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1. Introduction

Extending and lifting modules have been intensively investigated in the last

two decades due to their important applications to ring and module theory. The

reader is referred to the monographs Dung et al. [4] and Clark et al. [2] for

more information on them. A number of generalizations have been considered (for

instance, see [5], [6], [9]) and their study is still developing. Establishing their

structure and classifying them have been difficult tasks, even in special cases such

as abelian groups. The structure of abelian groups that are extending or lifting is

determined, but this is still to be done in the case of most of their generalizations.

From the computational point of view, a useful tool - still far from being used

at its full capacity - is the computer algebra system GAP (Groups, Algorithms,

and Programming) [10], able (among many other things) to compute the subgroup

lattice of a finitely generated group. This is the framework where we develop al-

gorithms for determining special subgroups of a finite abelian group, that are the

bricks of working with extending groups, lifting groups and some of their generaliza-

tions. More precisely, we give efficient methods, on one hand to check the properties

of being direct summand, essential, superfluous, coessential, complement (closed),

supplement (coclosed) subgroup, and on the other hand to determine all subgroups

with the mentioned properties of a given finite abelian group. Moreover, GAP has
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an optional package, called XGAP, able to visualize the generated subgroup lattice,

and the results of our algorithms can be easily spotted out in XGAP. We believe

that such algorithms, together with their implementation in GAP, will be useful

tools both for easily obtaining examples as well as for testing some conjectures,

before proving them rigorously.

Throughout G is a finite abelian group, unless specified otherwise. We denote

by A ≤ G the fact that A is a subgroup of G. The definitions of the notions used

in the paper are mainly taken from [2] and [4].

2. The subgroup lattice

Let us start by recalling a few elementary things on the subgroup lattice of a

finite abelian group.

Proposition 2.1. The set S(G) of subgroups of G with respect to the inclusion is

a modular self-dual lattice.

Definition 2.2. Let (L,≤) be a lattice with 0. An element 0 ̸= a ∈ L is called an

atom if the interval [0, a] consists only of 0 and a. The lattice L is called atomic if

for every 0 ̸= a ∈ L, the interval [0, a] has at least one atom.

One also has the notions of dual atom and dually atomic lattice when considering

the notions of atom and atomic lattice in the dual lattice of (L,≤).

Proposition 2.3. (i) The atoms of S(G) are the simple subgroups of G and the

dual atoms of S(G) are the maximal subgroups of G.

(ii) S(G) is atomic and dually atomic.

We are going to see the subgroup lattice of an abelian group as a directed graph

(digraph) with arcs always pointing “upwards”. As usual, for two elements a and

b of a lattice, a < b means a ≤ b and a ̸= b. If a < b and there is no element c in

the lattice such that a < c < b, we denote this by a ≺ b. We construct the directed

graph Γ⃗ = (V,E, G⃗), where V is a nonempty set of vertices, E is a set of arcs and

G⃗ : E → V × V . In our construction e = (x, y) ∈ E ⇐⇒ ax ≺ by, if ax and by are

the corresponding elements from S(G).

Denote by f : S(G) → V the bijection between the subgroups of G (elements

of S(G)) and the corresponding vertices in the digraph. Also, denote by δ(k) the

number of divisors of k ∈ N. Let us increasingly order the divisors di of |G| and
define, for each i ∈ {1, . . . , δ(|G|)}, level(i) := {H ∈ S(G)| |H| = di}. Note that if

e = (f(A), f(B)) ∈ E, then nA < nB , where A ∈ level(nA), B ∈ level(nB). Also

(level(i))1≤i≤δ(|G|) is a partition of S(G).

Recall now the definition of neighborhood(s) of a vertex y in a digraph Γ⃗:

N in
Γ⃗
(y) = {x ∈ V |G⃗(x, y) ̸= ∅}, Nout

Γ⃗
(y) = {x ∈ V |G⃗(y, x) ̸= ∅}.
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Remark. In general, we shall try to minimize references to GAP functions in order

to allow the reader to follow just the description of our algorithms and not their

implementation. But sometimes we shall mention the existence of some appropriate

functions. For instance, we should note that one can build the subgroup lattice of G

in GAP by using for example the built-in function LatticeSubgroups(G). In GAP

the subgroup lattice is a data structure allowing tests for minimality/maximality

relations for each subgroup (i.e. we can check the condition a ≺ b with built-

in functions). After the subgroup lattice of G is constructed, this information

can be retrieved from GAP in numerous ways (one is to use the built-in func-

tions MaximalSubgroupsLattice(L) and MinimalSubgroupsLattice(L)). In the

description of algorithms throughout the paper we shall consider this information

already known.

3. Direct summands

Many of the notions defined here and in the next sections are related to direct

summands. So that, we begin by presenting some fast ways to test if a given

subgroup of G is a direct summand, and to find out all the pairs of direct summands

of G.

Let A,B ∈ S(G) be such that G = A⊕B. Then it is easy to see that |G| = |A| ·
|B| = |G : A| · |G : B|. Moreover, since the lattice S(G) is self-dual, we immediately

have the following result.

Proposition 3.1. Let A,B ∈ S(G). Then G = A ⊕ B if and only if |G| =

|G : A| · |G : B| and A ∩B = 0.

In other words, Proposition 3.1 tells us that if A ∈ S(G), then we should look

for a direct summand B of G such that G = A ⊕ B only among the subgroups of

G of order |G : A|.

Remark. We mention that after the construction of S(G) it is easy in GAP to

retrieve all the subgroups of G with the same index.

Our functions IsDirectSummand(G,A) to check if a given subgroup A of G is

a direct summand, and DirectSummands(G) to determine all pairs of direct sum-

mands of G are described in Algorithms 1 and 2. In Algorithm 2 we use the idea

from Algorithm 1 put in terms of levels in the subgroup lattice.

Now let us consider separately the two properties involved in the writing G =

A⊕B, namely A ∩B = 0 and A+B = G. They will be important later on when

we work with complements and supplements.

Denote ZA = {B ∈ S(G) | A ∩B = 0}. Clearly, every subgroup of G containing

A or contained in A does not belong to ZA. We slightly modify the construction
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Algorithm 1 IsDirectSummand(G,A)

Input : G finite abelian group, A ≤ G

Output : e = TRUE if A is a direct summand of G; e = FALSE otherwise

n := δ(|G|), e := FALSE

for all B ∈ {H ∈ S(G) | |H| = |G : A|} do

if A ∩B = 0 then

e := TRUE

break

end if

end for

return e

Algorithm 2 DirectSummands(G)

Input : G finite abelian group

Output : the set D of all pairs (A,B) of subgroups with A⊕B = G

n := δ(|G|), D := ∅
for i:=1 to ⌈n/2⌉ do

for all A ∈ level(i) do

for all B ∈ level(n+ 1− i) do

if A ∩B = 0 then

D := D ∪ {(A,B)}
end if

end for

end for

end for

return D

of our digraph Γ⃗ = (V,E, G⃗). Thus we define a digraph Γ⃗′ = (V,E′, G⃗′), where

the only difference with respect to the initial one is that we “reverse” the arcs

between the vertices corresponding to subgroups of A. Hence, if D � A, then

(f(C), f(D)) ∈ E′ ⇐⇒ (f(C), f(D)) ∈ E, and if D ≤ A, then (f(C), f(D)) ∈
E′ ⇐⇒ (f(D), f(C)) ∈ E.

Proposition 3.2. Let A,B,C ∈ S(G). If A ∩ B = C, then there exists a path

pAB : f(A) = a0, . . . , ac = f(C), . . . , am = f(B) in Γ⃗′ such that ni > ni+1 for

every 0 ≤ i < c and nj < nj+1 for every c ≤ j < m, where f−1(ak) ∈ level(nk),

0 ≤ k ≤ m.

Proof. Let A,B,C ∈ S(G) be such that A ∩ B = C. Since C ⊆ A and C ⊆ B,

there are chains C ≺ H1 ≺ . . . ≺ Hr ≺ A and C ≺ K1 ≺ . . . ≺ Ks ≺ B of

subgroups of G, hence there exist paths pAC : f(A) = a0, . . . , ac = f(C) and
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pCB : f(C) = ac, . . . , am = f(B) in Γ⃗′. Obviously, the concatenation of pAC and

pCB leads to a path between f(A) and f(B) passing through f(C). �

Corollary 3.3. Let A,B ∈ S(G). Suppose there is a path pAB between f(A) and

f(B) in Γ⃗′ such that f(0) /∈ pAB. Then A ∩B ̸= 0.

First let us solve the subproblem of computing the set ZA, based on the previous

corollary. In practice we may proceed as follows:

• After the usual construction of the subgroup lattice and digraph Γ⃗, we

isolate (i.e. remove all incoming and outgoing arcs) the vertex correspond-

ing to the trivial subgroup (f(0)) and all the vertices v ∈ V such that

A < f−1(v).

• “Reverse” the arcs for the vertices corresponding to subgroups of A.

• Determine all B ∈ S(G) such that there is a path pAB. Since we have

removed the trivial subgroup, for all these subgroups we have A ∩ B ̸= 0.

For the remaining vertices f(B′) a path would have existed only through

f(0), hence A ∩B′ = 0. Also, A ∩ 0 = 0.

We wrap this method in Algorithm 3, function NullIntersectors(G,A). Before

running the main part of the algorithm, we could check if A is essential in G (see

the corresponding section). If it is so, then clearly ZA = {0}.
Given a subgroup A of G, we have an algorithm dual to Algorithm 3 for finding

the set FA = {B ∈ S(G)|A + B = G}. For later use, let us call this function

FullSummands(G,A).

4. Essential subgroups

Definition 4.1. A subgroup A ≤ G is called essential in G if for every B ≤ G the

equality A ∩B = 0 implies B = 0. Notation: AEG.

Definition 4.2. The socle of G is the sum of all simple subgroups of G, or equiv-

alently, the intersection of all essential subgroups of G. Notation: Soc(G). By

convention, we take Soc(G) = 0 if G has no simple subgroup.

In the case of (not necessarily finite) abelian groups we have the following char-

acterization.

Theorem 4.3. [1, Ex. S10.10] Let A ≤ G. Then AEG if and only if Soc(G) ⊆ A

and the quotient group G/A is torsion.

The fact that a group is torsion can be described by the property that its sub-

group lattice is atomic [1, Ex. M10.2], which holds if the group is finite.

The first function of this section checks whether a given subgroup H is essential

in G or not and it is based on Theorem 4.3. GAP has a function Socle(G) that

can be used.
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Algorithm 3 NullIntersectors(G,A)

Input : G finite abelian group, A ≤ G

Output : ZA = {B ≤ G|A ∩B = 0}
if IsEssential(G,A) then

ZA := {0}
else

{reverse the arcs for all subgroups of A}
SA := {A}, S ′ := SA

repeat

S ′ := {B ∈ S(G)|f(B) ∈ N in
Γ⃗
(f(H)),H ∈ S ′}, SA := SA ∪ S ′

until 0 ∈ SA

Old := ∅, New := ∅
for all e = (f(A), f(B)) ∈ E such that A,B ∈ SA do

Old := Old ∪ {e}
New := New ∪ {(f(B), f(A))}

end for

E := E \Old

E := E ∪New

{determine the set EA of all proper extensions of A}
EA := {A}, E ′ := EA
repeat

E ′ := {B ∈ S(G)|f(B) ∈ Nout
Γ⃗

(f(H)),H ∈ E ′}, EA := EA ∪ E ′

until G ∈ EA
EA := EA \ {A}
{isolate the vertices in EA and 0}
E := E \ ({(a, b) ∈ E|f−1(b) ∈ EA} ∪ {(a, b) ∈ E|f−1(a) ∈ EA})
E := E \ ({(f(0), b) ∈ E} ∪ {(a, f(0)) ∈ E})
{compute the set C̄A of all subgroups B such that A ∩B ̸= 0}
C̄A := {A}, C̄′ := C̄A
repeat

C̄′ := {B ∈ S(G)|f(B) ∈ Nout
Γ⃗

(f(H)),H ∈ C̄′}, C̄A := C̄A ∪ C̄′

until C̄A is not modified anymore

ZA := S(G) \
(
EA ∪ C̄A

)
end if

return ZA

However, if one is interested in obtaining all the essential subgroups in a given

subgroup lattice, the repeated use of the previous function turns out to be inef-

ficient. With the method presented in our Algorithm 5 we can spot out all the
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Algorithm 4 IsEssential(G,A)

Input : G finite abelian group, A ≤ G

Output : e = TRUE if AEG; e = FALSE otherwise

if Socle(G) ⊆ A then

e := TRUE

else

e := FALSE

end if

return e

essential subgroups of G. We use the classical FIFO data structure of a queue.

Recall that a queue Q is described by the following operations:

• empty(Q) returns an empty queue

• push(Q,el) returns a queue consisting of the elements of Q and el (inserted

at the end)

• pop(Q) if Q is not empty, returns a queue consisting in all but the first

element of Q

• top(Q) returns the first element of the queue Q (if it is not empty)

We use the classical idea of breadth-first traversal of the digraph. For keeping track

of the already visited vertices, we use a boolean-valued list as a marker.

An important notion connected to essential subgroups is the following one.

Definition 4.4. G ̸= 0 is called uniform if for every 0 ̸= A,B ≤ G we have

A ∩B ̸= 0, or equivalently, every non-zero subgroup of G is essential in G.

We should note that the structure of uniform abelian groups is well-known, the

uniform finite abelian groups being exactly those isomorphic to cyclic groups Zpn

for some prime p and natural number n. Nevertheless, one may write a simple

function IsUniform(G) to determine if a given finite abelian group is uniform or

not, based on the following observation. If A and B are two different atoms in the

lattice S(G), then A ∩ B = 0 implies A 5 G and G is not uniform. However, if A

is the only atom of S(G), then A = Soc(G) ⊆ H for every H ≤ G, so that G is

uniform.

5. Superfluous subgroups

Definition 5.1. A subgroup A ≤ G is called superfluous in G if for every B ≤ G

the equality A+B = G implies B = G. Notation: A << G.

Definition 5.2. The radical of G is the intersection of all maximal subgroups of

G, or equivalently, the sum of all superfluous subgroups of G. Notation: Rad(G).

By convention, we take Rad(G) = G if G has no maximal subgroup.
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Algorithm 5 EssentialSubgroups(G)

Input : G finite abelian group

Output : the set E of all essential subgroups of G

E := ∅, u := f(Socle(G));

for all v ∈ V do

marked[v] := FALSE

end for

Q := empty(Q)

Q := push(Q, u)

marked[u] := TRUE

while Q is not empty do

x := top(Q), Q := pop(Q)

for all y ∈ {z ∈ Nout
Γ⃗

(x)|marked[z] = FALSE} do

Q := push(Q, y)

marked[x] := TRUE

end for

end while

for all v ∈ V do

if marked[v] = TRUE then

E := E ∪ {f−1(v)}
end if

end for

return E

The basic characterization of superfluous subgroups of an (not necessarily finite)

abelian group is the following one.

Theorem 5.3. [1, Ex. D10.5] Let A ≤ G. Then A << G if and only if A ⊆ Rad(G)

and A has no divisible quotient groups.

The fact that a group is divisible can be described by the property that its lattice

subgroup has no dual atoms [1, Ex. S10.9]. Since divisible groups are infinite, note

that the condition on divisible quotient groups from the previous theorem is satisfied

by any finite abelian group. In the same setting, now it is clear that superfluous

subgroups in the lattice S(G) are just the essential subgroups in the dual lattice of

S(G). Hence the algorithms for deciding if a given subgroup A of G is superfluous or

not (called IsSuperfluous(G,A)), and for finding all the superfluous subgroups of

G (called SuperfluousSubgroups(G)) are easily dualized from those in the section

on essential subgroups. Because of duality it is reasonable to “mirror” the digraph:

e = (y, x) ∈ E ⇐⇒ ax ≺ by, if ax and by are the corresponding elements from

S(G), i.e. the arcs point “downwards”.
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A dual notion to that of uniform group is the following one.

Definition 5.4. G ̸= 0 is called hollow if for every A,B < G we have A+B < G,

or equivalently, every proper subgroup of G is superfluous in G.

By the self-dual property of S(G), it is easy to see that a finite abelian group

is hollow if and only if it is uniform. Hence, one can use the same function

IsUniform(G) to test both these properties.

6. Coessential subgroups

A notion related to superfluous subgroups is that of coessential subgroup.

Definition 6.1. Let B ≤ A ≤ G. Then B is called a coessential subgroup of A in

G if A/B << G/B.

GAP is able to work with factor groups, so that Algorithm 6 (for checking if a

given subgroup B is a coessential subgroup of A in G or not) follows immediately.

Algorithm 6 IsCoessential(G,A,B)

Input : G finite abelian group, B ≤ A ≤ G

Output : e = TRUE if B is a coessential subgroup of A in G;

e = FALSE otherwise

e := IsSuperfluous(G/B, A/B);

return e

However, if we are interested in finding all the coessential subgroups of a given

subgroup in G, another method is required. We develop such a method based on

the following theorem. In the case of a finite group we have:

Theorem 6.2. [2, 3.2] Let B ≤ A ≤ G. Then A = B+S for some S << G if and

only if B is a coessential subgroup of A in G.

We proceed as follows.

• first determine the set S′
A = {S ≤ A|S << G}

• compute Q = {S ≤ A|S << G and S not superfluous in A} (clearly, for

any C ∈ {S ≤ A|S << G and S << A} we cannot have C + B = A for

some B < A)

• CA :=
∪

S∈Q{B ≤ A|B + S = A} ∪ {A}

A formal description is given in Algorithm 7.
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Algorithm 7 CoessentialSubgroups(G,A)

Input : G finite abelian group, A ≤ G

Output : the set CA of all coessential subgroups of A in G

CA := {A}
S′

A := SuperfluousSubgroups(G)

SA := {A}, S ′ := SA

repeat {compute all subgroups of A}
S ′ := {B ∈ S(G)|f(B) ∈ Nout

Γ⃗
(f(H)),H ∈ S ′}

SA := SA ∪ S ′

until 0 ∈ SA

S′
A := S′

A ∩ SA

SA := SuperfluousSubgroups(A)

Q := S′
A \SA

CA := ∅
for all S ∈ Q do

ζS := FullSummands(A, S)

CA := CA ∪ ζS

end for

return CA

7. Complement and closed subgroups

A notion generalizing direct summands is that of complement subgroup.

Definition 7.1. Let A ≤ G. A subgroup B of G is called a:

(i) complement of A in G if it is maximal in the set of subgroups C of G with

A ∩ C = 0.

(ii) complement if there is A ≤ G such that B is a complement of A in G.

Theorem 7.2. (i) [4, p.6] Every subgroup of G has a complement.

(ii) Every direct summand of G is a complement subgroup.

Strongly related to complement subgroups are the closed subgroups.

Definition 7.3. A subgroup A ≤ G is called closed in G if A has no proper essential

extension in G.

Theorem 7.4. [4, p.6] Let A ≤ G. Then A is a complement subgroup if and only

if A is closed in G.

We first determine if a given subgroup A of G is a complement (closed) subgroup.

Afterwards, we compute all its complements in G, and finally we determine all the

complement (closed) subgroups of G.
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In order to check if a subgroup is closed, note that if A,B ∈ S(G) with A ⊆ B,

then A E B if and only if A and B contain the same atoms in S(G). Hence a

subgroup A of G is closed if and only if it has no extension containing the same

atoms as A. So, if A is not closed, then it must have a minimal extension containing

the same atoms as A.

Algorithm 8 IsClosed(G,A)

Input : G finite abelian group, A ≤ G

Output : e = TRUE if A is a complement (closed) subgroup of G;

e = FALSE otherwise

if A = G then

e := TRUE

return e

end if

if |{a ∈ Nout
Γ⃗

(f(0)) | f−1(a) ⊆ A}| < min{|{a ∈ Nout
Γ⃗

(f(0)) | f−1(a) ⊆
f−1(b)}| | b ∈ Nout

Γ⃗
(f(A))} then

e := TRUE

else

e := FALSE

end if

return e

According to Definition 7.1, we have to build up the set of all subgroups C ≤ G

with A ∩ C = 0. The description of Complements(G,A) is given in Algorithm 9

and makes use of Algorithm 3. The breadth-first traversal of the digraph can be

implemented using the method in Algorithm 5, with a queue data structure.

Algorithm 9 Complements(G,A)

Input : G finite abelian group, A ≤ G

Output : the set CA of all complements of A in G

{determine the set ZA}
ZA := NullIntersectors(G, A)

{the elements of CA are the maximal elements of ZA}
CA := {B ∈ ZA|Nout

Γ⃗
(f(B)) ⊆ {f(N)|N ∈ S(G) \ ZA}}

return CA

The function ClosedSubgroups(G), which determines the closed (complement)

subgroups of G, is presented in Algorithm 10. The construction of the digraph and

the notations are the same as in Section 4. We use again the idea from Algorithm

8, using also the fact that if a subgroup of G contains a certain set of atoms of
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S(G), then any of its extensions contains at least those atoms. For a vertex v ∈ V ,

we denote by atm[v] the set of all vertices a ∈ V such that f−1(a) is an atom of

S(G) contained in f−1(v).

Algorithm 10 ClosedSubgroups(G)

Input : G finite abelian group

Output : the set C of all closed subgroups of G

if G = 0 then

C := {0}
return C

end if

C := ∅
for all v ∈ V do

marked[v] := FALSE

atm[v] := ∅
end for

for all a ∈ Nout
Γ⃗

(f(0)) do

atm[a] := {a}
end for

Q := empty(Q)

Q := push(Q, f(0))

while Q is not empty do

x := top(Q)

Q := pop(Q)

for all y ∈ Nout
Γ⃗

(x) do

atm[y] := atm[y] ∪ atm[x]

if marked[y] = FALSE then

Q := push(Q, y)

marked[y] := TRUE

end if

end for

end while

C := {H ∈ S(G)||atm[f(H)]| < min{|atm[y]||y ∈ Nout
Γ⃗

(f(H))}}
return C

Now let us recall the definition of a closure of a subgroup in a group.

Definition 7.5. Let A ≤ G. A subgroup C of G such that A ⊆ C is called a

closure of A in G if C is a maximal essential extension of A in G, or equivalently,

AE C and C is closed in G.
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Theorem 7.6. [4, p.6] Every subgroup of G has a closure in G.

As an application, one can easily write a function Closures(G,A) to get all the

closures in G of a subgroup A of G by using the functions ClosedSubgroups(G)

and IsEssential(G,A).

8. Supplement and coclosed subgroups

Another notion generalizing direct summands, dual to a complement subgroup,

is that of supplement subgroup.

Definition 8.1. Let A ≤ G. A subgroup B of G is called a:

(i) supplement of A in G if it is minimal in the set of subgroups C of G with

A+ C = G.

(ii) supplement if there is A ≤ G such that B is a supplement of A in G.

We have the following result, whose first part holds because G is finite.

Theorem 8.2. (i) Every subgroup of G has a supplement.

(ii) Every direct summand of G is a supplement subgroup.

Definition 8.3. A subgroup A of G is called coclosed in G if there is no proper

coessential subgroup of A in G.

We have the following result for a not necessarily finite abelian group G.

Theorem 8.4. [2, 20.3] If G is weakly supplemented (i.e. every subgroup of G has

a supplement), then a subgroup A of G is a supplement if and only if it is coclosed

in G.

Note that every supplement subgroup of a (not necessarily finite) abelian group

is a complement subgroup [7, Theorem 4.1.4]. Since every finite abelian group is

clearly weakly supplemented, we can use [7, Theorem 4.3.1] to get the following

stronger result.

Theorem 8.5. The following are equivalent for a subgroup A of G:

(i) A is a complement.

(ii) A is closed in G.

(iii) A is a supplement.

(iv) A is coclosed in G.

Of course, if a subgroup A of G is a complement for a subgroup B of G, this

does not mean that A is a supplement for the same subgroup B of G. Hence

one needs a function Supplements(G,A) to determine all supplements of A in G,

dual to Complements(G,A). But the function IsClosed(G,A) checks also if A is a



SUBGROUP LATTICE ALGORITHMS 67

supplement (coclosed) subgroup of G, whereas the function ClosedSubgroups(G)

gives also the set of all supplement (coclosed) subgroups of G.

Now let us recall the definition of a coclosure of a subgroup in a group.

Definition 8.6. Let A ≤ G. A subgroup C of G such that C ⊆ A is called a

coclosure of A in G if C is a minimal coessential subgroup of A in G, or equivalently,

C is a coessential subgroup of A in G and C is coclosed in G.

For a finite group we have the following result.

Theorem 8.7. Every subgroup of G has a coclosure in G.

One can easily write a function Coclosures(G,A) to determine all the coclosures

in G of a subgroup A of G, dual in some sense to Closures(G,A).

9. Extending groups and lifting groups

Now let us make a few considerations on extending and lifting abelian groups.

Definition 9.1. G is called extending if every subgroup of G is essential in a direct

summand of G.

Proposition 9.2. G is extending if and only if every complement subgroup of G

is a direct summand of G.

Definition 9.3. G is called lifting if every proper subgroup A of G contains a

direct summand D of G such that A/D << G/D (i.e. D is a coessential subgroup

of A in G).

Proposition 9.4. [2, 22.3] G is lifting if and only if it is amply supplemented (i.e.

for every subgroups A,B of G with A+ B = G there is a supplement C of A with

C ⊆ B) and every supplement subgroup is a direct summand.

Note that every finite abelian group is clearly amply supplemented, so that we

have the following consequence.

Corollary 9.5. A finite group G is lifting if and only if every supplement subgroup

of G is a direct summand.

The structures of extending and lifting abelian groups are well-known. Having in

mind also Theorem 8.5, it should not be surprising to get the following consequence,

which shows, together with their structure, that for a finite abelian group the

extending and lifting properties coincide.

Theorem 9.6. [8, p.19 and p.98] A finite abelian group G is extending if and only

if it is lifting if and only if each p-component of G is isomorphic to a direct sum

(
⊕

I Zpn)
⊕

(
⊕

J Zpn+1), where p is a prime, n = n(p) is a natural number and the

cardinals I, J may be zero.
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Even if the structure of extending and lifting abelian groups is known, one

can also easily check with a function IsExtending(G) if G is extending (and

also lifting) by comparing the results of the functions ClosedSubgroups(G) and

DirectSummands(G).

10. Implementation

All the algorithms presented or just mentioned here have been implemented using

the programming language of GAP [3]. Here it is the list of implemented functions,

where G is a finite abelian group and A,B are subgroups of G:

• IsDirectSummand(G)

• DirectSummands(G)

• NullIntersectors(G,A) / FullSummands(G,A)

• IsEssential(G,A) / IsSuperfluous(G)

• EssentialSubgroups(G) / SuperfluousSubgroups(G)

• IsUniform(G)

• IsCoessential(G,A,B)

• CoessentialSubgroups(G,A)

• IsClosed(G,A)

• Complements(G,A) / Supplements(G,A)

• ClosedSubgroups(G)

• Closures(G,A) / Coclosures(G,A)

• IsExtending(G)

11. An example

Let us consider the abelian group Z4 ⊕ Z2 ⊕ Z2, that is, the abelian group G

with the presentation

G = ⟨a, b, c | 4a = 0, 2b = 0, 2c = 0⟩.

It has 27 subgroups, which are the following (listed in the order given by GAP):

H1 = 0 H10 = ⟨2a, b⟩ H19 = ⟨c+ b, 2a+ b⟩
H2 = ⟨b⟩ H11 = ⟨b, 2a+ c⟩ H20 = ⟨2a, b, c⟩
H3 = ⟨c⟩ H12 = ⟨2a, b+ 3a⟩ H21 = ⟨a, b⟩
H4 = ⟨2a⟩ H13 = ⟨c, 2a+ b⟩ H22 = ⟨2a, b, c+ 3a⟩
H5 = ⟨b+ c⟩ H14 = ⟨a⟩ H23 = ⟨a, c⟩
H6 = ⟨2a+ b⟩ H15 = ⟨2a, b+ 3a⟩ H24 = ⟨2a, b+ 3a, c⟩
H7 = ⟨2a+ c⟩ H16 = ⟨2a, c+ 3a⟩ H25 = ⟨a, c+ b⟩
H8 = ⟨2a+ b+ c⟩ H17 = ⟨2a, c+ b⟩ H26 = ⟨2a, b+ 3a, c+ 3a⟩
H9 = ⟨b, c⟩ H18 = ⟨2a, a+ b+ c⟩ H27 = G
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Instead of listing here the respective GAP commands and their output, we con-

sider only the associated abstract mathematical objects. A detailed description of

the GAP functions is given in [3]. Among our implemented functions, we consider

only those which produce a list of subgroups with one of the previously mentioned

properties. The results given by the other functions, which decide whether a given

subgroup has a certain property, are basically included in these ones.

Let us start with functions having the group G as their only input parameter.

The function DirectSummands(G) produces a list of 57 pairs of direct summands

of G. For instance, we obtain the following pairs of direct summands involving the

subgroup H9 = ⟨b, c⟩: (H9,H14), (H9,H15), (H9,H16), (H9, H18). Also, one can

see that G has 22 direct summands, namely H1, H2, H3, H5, H6, H7, H8, H9,

H11, H13, H14, H15, H16, H18, H19, H21, H22, H23, H24, H25, H26, H27. Using the

functions EssentialSubgroups(G) and SuperfluousSubgroups(G), one can find

out the essential subgroups of G, namely H20 and H27, and the superfluous ones,

namely H1 and H4. The list of all closed (hence also coclosed) subgroups of G is

given by the function ClosedSubgroups(G) and is the same as the list of direct

summands of G.

We can immediately check using the corresponding functions that our group

is not uniform (hence also not hollow), but it is extending (hence also lifting). If

someone does not know the structure of extending abelian groups (i.e., our previous

Theorem 9.6), but wants to state a conjecture concerning the structure of these

abelian groups, the function IsExtending(G) can be used for some (or even all)

abelian groups of reasonable large orders (using also the GAP library of small

groups, see [10]), in order to help him to find the correct statement.

Now take the subgroup H10 = ⟨2a, b⟩. The subgroups of G having zero inter-

section with H10, respectively having sum G with H10 are given by the functions

NullIntersectors(G,H10) and FullSummands(G,H10). These subgroups are H1,

H3, H5, H7 and H8, respectively H23, H24, H25, H26 and H27. Using the corre-

sponding functions, we obtain that the coessential subgroups of H10 in G are H2,

H6 and H10, the complements of H10 in G are H3, H5, H7 and H8, the supplements

of H10 in G are H23, H24, H25 and H26, the closures of H10 in G are H21 and H22,

and the coclosures of H10 in G are H2 and H6.

Finally, regarding computer speed, let us note that the results of our functions

are obtained fast, practically instantaneous for a group as G = Z4 ⊕ Z2 ⊕ Z2.

Moreover, the subgroups determined by them may be visualized in the lattice of

subgroups by using the GAP package XGAP.
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