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1. Introduction

The generalization of Lie algebras to algebras such as Lie triple systems, Jordan

triple systems [8] and 3-Lie algebras [7] suggests a natural generalization of Leibniz

algebras (non commutative Lie algebras) [11] to ternary algebras. One generaliza-

tion is provided by Leibniz 3-algebras [5] for which the characteristic identity ex-

presses the adjoint action as a derivation of the algebra. A second generalization of

Leibniz algebras to ternary algebras is provided by Leibniz triple systems [4]. They

are defined in such a way that Lie triple systems are a particular case. Recently, the

author introduced gb-triple systems [3], another generalization of Leibniz algebras

in which the ternary operation T : g⊗3 → g expresses the map Ta,b(x) = T (a, x, b)

as a derivation of g for all a, b ∈ g.

The local integration problem of these algebras generated from Lie’s third the-

orem, which states that every finite-dimensional Lie algebra over the real numbers

is associated with a Lie group. Partial solutions to this problem for Leibniz alge-

bras (dubbed by Loday as the Coquecigrue problem) have been provided by several

authors (see M. Kinyon [10], S. Covez [6]). The author extended Kinyon’s results

to Leibniz 3-algebras using Lie 3-racks [2]. In this paper we open the problem of

integration of gb-triple systems. We follow Kinyon’s approach [10] to open a path to

a solution by defining an algebraic structure that locally differentiates to a gb-triple

systems. We refer to these algebras as Lie c-triple racks. They appear to generalize

both left and right Lie racks to ternary algebras; a particularity not supported by

Lie 3-racks.
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For the remainder of this paper, we assume that K is a field of characteristic

different to 2.

2. c-Triple racks

In this section we define c-triple racks and provide some examples. We also

provide funtorial connections with the category of groups and the category of racks.

Recall that a gb-triple system [3] is a K -vector space g equipped with a trilinear

operation [−,−,−]g : g⊗3 −→ g satisfying the identity

[A,B, [X,C, Y ]g]g = [X, [A,B,C]g, Y ]g−[[X,A, Y ]g, B, C]g−[A, [X,B, Y ]g, C]g (1)

Definition 2.1. A c-triple rack (R, [−,−,−]R) is a set R together with a ternary

operation [−,−,−]R : R×R×R −→ R satisfying the following conditions:

(1) [x, [a, b, c]R, y]R = [[x, a, y]R, [x, b, y]R, [x, c, y]R]R (c-distributive property),

(2) Given a, c, d ∈ R, there exists a unique x ∈ R such that [a, x, c, ]R = d.

Definition 2.2. A c-triple rack (R, [−,−,−]R) is said to be pointed if there is a

distinguished element 1 ∈ R satisfying

[1, y, 1]R = y and [a, 1, b]R = 1 for all a, b ∈ R.

A c-triple rack is said to be a weak c-triple quandle if it satisfies

[x, x, x]R = x for all x ∈ R.

A c-triple rack is a c-triple quandle if it satisfies

[a, y, b]R = y if a = y or b = y.

Note that these generalize the notions of racks and quandles [9] to ternary op-

erations. It is also clear that c-triple quandles are weak c-triple quandles but the

converse is not true. See Example 2.4.

Definition 2.3. Let R and R′ be two c-triple racks. A function α : R −→ R′ is

said to be a homomorphism of c-triple racks if

α([x, y, z]R) = [α(x), α(y), α(z)]R′ for all x, y, z ∈ R.

This provides a category cpRACK of pointed c-triple racks and pointed c-triple

rack homomorphisms.

Example 2.4. Let Γ := Z[t±1, s]/(2s2 + ts − s). Any Γ-module M together with

the ternary operation [−,−,−]M defined by

[a, b, c]M = sa+ tb+ sc
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is a c-triple rack. Indeed,

[[x, a, y]R, [x, b, y]R, [x, c, y]R]R = s(sx+ ta+ sy) + t(sx+ tb+ sy) + s(sx+ tc+ sy)

= (2s2 + st)(x+ y) + ts(a+ c) + t2b

= [x, [a, b, c]R, y]R since 2s2 + st = s.

Therefore the c-distributive property is satisfied. For the second axiom, given a, c, d ∈
R one checks that x := t−1(d− s(a+ c)) uniquely satisfies [a, x, c]M = d. Note that

M is a weak c-triple quandle that is not a c-triple quandle.

Example 2.5. Let G be a group with identity 1, and define on G the operation

[−,−,−]G by

[a, b, c]G = acbc−1a−1.

Then (G, [−,−,−], 1) is a pointed weak c-triple quandle. Indeed, we have on one

hand

[x, [a, b, c]G, y]G = xy[a, b, c]Gy
−1x−1 = xyacb−1c−1a−1y−1x−1.

On the other hand,

[[x, a, y]G, [x, b, y]G, [x,c, y]G]G = [xyay−1x−1, xyby−1x−1, xycy−1x−1]G

= xyay−1x−1xycy−1x−1xyb−1y−1x−1xyc−1y−1x−1xya−1y−1x−1

= xyacb−1c−1a−1y−1x−1 by cancellation.

Therefore the c-distributive property is satisfied. For the second axiom, given

a, c, d ∈ G one checks that x := c−1a−1dac uniquely satisfies [a, x, c]M = d. Fi-

nally, it is clear that [x, x, x]R = x for all x ∈ R.

As a consequence, we have the following:

Proposition 2.6. There is a faithful functor F from the category of groups to the

category of pointed c-triple racks.

Proof. Define F by F(G) = (G, [−,−,−], 1) as in Example 2.5. Its left adjoint F′

is defined as follows: Given a pointed c-triple rack R, consider the quotient group

GR =< R > /I

where < R > is the free group on R and I is the normal subgroup of < R >

generated by the set {(a−1c−1b−1ca)([a, b, c]R) : with a, b, c ∈ R}. Indeed, given a

morphism of c-triple racks α : R −→ F(G), there is a unique morphism of groups

β :< R >−→ G such that α = β|R by the universal property of free groups. So

β((a−1c−1b−1ca)([a, b, c]R)) = α((a−1c−1b−1ca)([a, b, c]R)) = 1 for all a, b, c ∈ R.



LIE CENTRAL TRIPLE RACKS 61

Now by the universal property of quotient groups, there is a unique morphism of

groups α∗ : F′(R) −→ G such that the following diagram commutes.

F′(R) G

R F(G)

-α∗

-α

6 6
id

�

Example 2.7. Let (R, ◦, 1) be a pointed rack. Then define on R the ternary oper-

ation by

[a, b, c]R = a ◦ (c ◦ b).

It is easy to show that (R, [−,−,−], 1) is a pointed c-triple rack.

As a consequence we have the following:

Proposition 2.8. There is a faithful functor H from the category of pointed racks

to the category of c-triple racks.

Proof. Define H by H(
(
R, ◦, 1)

)
= (R, [−,−,−], 1) as in Example 2.7. Now, given

a pointed c-triple rack (R, [−,−,−], 1), one easily checks that the set R×(3) together

with the binary operation

(a, b, c) ◦ (x, y, z) = ([a, x, c]R, [a, y, c]R, [a, z, c]R)

is a rack pointed at (1, 1, 1). We then define the left adjoint H′ of H by

H′
(
(R, [−,−,−], 1)

)
= (R×(3), ◦, (1, 1, 1)). �

Let us observe that in the proof of Proposition 2.8 the set R×(3) is a quandle if

R is a c-triple quandle.

3. From Lie c-triple racks to gb-triple systems

In this section we define the notion of Lie c-triple racks. We show that the

tangent functor T1 locally (at a specific point) maps Lie c-triple racks to gb-triple

system.

Definition 3.1. A pointed c-triple rack (R, [−,−,−]R, 1) is called a Lie c-triple

rack if the underlying set R is a differentiable manifold and the ternary operation

[−,−,−]R : R×R×R −→ R is a smooth mapping.

Note that this definition appears to extend both left and right Lie racks [1] to

ternary operations.
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Example 3.2. Let G be a Lie group endowed with the operation

[a, b, c]G = acbc−1a−1.

It follows by Example 2.5 that G is a Lie c-triple rack.

Example 3.3. Let (H, {−,−,−}) be a group endowed with an antisymmetric ternary

operation and V an H-module. Define the ternary operation [−,−,−]R on R :=

V ×H by

[(a,A), (b, B), (c, C)]R := ({A,B,C}b, ACBC−1A−1),

where a, b, c ∈ V and A,B,C ∈ H. Then (R, [−,−,−]R, (0, 1)) is a Lie c-triple rack.

For a pointed c-triple rack R, consider

Aut(R) :=
{
ξ : R→ R, ξ smooth bijection : ξ([a, b, c]R) = [ξ(a), ξ(b), ξ(c)]R

}
and let φ : R × R × R → R be the mapping given by φ(a, b, c) = [a, b, c]R. We

have as a consequence of the second axiom of Definition 2.1 that the map D : R×
R −→ Aut(R), (a, c) 7→ D(a, c) = φ(a,c) where φ(a,c)(x) = [a, x, c]R for all x ∈ R,
is well-defined differentiable map. Let D∗ : g× g −→ gl(g) be the induced map of

tangent spaces, where g := T1R is the tangent space of R at the point 1 and gl(g)

is the Lie algebra associated to GL(g). Define a trilinear bracket on g by

[X,Y, Z]g = D∗(X,Z)(Y ).

Proposition 3.4. Let (R, [−,−,−]R, 1) be a pointed c-triple rack. Then D(a, c) ∈
Aut(R) for all a, c ∈ R.

Proof.

D(a, c)([x, y, x]R) = φ(a, c)([x, y, z]R)

= [a, [x, y, z]R, c]R

= [[a, x, c]R, [a, y, c]R, [a, z, c]R]R by Definition 2.1

= [φ(a,c)(x), φ(a,c)(y), φ(a,c)(z)]R

= [D(a, c)(x), D(a, c)(y), D(a, c)(z)]R. �

Remark 3.5. Note that for all a, c ∈ R, R acts on itself (considered as a dif-

ferentiable manifold) via the maps φ(a,c) by Proposition 3.4. Also, φ(a,c)(1) =

[a, 1, c]R = 1. So the tangent functor T1 applied to φ(a,c) : R −→ R yields a linear

map φ(a,c)∗ : T1R −→ T1R. Since φ(a, c) ∈ Aut(R) by Proposition 3.4, it follows

that φ(a,c)∗ ∈ GL(T1R). Now let X ∈ T1R and denote by X1 := φ(a,c)∗(X) the

vector field extension of X. Then X1 is generated by a one-parameter family of
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diffeomorphisms γX : R → R with initial point γX(0) = 1 and initial tangent vec-

tor dγX(0) = X. The corresponding exponential map (see [12, Chapter 9]) denoted

exp1 : T1(R)→ R is then defined by exp1(X) = γX(1).

Theorem 3.6. Let (R, [−,−,−]R, 1) be a Lie c-triple rack and g := T1R. Then for

all a, c ∈ R, the tangent mapping φ(a,c)∗ = T1(φ(a,c)) is an automorphism of g.

Proof. Let X,Y, Z ∈ g and let x, y, z be respectively the images of X,Y and Z

by the exponential map exp1 (see Remark 3.5). By the c-distributive property of

c-triple racks, we have

φ(a,c)(φ(x,z)(y)) = φ(φ(a,c)(x),φ(a,c)(z))(φ(a,c)(y))

which when successively differentiated at 1 ∈ R with respect to the parameter γY

then γZ then γX yields

φ(a,c)∗([X,Y, Z]g) = [φ(a,c)∗(X), φ(a,c)∗(Y ), φ(a,c)∗(Z)]g (2). �

Theorem 3.7. Let R be a Lie c-triple rack and A,C ∈ g := T1R. Let a, c be

respectively the images of A and C by the exponential map exp1.Then the mapping

D(A,C)∗ : g −→ gl(g) is a derivation of g. Moreover, D(A,C)∗ is exactly T1(Φ), where

Φ is the mapping Φ : R×R −→ GL(g) defined by Φ(a, c) = φ(a,c)∗.

Proof. From the proof of Theorem 3.6, φ(a,c)∗ ∈ GL(g). In addition, we have

φ(1,1)∗ = I, where I is the identity of GL(g). Now differentiating Φ at (1, 1) gives a

map T(1,1)(Φ) : T1(R × R) −→ gl(g). Also differentiating the identity (2) above at

(1, 1) with respect to γ
(A,C)

yields

D(A,C)∗(D(X,Z)∗(Y )) = [A, [X,Y, Z]g, C]g

= [[A,X,C]g, Y, Z]g + [X, [A, Y,C]g, Z]g + [X,Y [A,Z,C]g]g

= D(D(A,C)∗(X),Z)∗(Y ) +D(X,Z)∗(D(A,C)∗(Y ))

+D(X,D(A,C)∗(Z))∗(Y ).

Hence D(A,C)∗ is a derivation of g and the map T1(Φ) is exactly D(A,C)∗. �

From the calculations performed in the proofs of Theorem 3.6 and Theorem 3.7,

we deduce that the ternary operation [−,−,−]g satisfies the identity (1). We then

have the following result:

Corollary 3.8. Let R be a Lie c-triple rack and g := T1R. Then there exists a

trilinear map [−,−,−]g : g × g × g −→ g such that (g, [−,−,−]g) is a gb-triple

system.
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Remark 3.9. Let G be the Lie c-triple rack of Example 3.2 and l the Lie algebra

associated to the underlying group G. Then the bracket of the gb-triple system g =

T1(R) can be written in terms of the bracket of the Lie algebra l as

[X,Y, Z]g = [Y, [X,Z]l]l.

To check that [−,−,−]g satisfies the identity (1), let X,Y,A,B,C ∈ g; we have on

one hand

[X,Y, [A,B,C]g]g + [[A,X,C]g, Y, B]g = [Y, [X, [A,B,C]g]l]l + [Y, [[A,X,C]g, B]l]l

=
[
Y, [X, [B, [A,C]l]l]l + [[X, [A,C]l]l, B]l

]
l

=
[
Y, [[X,B]l, [A,C]l]l

]
l
.

On the other hand,

[A, [X,Y,B]g, C]g − [X, [A, Y,C]g, B]g =
[
[X,Y,B]g, [A,C]l

]
l
−
[
[A, Y,C]g, [X,B]l

]
l

=
[
[Y, [X,B]l]l, [A,C]l

]
l
−

[
[Y, [A,C]l]l, [X,B]l

]
l
.

The equality holds by the Jacoby identity.
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