1. As a reslut, G/Op′(G) satisfies the conditions of the theorem. If Op′(G) >
1, then G/Op′(G) is p-nilpotent by the minimal choice of G. It follows that G itself
is p-nilpotent, a contradiction. Therefore, Op′(G) = 1, as desired.

(2) The quotient group G/(Pi)G is p-nilpotent for every i ∈ {1, 2, . . . , k}.:
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By Lemma 2.1(4) we can assume G = PiKi and Pi ∩ Ki = (Pi)G. Then
G/(Pi)G = Pi/(Pi)G ·Ki/(Pi)G. Therefore,

|Ki/(Pi)G|p = |G : Pi|p = |P : Pi| = p,

i.e., the factor group Ki/(Pi)G possesses a cyclic Sylow subgroup of order p. By
Lemma 2.4, we have that Ki/(Pi)G is p-nilpotent. So Ki/(Pi)G has a Hall normal
p′-subgroup H/(Pi)G. Then H/(Pi)G //G/(Pi)G and H/(Pi)G ∈ Hall(G/(Pi)G).
It follows from Lemma 2.8 that H/(Pi)G is a normal p-complement of G/(Pi)G.
Consequently, G/(Pi)G is p-nilpotent, as desired.

(3) For every j ∈ {k+ 1, k+ 2, . . . , d}, the factor group G/(Mj)G is p-nilpotent:
It follows from Lemma 2.3 that Mj/(Mj)G is s-permutable in G/(Mj)G and

Mj/(Mj)G is nilpotent. Hence, we may apply Lemma 2.9 to see that every Sy-
low subgroup of Mj/(Mj)G is s-permutable in G/(Mj)G. Thus, Pj(Mj)G/(Mj)G

is s-permutable in G/(Mj)G because Pj(Mj)G/(Mj)G is a Sylow p-subgroup of
Mj/(Mj)G. It follows by Lemma 2.10 that Pj(Mj)G/(Mj)G is normal in G/(Mj)G.
So the core (Mj)G of Mj contains the Sylow p-subgroup Pj of Mj and we have
|G/(Mj)G|p = p. We conclude that G/(Mj)G is p-nilpotent by Lemma 2.4. We
have that (3) holds.

(4) Let N = (∩k
i=1(Pi)G)∩ (∩d

j=k+1(Mj)G). We have N EG. Now, we can show
that N is p-nilpotent. Consider the subgroup P ∩N . Recall that Pj ∈ Sylp((Mj)G)
and Pj is a maximal subgroup of P . We have

P ∩N = (∩k
i=1(Pi)G) ∩ (∩d

j=k+1((Mj)G ∩ P ))

= ∩k
i=1(Pi)G ∩ (∩d

j=k+1Pj) ≤ ∩d
s=1Ps = Φ(P ).

Thus P ∩N ≤ Φ(P ), NEPN. It is easy to see that N is p-nilpotent by Lemma 2.5.
(5) N ≤ Φ(G):
We know that N possesses a normal Hall p′-subgroup U such that N = NpU ,

where Np ∈ Sylp(N). Then U is normal in G and U ≤ Op′(G) = 1, so U = 1.
Therefore, N is a normal p-subgroup of G. Now, N ≤ P ∩N ≤ Φ(P ). We see that
N ≤ Φ(G) by Lemma 2.6.

(6) The final contradiction:
By (2) and (3), G/(Pi)G and G/(Mj)G are p-nilpotent. Hence, G/N is a p-

nilpotent. Since N ≤ Φ(G), it is easy to see that G is p-nilpotent, the final contra-
diction. The proof of Theorem 3.1 is now complete. �

Theorem 3.1 in [3] is a special case of Theorem 3.2.

Theorem 3.2. Let G be a group and let P be a Sylowp p-subgroup of G such that
NG(P ) is p-nilpotent, where p is a prime divisor of |G|. If every member in some
fixed Md(P ) is either weakly c-normal or s-permutably embedded in G, then G is
p-nilpotent.
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Proof. By Theorem 3.1, it is easy to see that the theorem holds when p = 2.
Assume that the theorem is false and let G be a counter-example of minimal order.
By the hypotheses of the theorem, we can write Md(P ) = {P1, P2, . . . , Pd}. Then
each Pi is either weakly c-normal or s-permutably embedded in G. With a similar
argument as those used in the proof of Theorem 3.1, we first have the claim:

(1) Op′(G) = 1.
Furthermore, we have:
(2) If P ≤ H < G, then H is p-nilpotent:
Since NH(P ) ≤ NG(P ), we have that NH(P ) is p-nilpotent. By Lemmas 2.1 and

2.2, H satisfies the hypotheses of the theorem. By the choice of G, H is p-nilpotent,
as desired.

(3) G = PQ, where Q is a Sylow q-subgroup of G with p 6= q:
Since G is not p-nilpotent, by a result of Thompson [14, Corollary], there exists

a non-trivial characteristic subgroup T of P such that NG(T ) is not p-nilpotent.
Choose T such that the order of T is as large as possible. Since NG(P ) is p-
nilpotent, we have NG(K) is p-nilpotent for any characteristic subgroup K of P
satisfying T < K ≤ P . Now, T char P C NG(P ), which gives T E NG(P ). So
NG(P ) ≤ NG(T ). By (2), we have that NG(T ) = G and T = Op(G). Now,
applying the result of Thompson again, we have that G/Op(G) is p-nilpotent and
therefore G is p-solvable. Then for any q ∈ π(G) with q 6= p, there exists a Sylow
q-subgroup of Q such that PQ is a subgroup of G [5, Theorem 6.3.5]. If PQ < G,
then PQ is p-nilpotent by (2), contrary to the choice of G. Therefore, PQ = G, as
desired.

(4) Every minimal normal subgroup of G contained in Op(G) is of order p:
As Op′(G) = 1, we get that Op(G) > 1. Let N be a minimal normal subgroup of
G contained in Op(G). If N ≤ Φ(P ), by Lemma 2.6, then N ≤ Φ(G), and G/N

satisfies the hypotheses of the theorem. By the choice of G, G/N is p-nilpotent. So
G/Φ(G) is p-nilpotent and it follows that G is p-nilpotent, a contradiction. Thus
N � Φ(P ). Since ∩d

i=1Pi = Φ(P ), where Pi ∈ Md(P ), we can assume N � P1

without loss of generality. By the conditions of the theorem, P1 is weakly c-normal
in G or s-permutably embedded in G. We claim that |N | = p.

(i) We first consider the case where P1 is weakly c-normal in G. Then there
exists K1 //G such that G = P1K1 and P1 ∩ K1 ≤ (P1)G. Then (P1)G ∩ N = 1
or N . If (P1)G ∩N = N , then N ≤ (P1)G ≤ P1, a contradiction. So we have that
(P1)G ∩N = 1, then P1 ∩K1 ∩N = 1. We consider (K1)G ∩N . By the minimal
normality of N , we know that (K1)G ∩ N = 1 or N . If (K1)G ∩ N = 1, then
N ∼= N(K1)G/(K1)G a minimal normal subgroup of G/(K1)G, where G/(K1)G is
a p-group since all Sylow q-subgroups of G is contained in K1 by Lemma 2.8. Thus
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we have that |N | = p. If (K1)G ∩ N 6= 1, we get that N ≤ (K1)G ≤ K1. Then
1 = P1 ∩K1 ∩N = P1 ∩N and so NP1 = P . We also get |N | = p.

(ii) Next, we consider the case where P1 is s-permutably embedded in G. Since
P1 is s-permutably embedded in G, then there exists an s-permutable subgroup H
such that P1 ∈ Sylp(H). Hence, HQ is a subgroup of G. Since N C G, we have
that N1 = N ∩HQ CHQ. It follows that N1 C 〈HQ,N〉 = G. Moreover, by the
minimal normality of N , we get that N1 = 1 and so |N | = p.

Now, we know that N ∩ P1 = 1. By [7, I, 17.4], there exists a subgroup M of G
such that G = NM and N ∩M = 1. Certainly, N � Φ(G). From Lemma 2.8, we
conclude Op(G) = R1×R2×· · ·×Rt, where Ri(i = 1, . . . , t) is a normal subgroup of
order p. It follows that P ≤ ∩t

i=1CG(Ri) = CG(Op(G)). Furthermore, according to
[10, Theorem 9.31] and (3), we have that CG(Op(G)) ≤ Op(G) and so P = Op(G).
Thus G = NG(P ). Now, by the hypotheses that NG(P ) is p-nilpotent, we conclude
that G is p-nilpotent. This is the final contradiction and the proof is complete. �

We observe the p-supersolvability of a p-solvable group by means of weakly c-
normal and s-permutably embedded subgroups.

Theorem 3.3. Let G be a p-solvable group and let P be a Sylow p-subgroup of G,
where p is a prime divisor of |G|. If every member in some fixed Md(P ) is either
weakly c-normal or s-permutably embedded in G, then G is p-supersolvable.

Proof. Assume that the theorem is false and let G be a counter-example of minimal
order. We write Md(P ) = {P1, . . . , Pd}. Then each Pi is either weakly c-normal
or s-permutably embedded in G. With the same arguments as those used in the
proof of Theorem 3.1, we first have the claim:

(1) Op′(G) = 1.
(2) Φ(P )G = 1, in particular, Φ(Op(G)) = 1.

Otherwise, then let N = Φ(P )G > 1. We consider factor group G/N . Obviously,
Md(P/N) = {P1/N, . . . , Pd/N}. By Lemmas 2.1 and 2.2, Pi/N is either weakly c-
normal or s-permutably embedded in G/N for any i ∈ {1, . . . , d}. Therefore, G/N
satisfies the hypotheses of the theorem and consequently, G/N is p-supersolvable
by the minimality of G. Since N ≤ Φ(P ), N ≤ Φ(G) by Lemma 2.6, it follows
from G/N being p-supersolvable that G is p-supersolvable, which is contrary to the
choice of G.

(3) Every minimal normal subgroup of G contained in Op(G) is of order p.
As Op′(G) = 1, we get that Op(G) > 1. Let N be a minimal normal subgroup of
G contained in Op(G). If N ≤ Φ(P ), by Lemma 2.6, then N ≤ Φ(G), and G/N

satisfies the hypotheses of the theorem. By the choice of G, G/N is p-supersolvable.
Since the class of p-supersolvable groups is a saturated formation, we have G is p-
supersolvable, a contradiction. Thus N � Φ(P ). Since ∩d

i=1Pi = Φ(P ), where
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Pi ∈ Md(P ), we can assume N � P1 without loss of generality. By the conditions
of the theorem, P1 is weakly c-normal in G or s-permutably embedded in G. We
claim that |N | = p.

(i) We first consider the case where P1 is weakly c-normal in G. Then there
exists K1 //G such that G = P1K1 and P1 ∩ K1 ≤ (P1)G. Then (P1)G ∩ N = 1
or N . If (P1)G ∩N = N , then N ≤ (P1)G ≤ P1, a contradiction. So we have that
(P1)G ∩N = 1, then P1 ∩K1 ∩N = 1. We consider (K1)G ∩N . By the minimal
normality of N , we know that (K1)G ∩ N = 1 or N . If (K1)G ∩ N = 1, then
N ∼= N(K1)G/(K1)G a minimal normal subgroup of G/(K1)G, where G/(K1)G is
a p-group since all Sylow q-subgroups of G is contained in K1 by Lemma 2.8. Thus
we have that |N | = p. If (K1)G ∩ N 6= 1, we get that N ≤ (K1)G ≤ K1. Then
1 = P1 ∩K1 ∩N = P1 ∩N and so NP1 = P . We also get |N | = p.

(ii) Next, we consider the case where P1 is s-permutably embedded in G. Since
P1 is s-permutably embedded in G, then there exists an s-permutable subgroup H
such that P1 ∈ Sylp(H). Hence, HQ is a subgroup of G. Since N C G, we have
that N1 = N ∩HQ CHQ. It follows that N1 C 〈HQ,N〉 = G. Moreover, by the
minimal normality of N , we get that N1 = 1 and so |N | = p.

Therefore, N ∩P1 = 1. By [7, I, 17.4], there exists a subgroup M of G such that
G = NM and N ∩M = 1. Certainly, N � Φ(G). Now, we can use Lemma 2.7 to
derive that Op(G) is a direct product of normal subgroups of G of order p. Hence,
(3) holds.

(4) The counter-example does not exist.
Since G/CG(Ri) is a cyclic group of order p − 1, certainly, G/ ∩r

i=1 CG(Ri) =
G/CG(Op(G)) is p-supersolvable. On the other side, since G is p-solvable and
Op′(G) = 1, by [10, Theorem 9.3.1], CG(Op(G)) ≤ Op(G). Hence, G/Op(G) is p-
supersolvable. Now, claim (3) implies that G is p-supersolvable. We are done. �
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