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ABSTRACT. Let R be a reduced ring, (S, <) a cancellative torsion-free strictly
ordered monoid, it is shown that ring [[RS<]] is a GM — ring if and only if
R is a GM—ring. We also investigate GM — rings for some special Morita

Contexts and module extensions over generalized power series rings.
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1. Introduction

All rings considered here are associative with identity and R denotes such a
ring. We use U(R) to denote the group of units of R. Any concept and notation
not defined here can be found in [6, 7].

A ring R is said to be a GM — ring provided that for any =,y € R, there exist
idempotents e, f € R and u € U(R) such that x —eu,y — fu™' € U(R). A ring R is
called a clean ring if for any z € R, there exists e = e € R such that z —e € U(R).
Clearly, all clean rings are GM — rings. Many examples and results of GM — rings
are given in [1, 2].

Let (S, <) be an ordered set. Recall that (S, <) is artinian if every strictly
decreasing sequence of elements of S is finite, and that (S5, <) is narrow if every
subset of pairwise order-incomparable elements of S is finite. Let (S, <) be a strictly
ordered monoid and R a ring. Let [[R=]] be the set of all maps f : S — R such
that supp(f) = {s € S|f(s) # 0} is artinian and narrow. With pointwise addition
and the operation of convolution

fs) = Y flug(v)

(u,v)€Xs(f,9)
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where X,(f,9) = {(u,v) € Sx S|s =u+wv, f(u) #0,g(v) # 0} is a finite set by [8,
Theorem 4.1] for every s € S and f, g € [[R%=]], [R*'<]] becomes a ring, with unit
element e*, namely
e*(0) =1, e*(s) =0 forevery s €S, s#0.

The elements of [[R¥<]] are called generalized power series with coefficients in R
and exponents in S. For any a € R, C, € [[R%=]] is given by C,(0) = a,Cyu(s) =0
for all 0 # s € S. Ordered monoid (S, <) is said to satisfy condition (S0) in case
s > 0 for all s € S. Henceforth, unless otherwise mentioned, in this paper, (S, <)
will always denote a strictly ordered monoid satisfying condition (S0).

In this paper, we show that if R is a reduced ring, then ring [[R%<]] is a GM —
ring if and only if R is a GM— ring. We also investigate GM — rings for some
special Morita Contexts and module extensions rings over generalized power series

rings. These given generalizations of [3, Theorem]|, [2, Theorem 6] and [2, Theorem
11].

2. Main results

Lemma 2.1. 9 Let R be a ring, Myxn(R) the ring of all n x n matrices with
entries in R. Then [[Myxn(R)SS]] = Myxn([[R¥<]]).

Lemma 2.2. B

Let (S, <) be a cancellative torsion-free strictly ordered monoid
and satisfy condition (S0), and let f € [[RS=]]. Then f € U([[R®=]]) if and only

if £(0) € U(R).

Lemma 2.3. Let R be a ring, and €? = e1,e3 = es € R. Then [[(e1Res)><]] =
Ce, [[R5=]]Ce, -

Proof. For any f € C.,[[R¥<]]C.,, there exists g € [[R®<]] such that f =
Ce,gC.,. Thus for any s € S, we have f(s) = (Ce, gCe,)(s) = C¢,(0)(gCe,)(s) =
Ce,(0)g(5)ce, (0) = e1g(s)ea € e1Res. So f € [[(eaRes)*=]]. Hence C., [R¥<]|C.,
C [[(e1 Re2)®=]]. Conversely, for any f € [[(e; Rez)®<]] and any s € supp(f), there
exists rs € R such that 0 # f(s) = eyrses € ey Res. Define a map g : S — R via

o(s) = { rs, s € supp(f)
0, s€8\supp(f)

Clearly, supp(g) = supp(f). Thus g € [[R®=]]. For any s € supp(f), (Ce, 9Ce,)(s)
= e19(s)ea = errsea = f(s), for any s € S\ supp(f), (Ce,gCe,)(s) =0 = f(s). Thus
f=C. gC., € Ce,[[R>Z]]C,,. This implies that [[(e; Rez)>=]] C C¢,[[R¥=]]C,, .
Therefore we have [[(e; Rez)*<]] = C., [RSS]]C.,. O
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Lemma 2.4. If R is a GM— ring. Then [[R%<]] is a GM— ring.

Proof. Let f,g € [[R®=]], There exist €2 = ¢, f?> = f € R and u € U(R) such
that £(0) — eu, g(0) — fu=t € U(R) by R is a GM— ring. Since C,,C,,-1 = e*, and
(f = CeCu)(0),(9—CrCH)(0) € U(R), it is easy to see that f —C.Cl,,g—C;C; L €
U([[R5=]]) and C2 = C.,C7 = C;,C, € U([[R¥S]]). Thus [[R¥=]] is a GM—
ring. O

Example 1 Let N U {0} denote the monoid which consists of natural numbers and
zero. If S = N U {0} with the usual order. Then [[R%<]] = R[[X]] (rings of formal
power series in one indeterminate and coefficients in R). So if R is a GM — ring,
then R[[X]] is also a GM — ring. [2, Theorem 14]

Example 2 Let S = N™ U {0}, with the usual order(Il <;), or the lexicographic
(lex <;) order, or the reverse lexicographic(revier <;) order. If R is a GM—
ring, then [[RN"U{O},HgiH’ HRN"’U{O},ZeacgiH7 [[RN"U{O},TeulezSi” are also GM —
rings. Since rational number field @) and real number field R are GM — rings,
then [[QN"U{O},HS]]’ [[QN”U{O},le;cgi]]’ [[QN"U{O},TevleISi]] and [[RN"U{O},H&H’
[[RN"U{O},lezgiH’ HRN"U{O},revlexgi]] are GM — rings.

Let (S1,<1),(S2 <2),-++,(Sn, <,) be cancellative torsion-free strictly ordered

monoids satisfying the condition (S0). If R is a GM — ring, then [[R51*52> X Sn H<i]]
HRsl X Sg X xSn,(lezgi)H [[R51 X Sg X Xsyl,(revlezgyi)” are GM — rings.

A ring R is called reduced if it has no nonzero nilpotent element. It was proved
in [5, Lemma 3.4] that if R is a reduced ring, and (S, <) a cancellative torsion-free
strictly ordered monoid. Then for every idempotent f? = f € [[R%<]], there exists

an idempotent e € R such that f = C..

Lemma 2.5. Let R be a reduced ring, (S,<) a cancellative torsion-free strictly
ordered monoid. If [RS<]] is a GM — ring, then R is a GM— ring.

Proof. Let a,b € R, then C,,C), € [[R>=]]. Since [[RS=]] is a GM — ring, there
exist C7 = C,,C} = Cy € [[R%S]] where ¢> = ¢ € R, f> = f € R, and 7 €
U([[R%=]]) such that C, — Ce7,Cp, — Cpr=1 € U(([[RS=]]). Thus (C, — Ce7)(0) =
a—e7(0) € U(R) and (Cy, — Cy771)(0) = b— fr~1(0) € U(R). This implies that
R is a GM — ring. O

Example 3 Let R be a reduced ring. If the formal power series ring R[[X]] is a
GM — ring, then so is R by Lemma 2.5. This can be proved in a directly simple

manner. Given any z,y € R, we have z,y € R[[X]] as well. Thus we can find
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idempotents e(x), f(x) € R[[X]] and a unit u(z) € R[[X]] such that z—e(x)u(z),y—
f(@)u(x)~t € U(R[[X]]). It is well know that h(z) € R[[X]] is a unit if and only if
h(0) € R is a unit, and if R is a reduced ring, then the set of all idempotents in
R[[X]] equal to the set of all idempotents in R. Thus we know z — e(0)u(0),y —
f(0)u(0)~! € U(R), One easily checks that e(0) = e, f(0) = f are idempotents and
u(0) € R is a unit. Thus R is a GM — ring.

Let e1,ea,--- ,e, € R be idempotents. Clearly,

Cel[[RS’SHCm Cel[[RS’SHCen

Ce [[RQ)S]]CQ e Cen [[RS.”S]]CETL

n

Celrllcel T Celrlncen
. o rij € [[R=])(0 < d,j < n)

Ce,,,Tnlcel e Cenrnncen

form a ring with the identity diag(Ce,, - ,Ce,).

Theorem 2.6. Let ey, es, - ,e, be idempotents of a ring R. If all e;Re; are

GM —rings, then so is the ring

Ce, [[R¥=]]Ce, Ce, [[R*=]C,
Cen[[RS <]]C«91 Ce, [[R ’S]]Cen
e1Rep e1Re,,
Proof. Clearly, the ring is a GM —ring by virtue of [2,
e, Req e, Re,,
Lemma 1]. Since
S,<
e1Re; -+ ei1Re,
e,Rer --- e Re,
o H(diag(el7 <o en) My (R)diag(ey, - - - 7en))S’SH

1%

([(diag(er, -, en)> =] [(Mn(R))>=][[(diag(er, -, en) =]
diag(Ce,," - ,C'en)Mn([[RS*S]])diag(C’el, o Ce,)

1%
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Ce, [[RS’SHCel e O [[RS’S]]Cen
Ce, [[RS’S]]CQ e e, [[RS’S]]CETL
Apply Lemma 2.4, we get the result. (]

Let M be an R— module. [[M“<=]] denotes the set of all maps ¢ : S — M such
that supp(¢) = {s € S|o(s) # 0} is artinian and narrow. From [9], it is immediate
that [[M%<]] is an [[RS<]]— module. For any f € [[RS<]],¢ € [MS=]] and s € S,

the scalar multiplication is defined as follow:
(o)) = D fwe(w).
(u,0)EXs(f,0)
Let Ay, As, A3 be associative rings with identity. Let May, M3q, M3s be (Ag, A1)—
(A3, A1)—, (A3, A2)—bimodule, respectively. Let ¢ : M3z @) 4, M21 — M3z1 be an
(As, A;)—homomorphism, and let

A0 0 [[4:%5]) 0 0
T=]| My Ay O ,T5 = [[M215’§H [[A2S’S]] 0 J
Mz, Mz, Az ([(M315=]] [M2™=]] [[A55=]]

with the usual matrix operations (see[4]), 7' is a ring. Now we show that 7" is also

a ring.

Theorem 2.7. There exists a ([As”=]],[A1%S]])—homomorphism

V8 (Mg %] Q) [[Mar®=]] — [[M5=]]
[[A25=]]

such that with the usual matriz operations , T is a ring.

Proof. Since Mso, Ma; is (As, A2)—, (A3, A1)—bimodule, respectively, according
to [9], it is easy to see that [[Msy®S]] is a ([[A3¥=]], [[42°=]])— bimodule, and
[[M25=]] is a ([[A2™=]], [[A1%=]])—bimodule. Consider following diagram:

[M355)) % [[Moy=]) —F— [M557]] & [[My;]]

J / e
f v

[[M57=])
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Let n € [M55=]] and m € [[M3,=]]. Define a map

a8 = Mat, apml(s) = Y w(n(u) Q) m(v))

(u, v)EXs(n,m)

for any s € S. It is clearly that supp(a, m)) € supp(n) + supp(m), thus ag, ., €
([M5:=]].

Define a map f : [Mp=]] x [Ma;=]] — [[M3;=]], where f((n,m)) = apm
for any (n,m) € [[Ms5=]] x [[Ms;=]]. Let ni,n9 € [[Ms3=]],m € [[Ms;=]]. By
the preceding discussions, there exist a[n, m], O[ny,m]» Xny+ns,m] € [[M?ig]] For all

se S,

O L Z ((n1 4 n2)( ® m(v

(u,w)eXs(n14+n2,m )

= > Wi (w) @Qm(v))

(u,v)EXs(n1+n2,m)

Y dnae) @)

(u,v)EXs(n1+ng,m)

!

If (u/, V') € Xs(n1, m), but (v, v')€EXs(n1+n2, m), then we have (ny+nq)(u') =
0. So na(u') # 0, thus (v, v') € X4(ng,m) and ¥(ni(uv') @ m(v')) + Y(na(v') Q
m(v')) = Y((n1(u’) + ne(v')) @ m(v')) = 0. Likewise, if (u/, v') € X4(ng2, m), but
(', v")€Xs(n1+ng2, m), we also have (v/, v') € Xs(n1, m) and ¥(n1(v') Q m(v'))+
( 2(u) @m(v')) = p((n1(u) + na(u')) @m(v')) = 0. So

Ay fna,m](8) = Z Y(n(u) ®m(v))

(u,v)€Xs(n14+n2,m)

Y ) @)

(u,v)EXs(n1+nz,m)

= Yo ) Qm(v)

(u,v)eEXs(n1, m)

Y d(ne(w) @Qm(v)

(u,v)EXs(n2,m)
= Qpnym)(8) + Any,m) ()
= (a[nlym] + a[ng,m])(8)~

Thus Any4ng,m] = a[nl,m]+a[n2,m]7 hence f((n1+n27m>) = f((nlam))+f((n27m>)
Analogously, we see that f((n,m1 + ms2)) = f((n,m1)) + f((n,m2)) for all n €
([M5=]],ma,ms € [M3=]].
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For any n € [[M3=]], 7 € [A5S]],m € [[M5;=]] and any s € S, we have

f(n7, m))(s) = pprmi(s)
= > Y((nr)(u') @) m(u))

(v u)eXs(nT,m)

= Yoo W Y )r(w) @ mw)

(v u)eXs(nT,m) (v,w)eX 1 (n,T)

- ¥ S wn)rw) @ mlu)

(v u)eXs(n7,m) (v,w)EXyr (n )

= > Yo vn)T(w) Qm(u)

(v, u)eXs(nT,m) (v,w)EX, s (n,T)

+ Y n)r(w) Qmw)

(v,w,u)eX

= > Y (n(v)r(w) Q) m(w)

(v,w,u)€Xs (n,7,m)

- 3 »(n(v) @ 7(w)m(u))

(v,w,u)€Xs(n,7,m)

= [f(n, Tm))(s).

Where X = {(v,w,u) € Xs(n,7,m)|nT(v +w) = 0}. Thus we have f(nr, m) =
f(n, 7m) and hence f is a bilinear balanced morphism. Then there exists a ho-

momorphism ° : [[M;S]] X [[MQSF]] — [[Mflg]] such that the preceding
(143 =1]
diagram commutes.

Next, we check that 1S is a bimodule homomorphism. For any a € [[A3<]],n €
[[M£;=]],m € [[M5;=]] and any s € S.

"/}S(an7 m)(s) = a[an,m}(s)

= Y. dllan)(w) Qm(u)

(v ,u)eXs(an,m)

= Yoo v Y (al)n(w) @ m(w)

(v, u)€Xs(an,m) v,w)EX, (a,n)

= > Y(a(v)n(w) @) m(w)

(v,w,u)€Xs(a,n,m)

= > a(v)(n(w) ) m(u))

(v,w,u)€X,(a,n,m)

= apS(n,m)(s).
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Thus 5 (an,m) = ayS(n,m). This implies that ¢S is a left [[A3<]]— module
homomorphism. Analogously, it is easy to verify that 1) is a right [[Alsg]] — module
homomorphism.Thus ¥ is a bimodule homomorphism. With the usual matrix

operations, T is a ring, see [4]. O

Theorem 2.8. Let Ay, A, Az be reduced rings, (S, <) a cancellative torsion-free
strictly ordered monoid. Then the following conditions are equivalent:
(1) Ay, Az, and As are GM —rings.

(2) The formal triangular matrixz ring over generalized power series

[4:%=]) 0 0
7%= | [[M2®=]]  [[A255]] 0
(M3 5=]] [Ms™=]] [[A55=]]

is a GM —ring.

Proof. (1)= (2) Since A1, Az, and A3 are GM —rings, so are rings [[Af’g]], [Agg]]
and [A5'<]] by virtue of Lemma 2.4. According to [2, Theorem 6], the result follows.
(2)= (1) Applying [2, Theorem 6], we have [[A7"=]], [A>'<]] and [A3'<]] are GM —

rings. Then according to Lemma 2.5, we get the result. O

Example 4 Let A1, Ao, A3 be reduced rings and N the semigroup of natural num-
bers. Let S = N U {0}, with the usual order. then

[[A4:%=]] 0 0
v = (M *=]] [[A2™=]] 0
(M5 %=]] [Mso™=]] [[A5>=]]
Aq[[X]] 0 0
= Mx[[X]]  A2[[X]] 0
M3 [[X]] Mso[[X]]  Asz[[X]]

where A;[[X]](¢ = 1,2,3) is the ring of formal power series, and M;;[[X]](i =
2,3,7 = 1,2) is a bimodule of power series rings. If A;, Ay, A3 are GM — rings,
then T is also a GM —ring. Actually, let

fi O 0 g 0 0
F=1 ma fo 0 €T, G=| ny go O eTs.
m31 M3z f3 n31 N3z g3

Since A;(i = 1,2,3) is a GM— ring, by Lemma 2.4, we have A;[[X]] is also a
GM — ring. Thus there exist €? = e;,p? = p; € A;[[X]],w; € U(A;[[X]]) and v; €
U(A;[[X]],v] € U(A;[[X]]) such that f; = e;u; +v;, and g; = piu; ' +0i(i = 1,2,3).
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Set
e; 0 O up 0 0 V1 0
Fi=]1 0 e 0 W = 0 wuy O Ky = Mo1 U2
0 0 e3 0 0 usg ms31 M3y U3

It is easy to verify that F2 = F; € T, and

oyt 0 0

K, —v;lmzlvfl v;l 0
v;lmggvgl ® mglvfl - vglmglvfl —v;lmggvgl v;l
vyt 0 0

= | —vytmgvt vyt 0 K

-1 -1 -1 -1 -1 -1 -1 -1
U3 M32Vy = ® M1V — Uz M31V; —U3 M32Vq Vg

= diag(1,1,---,1),
This means that Fj is a idempotent and K7 is a unit. Moreover, F' = F1W + K

pt 0 O
and W is a unit. Analogously, we have a idempotent Fo =] 0 py 0 ,and a
0 0 ps
vp 0 0
unit Koy = nagy vh 0 such that G = FoW ! + Ky. Therefore we conclude

n31 N32 Ué
that 7° is a GM — ring. Conversely, if T7° is a GM —ring, similar to the proof of
Theorem 6 in [2], we obtain that A;[[X]] is a GM —ring. Then by Lemma 2.5, we
have A;(i =1,2,3) is a GM — ring.

Corollary 2.9. Let R be a reduced ring, (S,<) a cancellative torsion-free strictly
ordered monoid. A ring R is a GM —ring if and only if the ring of all n x n lower

triangular matrices over [[R*=]] is a GM —ring.

Proof. According to Theorem 2.8, the result follows. (]

Analogously, let R be a reduced ring, (S, <) a cancellative torsion-free strictly
ordered monoid. we deduce that a ring R is a GM —ring if and only if the ring of
all n x n upper triangular matrices over [[R%<]] is a GM —ring.

Let M be a (R, R)—bimodule, then the module extension of R by M is the ring
R <1 M with the usual addition and multiplication defined by (r1,m1)(ra,ms2) =
(rire,rymg+mary) for r1,r2 € R and my, mas € M. Now we investigate GM —rings

for module extension of [[R%=]] by [[M®<=]] and introduce a large class of such rings.
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Lemma 2.10. Let ring R M be the module extension of R by M. Let [[R%<]] >
[[M*%=]] be the module extension of [[R*=]] by [[MS=]]. Then [RS=]] x [[MSS]] =
[[(R>a M)S=]].

Proof. Let

T@J@{<;7n>V€RmEM}

T*(R,M) = {( ! i ) f € [RS<]m e HMS’SH}-

With the usual matrix operations, T'(R, M) and T*(R, M) are rings. As in the
proof of [7, Proposition 4.3], it is easy to show that T*(R, M) = [[T(R, M)%<]].
Moreover, R M = T(R, M) and [[R¥<]] 1 [[MS=S]] =2 T*(R, M). So [[R¥<]]
[[M%=]] 2 [[(R<a M)S=]], as asserted. O

Theorem 2.11. Let R be a ring, M a (R, R)—bimodule. If R is a GM—ring, then
[[R5=]] > [[M®=]] is a GM —ring.

Proof. Since R is a GM —ring, so is ring R >1 M by [2, Theorem 11]. Use the
fact that [[R%<]] »a [[MS=]] = [[(R > M)%<]], then the result follows by Lemma
2.4. O

Corollary 2.12. Let R be a ring. If R is a GM—ring, then [[RS=]] > [[R=]] is
a GM —ring.

Proof. It is a immediate consequence of Theorem 2.11. ([l

Corollary 2.13. Let R be an exchange ring with artinian primitive factors. Then
[[R%=]] 0 [[RS=]] is a GM —ring.

Proof. Since R is an exchange ring with artinian primitive factors, it is a GM —ring.
Thus we get the result by Corollary 2.12. (]
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