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Abstract. In this paper we investigate certain normalized versions Sk,F (x),

S̃k,F (x) of Chebyshev polynomials of the second kind and the fourth kind over

a field F of positive characteristic. Under the assumption that (charF, 2m +

1) = 1, we show that S̃m,F (x) has no multiple roots in any one of its split-

ting fields. The same is true if we replace 2m + 1 by 2m and S̃m,F (x)

by Sm−1,F (x). As an application, for any commutative ring R which is a

Z[1/n, 2 cos(2π/n), u±1/2]-algebra, we construct an explicit cellular basis for

the Hecke algebra associated to the dihedral groups I2(n) of order 2n and

defined over R by using linear combinations of some Kazhdan-Lusztig bases

with coefficients given by certain evaluations of S̃k,R(x) or Sk,R(x).
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1. Introduction

The Chebyshev polynomials are a sequence of important orthogonal polynomials

over Z which are related to de Moivre’s formula and which can be defined recur-

sively. They have found many important applications in diverse areas of mathemat-

ics such as ordinary and partial differential equations, analysis and approximation

theory. In past three decades these polynomials also come up in several places in

nearby areas of representation theory. For example, they appear in the criterion

for semisimplicity of Temperley-Lieb and Jones algebras [4], [5], in giving the di-

mension of a centralizer algebra of a Temperley-Lieb algebra, and in calculating

the decomposition of a Brauer algebra module into Temperley-Lieb algebra mod-

ules [2], and in constructing irreducible representations of the semisimple Hecke

algebra associated to the dihedral groups [3]. However, it seems to us that all of

these applications only use property of Chebyshev polynomials over the complex
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numbers field (or any field of characteristic 0). To the best of our knowledge, the

property of Chebyshev polynomials over field of positive characteristic are not well-

studied and exploited in the literatures before. In this paper we shall study some of

their properties for the normalized versions Sn(x) := Un(x/2), S̃n(x) := Wn(x/2)

of Chebyshev polynomials of the second kind and of the fourth kind over certain

fields of positive characteristic, where Un(x) and Wn(x) are the Chebyshev polyno-

mials of the second kind and of the fourth kind respectively. As an application, we

shall construct an explicit cellular basis for the Hecke algebra Hq,R(Wn) associated

to the dihedral group Wn := I2(n) of order 2n over any commutative ring R which

is a Z[ 1n , 2 cos( 2π
n ), u±1/2]-algebra.

The content is organised as follows. In Section 2 we investigate the Chebyshev

polynomials over fields of positive characteristic. We show (in Lemmas 2.8 and 2.9)

that under the assumption that (charF, 2m + 1) = 1 (respectively, (charF, 2m) =

1), the normalised Chebyshev polynomial S̃m,F (x) of the fourth kind (respectively,

Sm−1,F (x) of the second kind) has no multiple roots over any one of its splitting

fields. As a result, we show that for any n ∈ N and 1 ≤ j < l ≤ [(n − 1)/2],

2 cos(2lπ/n) − 2 cos(2jπ/n) is invertible in Z[ 1n , 2 cos( 2π
n )]. In Section 3, we apply

these results to construct a cellular basis of the Hecke algebra associated to the

dihedral group Wn := I2(n) of order 2n. We show (in Lemmas 2.10 and 2.11)

that for any commutative ring R which is a Z[ 1n , 2 cos( 2π
n ), u±1/2]-algebra, certain

linear combinations of some Kazhdan–Lusztig bases can form a cellular basis of the

Hecke algebra Hq,R(Wn) over R, see Theorems 3.14 and 3.22. The coefficients of

each Kazhdan–Lusztig bases are given by a scalar multiple of some evaluation of

certain explicit Chebyshev polynomials.

2. Chebyshev polynomials over fields of positive characteristic

The purpose of this section is to study certain normalised Chebyshev polynomials

over fields of positive characteristic. Let x be an indeterminate over Z.

Definition 2.1. The Chebyshev polynomials {Tk(x)}k≥0 of the first kind are de-

fined recursively by:

T0(x) := 1, T1(x) := x, Tk+1(x) := 2xTk(x)− Tk−1(x), ∀ k ≥ 1.

The Chebyshev polynomials {Uk(x)}k≥0 of the second kind are defined recursively

by:

U0(x) := 1, U1(x) := 2x, Uk+1(x) := 2xUk(x)− Uk−1(x), ∀ k ≥ 1.
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The Chebyshev polynomials {Wk(x)}k≥0 of the fourth kind are defined recursively

by:

W0(x) := 1, W1(x) := 2x+ 1, Wk+1(x) := 2xWk(x)−Wk−1(x), ∀ k ≥ 1.

Definition 2.2. For each k ≥ 0, we define

Sk(x) := Uk(x/2), S̃k(x) := Wk(x/2).

We shall call Sk(x), S̃k(x) the normalized Chebyshev polynomials of the second

kind and of the fourth kind respectively.

One can check that S0(x) = 1, S1(x) = x and

Sk+1(x) := xSk(x)− Sk−1(x); (1)

while S̃0(x) = 1, S̃1(x) = x+ 1 and

S̃k+1(x) := xS̃k(x)− S̃k−1(x). (2)

Furthermore, for any k ≥ 0, Tk(x), Uk(x), Sk(x), S̃k(x) ∈ Z[x] ⊂ C[x], and

Sk(x) = xk + lower terms, S̃k(x) = xk + lower terms,

Uk(x) = 2kxk + lower terms.

Lemma 2.3. [8, (1.15),(1.18),(2.30c),(2.30d)] For any integer k ≥ 1, we have that

S̃k(x) = Wk(x/2) = Uk(x/2) + Uk−1(x/2) = Sk(x) + Sk−1(x),

while for any m ≥ 0, Wm(2x2 − 1) = U2m(x).

Lemma 2.4. [8, (2.30a),(2.30c),(2.30d)] For any k ≥ 0, we have that Sk(−2) =

Uk(−1) = (−1)k(k + 1), and

S̃k(0) = (−1)[k/2], U2k(0) = (−1)k, Tk(0) = (−1)k.

Let R be a commutative ring. For any f(x) ∈ Z[x], we denote by fR(x) the

image of f(x) in R[x] under the natural homomorphism Z[x]→ R[x]. We set

Tk,R(x) := (Tk)R(x), Uk,R(x) := (Uk)R(x), Sk,R(x) := (Sk)R(x), S̃k,R(x) := (S̃k)R(x).

Lemma 2.5. For any integer k ≥ 1, we have that

S̃k,R(x) = Sk−1,R(x) + Sk,R(x).

For each f(x) =
∑k
i=0 aix

i ∈ R[x], let f ′(x) :=
∑k
i=1 iaix

i−1 ∈ R[x] be the

formal derivative of f(x).
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Lemma 2.6. [1,8] Let k ∈ Z≥0 and F be an arbitrary field. We have that

T ′k+1,F (x) = (k + 1)Uk,F (x), Tk+2,F (x) = xTk+1,F (x)− (1− x2)Uk,F (x),

(k + 1)Tk+1,F (x)− xUk,F (x) = (x2 − 1)U ′k,F (x).

Lemma 2.7. Let k ∈ Z≥1. Then

(4− x2)S̃′n(x) = (n+ 1)S̃n−1(x)− nS̃n+1(x) + S̃n(x)

= (2n+ 1)S̃n−1(x) + (1− nx)S̃n(x).

In particular, if F is a field with charF = 2 and m ∈ N, then

− x2S̃′2m+1,F (x) = −S̃2m+2,F (x) + S̃2m+1,F (x),

− x2S̃′2m,F (x) = S̃2m−1,F (x) + S̃2m,F (x).

Proof. By [8, Chapter 2, Exercise 15],

2(1− x2)U ′n(x) = (n+ 2)Un−1(x)− nUn+1(x).

Now the lemma follows from the above equality, (2) and the fact that Sn(x) =

Un(x/2) and S′n(x) = 1
2U
′
n(x/2). �

The Chebyshev polynomials over the complex numbers field C have many nice

properties. For example, it is well-known that for any integer k ≥ 1,

(1) Sk(2 cos θ) = sin (k+1)θ
sin θ ;

(2) the roots of the polynomial Sk−1(x) in C are

2 cos
jπ

k
, j = 1, 2, · · · , k − 1;

(3) the roots of the polynomial S̃k(x) := Sk(x) + Sk−1(x) in C are

2 cos
2jπ

2k + 1
, j = 1, 2, · · · , k.

The following lemma gives a positive characteristic analogue of the property c)

for the Chebyshev polynomials over fields of positive characteristic.

Lemma 2.8. Let F be an arbitrary field and k ∈ Z≥0 such that either charF = 0

or charF is coprime to 2k+ 1. Then the polynomial S̃k,F (x) over F has k-distinct

roots in any one of its splitting field.

Proof. If k = 0, then S̃k,F (x) = x + 1 has a unique root −1. So there is nothing

to prove. Henceforth we assume that k ≥ 1.

We first assume that charF 6= 2. Then 2 · 1F is invertible in F . By Lemma 2.3,

S̃k,F (x) = Wk,F (x/2). To prove the lemma, it suffices to show that Wk,F (x) over

F has k-distinct roots in any one of its splitting field.
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By Lemma 2.3, Wk,F (2x2 − 1) = U2k,F (x) and Wk,F (−1) = U2k,F (0) = ±1. It

follows that 4x is coprime to U2k,F (x) = Wk,F (2x2 − 1) in F [x]. Therefore,(
Wk,F (x),W ′k,F (x)

)
= 1 if and only if

(
U2k,F (x), U ′2k,F (x)

)
= 1.

As a result, we see that to prove the lemma, it suffices to show that the F -polynomial

U2k,F (x) has 2k-distinct roots in any one of its splitting field.

By Lemma 2.6, we have that

(2k + 1)T2k+1,F (x)− xU2k,F (x) = (x2 − 1)U ′2k,F (x).

By assumption, (2k+1)·1F 6= 0 in F . Therefore, we can deduce that (U2k,F (x), U ′2k,F (x))

is a factor of (T2k+1,F (x), U2k,F (x)). By Lemma 2.6,

T2k+2,F (x) = xT2k+1,F (x)− (1− x2)U2k,F (x).

It follows that (T2k+1,F (x), U2k,F (x)) and hence (U2k,F (x), U ′2k,F (x)) is a factor of

(T2k+2,F (x), T2k+1,F (x)).

On the other hand, by definition, for any m ≥ 1,

Tm+1,F (x) := 2xTm,F (x)− Tm−1,F (x).

It follows that (Tm+1,F (x), Tm,F (x)) is always a factor of (Tm,F (x), Tm−1,F (x)).

Inductively, we can deduce that (Tm+1,F (x), Tm,F (x)) is a factor of

(T1,F (x), T0,F (x)) = (x, 1) = 1.

This proves that (Tm+1,F (x), Tm,F (x)) = 1 for any m ≥ 0. As a result, we can

deduce that (T2k+2,F (x), T2k+1,F (x)) = 1 and hence (U2k,F (x), U ′2k,F (x)) = 1. This

implies that U2k,F (x) has 2k-distinct roots in any splitting field of U2k,F (x), as

required.

Now assume that charF = 2. Suppose that k = 2m + 1 is an odd integer.

Applying Lemma 2.7, we can deduce that (S̃′2m+1,F (x), S̃2m+1,F (x)) is a factor of

(S̃2m+2,F (x), S̃2m+1,F (x)). By (1) and an easy induction on m, it is easy to see

that

(S̃2m+2,F (x), S̃2m+1,F (x)) = (S̃2m+1,F (x), S̃2m,F (x)) = · · · = (S̃2,F (x), S̃1,F (x))

= (x2 + x− 1, x+ 1) = 1.

In other words, (S̃′2m+1,F (x), S̃2m+1,F (x)) = 1. So S̃2m+1,F (x) has no multiple

roots. If k = 2m is an even integer, the lemma follows from Lemma 2.7 and a

similar argument. �
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Lemma 2.9. Let F be an arbitrary field and k ∈ Z≥1 such that either charF = 0 or

charF is coprime to 2k. Then the polynomial Sk−1,F (x) over F has (k−1)-distinct

roots in any one of its splitting field.

Proof. If k = 1 then Sk−1,F (x) = 1 and there is nothing to prove. If k = 2, then

Sk−1,F (x) = x has a unique root 0 as required. Henceforth we assume that k ≥ 3.

By assumption, 2 ·1F is invertible in F . By definition, Sk−1,F (x) = Uk−1,F (x/2).

To prove the lemma, it suffices to show that Uk−1,F (x) over F has (k − 1)-distinct

roots in any one of its splitting field.

By Lemma 2.6, we have that

kTk,F (x)− xUk−1,F (x) = (x2 − 1)U ′k−1,F (x).

By assumption, k·1F 6= 0 in F . Therefore, we can deduce that (Uk−1,F (x), U ′k−1,F (x))

is a factor of (Tk,F (x), Uk−1,F (x)). By Lemma 2.6,

Tk+1,F (x) = xTk,F (x)− (1− x2)Uk−1,F (x).

It follows that (Tk,F (x), Uk−1,F (x)) and hence (Uk−1,F (x), U ′k−1,F (x)) is a factor of

(Tk+1,F (x), Tk,F (x)).

On the other hand, by definition, for any m ≥ 1,

Tm+1,F (x) := 2xTm,F (x)− Tm−1,F (x).

It follows that (Tm+1,F (x), Tm,F (x)) is always a factor of (Tm,F (x), Tm−1,F (x)).

Inductively, we can deduce that (Tm+1,F (x), Tm,F (x)) is a factor of

(T1,F (x), T0,F (x)) = (x, 1) = 1.

This proves that (Tm+1,F (x), Tm,F (x)) = 1 for any m ≥ 0. As a result, we can

deduce that (Tk+1,F (x), Tk,F (x)) = 1 and hence (Uk−1,F (x), U ′k−1,F (x)) = 1. This

implies that Uk−1,F (x) has (k−1)-distinct roots in any splitting field of Uk−1,F (x),

as required. This completes the proof of the lemma. �

Henceforth, we set

A := Z[1/n, 2 cos(2π/n)]. (3)

Lemma 2.10. Suppose that n = 2m + 1. Then for any 1 ≤ k < l ≤ m, we have

that 2 cos(2kπ/n)− 2 cos(2lπ/n) is invertible in A. Furthermore,

m∏
j=1

(
2 + 2 cos(2jπ/n)

)
= 1.

In particular, for each 1 ≤ j ≤ m, 2 + 2 cos(2jπ/2m+ 1) is invertible in A.
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Proof. Suppose that 2 cos(2kπ/n) − 2 cos(2lπ/n) is not invertible in A for some

1 ≤ k < l ≤ m. Let m be a maximal ideal of A which contains 2 cos(2kπ/n) −
2 cos(2lπ/n). Let k := A/m be the residue field and τ be the canonical homomor-

phism A → A/m = k. By construction, we see that 2m + 1 is invertible in k.

Applying Lemma 2.8, we can deduce that S̃m,k(x) has no multiple roots. On the

other hand, it is clear that

S̃m,k(x) =

m∏
j=1

(
x− τ(2 cos(2jπ/n))

)
.

It follows that the elements in {τ(2 cos(2jπ/n))|1 ≤ j ≤ m} must be pairwise dis-

tinct. In particular, τ(2 cos(2kπ/n)−2 cos(2lπ/n)) = τ(2 cos(2kπ/n))−τ(2 cos(2lπ/n))

is nonzero for any 1 ≤ k < l ≤ m, which is a contradiction because 2 cos(2kπ/n)−
2 cos(2lπ/n) ∈ m. This proves that 2 cos(2kπ/n) − 2 cos(2lπ/n) is invertible in A
for any 1 ≤ k < l ≤ m. It remains to prove the second half of the lemma.

For each 1 ≤ j ≤ m, 2 + 2 cos(2jπ/n) = (2 cos(jπ/n))2. Since cos(jπ/n) =

− cos((n− j)π/n), it follows that( m∏
j=1

2 cos(jπ/n)
)2

=
( m∏
j=1

2 cos(2jπ/(2m+ 1))
)2

= 1,

where the last equality follows because {2 cos(2jπ/(2m+1))|1 ≤ j ≤ m} are all the

roots of the monic polynomial S̃m(x) and S̃m(0) = (−1)[m/2] by Lemma 2.4. This

completes the proof of the lemma. �

Lemma 2.11. Suppose that n = 2m. Then for any 1 ≤ k < l ≤ m − 1, we have

that 2 cos(2kπ/n)− 2 cos(2lπ/n) is invertible in A. Furthermore,

m−1∏
j=1

(
2 + 2 cos(2jπ/n)

)
= m.

In particular, for each 1 ≤ j ≤ m− 1, 2 + 2 cos(2jπ/2m) is invertible in A.

Proof. The first half of the lemma can be proved in a similar way as the proof of

Lemma 2.10. It remains to prove the second half of the lemma.

Since {2 cos(2jπ/(2m))|1 ≤ j ≤ m−1} are all the roots of the monic polynomial

Sm−1(x), we can deduce that

Sm−1(x) =

m−1∏
j=1

(
x− 2 cos(2jπ/(2m))

)
.

It follows that
m−1∏
j=1

(
2 + 2 cos(2jπ/n)

)
= (−1)m−1Sm−1(−2) = (−1)m−1(−1)m−1m = m,
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as required, where the second last equality follows from Lemma 2.4. �

3. Cellular basis of Hq,R(Wn)

In this section we shall use the main result of the last section to construct an ex-

plicit cellular basis of the Hecke algebras Hq,R(Wn) associated to the dihedral group

Wn = I2(n) over any commutative ring R which is a Z[1/n, 2 cos(2π/n), u±1/2]-

algebra.

We first briefly recall some well-known basic knowledge about the Kazhdan–

Lusztig basis and Kazhdan–Lusztig polynomials for the Hecke algebras Hu(W )

associated to a Coxeter group W .

Let u1/2 be an indeterminate over Z and A := Z[u1/2, u−1/2]. Let (W,S) be

Coxeter system with length function `(?) and Hu(W ) be the associated Iwahori–

Hecke algebra over A with Hecke parameter u. By definition, Hu(W ) is a free A-

module with an A-basis {Tw}w∈W . The multiplication rule of Hu(W ) is determined

by:

TsTw =

Tsw, if l(sw) > l(w),

uTsw + (u− 1)Tw, if l(sw) < l(w).
, TwTs = (TsTw−1)∗,

where s ∈ S, w ∈ W , and “∗” is the anti-isomorphism of Hu(W ) which is defined

on generators by T ∗w := Tw−1 for any w ∈W .

Let a 7→ a be the involution of the ring A which is defined by u1/2 = u−1/2. This

extends to an involution h 7→ h of the ring Hu(W ), defined by∑
w∈W

awTw :=
∑
w∈W

awT
−1
w−1 .

Kazhdan and Lusztig proved (in [7]) that for each w ∈ W there exists a unique

element Cw ∈ Hu(W ) such that Cw = Cw and

Cw =
∑
y≤w

(−1)`(y)+`(w)u`(w)/2u−`(y)Py,wTy,

where Py,w ∈ A is a polynomial on u of degree ≤ 1
2 (`(w) − `(y) − 1) for y < w,

Pw,w = 1, and “≤” is the Bruhat partial order on W . Furthermore, {Cw|w ∈ W}
forms an A-basis of Hu(W ) and is called the Kazhdan–Lusztig basis of Hu(W ),

and the polynomial Py,w(u) is the well-known Kazhdan–Lusztig polynomial. For

any field F which is an A-algebra with u1/2 specialized to q1/2 ∈ F , let Hq,F (W )

be the Iwahori–Hecke algebra associated to W which is defined over F and with

Hecke parameter q. Then the elements in the set {Tw ⊗A 1F |w ∈W} (respectively,

in the set {Cw ⊗A 1F |w ∈ W}) form an F -basis of Hq,F (W ). In the past decades
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these bases and polynomials have played important roles in many aspects of modern

representation theory, cf. [6] and [7].

We now recall the definition of finite dihedral group.

Definition 3.1. Let Wn := I2(n) be the finite dihedral group of order 2n, which

is presented by the generators: s, t, and the following relations:

s2 = t2 = 1, (st)n = 1.

Let Hu(Wn) be the corresponding Iwahori-Hecke algebra over A with Hecke

parameter u. As an A-algebra, Hu(Wn) has a presentation with generators Ts, Tt

and the following relations:

(Ts + 1)(Ts − u) = 0, (Tt + 1)(Tt − u) = 0, (TsTt)
n = (TtTs)

n.

It is well-known that Hu(Wn) is a free A-module with an A-basis {Tw|w ∈ I2(n)}.
For any field F which is an A-algebra with u1/2 specialized to q1/2 ∈ F , we shall

often abbreviate Tw ⊗A 1F and Cw ⊗A 1F as Tw and Cw respectively.

The following result seems to be well-known to experts. For completeness, we

add a proof here.

Lemma 3.2. Let y, w ∈Wn. Then Py,w = 1 for all y ≤ w. In particular,

Cw = u−`(w)/2Tw +
∑

w>y∈Wn

(−1)`(y)+`(w)u`(w)/2−`(y)/2u−`(y)/2Ty.

Proof. We use induction on `(w) to prove Py,w = 1. If `(w) = 0, then y ≤ w

implies that y = w = 1 and hence Py,w = Pw,w = 1 in this case.

Suppose that Py,w = 1 holds for any y ≤ w and any w ∈Wn with `(w) < k. Now

assume that w ∈ Wn and `(w) = k. Let y ≤ w. We want to show that Py,w = 1.

Since Wn = I2(n) is generated by {s, t}. Without loss of generality, we can assume

that w = sv > v. By [7, 2.2.c],

Py,w = u1−cPsy,v + ucPy,v −
∑

y≤z≺v,sz<z

µ(z, v)u(`(v)−`(z))/2u1/2Py,z,

where c = 1 if sy < y; or c = 0 if sy > y, and “≺” is as defined in [7, Definition

1.2]. Note that y ≤ w = sv implies that either y ≤ v or sy ≤ v. Therefore there

are three possibilities:

Case 1. y � v, sy ≤ v. Since w = sv is of the form stst · · · , it follows that this

case happens if and only if y = sv = w. Thus Py,w = Pw,w = 1 as required.

Case 2. y ≤ v, sy � v. Since w = sv is of the form stst · · · , it follows that this

case happens if and only if y = v. Thus Py,w = Pv,w = Psw,w = 1 by [7, Lemma

2.6(iii)], as required.
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Case 3. y ≤ v, sy ≤ v. Since w = sv is of the form stst · · · , it follows that this

case happens if and only if y ≤ tv < v. By induction hypothesis, Pz,v = 1 for any

z ≤ v, hence z = tv is the unique element in Wn such that y ≤ z ≺ v, sz < z and

µ(z, v) 6= 0 and the definition of µ(z, v). In this case, µ(z, v) = 1. Hence

Py,w = 1 + u− u = 1.

This completes the proof of the lemma. �

Lemma 3.3. Let w ∈ I2(n). If w 6∈ {1, t}, then we have that

TsCw =

−Cw, if sw < w,

uCw + u1/2Csw + u1/2Ctw, if sw > w.

If w = 1, then TsC1 = uC1 + u1/2Cs. If w = t, then TsCt = uCt + u1/2Cst. The

same is true if we interchange the role of s and t.

Proof. By definition, Cs = u−1/2Ts − u1/2. It follows that TsC1 = uC1 + u1/2Cs.

Similarly,

Cst = u−1Tst − Ts − Tt + u.

It follows that

TsCt − u1/2Cst = Ts(u
−1/2Tt − u1/2)− u1/2(u−1Tst − Ts − Tt + u) = uCt,

as required.

Now let w 6∈ {1, t}. Suppose that sw > w. By [7, (2.3.a)],

TsCw = uCw + u1/2Csw + u1/2
∑
z≺w
sz<z

µ(z, w)Cz,

where µ(z, w) is defined to be the leading coefficient of the polynomial Pz,w(u) and

degPz,w = (`(w)− `(z)− 1)/2.

Note that our assumption w 6∈ {1, t} ensures that {z ∈ Wn|z ≺ w, sz < z} 6= ∅.
Let z ∈ Wn such that z ≺ w and sz < z. In particular, z 6= 1. Since Wn is the

dihedral group with generating set {s, t} and Pz,w = 1 by Lemma 3.2, it follows

(cf. [7, Lemma 2.6(iii)]) that our assumption forces that µ(z, w) = 1, w = tz and

hence z = tw as required. �

Let i :=
√
−1 ∈ C. Then ζ := exp(2πi/n) ∈ C is a primitive n-th root of unity

in C, and

ζj + ζ−j = 2 cos(2jπ/n) ∈ C, ∀ j ∈ Z.

We set K := Q[2 cos(2π/n)](u1/2). Let Irr(Hu,K(Wn)) be the set of isomorphism

classes of irreducible Hu,K(Wn)-modules.
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Lemma 3.4. (see [3]) The Hecke algebra Hu,K(Wn) is split semisimple. Further-

more, if n is even, then Irr(Hu,K(Wn)) consists of the following four one-dimension

representations and (n− 2)/2 two-dimensional representations:

ρ
(1)
0 : Ts 7→ u, Tt 7→ u, ρ

(2)
0 : Ts 7→ −1, Tt 7→ u,

ρ
(3)
0 : Ts 7→ u, Tt 7→ −1, ρ

(4)
0 : Ts 7→ −1, Tt 7→ −1,

ρj : Ts 7→

(
−1 0

2u+ 2u cos(2jπ/n) u

)
, Tt 7→

(
u 1

0 −1

)
, 1 ≤ j ≤ n− 2

2
.

If n is odd, then Irr(Hu,K(Wn)) consists of the following two one-dimension

representations and (n− 1)/2 two-dimensional representations:

ρ
(1)
0 : Ts 7→ u, Tt 7→ u, ρ

(2)
0 : Ts 7→ −1, Tt 7→ −1,

ρj : Ts 7→

(
−1 0

2u+ 2u cos(2jπ/n) u

)
, Tt 7→

(
u 1

0 −1

)
, 1 ≤ j ≤ n− 1

2
.

In [5], Graham and Lehrer introduced the notions of cellular bases and cellular

algebras which capture the common feature of many important examples (includ-

ing the Kazhdan-Lusztig basis and the Murphy basis for the type A Iwahori-Hecke

algebras). A cellular structure on an algebra enables one to obtain a general de-

scription and systematic understanding of its irreducible representations and block

theory by some unified linear algebra argument, which is very useful especially in

the non-semisimple situation. It turns out that many important algebras in Lie

theory fit in the framework of cellular algebras, see [5] and [9].

In the remaining part of this section, we shall use the main result of the last

section to construct an explicit cellular basis of the Hecke algebras Hq,R(Wn) as-

sociated to the dihedral group Wn = I2(n) over any commutative ring R which is

a Z[1/n, 2 cos(2π/n), u±1/2]-algebra. Our bases will be some linear combinations

of certain Kazhdan–Lusztig bases with coefficients given by evaluation of some ex-

plicit Chebyshev polynomials. Our construction is motivated by the work in [3],

where Fakiolas gave a decomposition of the regular module of the semisimple Hecke

algebra Hu,K(W ) over the field Q[cos(π/n)](u1/2) into a direct sum of irreducible

submodules. First, let’s recall the definition of cellular algebras.

Definition 3.5. (see [5]) Let R be a commutative domain and A be an R-algebra

which is free as an R-module. Let (Λ,�) be a finite poset. Suppose that for each

λ ∈ Λ there is a finite indexing set T (λ), and for each pair (s, t) with s, t ∈ T (λ)

there is an element cλst ∈ A such that the elements in the following set{
cλst
∣∣ λ ∈ Λ and s, t ∈ T (λ)

}
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form an R-basis of A.

The basis {cλst
∣∣ λ ∈ Λ and s, t ∈ T (λ)} is called a cellular basis of A if

(C1) the R-linear map ∗ : A 7→ A determined by
(
cλst

)∗
= cλts for all λ ∈ Λ and

all s, t ∈ T (λ), is an algebra anti-isomorphism of A; and

(C2) for any λ ∈ Λ, s, b ∈ T (λ) and a ∈ A, there exists an element rb ∈ R such

that for all t ∈ T (λ)

acλst ≡
∑

b∈T (λ)

rbc
λ
bt (mod A�λ) ,

where A�λ denotes the R-submodule of A spanned by the elements in the subset{
cµuv

∣∣ λ ≺ µ ∈ Λ and u, v ∈ T (µ)
}
.

If the R-algebra A has a cellular basis over R then A is called a cellular algebra

over R.

Assumption 3.6. Let R be a commutative ring such that there is a ring ho-

momorphism from θ : Z[1/n, 2 cos(2π/n), u±1/2] → R. We set q1/2 := θ(u1/2),

pj := θ(2 cos(2jπ/n)) for each 1 ≤ j ≤ [(n− 1)/2].

For any commutative ring R, we use R× to denote the set of invertible elements

in R.

Corollary 3.7. With the Assumption 3.6 in mind, we have that pl − pj ∈ R× for

any 1 ≤ j < l ≤ [(n− 1)/2]. Furthermore, 2 + pj ∈ R× for any 1 ≤ j ≤ [(n− 1)/2].

Proof. This follows directly from Lemmas 2.10 and 2.11. �

We are going to construct an explicit cellular basis for the Hecke algebraHq,R(Wn)

over R associated to Wn = I2(n). We shall consider the case when n = 2m+ 1 and

the case when n = 2m separately.

Case 1: Suppose that n = 2m + 1. In this case, by our assumption, Lemma 2.10

and Corollary 3.7,

S̃m,R(x) =

m∏
j=1

(x− pj),
m∏
j=1

(2 + pj) = 1,

where p1, · · · , pm are pairwise distinct.

Definition 3.8. [3, Section 4] For any integers 1 ≤ k ≤ m− 1 and 1 ≤ j ≤ m, we

define

a
(j)
1 = S0,R(pj) = 1, a

(j)
k+1 = S̃k,R(pj) = Sk,R(pj) + Sk−1,R(pj).
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By definition, we have that a
(j)
k ∈ R for any j, k. Furthermore, applying (1) and

the fact that S̃m,R(pj) = 0 we can get that a
(j)
m+1 = 0 and

a(j)m = Sm−1,R(pj) + Sm−2,R(pj) = Sm−1,R(pj) + pjSm−1,R(pj)− Sm,R(pj)

= (2 + pj)Sm−1,R(pj).

For each 2 ≤ k ≤ m− 1, by definition we have that

a
(j)
k + a

(j)
k+1 = Sk−2,R(pj) + Sk,R(pj) + 2Sk−1,R(pj) = (pj + 2)Sk−1,R(pj).

The same equality still holds when k = 1.

Definition 3.9. (compare [3, Section 4]) For each 1 ≤ j ≤ m, we define

uj : =

m∑
k=1

a
(j)
k C(st)k−1s ∈ Hq,R(Wn),

vj : =

m−1∑
k=1

(a
(j)
k + a

(j)
k+1)C(ts)k + a(j)m C(ts)m ∈ Hq,R(Wn).

Lemma 3.10. With the notations as above, the elements in the set {uj , vj |1 ≤
j ≤ m} are R-linearly independent in Hq,R(Wn) and form an R-basis of the space

spanned by {C(st)k−1s, C(ts)k |1 ≤ k ≤ m}.

Proof. Let

X :=
(
u1, u2, · · · , um, v1, v2, · · · , vm

)T
,

Y :=
(
Cs, Csts, · · · , C(st)m−1s, Cts, C(ts)2 , · · · , C(ts)m

)T
.

Then we can write X = DY , where

D =



a
(1)
1 a

(1)
2 · · · a

(1)
m 0 0 · · · 0 0

a
(2)
1 a

(2)
2 · · · a

(2)
m 0 0 · · · 0 0

...
... · · ·

...
...

... · · ·
...

...

a
(m)
1 a

(m)
2 · · · a

(m)
m 0 0 · · · 0 0

0 0 · · · 0 a
(1)
1 + a

(1)
2 a

(1)
2 + a

(1)
3 · · · a

(1)
m−1 + a

(1)
m a

(1)
m

0 0 · · · 0 a
(2)
1 + a

(2)
2 a

(2)
2 + a

(2)
3 · · · a

(2)
m−1 + a

(2)
m a

(2)
m

...
...

...
...

...
... · · ·

...
...

0 0 · · · 0 a
(m)
1 + a

(m)
2 a

(m)
2 + a

(m)
3 · · · a

(m)
m−1 + a

(m)
m a

(m)
m


=

(
A 0

0 B

)
,
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where

A :=


a
(1)
1 a

(1)
2 · · · a

(1)
m

a
(2)
1 a

(2)
2 · · · a

(2)
m

...
... · · ·

...

a
(m)
1 a

(m)
2 · · · a

(m)
m

 ,

B : =


a
(1)
1 + a

(1)
2 a

(1)
2 + a

(1)
3 · · · a

(1)
m−1 + a

(1)
m a

(1)
m

a
(2)
1 + a

(2)
2 a

(2)
2 + a

(2)
3 · · · a

(2)
m−1 + a

(2)
m a

(2)
m

...
... · · ·

...
...

a
(m)
1 + a

(m)
2 a

(m)
2 + a

(m)
3 · · · a

(m)
m−1 + a

(m)
m a

(m)
m

 .

It is easy to see that detD = detA · detB and detB = detA. Therefore, to prove

the lemma, it suffices to show that det(B) is invertible in R.

By the discussion above Lemma 3.9, we have that for any 1 ≤ k ≤ m, a
(j)
k +

a
(j)
k+1 = (pj + 2)Sk−1,R(pj). Therefore, we can get that

detB

= det


p1 + 2 (p1 + 2)p1 · · · (p1 + 2)Sm−2,R(p1) (p1 + 2)Sm−1,R(p1)

p2 + 2 (p2 + 2)p2 · · · (p2 + 2)Sm−2,R(p2) (p2 + 2)Sm−1,R(p2)
...

... · · ·
...

...

pm + 2 (pm + 2)pm · · · (pm + 2)Sm−2,R(pm) (pm + 2)Sm−1,R(pm)



=
( m∏
j=1

(pj + 2)
)

det


1 p1 · · · Sm−2,R(p1) Sm−1,R(p1)

1 p2 · · · Sm−2,R(p2) Sm−1,R(p2)
...

... · · ·
...

...

1 pm · · · Sm−2,R(pm) Sm−1,R(pm)

 .

Since Sk(x) = xk + lower degree terms, it follows from an easy induction that

detB = det


1 p1 · · · Sm−2,R(p1) Sm−1,R(p1)

1 p2 · · · Sm−2,R(p2) Sm−1,R(p2)

...
... · · ·

...
...

1 pm · · · Sm−2,R(pm) Sm−1,R(pm)

 = det


1 p1 · · · pm−1

1

1 p2 · · · pm−1
2

...
... · · ·

...

1 pm · · · pm−1
m


=

m∏
1≤i<j≤m

(pj − pi) ∈ R×,

where the first step follows from Lemma 2.10. This completes the proof of the

lemma. �
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Definition 3.11. (compare [3, Section 4]) For each 1 ≤ j ≤ m, we define

tj : =

m∑
k=1

a
(j)
k C(ts)k−1t ∈ Hq,R(Wn),

zj : =

m−1∑
k=1

(a
(j)
k + a

(j)
k+1)C(st)k + a(j)m C(st)m ∈ Hq,R(Wn).

Lemma 3.12. With the notations as above, the elements in the set {tj , zj |1 ≤
j ≤ m} are R-linearly independent in Hq,R(Wn) and form an R-basis of the space

spanned by {C(ts)k−1t, C(st)k |1 ≤ k ≤ m}.

Proof. This follows from a similar argument used in the proof of Lemma 3.10 by

interchanging the role of s and t. �

Since n = 2m + 1, by Lemma 3.4 the set Irr(Hu,K(Wn)) consists of two one-

dimensional representations and m two-dimensional representations as follows:

ρ
(1)
0 : Ts 7→ u, Tt 7→ u,

ρ
(2)
0 : Ts 7→ −1, Tt 7→ −1,

ρj : Ts 7→

(
−1 0

2u+ 2u cos(2jπ/n) u

)
, Tt 7→

(
u 1

0 −1

)
, 1 ≤ j ≤ m.

Set Λ := {0,∞, 1, 2, · · · ,m} which is in bijection ι with Irr(Hu,K(Wn)) via the

following correspondence:

0 7→ ρ
(1)
0 , ∞ 7→ ρ

(2)
0 , j 7→ ρj , ∀ 1 ≤ j ≤ m.

We define 0 ≺ j ≺ ∞ for any 1 ≤ j ≤ m. Thus we can define a partial order “�”

on Λ by

λ � µ ⇔ λ = µ or λ ≺ µ.

Definition 3.13. Let λ ∈ Λ := {0,∞, 1, 2, · · · ,m} and set T (λ) = {1, 2, · · · , dλ},
where dλ = dim(ι(λ)). If λ = 0, then ι(λ) = ρ

(1)
0 and we define m

(0)
11 := C1 = 1.

If λ =∞, then ι(λ) = ρ
(2)
0 and we define

m
(∞)
11 := Cw0

= C(st)ms = C(ts)mt.
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If λ = j for some 1 ≤ j ≤ m, then ι(λ) = ρj is a two-dimensional representation.

In this case, we define

m
(j)
11 : = uj =

m∑
k=1

a
(j)
k C(st)k−1s,

m
(j)
21 : = vj =

(m−1∑
k=1

(a
(j)
k + a

(j)
k+1)C(ts)k + a(j)m C(ts)m

)
,

m
(j)
12 : = zj =

(m−1∑
k=1

(a
(j)
k + a

(j)
k+1)C(st)k + a(j)m C(st)m

)
,

m
(j)
22 : = (2 + pj)tj = (2 + pj)

m∑
k=1

a
(j)
k C(ts)k−1t.

For each λ ∈ Λ, let H�λq,R and H�λq,R be the R-submodule of Hq,R(Wn) generated

by the elements in the set {m(µ)
uv |u, v ∈ T (µ), λ ≺ µ ∈ Λ} and the set {m(µ)

uv |u, v ∈
T (µ), λ � µ ∈ Λ} respectively. Recall that “∗” is the anti-isomorphism of Hq,R(Wn)

which is defined on generators by T ∗w = Tw−1 for all w ∈ I2(n).

Theorem 3.14. Suppose that n = 2m+ 1. We keep the Assumption 3.6 on R and

n and the Definition 3.13. Then

1) for any λ ∈ Λ, s, t ∈ T (λ), we have that (m
(λ)
st )∗ = m

(λ)
ts ;

2) the elements in the set
{
m

(λ)
st

∣∣ λ ∈ Λ, s, t ∈ T (λ)
}

are R-linearly indepen-

dent and form an R-basis of Hq,R(Wn);

3) with the data of the anti-isomorphism “∗”, the poset (Λ,�), and the set

T (λ) for each λ ∈ Λ, the set {m(λ)
st } forms a cellular basis of Hq,R(Wn).

Proof. 1) follows from the definition and a direct verification. Since

{C(st)k−1s, C(ts)k |1 ≤ k ≤ m} t {C(ts)k−1t, C(st)k |1 ≤ k ≤ m} t {C1, Cw0
}

is a basis of Hq,R(Wn), 2) follows from Lemmas 3.10, 3.12, and Corollary 3.7.

It remains to prove 3). To this end, it suffices to verify the cellular axiom C2)

in Definition 3.5.

Let j ∈ Λ, s ∈ T (j). To verify the cellular axiom C2), it suffices to show that for

each u ∈ T (j), there exist ru, r
′
u ∈ R, such that for any t ∈ T (j),

Tsm
(j)
st ≡

∑
u∈T (j)

rum
(j)
ut (mod H�jq,R) , Ttm

(j)
st ≡

∑
u∈T (j)

r′um
(j)
ut (mod H�jq,R) .
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If j ∈ {0,∞}, then T (j) = {1}, and the above statement clearly holds. In fact,

we have that

Tsm
(0)
11 = TsC1 = qC1 + q1/2Cs ≡ qm(0)

11 (mod H�0q,R) ,

Ttm
(0)
11 = TtC1 = qC1 + q1/2Ct ≡ qm(0)

11 (mod H�0q,R) ,

Tsm
(∞)
11 = TsCw0

= −Cw0
= −m(∞)

11 ,

Ttm
(∞)
11 = TtCw0

= −Cw0
= −m(∞)

11 .

Henceforth, we assume that j ∈ {1, 2, · · · ,m}.
By Lemma 3.3 we have that

Tsm
(j)
11 = Ts

m∑
k=1

a
(j)
k C(st)k−1s = −

m∑
k=1

ajkC(st)k−1s = −m(j)
11 ,

and

Ttm
(j)
11

= Tt

m∑
k=1

ajkC(st)k−1s

= TtCs + Tt

m∑
k=2

a
(j)
k C(st)k−1s

= qCs + q1/2Cts +

m∑
k=2

a
(j)
k

(
qC(st)k−1s + q1/2C(ts)k + q1/2C(ts)k−1

)

= qm
(j)
11 + q1/2

(m−1∑
k=1

(a
(j)
k + a

(j)
k+1)C(ts)k + a(j)m C(ts)m

)
= qm

(j)
11 + q1/2m

(j)
21 ,

and

Ttm
(j)
21

= Tt

(m−1∑
k=1

(a
(j)
k + a

(j)
k+1)C(ts)k + a(j)m C(ts)m

)

= −
(m−1∑
k=1

(a
(j)
k + a

(j)
k+1)C(ts)k + a(j)m C(ts)m

)
= −m(j)

21 ,

as required.
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Next, we want to compute Tsm
(j)
21 . By definition, we have that

Tsm
(j)
21

= Ts

(m−1∑
k=1

(a
(j)
k + a

(j)
k+1)C(ts)k + a(j)m C(ts)m

)

= q
(m−1∑
k=1

(a
(j)
k + a

(j)
k+1)C(ts)k + ξ−1j a(j)m C(ts)m

)
+ q1/2a(j)m Cw0

+ q1/2
(

(a
(j)
1 + a

(j)
2 )Cs

+

m−2∑
k=1

(a
(j)
k + 2a

(j)
k+1 + a

(j)
k+2)C(st)ks + (a

(j)
m−1 + 2a(j)m )C(st)m−1s

)

= qm
(j)
21 + q1/2a(j)m Cw0 + q1/2

(
(a

(j)
1 + a

(j)
2 )Cs +

m−2∑
k=1

(a
(j)
k + 2a

(j)
k+1 + a

(j)
k+2)C(st)ks

+ (a
(j)
m−1 + 2a(j)m )C(st)m−1s

)
≡ qm(j)

21 + q1/2
(

(a
(j)
1 + a

(j)
2 )Cs +

m−1∑
k=1

(a
(j)
k + 2a

(j)
k+1 + a

(j)
k+2)C(st)ks

)
(mod (H�jq,R)) .

We claim that a
(j)
1 + a

(j)
2 = (2 + pj)a

(j)
1 , and for each 1 ≤ k ≤ m− 1,

a
(j)
k + 2a

(j)
k+1 + a

(j)
k+2 = (2 + pj)a

(j)
k+1.

Once this is proved, we shall get that

Tsm
(j)
21 ≡ qm

(j)
21 + q1/2(2 + pj)m

(j)
11 (mod (H�jq,R)) , (4)

and we are done.

In fact, by Definition 3.8 and the paragraph above Definition 3.9, we have that

a
(j)
1 + a

(j)
2 = 2 + pj = (2 + pj)a

(j)
1 . Furthermore, for each 1 ≤ k ≤ m− 1,

a
(j)
k + 2a

(j)
k+1 + a

(j)
k+2 = (a

(j)
k + a

(j)
k+1) + (a

(j)
k+1 + a

(j)
k+2)

= (2 + pj)Sk−1,R(pj) + (2 + pj)Sk,R(pj) = (2 + pj)(Sk−1,R(pj) + Sk,R(pj))

= (2 + pj)a
(j)
k+1,

as required. As a consequence, we get (4). Thus we have that

Tsm
(j)
11 = −m(j)

11 , Ttm
(j)
21 = −m(j)

21 ,

Ttm
(j)
11 = qm

(j)
11 + q1/2m

(j)
21 ,

Tsm
(j)
21 ≡ qm

(j)
21 + q1/2(2 + pj)m

(j)
11 (mod (H�jq,R)) .
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Note that by definition m
(j)
12 , m

(j)
22 can be obtained from m

(j)
21 , m

(j)
11 by inter-

changing the role of s, t. By a symmetric argument, we can also get that

Ttm
(j)
22 = −m(j)

22 , Tsm
(j)
12 = −m(j)

12 ,

Tsm
(j)
22 = qm

(j)
22 + q1/2(2 + pj)m

(j)
12 ,

Ttm
(j)
12 ≡ qm

(j)
12 + q1/2m

(j)
22 (mod (H�jq,R)) .

Comparing these equalities, we verified the Cellular Axiom (C2). Thus this com-

pletes the proof of the theorem. �

Now we consider the construction of cellular basis of Hq,R(Wn) in the case when

n = 2m.

Case 2: Suppose that n = 2m. In this case, by our assumption, Lemma 2.11 and

Corollary 3.7,

Sm−1,R(x) =

m−1∏
j=1

(x− pj),
m−1∏
j=1

(2 + pj) = m,

where p1, · · · , pm−1 are pairwise distinct.

Definition 3.15. [3, Section 4] For any integers 1 ≤ k ≤ m−1 and 1 ≤ j ≤ m−1,

we define

â
(j)
1 = S0,R(pj) = 1, â

(j)
k = Sk−1,R(pj).

We also set â
(j)
0 = â

(j)
m := 0.

Definition 3.16. (compare [3, Section 4]) For each 1 ≤ j ≤ m− 1, we define

u′j =

m−1∑
k=0

(â
(j)
k + â

(j)
k+1)C(st)ks ∈ Hq,R(Wn),

v′j =

m−2∑
k=0

(â
(j)
k + 2â

(j)
k+1 + â

(j)
k+2)C(ts)k+1 ∈ Hq,R(Wn),

t′j =

m−1∑
k=0

(â
(j)
k + â

(j)
k+1)C(ts)kt ∈ Hq,R(Wn),

z′j =

m−2∑
k=0

(â
(j)
k + 2â

(j)
k+1 + â

(j)
k+2)C(st)k+1 ∈ Hq,R(Wn).
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Since n = 2m, by Lemma 3.4 the set Irr(Hu,K(Wn)) consists of four one-

dimensional representations and m two-dimensional representations as follows:

ρ
(1)
0 : Ts 7→ u, Tt 7→ u, ρ

(2)
0 : Ts 7→ −1, Tt 7→ u,

ρ
(3)
0 : Ts 7→ u, Tt 7→ −1, ρ

(4)
0 : Ts 7→ −1, Tt 7→ −1,

ρj : Ts 7→

(
−1 0

2u+ 2u cos(2jπ/n) u

)
, Tt 7→

(
u 1

0 −1

)
, 1 ≤ j ≤ m− 1.

Set Λ := {0+, 0−,∞+,∞−, 1, 2, · · · ,m−1} which is in bijection ι with Irr(Hu,K(Wn))

via the following correspondence:

0− 7→ ρ
(1)
0 , 0+ 7→ ρ

(2)
0 , ∞− 7→ ρ

(3)
0 , ∞+ 7→ ρ

(4)
0 ,

j 7→ ρj , ∀ 1 ≤ j ≤ m.

We define 0− ≺ 0+ ≺ j ≺ ∞− ≺ ∞+ for any 1 ≤ j ≤ m− 1. Thus we can define a

partial order “�” on Λ by

λ � µ ⇔ λ = µ or λ ≺ µ.

Definition 3.17. Let λ ∈ Λ := {0+, 0−,∞+,∞−, 1, 2, · · · ,m− 1} and set T (λ) =

{1, 2, · · · , dλ}, where dλ = dim(ι(λ)). If λ = 0−, then ι(λ) = ρ
(1)
0 and we define

m
(0−)
11 := C1 = 1.

If λ = 0+, then ι(λ) = ρ
(2)
0 and we define

m
(0+)
11 :=

m∑
k=1

(−1)k−1C(st)k−1s.

If λ =∞−, then ι(λ) = ρ
(3)
0 and we define

m
(∞−)
11 :=

m∑
k=1

(−1)k−1C(ts)k−1t.

If λ =∞+, then ι(λ) = ρ
(4)
0 and we define

m
(∞+)
11 := Cw0 = C(st)m = C(ts)m .
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If λ = j for some 1 ≤ j ≤ m− 1, then ι(λ) = ρj is a two-dimensional represen-

tation. In this case, we define

m
(j)
11 : = u′j =

m−1∑
k=0

(â
(j)
k + â

(j)
k+1)C(st)ks,

m
(j)
21 : = v′j =

(m−2∑
k=0

(â
(j)
k + 2â

(j)
k+1 + â

(j)
k+2)C(ts)k+1

)
,

m
(j)
22 : = (2 + pj)t

′
j = (2 + pj)

m−1∑
k=0

(â
(j)
k + â

(j)
k+1)C(ts)kt,

m
(j)
12 : = z′j =

(m−2∑
k=0

(â
(j)
k + 2â

(j)
k+1 + â

(j)
k+2)C(st)k+1

)
.

For each λ ∈ Λ, let H�λq,R and H�λq,R be the R-submodule of Hq,R(Wn) generated

by the elements in the set {m(µ)
uv |u, v ∈ T (µ), λ ≺ µ ∈ Λ} and the set {m(µ)

uv |u, v ∈
T (µ), λ � µ ∈ Λ} respectively. Recall that “∗” is the anti-isomorphism of Hq,R(Wn)

which is defined on generators by T ∗w = Tw−1 for all w ∈ I2(n).

We set b
(j)
0 := 0 + â

(j)
1 = 1 and for any 1 ≤ k ≤ m− 1,

b
(j)
k := â

(j)
k + â

(j)
k+1 = Sk−1,R(pj) + Sk,R(pj).

Lemma 3.18. With the notations as above, the elements in the set {m(0+)
11 ,m

(j)
11 |1 ≤

j ≤ m − 1} are R-linearly independent in Hq,R(Wn) and form an R-basis of the

space spanned by {C(st)ks|0 ≤ k ≤ m− 1}.

Proof. By definition, we have that

(
m

(0+)
11 ,m

(1)
11 ,m

(2)
11 , · · · ,m

(m−1)
11

)
=
(
Cs, Csts, · · ·C(st)m−1s)

)
B,

where

B :=



1 b
(1)
0 b

(2)
0 · · · b

(m−1)
0

−1 b
(1)
1 b

(2)
1 · · · b

(m−1)
1

1 b
(1)
2 b

(2)
2 · · · b

(m−1)
2

...
...

...
...

...

(−1)m−1 b
(1)
m−1 b

(2)
m−1 · · · b

(m−1)
m−1


.

It suffices to show that detB ∈ R×.
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For k = m − 1,m − 2, · · · , 1, we add the kth row of B to the k + 1th row of B

and thus get that

detB = det



1 b
(1)
0 b

(2)
0 · · · b

(m−1)
0

0 b
(1)
1 + b

(1)
0 b

(2)
1 + b

(2)
0 · · · b

(m−1)
1 + b

(m−1)
0

0 b
(1)
2 + b

(1)
1 b

(2)
2 + b

(2)
1 · · · b

(m−1)
2 + b

(m−1)
1

...
...

...
...

...

0 b
(1)
m−1 + b

(1)
m−2 b

(2)
m−1 + b

(2)
m−2 · · · b

(m−1)
m−1 + b

(m−1)
m−2


.

By definition, b
(j)
0 + b

(j)
1 = 1 + â

(j)
1 + â

(j)
2 = 1 + S0,R(pj) + S1,R(pj) = 2 + pj .

Applying (1), b
(j)
k + b

(j)
k+1 = (2 + pj)Sk,R(pj) for all 1 ≤ k ≤ m− 2. It follows that

detB = det


2 + p1 2 + p2 · · · 2 + pm−1

(2 + p1)S1,R(p1) (2 + p2)S1,R(p2) · · · (2 + pm−1)S1,R(pm−1)

...
...

...
...

(2 + p1)Sm−2,R(p1) (2 + p2)Sm−2,R(p2) · · · (2 + pm−1)Sm−2,R(pm−1)



=
(m−1∏

j=1

(2 + pj)
)
det


1 1 · · · 1

S1,R(p1) S1,R(p2) · · · S1,R(pm−1)

...
...

...
...

Sm−2,R(p1) Sm−2,R(p2) · · · Sm−2,R(pm−1)



= mdet


1 1 · · · 1

S1,R(p1) S1,R(p2) · · · S1,R(pm−1)

...
...

...
...

Sm−2,R(p1) Sm−2,R(p2) · · · Sm−2,R(pm−1)

 .

On the other hand, by the definition of Sk,R(x), we know that Sk,R(x) = xk +

lower terms and S1,R(x) = x. By an easy induction on k, we can deduce that

det


1 1 · · · 1

S1,R(p1) S1,R(p2) · · · S1,R(pm−1)
...

...
...

...

Sm−2,R(p1) Sm−2,R(p2) · · · Sm−2,R(pm−1)



= det



1 1 · · · 1

p1 p2 · · · pm−1

p21 p22 · · · p2m−1
...

...
...

...

pm−21 pm−22 · · · pm−2m−1


=

∏
1≤i<j≤m−1

(pj − pi) ∈ R×,

where the last inequality follows from Corollary 3.7.
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By Assumption 3.6, m ∈ R×. Therefore, we can conclude that detB ∈ R×. This

completes the proof of the lemma. �

Lemma 3.19. The elements in the set {m(j)
12 |1 ≤ j ≤ m − 1} are R-linearly

independent in Hq,R(Wn) and form an R-basis of the space spanned by {C(st)k |1 ≤
k ≤ m− 1}.

Proof. It suffices to show that {z′j |1 ≤ j ≤ m − 1} are R-linearly independent in

Hq,R(Wn) and form an R-basis of the space spanned by {C(st)k |1 ≤ k ≤ m− 1}.
By definition, for each 1 ≤ j ≤ m− 1, we have that

z′j =

m−2∑
k=0

(b
(j)
k + b

(j)
k+1)C(st)k+1 =

m−2∑
k=0

(2 + pj)Sk(pj)C(st)k+1 .

It follows that (
z′1, z

′
2, · · · , z′m−1

)
=
(
Cst, C(st)2 , · · ·C(st)m−1)

)
P,

where

P :=


2 + p1 (2 + p1)S1,R(p1) · · · (2 + p1)Sm−2,R(p1)

2 + p2 (2 + p2)S1,R(p2) · · · (2 + p2)Sm−2,R(p2)
...

...
...

...

2 + pm−1 (2 + pm−1)S1,R(pm−1) · · · (2 + pm−1)Sm−2,R(pm−1)

 .

It suffices to show that detP ∈ R×. As in the proof of Lemma 3.19, we can

deduce that

detP =
(m−1∏
j=1

(2 + pj)
) ∏

1≤i<j≤m−1

(pj − pi) = m
∏

1≤i<j≤m−1

(pj − pi) ∈ R×,

as required. This completes the proof of the lemma. �

Interchanging the role of s, t in the proof of the above lemma we can get the

following results.

Lemma 3.20. The elements in the set {m(∞−)
11 ,m

(j)
22 |1 ≤ j ≤ m − 1} are R-

linearly independent in Hq,R(Wn) and form an R-basis of the space spanned by

{C(ts)kt|0 ≤ k ≤ m− 1}.

Lemma 3.21. The elements in the set {m(j)
21 |1 ≤ j ≤ m − 1} are R-linearly

independent in Hq,R(Wn) and form an R-basis of the space spanned by {C(ts)k |1 ≤
k ≤ m− 1}.

Theorem 3.22. Suppose that n = 2m. We keep the Assumption 3.6 on R and n

and the Definition 3.17. Then
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1) for any λ ∈ Λ, s, t ∈ T (λ), we have that (m
(λ)
st )∗ = m

(λ)
ts ;

2) the elements in the set
{
m

(λ)
st

∣∣ λ ∈ Λ, s, t ∈ T (λ)
}

are R-linearly indepen-

dent and form an R-basis of Hq,R(Wn);

3) with the data of the anti-isomorphism “∗”, the poset (Λ,�), and the set

T (λ) for each λ ∈ Λ, the set {m(λ)
st } forms a cellular basis of Hq,R(Wn).

Proof. 1) follows from the definition and a direct verification. Since

{C(st)ks|0 ≤ k ≤ m− 1} t {C(ts)kt|0 ≤ k ≤ m− 1} t {C(st)k |1 ≤ k ≤ m− 1}

t {C(ts)k |1 ≤ k ≤ m− 1} t {C1, Cw0}

is a basis of Hq,R(Wn), 2) follows from Lemmas 3.18, 3.19, 3.20, and 3.21.

It remains to prove 3). To this end, it suffices to verify the cellular axiom C2)

in Definition 3.5.

Let j ∈ Λ, s ∈ T (j). To verify the cellular axiom C2), it suffices to show that for

each u ∈ T (j), there exist ru, r
′
u ∈ R, such that for any t ∈ T (j),

Tsm
(j)
st ≡

∑
u∈T (j)

rum
(j)
ut (mod H�jq,R) , Ttm

(j)
st ≡

∑
u∈T (j)

r′um
(j)
ut (mod H�jq,R) .

If j ∈ {0±,∞±}, then T (j) = {1}, and the above statement clearly holds. In

fact, by Lemmas 3.18 and 3.20, we have that

Tsm
(0−)
11 = TsC1 = qC1 + q1/2Cs ≡ qm(0−)

11 (mod H
�0−
q,R ) ,

Ttm
(0−)
11 = TtC1 = qC1 + q1/2Ct ≡ qm(0−)

11 (mod H
�0−
q,R ) ,

Tsm
(∞+)
11 = TsCw0 = −Cw0 = −m(∞+)

11 ,

Ttm
(∞+)
11 = TtCw0 = −Cw0 = −m(∞+)

11 .

By Lemma 3.3, we have that

Tsm
(0+)
11 = Ts

m∑
k=1

(−1)k−1C(st)k−1s = −m(0+)
11 ,

and

Ttm
(0+)
11 = Tt

m∑
k=1

(−1)k−1C(st)k−1s = TtCs + Tt

m∑
k=2

(−1)k−1C(st)k−1s

= qCs + q1/2Cts +

m∑
k=2

(−1)k−1
(
qC(st)k−1s + q1/2C(ts)k + q1/2C(ts)k−1

)
= qm

(0+)
11 + (−1)m−1q1/2Cw0

≡ qm(0+)
11 (mod H

�0+
q,R ) .
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Similarly, Ttm
(∞−)
11 = Ts

∑m
k=1(−1)k−1C(ts)k−1t = −m(∞−)

11 , and

Tsm
(∞−)
11 = Ts

m∑
k=1

(−1)k−1C(ts)k−1t = TsCt + Tt

m∑
k=2

(−1)k−1C(ts)k−1t

= qCt + q1/2Cst +

m∑
k=2

(−1)k−1
(
qC(ts)k−1t + q1/2C(st)k + q1/2C(st)k−1

)
= qm

(∞−)
11 + (−1)m−1q1/2Cw0

≡ qm(∞−)
11 (mod H

�∞−
q,R ) .

Henceforth, we assume that j ∈ {1, 2, · · · ,m− 1}. By Lemma 3.3, we have that

Tsm
(j)
11 = Ts

m−1∑
k=1

â
(j)
k (C(st)k−1s + C(st)ks) = −m(j)

11 ,

and

Ttm
(j)
11 = Tt

m−1∑
k=0

(â
(j)
k + â

(j)
k+1)C(st)ks = TtCs + Tt

m−1∑
k=1

(â
(j)
k + â

(j)
k+1)C(st)ks

= qCs + q1/2Cts +

m−1∑
k=1

b
(j)
k

(
qC(st)ks + q1/2C(ts)k+1 + q1/2C(ts)k

)
= qm

(j)
11 + q1/2

m−2∑
k=0

(b
(j)
k + b

(j)
k+1)C(ts)k+1 + q1/2â

(j)
m−1Cw0

= qm
(j)
11 + q1/2m

(j)
21 + q1/2â

(j)
m−1Cw0

≡ qm(j)
11 + q1/2m

(j)
21 (mod H�jq,R) ,

while Ttm
(j)
21 = Tt

∑m−2
k=0 (â

(j)
k + 2â

(j)
k+1 + â

(j)
k+2)C(ts)k+1 = −m(j)

21 , and

Tsm
(j)
21 = Ts

m−2∑
k=0

(â
(j)
k + 2â

(j)
k+1 + â

(j)
k+2)C(ts)k+1

= qm
(j)
21 + q1/2

m−2∑
k=0

(â
(j)
k + 2â

(j)
k+1 + â

(j)
k+2)(C(st)k+1s + C(st)ks)

= qm
(j)
21 + q1/2

m−2∑
k=0

(b
(j)
k + b

(j)
k+1)(C(st)k+1s + C(st)ks)

= qm
(j)
21 + q1/2

m−2∑
k=0

(pj + 2)Sk,R(pj)(C(st)k+1s + C(st)ks)

= qm
(j)
21 + q1/2(pj + 2)

m−1∑
k=1

â
(j)
k (C(st)ks + C(st)k−1s)

= qm
(j)
21 + q1/2(pj + 2)m

(j)
11 .
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Interchanging the role of s and t, we can also get that

Ttm
(j)
22 = −m(j)

22 ,

Tsm
(j)
22 ≡ qm

(j)
22 + q1/2(2 + pj)m

(j)
12 (mod H�jq,R) ,

Tsm
(j)
12 = −m(j)

12 ,

Ttm
(j)
12 = qm

(j)
12 + q1/2m

(j)
22 .

Comparing these equalities, we verified the Cellular Axiom (C2). Thus this com-

pletes the proof of the theorem. �

Corollary 3.23. Suppose that R = F is a field which satisfies the Assumption 3.6.

Then the Hecke algebra Hq,F (Wn) associated to the dihedral group I2(n) of order

2n is split over F .

Proof. This follows from Theorems 3.14, 3.22, and general theory of cellular alge-

bra [5]. �
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