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Abstract. Let R be a reduced ring, (S,≤) a cancellative torsion-free strictly

ordered monoid, it is shown that ring [[RS,≤]] is a GM− ring if and only if

R is a GM−ring. We also investigate GM− rings for some special Morita

Contexts and module extensions over generalized power series rings.
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1. Introduction

All rings considered here are associative with identity and R denotes such a

ring. We use U(R) to denote the group of units of R. Any concept and notation

not defined here can be found in [6, 7].

A ring R is said to be a GM− ring provided that for any x, y ∈ R, there exist

idempotents e, f ∈ R and u ∈ U(R) such that x−eu, y−fu−1 ∈ U(R). A ring R is

called a clean ring if for any x ∈ R, there exists e2 = e ∈ R such that x− e ∈ U(R).

Clearly, all clean rings are GM− rings. Many examples and results of GM− rings

are given in [1, 2].

Let (S,≤) be an ordered set. Recall that (S,≤) is artinian if every strictly

decreasing sequence of elements of S is finite, and that (S,≤) is narrow if every

subset of pairwise order-incomparable elements of S is finite. Let (S,≤) be a strictly

ordered monoid and R a ring. Let [[RS,≤]] be the set of all maps f : S → R such

that supp(f) = {s ∈ S|f(s) ̸= 0} is artinian and narrow. With pointwise addition

and the operation of convolution

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)g(v)
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where Xs(f, g) = {(u, v) ∈ S ×S|s = u+ v, f(u) ̸= 0, g(v) ̸= 0} is a finite set by [8,

Theorem 4.1] for every s ∈ S and f, g ∈ [[RS,≤]], [[RS,≤]] becomes a ring, with unit

element e∗, namely

e∗(0) = 1, e∗(s) = 0 for every s ∈ S, s ̸= 0.

The elements of [[RS,≤]] are called generalized power series with coefficients in R

and exponents in S. For any a ∈ R, Ca ∈ [[RS,≤]] is given by Ca(0) = a,Ca(s) = 0

for all 0 ̸= s ∈ S. Ordered monoid (S,≤) is said to satisfy condition (S0) in case

s ≥ 0 for all s ∈ S. Henceforth, unless otherwise mentioned, in this paper, (S,≤)

will always denote a strictly ordered monoid satisfying condition (S0).

In this paper, we show that if R is a reduced ring, then ring [[RS,≤]] is a GM−
ring if and only if R is a GM− ring. We also investigate GM− rings for some

special Morita Contexts and module extensions rings over generalized power series

rings. These given generalizations of [3, Theorem], [2, Theorem 6] and [2, Theorem

11].

2. Main results

Lemma 2.1. [6] Let R be a ring, Mn×n(R) the ring of all n × n matrices with

entries in R. Then [[Mn×n(R)
S,≤]] ∼=Mn×n([[R

S,≤]]).

Lemma 2.2. [8] Let (S,≤) be a cancellative torsion-free strictly ordered monoid

and satisfy condition (S0), and let f ∈ [[RS,≤]]. Then f ∈ U([[RS,≤]]) if and only

if f(0) ∈ U(R).

Lemma 2.3. Let R be a ring, and e21 = e1, e
2
2 = e2 ∈ R. Then [[(e1Re2)

S,≤]] =

Ce1 [[R
S,≤]]Ce2 .

Proof. For any f ∈ Ce1 [[R
S,≤]]Ce2 , there exists g ∈ [[RS,≤]] such that f =

Ce1gCe2 . Thus for any s ∈ S, we have f(s) = (Ce1gCe2)(s) = Ce1(0)(gCe2)(s) =

Ce1(0)g(s)ce2(0) = e1g(s)e2 ∈ e1Re2. So f ∈ [[(e2Re2)
S,≤]]. Hence Ce1 [[R

S,≤]]Ce2

⊆ [[(e1Re2)
S,≤]]. Conversely, for any f ∈ [[(e1Re2)

S,≤]] and any s ∈ supp(f), there

exists rs ∈ R such that 0 ̸= f(s) = e1rse2 ∈ e1Re2. Define a map g : S −→ R via

g(s) =

{
rs, s ∈ supp(f)

0, s ∈ S \ supp(f)

Clearly, supp(g) = supp(f). Thus g ∈ [[RS,≤]]. For any s ∈ supp(f), (Ce1gCe2)(s)

= e1g(s)e2 = e1rse2 = f(s), for any s ∈ S\supp(f), (Ce1gCe2)(s) = 0 = f(s). Thus

f = Ce1gCe2 ∈ Ce1 [[R
S,≤]]Ce2 . This implies that [[(e1Re2)

S,≤]] ⊆ Ce1 [[R
S,≤]]Ce2 .

Therefore we have [[(e1Re2)
S,≤]] = Ce1 [[R

S,≤]]Ce2 . �
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Lemma 2.4. If R is a GM− ring. Then [[RS,≤]] is a GM− ring.

Proof. Let f, g ∈ [[RS,≤]], There exist e2 = e, f2 = f ∈ R and u ∈ U(R) such

that f(0)− eu, g(0)− fu−1 ∈ U(R) by R is a GM− ring. Since CuCu−1 = e∗, and

(f−CeCu)(0), (g−CfC
−1
u )(0) ∈ U(R), it is easy to see that f−CeCu, g−CfC

−1
u ∈

U([[RS,≤]]) and C2
e = Ce, C

2
f = Cf , Cu ∈ U([[RS,≤]]). Thus [[RS,≤]] is a GM−

ring. �

Example 1 Let N ∪ {0} denote the monoid which consists of natural numbers and

zero. If S = N ∪ {0} with the usual order. Then [[RS,≤]] ∼= R[[X]] (rings of formal

power series in one indeterminate and coefficients in R). So if R is a GM− ring,

then R[[X]] is also a GM− ring. [2, Theorem 14]

Example 2 Let S = Nn ∪ {0}, with the usual order(⨿ ≤i), or the lexicographic

(lex ≤i) order, or the reverse lexicographic(revlex ≤i) order. If R is a GM−
ring, then [[RNn∪{0},⨿≤i ]], [[RNn∪{0},lex≤i ]], [[RNn∪{0},revlex≤i ]] are also GM−
rings. Since rational number field Q and real number field R are GM− rings,

then [[QNn∪{0},⨿≤i ]], [[QNn∪{0},lex≤i ]], [[QNn∪{0},revlex≤i ]] and [[RNn∪{0},⨿≤i ]],

[[RNn∪{0},lex≤i ]], [[RNn∪{0},revlex≤i ]] are GM− rings.

Let (S1,≤1), (S2 ≤2), · · · , (Sn,≤n) be cancellative torsion-free strictly ordered

monoids satisfying the condition (S0). IfR is aGM− ring, then [[RS1×S2×···×Sn,⨿≤i ]],

[[RS1×S2×···×Sn,(lex≤i)]] [[RS1×S2×···×Sn,(revlex≤i)]] are GM− rings.

A ring R is called reduced if it has no nonzero nilpotent element. It was proved

in [5, Lemma 3.4] that if R is a reduced ring, and (S,≤) a cancellative torsion-free

strictly ordered monoid. Then for every idempotent f2 = f ∈ [[RS,≤]], there exists

an idempotent e ∈ R such that f = Ce.

Lemma 2.5. Let R be a reduced ring, (S,≤) a cancellative torsion-free strictly

ordered monoid. If [[RS,≤]] is a GM− ring, then R is a GM− ring.

Proof. Let a, b ∈ R, then Ca, Cb ∈ [[RS,≤]]. Since [[RS,≤]] is a GM− ring, there

exist C2
e = Ce, C

2
f = Cf ∈ [[RS,≤]] where e2 = e ∈ R, f2 = f ∈ R, and τ ∈

U([[RS,≤]]) such that Ca −Ceτ, Cb −Cfτ
−1 ∈ U(([[RS,≤]]). Thus (Ca −Ceτ)(0) =

a − eτ(0) ∈ U(R) and (Cb − Cfτ
−1)(0) = b − fτ−1(0) ∈ U(R). This implies that

R is a GM− ring. �

Example 3 Let R be a reduced ring. If the formal power series ring R[[X]] is a

GM− ring, then so is R by Lemma 2.5. This can be proved in a directly simple

manner. Given any x, y ∈ R, we have x, y ∈ R[[X]] as well. Thus we can find
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idempotents e(x), f(x) ∈ R[[X]] and a unit u(x) ∈ R[[X]] such that x−e(x)u(x), y−
f(x)u(x)−1 ∈ U(R[[X]]). It is well know that h(x) ∈ R[[X]] is a unit if and only if

h(0) ∈ R is a unit, and if R is a reduced ring, then the set of all idempotents in

R[[X]] equal to the set of all idempotents in R. Thus we know x − e(0)u(0), y −
f(0)u(0)−1 ∈ U(R), One easily checks that e(0) = e, f(0) = f are idempotents and

u(0) ∈ R is a unit. Thus R is a GM− ring.

Let e1, e2, · · · , en ∈ R be idempotents. Clearly,
Ce1 [[R

S,≤]]Ce1 · · · Ce1 [[R
S,≤]]Cen

...
. . .

...

Cen [[R
S,≤]]Ce1 · · · Cen [[R

S,≤]]Cen



=




Ce1r11Ce1 · · · Ce1r1nCen

...
. . .

...

Cenrn1Ce1 · · · CenrnnCen

 rij ∈ [[RS,≤]](0 6 i, j 6 n)


form a ring with the identity diag(Ce1 , · · · , Cen).

Theorem 2.6. Let e1, e2, · · · , en be idempotents of a ring R. If all eiRei are

GM−rings, then so is the ring


Ce1 [[R

S,≤]]Ce1 · · · Ce1 [[R
S,≤]]Cen

...
. . .

...

Cen [[R
S,≤]]Ce1 · · · Cen [[R

S,≤]]Cen

 .

Proof. Clearly, the ring


e1Re1 · · · e1Ren

...
. . .

...

enRe1 · · · enRen

 is a GM−ring by virtue of [2,

Lemma 1]. Since





e1Re1 · · · e1Ren
...

. . .
...

enRe1 · · · enRen


S,≤


∼=

[[
(diag(e1, · · · , en)Mn(R)diag(e1, · · · , en))S,≤

]]
∼= [[(diag(e1, · · · , en)S,≤]][[(Mn(R))

S,≤]][[(diag(e1, · · · , en)S,≤]]
∼= diag(Ce1 , · · · , Cen)Mn([[R

S,≤]])diag(Ce1 , · · · , Cen)
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∼=


Ce1 [[R

S,≤]]Ce1 · · · Ce1 [[R
S,≤]]Cen

...
. . .

...

Cen [[R
S,≤]]Ce1 · · · Cen [[R

S,≤]]Cen

 .

Apply Lemma 2.4, we get the result. �

Let M be an R− module. [[MS,≤]] denotes the set of all maps ϕ : S → M such

that supp(ϕ) = {s ∈ S|ϕ(s) ̸= 0} is artinian and narrow. From [9], it is immediate

that [[MS,≤]] is an [[RS,≤]]− module. For any f ∈ [[RS,≤]], ϕ ∈ [[MS,≤]] and s ∈ S,

the scalar multiplication is defined as follow:

(fϕ)(s) =
∑

(u,v)∈Xs(f,ϕ)

f(u)ϕ(v).

LetA1, A2, A3 be associative rings with identity. LetM21,M31,M32 be (A2, A1)−,
(A3, A1)−, (A3, A2)−bimodule, respectively. Let ψ : M32

⊗
A2
M21 −→ M31 be an

(A3, A1)−homomorphism, and let

T =


A1 0 0

M21 A2 0

M31 M32 A3

 , TS =


[[A1

S,≤]] 0 0

[[M21
S,≤]] [[A2

S,≤]] 0

[[M31
S,≤]] [[M32

S,≤]] [[A3
S,≤]]

 ,

with the usual matrix operations (see[4]), T is a ring. Now we show that TS is also

a ring.

Theorem 2.7. There exists a ([[A3
S,≤]], [A1

S,≤]])−homomorphism

ψS : [[M32
S,≤]]

⊗
[[A2

S,≤]]

[[M21
S,≤]] −→ [[M31

S,≤]]

such that with the usual matrix operations , TS is a ring.

Proof. Since M32,M21 is (A3, A2)−, (A3, A1)−bimodule, respectively, according

to [9], it is easy to see that [[M32
S,≤]] is a ([[A3

S,≤]], [[A2
S,≤]])− bimodule, and

[[M21
S,≤]] is a ([[A2

S,≤]], [[A1
S,≤]])−bimodule. Consider following diagram:

[[MS,≤
32 ]]× [[MS,≤

21 ]] π - [[MS,≤
32 ]]

⊗
[[A

S,≤
2 ]]

[[MS,≤
21 ]]

?

�������
[[MS,≤

31 ]]

f ψS



EXTENSIONS OF GM-RINGS 231

Let n ∈ [[MS,≤
32 ]] and m ∈ [[MS,≤

21 ]]. Define a map

α[n,m] : S −→M31, α[n,m](s) =
∑

(u, v)∈Xs(n,m)

ψ(n(u)
⊗

m(v))

for any s ∈ S. It is clearly that supp(α[n,m]) ⊆ supp(n) + supp(m), thus α[n,m] ∈
[[MS,≤

31 ]].

Define a map f : [[MS,≤
32 ]] × [[MS,≤

21 ]] −→ [[MS,≤
31 ]], where f((n,m)) = α[n,m]

for any (n,m) ∈ [[MS,≤
32 ]] × [[MS,≤

21 ]]. Let n1, n2 ∈ [[MS,≤
32 ]],m ∈ [[MS,≤

21 ]]. By

the preceding discussions, there exist α[n1,m], α[n2,m], α[n1+n2,m] ∈ [[MS,≤
31 ]]. For all

s ∈ S,

α[n1+n2,m](s) =
∑

(u,v)∈Xs(n1+n2,m)

ψ((n1 + n2)(u)
⊗

m(v))

=
∑

(u,v)∈Xs(n1+n2,m)

ψ(n1(u)
⊗

m(v))

+
∑

(u,v)∈Xs(n1+n2,m)

ψ(n2(u)
⊗

m(v)).

If (u′, v′) ∈ Xs(n1, m), but (u′, v′)∈̄Xs(n1+n2, m), then we have (n1+n2)(u
′) =

0. So n2(u
′) ̸= 0, thus (u′, v′) ∈ Xs(n2,m) and ψ(n1(u

′)
⊗
m(v′)) + ψ(n2(u

′)
⊗

m(v′)) = ψ((n1(u
′) + n2(u

′))
⊗
m(v′)) = 0. Likewise, if (u′, v′) ∈ Xs(n2, m), but

(u′, v′)∈̄Xs(n1+n2, m), we also have (u′, v′) ∈ Xs(n1, m) and ψ(n1(u
′)
⊗
m(v′))+

ψ(n2(u
′)
⊗
m(v′)) = ψ((n1(u

′) + n2(u
′))
⊗
m(v′)) = 0. So

α[n1+n2,m](s) =
∑

(u, v)∈Xs(n1+n2,m)

ψ(n1(u)
⊗

m(v))

+
∑

(u, v)∈Xs(n1+n2,m)

ψ(n2(u)
⊗

m(v))

=
∑

(u,v)∈Xs(n1, m)

ψ(n1(u)
⊗

m(v))

+
∑

(u, v)∈Xs(n2,m)

ψ(n2(u)
⊗

m(v))

= α[n1,m](s) + α[n2,m](s)

= (α[n1,m] + α[n2,m])(s).

Thus α[n1+n2,m] = α[n1,m]+α[n2,m], hence f((n1+n2,m)) = f((n1,m))+f((n2,m)).

Analogously, we see that f((n,m1 + m2)) = f((n,m1)) + f((n,m2)) for all n ∈
[[MS,≤

32 ]],m1,m2 ∈ [[MS,≤
21 ]].
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For any n ∈ [[MS,≤
32 ]], τ ∈ [[AS,≤

2 ]],m ∈ [[MS,≤
21 ]] and any s ∈ S, we have

f((nτ, m))(s) = α[nτ,m](s)

=
∑

(u′,u)∈Xs(nτ,m)

ψ((nτ)(u′)
⊗

m(u))

=
∑

(u′,u)∈Xs(nτ,m)

ψ(
∑

(v,w)∈Xu′ (n,τ)

(n(v)τ(w)
⊗

m(u))

=
∑

(u′,u)∈Xs(nτ,m)

∑
(v,w)∈Xu′(n,τ)

ψ(n(v)τ(w)
⊗

m(u))

=
∑

(u′,u)∈Xs(nτ,m)

∑
(v,w)∈Xu′ (n,τ)

ψ(n(v)τ(w)
⊗

m(u))

+
∑

(v,w,u)∈X

ψ(n(v)τ(w)
⊗

m(u))

=
∑

(v,w,u)∈Xs(n,τ,m)

ψ(n(v)τ(w)
⊗

m(u))

=
∑

(v,w,u)∈Xs(n,τ,m)

ψ(n(v)
⊗

τ(w)m(u))

= f((n, τm))(s).

Where X = {(v, w, u) ∈ Xs(n, τ,m)|nτ(v + w) = 0}. Thus we have f(nτ, m) =

f(n, τm) and hence f is a bilinear balanced morphism. Then there exists a ho-

momorphism ψS : [[MS,≤
32 ]]

⊗
[[A

S,≤
2 ]]

[[MS,≤
21 ]] −→ [[MS,≤

31 ]] such that the preceding

diagram commutes.

Next, we check that ψS is a bimodule homomorphism. For any a ∈ [[AS,≤
3 ]], n ∈

[[MS,≤
32 ]],m ∈ [[MS,≤

21 ]] and any s ∈ S.

ψS(an, m)(s) = α[an,m](s)

=
∑

(u′,u)∈Xs(an,m)

ψ((an)(u′)
⊗

m(u))

=
∑

(u′,u)∈Xs(an,m)

ψ(
∑

v,w)∈Xu′ (a, n)

(a(v)n(w)
⊗

m(u))

=
∑

(v,w,u)∈Xs(a,n,m)

ψ(a(v)n(w)
⊗

m(u))

=
∑

(v,w,u)∈Xs(a,n,m)

a(v)ψ(n(w)
⊗

m(u))

= aψS(n,m)(s).
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Thus ψS(an,m) = aψS(n,m). This implies that ψS is a left [[AS,≤
3 ]]− module

homomorphism. Analogously, it is easy to verify that ψS is a right [[AS,≤
1 ]]−module

homomorphism.Thus ψS is a bimodule homomorphism. With the usual matrix

operations, TS is a ring, see [4]. �

Theorem 2.8. Let A1, A2, A3 be reduced rings, (S,≤) a cancellative torsion-free

strictly ordered monoid. Then the following conditions are equivalent:

(1) A1, A2, and A3 are GM−rings.

(2) The formal triangular matrix ring over generalized power series

TS =


[[A1

S,≤]] 0 0

[[M21
S,≤]] [[A2

S,≤]] 0

[[M31
S,≤]] [[M32

S,≤]] [[A3
S,≤]]


is a GM−ring.

Proof. (1)⇒ (2) Since A1, A2, and A3 are GM−rings, so are rings [[AS,≤
1 ]], [AS,≤

2 ]]

and [AS,≤
3 ]] by virtue of Lemma 2.4. According to [2, Theorem 6], the result follows.

(2)⇒ (1) Applying [2, Theorem 6], we have [[AS,≤
1 ]], [AS,≤

2 ]] and [AS,≤
3 ]] areGM−

rings. Then according to Lemma 2.5, we get the result. �

Example 4 Let A1, A2, A3 be reduced rings and N the semigroup of natural num-

bers. Let S = N ∪ {0}, with the usual order. then

TS =


[[A1

S,≤]] 0 0

[[M21
S,≤]] [[A2

S,≤]] 0

[[M31
S,≤]] [[M32

S,≤]] [[A3
S,≤]]


∼=


A1[[X]] 0 0

M21[[X]] A2[[X]] 0

M31[[X]] M32[[X]] A3[[X]]


where Ai[[X]](i = 1, 2, 3) is the ring of formal power series, and Mij [[X]](i =

2, 3, j = 1, 2) is a bimodule of power series rings. If A1, A2, A3 are GM− rings,

then TS is also a GM−ring. Actually, let

F =


f1 0 0

m21 f2 0

m31 m32 f3

 ∈ TS , G =


g1 0 0

n21 g2 0

n31 n32 g3

 ∈ TS .

Since Ai(i = 1, 2, 3) is a GM− ring, by Lemma 2.4, we have Ai[[X]] is also a

GM− ring. Thus there exist e2i = ei, p
2
i = pi ∈ Ai[[X]], ui ∈ U(Ai[[X]]) and vi ∈

U(Ai[[X]], v′i ∈ U(Ai[[X]]) such that fi = eiui+ vi, and gi = piu
−1
i + v′i(i = 1, 2, 3).
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Set

F1 =


e1 0 0

0 e2 0

0 0 e3

 ,W =


u1 0 0

0 u2 0

0 0 u3

 ,K1 =


v1 0 0

m21 v2 0

m31 m32 v3

 .

It is easy to verify that F 2
1 = F1 ∈ TS , and

K1


v−1
1 0 0

−v−1
2 m21v

−1
1 v−1

2 0

v−1
3 m32v

−1
2 ⊗m21v

−1
1 − v−1

3 m31v
−1
1 −v−1

3 m32v
−1
2 v−1

3



=


v−1
1 0 0

−v−1
2 m21v

−1
1 v−1

2 0

v−1
3 m32v

−1
2 ⊗m21v

−1
1 − v−1

3 m31v
−1
1 −v−1

3 m32v
−1
2 v−1

3

K1

= diag(1, 1, · · · , 1),
This means that F1 is a idempotent and K1 is a unit. Moreover, F = F1W +K1

andW is a unit. Analogously, we have a idempotent F2 =


p1 0 0

0 p2 0

0 0 p3

 , and a

unit K2 =


v′1 0 0

n21 v′2 0

n31 n32 v′3

 such that G = F2W
−1+K2. Therefore we conclude

that TS is a GM− ring. Conversely, if TS is a GM−ring, similar to the proof of

Theorem 6 in [2], we obtain that Ai[[X]] is a GM−ring. Then by Lemma 2.5, we

have Ai(i = 1, 2, 3) is a GM− ring.

Corollary 2.9. Let R be a reduced ring, (S,≤) a cancellative torsion-free strictly

ordered monoid. A ring R is a GM−ring if and only if the ring of all n× n lower

triangular matrices over [[RS,≤]] is a GM−ring.

Proof. According to Theorem 2.8, the result follows. �

Analogously, let R be a reduced ring, (S,≤) a cancellative torsion-free strictly

ordered monoid. we deduce that a ring R is a GM−ring if and only if the ring of

all n× n upper triangular matrices over [[RS,≤]] is a GM−ring.

Let M be a (R,R)−bimodule, then the module extension of R by M is the ring

R ◃▹ M with the usual addition and multiplication defined by (r1,m1)(r2,m2) =

(r1r2, r1m2+m1r2) for r1, r2 ∈ R and m1,m2 ∈M . Now we investigate GM−rings

for module extension of [[RS,≤]] by [[MS,≤]] and introduce a large class of such rings.
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Lemma 2.10. Let ring R ◃▹ M be the module extension of R by M. Let [[RS,≤]] ◃▹

[[MS,≤]] be the module extension of [[RS,≤]] by [[MS,≤]]. Then [[RS,≤]] ◃▹ [[MS,≤]] ∼=
[[(R ◃▹ M)S,≤]].

Proof. Let

T (R,M) =

{(
r m

0 r

)
|r ∈ R,m ∈M

}
,

T ∗(R,M) =

{(
f m

0 f

)
|f ∈ [[RS,≤]],m ∈ [[MS,≤]]

}
.

With the usual matrix operations, T (R,M) and T ∗(R,M) are rings. As in the

proof of [7, Proposition 4.3], it is easy to show that T ∗(R,M) ∼= [[T (R,M)S,≤]].

Moreover, R ◃▹ M ∼= T (R,M) and [[RS,≤]] ◃▹ [[MS,≤]] ∼= T ∗(R,M). So [[RS,≤]] ◃▹

[[MS,≤]] ∼= [[(R ◃▹ M)S,≤]], as asserted. �

Theorem 2.11. Let R be a ring, M a (R,R)−bimodule. If R is a GM−ring, then

[[RS,≤]] ◃▹ [[MS,≤]] is a GM−ring.

Proof. Since R is a GM−ring, so is ring R ◃▹ M by [2, Theorem 11]. Use the

fact that [[RS,≤]] ◃▹ [[MS,≤]] ∼= [[(R ◃▹ M)S,≤]], then the result follows by Lemma

2.4. �

Corollary 2.12. Let R be a ring. If R is a GM−ring, then [[RS,≤]] ◃▹ [[RS,≤]] is

a GM−ring.

Proof. It is a immediate consequence of Theorem 2.11. �

Corollary 2.13. Let R be an exchange ring with artinian primitive factors. Then

[[RS,≤]] ◃▹ [[RS,≤]] is a GM−ring.

Proof. SinceR is an exchange ring with artinian primitive factors, it is aGM−ring.

Thus we get the result by Corollary 2.12. �
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