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1. Introduction

One of the surprising facts about finite rings is that a polynomial can be nonzero

and yet induce the zero function. An interesting first example is provided by Fer-

mat’s Little Theorem: If p is prime, then the nonzero polynomial xp�x induces the

zero function on Zp. Using this we can build obvious examples, such as ppxp � xq

and pxp�xq2 on Zp2 , and more surprising examples, such as pxp�xqp�pp�1pxp�xq

on Zpp�1 ; see Corollary 4.5 for more information on these examples. For a ring R,

it’s easy to see that the set of polynomials in Rrxs that induce the zero function

on R is an ideal of Rrxs; we call this the null ideal of R, denoted N pRq. The null

ideal has been studied, often with particular focus on the rings R � Zpn , for its

connection with integer-valued polynomials and functions induced by polynomials

[3,5,10,13] and coding theory [6].

For most of our paper, pR,mq is a Noetherian local ring; we will see that N pRq

is nonzero only when the residue field R � R{m is finite, so we focus most of our

attention on this case and let q �
��R��. Many authors have studied the problem of

finding a generating set for N pRq, most often in the case R � Zpn [1,2,3,7,9,10,11].

In this paper, we argue that in many cases, focus should be shifted from N pRq to the
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simpler ideal N pmq, which is the set of polynomials that induce the zero function

on m. The connection between the two is the ideal N pR,mq, the set of polynomials

that take elements of R into m; it’s easy to show that N pR,mq � pxq � x,mq.

Certainly polynomials in N pR,mq can be composed with those in N pmq to obtain

polynomials in N pRq; visually, N pmq � N pR,mq � N pRq. One of the main themes

of this paper is to show that in some sense the opposite is true: A generating set

for N pRq can be obtained by composing generators of N pR,mq with generators of

N pmq (see Theorem 4.2).

Example 1.1. Let R � Z9, so that m � p3q and R � Z3. By direct computation

or by Theorem 4.4, N pmq � px,mq2. In Lemma 2.5 we easily find that with πpxq �

x3�x, N pR,mq � pπpxq,mq � px3�x, 3q; from this, according to Theorem 4.2, we

deduce

N pRq � N pmq �N pR,mq � px3 � x, 3q2.

This makes it clear that the simpler ideal N pmq controls the structure of the gener-

ating set of the more complicated ideal N pRq.

The polynomial xq � x has played an important role in the research on null

ideals, due primarily to the fact that the image of xq � x generates N
�
R
�

and,

to a lesser extent, the fact that when R is finite, xq � x maps R surjectively onto

m; see A. Bandini’s paper [1] for applications of surjectivity when R � Zpn . We

generalize the surjectivity result in Corollary 2.11 and apply it in Theorem 3.3 and

Proposition 4.1. A secondary theme of this paper is that there is actually a class

of polynomials with these properties that can play the role of xq � x; we call these

π-polynomials, defined to be polynomials of the form πpxq �
±q

i�1px � ciq where

c1, . . . , cq is any set of representatives of the residue classes of m. As we will see,

xq � x is a π-polynomial when R is Henselian (which holds true in the common

case where R is finite). If R is complete, we also provide a computational way of

obtaining the factorization of any π-polynomial, such as xq � x itself. In the case

of xq � x, this method is as simple as choosing any element of R and repeatedly

taking the qth power; the results converge to a root of xq �x. (See Theorems 2.10,

5.2.)

The ideal N pRq for R � Zpn was studied as early as 1929 by L. E. Dickson [2,

Theorem 27]; in that work, the polynomials in N pRq were referred to as residual

polynomials. Dickson found a generating set for N pZpnq when n ¤ p. In our

notation, he found N pRq � pπpxq,mqn, where πpxq � xp � x and m � pR. We

generalize and recover this work as another application of our Theorem 4.2: We
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show in Theorem 4.4 and its corollary that if pR,mq is an Artinian local ring with

a principal maximal ideal having index of nilpotency e ¤ q, then N pmq � px,mqe,

and thus N pRq � pπpxq,mqe for any π-polynomial. When e ¡ q, the situation is

more complicated, but we take care of the case e � q � 1; the result is related to

results on N pRq for specific rings R ([1, Theorem 2.1] and [7, Theorem II]).

As further indication of the importance of π-polynomials and N pmq, we provide

two additional results. Under suitable conditions, we prove in Proposition 2.7 that

N pRq is the intersection of the principal ideals generated by the π-polynomials,

and in Proposition 2.9 we provide a minimal primary decomposition of N pRq as

the intersection of the ideals N pci �mq, where c1, . . . , cq is a set of representatives

of the residue classes of m. Since generators for N pci �mq may be obtained from

generators for N pmq by composition with x� ci, this shows that a primary decom-

position for N pRq may be obtained from knowing only a generating set for N pmq.

This result on primary decomposition is a generalization of results from the paper

[10] of G. Peruginelli, which was concerned with the ring R � Zpn .

The remaining theme of our paper is provided in Theorem 3.3, Theorem 3.4, and

Corollary 3.5, where we identify conditions under which N pRq is nonzero, principal,

and regular, and the same for N pmq; these results explain why we often focus our

attention on finite rings. The results generalize, have some overlap with, and were

inspired by R. Gilmer’s paper [4].

2. Null ideals and π-polynomials

We begin with a precise definition of the null ideal of a ring, and we define a

class of polynomials that plays an important role in the study of null ideals.

Definition 2.1. Let R be a commutative ring with identity, let S be a subset of

R, and let J be an ideal of R. The set N pS, Jq of polynomials in Rrxs which map

S into J is easily seen to be an ideal of Rrxs. When the ideal J is omitted, it is

assumed to be zero. The focus of this paper is on N pRq, which we call the null

ideal of R.

Definition 2.2. Suppose the local ring pR,mq has a finite residue field and let

fpxq P Rrxs. If fpxq �
±q

i�1px� ciq for some set of representatives c1, . . . , cq of the

residue classes of m, then we call the polynomial fpxq a π-polynomial for R.

Example 2.3. We mentioned in the introduction that for R � Z9, N pmq � px, 3q2.

However, for R � Z8, N pmq � px, 2q3. In fact, according to Theorem 4.4 and a few

brief calculations, N pmq � px, 2q3 � px2 � 2xq � px2 � 2x, 4xq. We may then use
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Theorem 4.2 to compose with the π-polynomial πpxq � x2 � x and conclude that

N pRq � ppx2 � xq2 � 2px2 � xq, 4px2 � xqq.

The following basic result is a generalized factor theorem that will be useful in

a few proofs. This result appeared in Gilmer’s proof of Theorem 4 in [4], albeit

restricted to units rather than regular elements. We omit the trivial proof of this

result.

Lemma 2.4. Let R be a commutative ring with identity. If fpxq P Rrxs is a

polynomial with roots c1, c2, . . . , cn such that each difference ci � cj (i � j) is a

regular element, then px� c1qpx� c2q � � � px� cnq divides fpxq in Rrxs.

Convention. Throughout this paper, we let R be a local ring with maximal ideal

m; we do not automatically assume thatR is Noetherian. Unless otherwise specified,

the residue field R{m will be denoted by R. The image in R of an element r P R

will be denoted by r. If the residue field is finite, c1, . . . , cq will denote a set of

representatives of the residue classes of m and πpxq will denote the π-polynomial

πpxq �
±q

i�1px� ciq.

The following lemma may be viewed as a generalization of Fermat’s Little The-

orem; it is well-known, at least in special cases, as remarked by D. J. Lewis in [7].

A simple but important consequence of this lemma is that πpRq � m. Later in

Corollary 2.11 we will show that if R is Henselian, then πpRq � m.

Lemma 2.5. If pR,mq is a local ring with finite residue field of cardinality q and

πpxq is any π-polynomial, then N pR,mq � pπpxq,mq.

Proof. Let fpxq P N pR,mq; then fpxq P N
�
R
�
. By Lemma 2.4, fpxq is in the ideal

generated by πpxq in Rrxs; pull this back to Rrxs to get fpxq P pπpxq,mq.

For the opposite containment, certainly the constant polynomials in m are in

N pR,mq. Now suppose πpxq �
±q

i�1px� ciq. Since any element in R is congruent

modulo m to one of the ci, the polynomial πpxq is in N pR,mq, as desired. �

Example 2.6. Let R � Zp5q (Z localized at the prime ideal p5q), so that m � p5q,

R � Z5, and q � 5. The polynomial xq � x is not a π-polynomial since it doesn’t

factor completely over R � Q: x5 � x � xpx � 1qpx � 1qpx2 � 1q. However, as we

shall see in Theorem 2.10, this polynomial is a π-polynomial for the Henselian ring

R̂ of 5-adic integers. In this case, this is due to the existence of a square root of -1

in R̂.
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By Lagrange’s Theorem applied to the group of units of R, it is true that x5 �

x P N pR,mq. According to the lemma, we expect x5 � x P pπpxq,mq for any π-

polynomial. In fact, if for example we let πpxq � px�2qpx�1qxpx�1qpx�2q, then

x5 � x � πpxq � 5px3 � 1q P pπpxq,mq.

In the next result we show that the polynomials in the null ideal are precisely

those polynomials that are multiples of each π-polynomial.

Proposition 2.7. Let pR,mq be a local ring with finite residue field R of cardinality

q. The null ideal of R is the intersection of the principal ideals generated by the

π-polynomials. That is, N pRq �
�
pπpxqq, where the intersection is taken over all

π-polynomials πpxq for R.

Proof. The fact that any polynomial fpxq P N pRq is a multiple of any π-polynomial

πpxq follows immediately from Lemma 2.4. This shows N pRq �
�
pπpxqq.

Let fpxq P
�
pπpxqq and let r P R; we show fprq � 0. We may extend r to a set

r, c2, . . . , cq of representatives of the residue classes of m, and thus the polynomial

πpxq � px� rqpx� c2q � � � px� cqq is a π-polynomial having r as a root. Since fpxq

is a multiple of πpxq, fprq � 0. Thus fpxq P N pRq. �

In the following result we give a minimal primary decomposition of N pRq if R is

finite. First, we give a simple example:

Example 2.8. For R � Z9, as mentioned in the introduction, we have N pmq �

px, 3q2 � px2, 3xq, so the proposition below gives the following minimal primary

decomposition of N pRq:

ppx3 � xq2, 3px3 � xqq � px2, 3xq X ppx� 1q2, 3px� 1qq X ppx� 2q2, 3px� 2qq,

where the ideals on the right are primary for the maximal ideals px, 3q, px � 1, 3q,

and px� 2, 3q, respectively.

Proposition 2.9. Let pR,mq be a finite local ring with residue field R of cardinality

q. Let c1, . . . , cq be a set of representatives of the residue classes of m. Then

N pRq �
�q

i�1 N pci �mq is a minimal primary decomposition of N pRq. For each i,

the associated prime of N pci �mq is the maximal ideal px� ci,mq.

Proof. For the minimality of the decomposition, let j be an integer between 1

and q; we show that N pRq �
�

i�j N pci �mq. Let hpxq �
±

i�jpx � ciq
e; then

hpxq P
�

i�j N pci �mq since me � 0. To see that hpxq does not induce the zero

function, note that hpcjq �
±

i�jpcj�ciq
e is a product of units, and is thus nonzero.

The proofs of the remaining assertions are straightforward and thus omitted. �
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Next we provide an equivalent way to view π-polynomials, provided the ring is

Henselian; of course, this holds for the finite local rings in which we are mainly

interested. For an example where the two conditions below are not equivalent, see

Example 2.6. This theorem is also needed in our proof that π-polynomials map

R surjectively onto m. (A Henselian local ring is a local ring satisfying Hensel’s

Lemma.)

Theorem 2.10. Let R be a Henselian local ring with finite residue field R of cardi-

nality q. For any polynomial ppxq P Rrxs, the following statements are equivalent:

(i) The polynomial ppxq is a π-polynomial.

(ii) The polynomial ppxq is monic and maps to xq � x in Rrxs.

Proof. Let ppxq be any π-polynomial. Since R is a field with q elements, by

Lagrange’s theorem on the group of units of R, xq �x induces the zero function on

R. By Lemma 2.4, ppxq divides xq � x in Rrxs. Since these are monic polynomials

of the same degree, they are equal.

For the converse, suppose ppxq is any monic polynomial with ppxq � xq �x. Let

R � td1, . . . , dqu; as discussed in the previous paragraph, xq � x �
±q

i�1px � diq

in Rrxs. By Hensel’s Lemma, this factorization of ppxq can be pulled back to a

factorization in Rrxs: There exist ci in R with ci � di such that ppxq �
±q

i�1px�ciq.

Thus ppxq is a π-polynomial. �

In the following corollary, we improve upon part of Lemma 2.5 by showing that

the induced function π : R Ñ m is actually surjective when R is Henselian. This

generalizes Lemma 1.3 of [1], where A. Bandini proved that, for any prime p,

πpRq � m in case R � Zpn and πpxq � xp � x. We use this corollary in our

Theorem 3.3, where we characterize finite rings with principal null ideals, expanding

upon Gilmer [4]. It is used again in Proposition 4.1, which is fundamental for our

Theorem 4.2, which shows that generators for N pRq may be obtained by composing

generators for N pmq with a π-polynomial.

Corollary 2.11. If pR,mq is a Henselian local ring with finite residue field R of

cardinality q, then πpRq � πpcq � m for any π-polynomial πpxq and any coset c of

m.

Proof. We show that πpcq � πpRq � m � πpcq. The first containment is clear

since c � R, and we saw the second containment in Lemma 2.5. For the final

containment, let m P m. By Theorem 2.10, the polynomial πpxq � m is still a

π-polynomial, and thus it factors over R: πpxq �m � px� c1qpx� c2q � � � px� cqq.
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This shows that for each i, πpciq � m. Since c1, c2, . . . , cq is a set of representatives

of the residue classes of m, one of them, say cj , is in c. Thus m � πpcjq P πpcq, as

desired. �

3. When N pRq and N pmq are nonzero, regular, or principal

In the upcoming Theorems 3.3 and 3.4 we will use the following result from

B. R. McDonald. McDonald states and proves the theorem for any finite local

ring pR,mq, but the theorem and proof still hold when R is just Artinian. The

notation McDonald uses is different from ours but the part we will use is that over

an Artinian local ring, any regular polynomial is an associate of a monic polynomial.

McDonald writes µf where we would write f , the image of f in Rrxs.

Theorem 3.1. [8, Theorem XIII.6, p. 259] Let f be a regular polynomial in Rrxs.

Then there is a monic polynomial f� with µf � µf� and, for an element a in R,

fpaq � 0 if and only if f�paq � 0. Furthermore, there is a unit v in Rrxs with

vf � f�.

One of the motivations for the current paper is Theorem 4 from [4], which states

that if pR,mq is a zero-dimensional local ring, then N pRq is principal if and only if

either R is infinite (when N pRq � 0) or R is a finite field (when N pRq is generated by

xq �x.) The upcoming theorem (2 ñ 1) recovers the sufficiency in Gilmer’s result,

using some of the same ideas but a few different ones as well. For example, Gilmer

used a result of E. Snapper; instead we use the result of McDonald mentioned

above. Also, we make the connection with π-polynomials and N pmq. The necessity

in Gilmer’s result is recovered in Theorem 3.4, Statements 2 and 6. (In considering

the connection between our results and Gilmer’s Theorem, one should keep in mind

that a zero-dimensional (Noetherian) local ring is finite if and only if it has a finite

residue field.)

It should be noted that in Gilmer’s result, local rings are assumed to be Noether-

ian. This is clear for several reasons, including his reference to Zariski-Samuel [12],

and due to the following, which would be a counterexample to Gilmer’s Theorem 4

if the local ring were not assumed to be Noetherian.

Example 3.2. Let

R � Z2rT1, T2, . . .s{pT
2
1 , T

2
2 , . . .q � Z2rt1, t2, . . .s,

a zero-dimensional non-Noetherian local ring with maximal ideal m � pt1, t2, . . .q.

We claim that N pRq is principal even though R is not infinite and R is not a finite

field.
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Since R has characteristic 2, x2 P N pmq; thus f P Rrxs is in N pmq if and only

if its linear term, say f1x, is in N pmq, and this is true if and only if f1m � 0.

However, the annihilator of m is 0, so N pmq � px2q. One may now prove directly

that N pRq � ppx2 � xq2q, but it’s easier to note that R is Henselian and apply our

main theorem, Theorem 4.2.

Theorem 3.3. Let pR,mq be a finite local ring and let πpxq be any π-polynomial

for R. The following statements are equivalent:

(1) R is a field.

(2) N pRq is principal.

(3) N pRq � pπpxqq.

(4) N pmq is principal.

(5) N pmq � pxq.

Proof. p1q ñ p2q If R is a field, then Rrxs is a principal ideal domain, so N pRq is

principal.

p2q ñ p3q Assume N pRq is principal. Since πpRq � m and me � 0 for some

e ¥ 1, N pRq contains regular polynomials, such as πpxqe; thus, the generator of

N pRq must be regular. According to Theorem 3.1, we may assume the generator

is monic: N pRq � pfpxqq for some monic polynomial in Rrxs. Let r be a nonzero

element in the annihilator of m, so that, by Lemma 2.5, rπpxq is a polynomial of

degree q in N pRq � pfpxqq. This forces fpxq to have degree at most q, and since

we know that all polynomials in N pRq are multiples of πpxq (Proposition 2.7), the

degree of fpxq is exactly q. Since fpxq is a monic multiple of πpxq with the same

degree, fpxq � πpxq.

p3q ñ p4q If N pRq � pπpxqq, then according to Corollary 2.11, 0 � πpRq � m.

From this we easily conclude that N pmq � pxq, and thus N pmq is principal.

p4q ñ p5q If N pmq is principal, we use an argument similar to the part where we

assumed N pRq is principal. Since N pmq contains xe for some e ¥ 1, N pmq contains

regular elements, so the generator of N pmq is regular, and we may assume it is

monic: N pmq � pfpxqq for some monic fpxq P Rrxs. Let r be a nonzero element in

the annihilator of m, so that rx P N pmq. This forces fpxq to have degree at most

1. Since fpxq is monic and fp0q � 0, fpxq � x, as desired.

p5q ñ p1q If N pmq � pxq, then m � 0, so R is a field. �

In the next proposition it becomes clear how the conditions of being Artinian

or having a finite residue field affect N pRq and N pmq. We will use the concept
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of the embedding dimension of R, denoted edimR; this is the minimal number of

generators of the maximal ideal. Recall that depthR ¤ dimR ¤ edimR.

Theorem 3.4. Let pR,mq be a Noetherian local ring.

(1) N pmq contains nonzero polynomials if and only if depthR � 0.

(2) N pRq contains nonzero polynomials if and only if depthR � 0 and R is

finite.

(3) N pmq contains regular polynomials if and only if dimR � 0.

(4) N pRq contains regular polynomials if and only if dimR � 0 and R is finite.

(5) N pmq is generated by a regular polynomial if and only if edimR � 0.

(6) N pRq is generated by a regular polynomial if and only if edimR � 0 and R

is finite.

In order to make the similarity with the other parts more clear, parts (4), (5),

and (6) of the previous proposition were not stated as concisely as possible. Before

we present the proof, we state a corollary to clarify those three parts; the proof

of the corollary is straightforward and is thus omitted. In the development of this

paper, we were particularly interested in the monic polynomials in N pRq, so this

corollary explains why we were mainly focused on finite rings.

Corollary 3.5. Let pR,mq be a Noetherian local ring.

(3) N pmq contains regular polynomials if and only if R is Artinian.

(4) N pRq contains regular polynomials if and only if R is a finite ring.

(5) N pmq is generated by a regular polynomial if and only if R is a field.

(6) N pRq is generated by a regular polynomial if and only if R is a finite field.

Proof of Theorem 3.4. (1) If R has depth 0 then since R is Noetherian, there is a

nonzero element m that annihilates m; thus mx P N pmq.

If R does not have depth 0, then R contains a regular element t. Let gpxq �

g0� g1x�� � �� gnx
n P N pmq. Since gptq � gpt2q � gpt3q � � � � � gptn�1q � 0, there

is a matrix equation�
������

1 t1 t2 � � � tn

1 t2 t4 � � � t2n

...
...

...
. . .

...

1 tn�1 tpn�1q2 � � � tpn�1qn

�
������

�
������

g0

g1
...

gn

�
������
�

�
������

0

0
...

0

�
������
.

The determinant of this Vandermonde matrix is¹
1¤i j¤n�1

ptj � tiq �
¹

1¤i j¤n�1

tiptj�i � 1q.
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Since each tj�i�1 is a unit, this determinant is an associate of a power of t; namely

tk where k � npn�1qpn�2q{6. After multiplying both sides of the matrix equation

by the adjugate and dividing by the unit, we find that tkgi � 0 for each i. Since tk

is regular, the polynomial gpxq is zero, as desired.

(2) Assume R � tc1, . . . , cqu and R has depth 0. Since R is Noetherian with

depth 0, there is a nonzero element m that annihilates m. By Lemma 2.5, the

polynomial πpxq �
±q

i�1px � ciq is in N pR,mq, so the polynomial mπpxq is a

nonzero element of N pRq.

For the converse, if R is not finite, then there is an infinite sequence of elements

tcnun¥1 such that no two come from the same residue class of m; thus each difference

cj � ci (j � i) is a unit. On the other hand, if R does not have depth 0, then there

is a regular element t P m. Consider the sequence ttnun¥1; for i ¡ j we have

ti� tj � tjpti�j�1q. Since tj is regular and ti�j�1 is a unit, each difference ti� tj

(i � j) is regular.

In either case, we may apply Lemma 2.4 to conclude that any nonzero polynomial

in the null ideal has arbitrarily high degree. This is a contradiction, so the null

ideal contains only the zero polynomial, as desired.

(3) If R has dimension 0, then me � 0 for some e ¥ 1. Thus xe P N pmq.

Conversely, if R has positive dimension, then for any minimal prime ideal p of

R, R{p is an integral domain of positive dimension; in particular, it has positive

depth. According to Part (1), N pm{pq is the zero ideal of R{p. The image of any

fpxq P N pmq in pR{pqrxs is in N pm{pq, and thus fpxq P prxs. Since the coefficients

of fpxq are in every minimal prime, they are all nilpotent, so fpxq is not regular.

(4) Suppose R is finite and dimR � 0. Let e be such that me � 0 and let

R � tc1, . . . , cqu. By Lemma 2.5, the polynomial πpxq �
±q

i�1px�ciq is in N pR,mq,

so the regular polynomial πpxqe is in N pRq.

Conversely, suppose either R is infinite or dimR ¥ 1. If R is infinite, then

N pRq does not contain regular polynomials since it is the zero ideal, by Part (2).

If dimR ¥ 1, the proof continues as in the “conversely” part of the proof of (3),

replacing N pm{pq with N pR{pq.

(5) If edimR � 0, then R is a field, so m � 0 and N pmq � pxq.

Conversely, assume N pmq � pfpxqq for some regular polynomial fpxq P Rrxs.

By Part (3), dimR � 0, so me � 0 for some e ¥ 1. Due to this and the result

from McDonald (our Theorem 3.1), we may assume fpxq is monic. By Part (1),

depthR � 0, so there is an element m P m with mx P N pmq. This shows that the
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monic polynomial fpxq must have degree 1; the only choice is fpxq � x. From this

we see that m � 0 so R is a field.

(6) If edimR � 0 and R is finite, then R is a finite field, so N pRq � pπpxqq for

any π-polynomial, by Lemma 2.5.

Conversely, assume N pRq � pfpxqq for some regular polynomial fpxq. From

Part (4) we know that dimR � 0 and R is finite; this implies that R is finite. By

Theorem 3.3, R is a finite field, so edimR � 0. �

In the following example we illustrate the use of this theorem and contrast the

behavior of the null ideals over rings with finite and infinite residue fields.

Example 3.6. The ring R � Z2JS, T K{pS2, ST q is a complete Noetherian local ring

with depth zero, dimension one, and a finite residue field with q � 2 elements; let s

and t be the images of S and T in R. According to Theorem 3.4, N pmq is nonzero

but does not contain regular polynomials, and the same goes for N pRq. We argue

that N pmq � psxq and conclude that N pRq � pspx2 � xqq by applying Theorem 4.2.

Certainly N pmq � psxq, since the annihilator of the maximal ideal of R is sR.

For the opposite containment, let R̃ � R{sR � Z2JT K, a local Noetherian ring of

positive depth. If fpxq P N pmq, then f̃ P N pm̃q, where m̃ and f̃ are the images of m

and f in R̃ and R̃rxs. By Theorem 3.4 (1), N pm̃q � 0, so we conclude that f P psq.

Since fp0q � 0, f P psq X pxq � psxq, as desired.

If we switch to an infinite coefficient ring and residue field, say, Q instead of

Z2, we still have N pmq � psxq (nonzero but containing no regular polynomials).

However, Theorem 4.2 does not apply (for one thing, π-polynomials don’t exist). In

fact, Theorem 3.4 (2) guarantees N pRq � 0 instead of N pRq � pspx2 � xqq.

4. Obtaining N pRq from N pmq; applications

The following proposition is the key to our main result, Theorem 4.2.

Proposition 4.1. Let pR,mq be a Henselian local ring with finite residue field R

and let πpxq be an arbitrary π-polynomial. Any fpxq P N pRq may be written in the

form

fpxq � p0pπpxqq � xp1pπpxqq � x2p2pπpxqq � � � � � xq�1pq�1pπpxqq

with each pipxq P N pmq.

Proof. Let fpxq P N pRq. In the polynomial ring Rrx, ys � Rrysrxs, f may be

divided by the monic polynomial πpxq�y, so that fpxq � Qpx, yqpπpxq�yq�Gpx, yq

for some Qpx, yq, Gpx, yq P Rrx, ys with Gpx, yq � 0 or the degree of Gpx, yq with
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respect to x is less than q. Now set y � πpxq to obtain fpxq � p0pπpxqq�xp1pπpxqq�

x2p2pπpxqq � � � � � xq�1pq�1pπpxqq where the polynomials pipyq P Rrys are the

coefficients of the powers of x in Gpx, yq.

It remains to see that each pipxq P N pmq. Let m P m. Since (according to

Corollary 2.11) π maps each coset of m onto m, there exists a set c1, c2, . . . , cq

of representatives of the residue classes of m, with πpciq � m for each ci; each

difference ci � cj (i � j) is a unit. Since fpxq P N pRq, we may evaluate fpxq at ci

for each i from 1 to q to obtain

0 � p0pmq � cip1pmq � c2i p2pmq � � � � � cq�1
i pq�1pmq.

In matrix form, this system becomes

�
������

0

0
...

0

�
������
�

�
������

1 c1 c21 � � � cq�1
1

1 c2 c22 � � � cq�1
2

...
...

...
. . .

...

1 cq c2q � � � cq�1
q

�
������

�
������

p0pmq

p1pmq
...

pq�1pmq

�
������
.

The matrix is a Vandermonde matrix, and its determinant is
±

1¤i j¤qpcj � ciq,

which is a unit since it is a product of units. Thus, the matrix is invertible, so each

pipmq � 0, as desired. �

An application of the previous result, we come to our main theorem, which states

that generators for N pRq can be obtained by composing generators for N pmq with

any π-polynomial, which we could roughly describe by writing N pRq � N pmq �

N pR,mq, if one keeps in mind Lemma 2.5 which states that N pR,mq � pπpxq,mq.

An obvious consequence of the next theorem is that the minimal number of gener-

ators of N pRq is less than or equal to the minimal number of generators of N pmq.

Theorem 4.2. Suppose pR,mq is a Henselian local ring with finite residue field R of

cardinality q and let πpxq be an arbitrary π-polynomial. If N pmq � pF1pxq, . . . , Fnpxqq,

then N pRq � pF1pπpxqq, . . . , Fnpπpxqqq.

Proof. Since πpRq � m, certainly N pRq � pF1pπpxqq, . . . , Fnpπpxqqq. Now let

fpxq P N pRq. Use Proposition 4.1 to write fpxq � p0pπpxqq�xp1pπpxqq�x
2p2pπpxqq�

� � � � xq�1pq�1pπpxqq with each pipxq P N pmq. Since each pipxq is an Rrxs-linear

combination of F1pxq, . . . , Fnpxq, each pipπpxqq is an Rrxs-linear (actually Rrπpxqs-

linear) combination of F1pπpxqq, . . . , Fnpπpxqq. Since fpxq is an Rrxs-linear combi-

nation of the pipπpxqq, the proof is complete. �
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Remark 4.3. The equality N pRq � N pmq �N pR,mq should not be taken too liter-

ally. Certainly polynomials in N pmq composed with polynomials in N pR,mq are in

N pRq, but it’s not true that every polynomial in N pRq can be obtained in that way.

For example, xpx2 � xq P N pZ2q, but since its degree is not even, it does not equal

fpx2 � xq for any polynomial fpxq.

As mentioned in the introduction, the theorem below is a version of results of

Dickson [2, p. 22, Theorem 27], Bandini [1, Theorem 2.1], and Lewis [7, Theorem II],

adapted for N pmq rather than N pRq, and for finite local rings rather than specific

rings. We then recover the results for N pRq in Corollary 4.5 as an application of

our main theorem, Theorem 4.2.

Theorem 4.4. Let pR,mq be a finite local ring with principal maximal ideal m �

pmq; set q � |R{m|. Suppose e is the index of nilpotency of m. If e ¤ q, then

N pmq � px,mqe; if e � q � 1, then N pmq � px,mqe � pxq �mq�1xq.

Proof. We prove the first result using induction on e. The base case e � 1 is clear,

since then R is a field, m � 0, and N pmq � pxq. Assume the result is true for rings

whose maximal ideal has index of nilpotency e�1 ¤ q; we prove the result for a ring

whose maximal ideal has index of nilpotency e ¤ q. The containment � is clear. Let

fpxq P N pmq; then fpxq P N
�
m{me�1

�
. By induction, fpxq P px,mqe�1, and thus

fpxq P px,mqe�1. We have fpxq �
°e�1

k�0 x
kme�1�kfkpxq for some fkpxq P Rrxs; it

remains to see that each fkpxq P px,mq, i.e. that fkp0q P m.

For each r P R,

0 � fprmq �
e�1̧

k�0

prmqkme�1�kfkprmq � me�1
e�1̧

k�0

rkfkprmq.

Since the annihilator of me�1 is m,
°e�1

k�0 r
kfkprmq P m, and thus

°e�1
k�0 r

kfkp0q P m.

This shows that
°e�1

k�0 fkp0qx
k P N

�
R
�
. Since by Lemma 2.5 N

�
R
�
� pxq�xq, this

polynomial with degree less than q must be the zero polynomial. Therefore each

fkp0q P m, as desired.

For the second result, the only part of the containment N pmq � px,mqe � pxq �

mq�1xq that is not clear is xq � mq�1x P N pmq; for this, take any rm P m and

compute prmqq �mq�1prmq � mqprq � rq P mq�1 � 0. For the opposite contain-

ment, assume fpxq P N pmq and reduce module me�1 as above to obtain a similar

expression for fpxq, and again deduce that
°e�1

k�0 fkp0qx
k P N

�
R
�
� pxq�xq. Since

e� 1 � q, we must have
°e�1

k�0 fkp0qx
k � upxq � xq for some unit u P R; thus each

fkp0q � 0 except for fqp0q � u and f1p0q � �u . Define polynomials gkpxq identical
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to fkpxq except for gqpxq � fqpxq � u and g1pxq � f1pxq � u. Now the constant

term of each gkpxq is in m and we have

fpxq �
e�1̧

k�0

xkme�1�kfkpxq � upxq �mq�1xq �
e�1̧

k�0

xkme�1�kgkpxq

so that fpxq P px,mqe � pxq �mq�1xq, as desired. �

The following corollary follows immediately from the theorem and Theorem 4.2.

Corollary 4.5. Let pR,mq be a finite local ring with principal maximal ideal m �

pmq; set q � |R{m|. Suppose e is the index of nilpotency of m, and let πpxq be

any π-polynomial. If e ¤ q then N pRq � pπpxq,mqe; if e � q � 1 then N pRq �

pπpxq,mqe � pπpxqq �mq�1πpxqq.

5. Factoring π-polynomials

The following lemma is the heart of a more constructive approach (Theorem 5.2)

to the converse part of the proof of Theorem 2.10, which gave two equivalent con-

ditions for π-polynomials. Note that according to this lemma, if me � 0, then for

any r P R, the sequence tpnprqu stabilizes at n � e� 1.

Lemma 5.1. Let pR,mq be a Noetherian local ring with finite residue field R of

cardinality q, and let ppxq be any polynomial mapping to xq � x in Rrxs. Let

p0pxq � x and pnpxq � pppn�1pxqq � pn�1pxq, so that pnpxq denotes the function

obtained by successively applying the function ppxq � x, n times. For every n ¥ 1,

pnpxq � pn�1pxq P N pR,mnq .

Proof. We use induction on n. For the base case (n � 1) just note that p1pxq �

p0pxq � pppxq � xq � x � ppxq P N
�
R,m1

�
by Lemma 2.5.

Now assume the induction hypothesis: For some n ¥ 1, pnpxq � pn�1pxq P

N pR,mnq. We show that pn�1pxq�pnpxq P N
�
R,mn�1

�
. Since ppxq is a polynomial

mapping to xq � x modulo mrxs, there is some mpxq P mrxs such that ppxq �

xq � x � mpxq; thus pnpxq may also be viewed as applying xq � mpxq, n times.

For simplicity of notation, set c � pnpxq, a � pn�1pxq, and b � c � a, so that
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c � ppaq � a � aq �mpaq. We have

pn�1pxq � pnpxq � pppnpxqq � pnpxq � pnpxq

� ppcq

� cq � c�mpcq

� pa� bqq � c�mpcq

� aq � qaq�1b�

�
q

2



aq�2b2 � � � � � bq � c�mpcq

� qaq�1b�

�
q

2



aq�2b2 � � � � � bq �mpaq �mpcq

since aq � c � mpaq. By induction, b P N pR,mnq, and since q P m, we see that

the first term is in N
�
R,mn�1

�
. Since b P N pR,mnq and n ¥ 1, b2 P N

�
R,mn�1

�
,

which takes care of all but the last two terms: mpaq �mpcq.

Now mpaq � mpcq �
°degmpxq

i�1 mipa
i � ciq, where mi is the coefficient of xi in

mpxq, and is thus in m. Since �b � a�c is a factor of ai�ci for all positive integers

i and �b P N pR,mnq, it follows that mpaq �mpcq P N
�
R,mn�1

�
, as desired. �

The following theorem provides, in particular, a more constructive approach to

the proof of the result in Theorem 2.10 which states that any monic polynomial

ppxq mapping to xq �x is actually a π-polynomial. In a ring with me � 0, it allows

discovery of the roots by successively applying the function ppxq � x (e� 1 times)

to representatives of the residue classes of m. When ppxq � xq � x, this amounts

to successively taking qth powers. In the case of a finite ring, the resulting roots of

xq � x are called Teichmüller elements in Jian Jun Jiang’s paper [5].

Theorem 5.2. Let pR,mq be a complete Noetherian local ring with finite residue

field R � tc1, . . . , cqu. Let ppxq be any polynomial mapping to xq � x in Rrxs and

let pnpxq be the function obtained by applying ppxq � x successively, n times. The

limit limnÑ8 pnpciq exists. Set di � limnÑ8 pnpciq; then di is a root of ppxq and

di � ci. If ppxq is monic, then there is a factorization

ppxq � px� d1qpx� d2q � � � px� dqq,

and thus ppxq is a π-polynomial.

Proof. The limit exists since, by Lemma 5.1, the sequence tpnpciqun¥1 is a Cauchy

sequence. For any r P R, pprq � r and r are in the same coset of m, since pprq �

rq � r � mprq P m. We may apply this fact successively, beginning with r � ci,

to see that each pnpciq is congruent to ci modulo m. Since m is closed under the

m-adic topology, we conclude that di � ci.
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To see that ppdiq � 0, use the Cauchy sequence mentioned above and the fact

that polynomials are continuous under the m-adic topology:

ppdiq � pplim pnpciqq � lim pppnpciqq � limppn�1pciq � pnpciqq � 0.

If ppxq is monic then it must have degree q; an application of Lemma 2.4 com-

pletes the proof. �

Example 5.3. With R � Z125, we have q � 5 and e � 3. We can choose ele-

ments 0, 1, 2, 3, 4 to be representatives of the elements of R{m � Z5. We factor the

polynomial

πpxq � x5 � 5x4 � 40x3 � 85x2 � 24x� 50 � x5 � x�mpxq

where mpxq � �p5x4�40x3�85x2�25x�50q. Applying p2pxq to 0, 1, 2, 3, 4 yields

50, 31, 72, 18, 74. According to the theorem, πpxq factors in Rrxs as

πpxq � px� 50qpx� 31qpx� 72qpx� 18qpx� 74q.
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