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Abstract. In this paper, we show that a domain R is a Gorenstein Dedekind

domain if and only if every divisible module is Gorenstein injective; if and only

if every divisible module is copure injective.
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1. Introduction

Throughout this paper, all rings are commutative rings with identity element and

all modules are unitary. For an R-module M , pdRM (resp. idRM , resp. fdRM)

stands for the projective (resp. injective, resp. flat) dimension of M . We also use

w.gl.dim(R) (resp. gl.dim(R)) to denote the weak global (resp. global) dimension

of R.

An R-module D is said to be divisible if Ext1R(R/aR,D) = 0 for all a ∈ R; and

an R-module M is called h-divisible if it is an epic image of an injective R-module.

Note that injective modules and all h-divisible R-modules are divisible.

Divisible modules and h-divisible modules play important roles in characterizing

domains. It is well known that a domain R is a Dedekind (resp. Prüfer) domain

if and only if every divisible module is injective (resp. FP-injective); if and only if

every h-divisible module is injective (resp. FP-injective).

Recall that a domain R is called a Matlis domain [9] if the projective dimension

of the field of quotients is at most one. It is shown [10] that a domain R is a
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Matlis domain if and only if every divisible module is h-divisible; if and only if

every divisible module is K-injective, where an R-module A is called K-injective if

Ext1R(K,A) = 0 for the field of quotients K of R.

Recall from [11] that an R-module W is called weak-injective if Ext1R(M,W ) = 0

for all modules M with fdRM ≤ 1 and from [1] that a domain R is called almost

perfect (APD shortly) if all its proper homomorphic images are perfect. It is proved

in [8, Corollary 6.4.8] that a domain R is an APD if and only if every divisible

module is weak-injective; if and only if every h-divisible is weak-injective.

An R-module M is said to be Gorenstein projective (G-projective for short) [5]

if there is an exact sequence of projective modules

P = · · · → P1 → P0 → P 0 → P 1 → · · ·

such that M ∼= Im(P0 → P 0) and that HomR(−, Q) leaves the sequence P exact

whenever Q is a projective R-module. A Gorenstein injective R-module is defined

dually. The Gorenstein projective, injective dimensions are defined in terms of

Gorenstein projective, injective resolutions, respectively, and denoted by GpdR(−),

GidR(−). In [3], Bennis and Mahdou defined the Gorenstein global dimension

Ggldim(R) of R, and proved that for any ring R, we have

Ggldim(R) = sup{GpdRM | M is any R-module}
= sup{GidRM |M is any R-module}.

Recall that a ring R is called Gorenstein hereditary if Ggldim(R) ≤ 1. Also, a

Gorenstein hereditary domain is called a Gorenstein Dedekind domain. Naturally,

we propose the following question:

Question 1.1. Let R be a domain. Is it true that R is a Gorenstein Dedekind

domain if and only if every divisible module is Gorenstein injective; if and only if

every h-divisible module is Gorenstein injective?

As in [4], Enochs and Jenda introduce the concepts of copure injective modules

and strongly copure injective modules. For an R-module M , M is called copure

injective if Ext1R(E,M) = 0 for any injective R-module E, and M is called strongly

copure injective if ExtiR(E,M) = 0 for any injective R-module E and for all i ≥ 1.

In the paper [4] the authors define the copure injective dimension cidRM of an

R-module M to be the largest integer n ≥ 0 such that ExtnR(E,M) 6= 0 for some

injective R-module E. Of course, if no such n exists, write cidR(M) = ∞. Thus

cidRM = 0 if and only if M is strongly copure injective. As in [4, Lemma 3.1], it is

shown that for an R-module M , cidRM ≤ m if and only if Extm+i
R (E,M) = 0 for
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any injective R-module E. The copure injective dimension of a ring R is defined in

[7] as ciD(R) = sup{ cidR(M) |M is an R-module }. It is clear that all domains R

with ciD(R) ≤ 1 are Matlis domains.

In this paper, in terms of copure injective modules, we show that a domain R

with ciD(R) ≤ 1 is exactly a Gorenstein Dedekind domain, and give an affirmative

answer to Question 1.1.

2. Main result

Lemma 2.1. Let R be a ring with ciD(R) ≤ 1. Then every copure injective R-

module M is divisible. Moreover, if R is a domain with ciD(R) ≤ 1, then every

divisible R-module is copure injective.

Proof. Let M be a copure injective R-module. For any a ∈ R which is neither

a non-zero-divisor nor a unit, fdRR/aR ≤ 1 and the sequence 0 → aR → R →
R/aR → 0 is exact. By hypothesis, ciD(R) ≤ 1, fdRR

+ ≤ pdRR
+ ≤ 1. Now, let

X be an R-module. Note that (aR)+ ∼= R+ as R-modules. Then we can obtain

fdR(R/aR)+ ≤ 1 from the sequence 0 = TorR3 (X, (aR)+)→ TorR2 (X, (R/aR)+)→
TorR2 (X,R+) = 0. Then idRR/aR ≤ 1 since R/aR is finitely presented. So there

is an exact sequence 0 → R/aR → E → C → 0 with E,C injective. Hence

pdRC ≤ 1 by [7]. Then Ext1R(E,M) → Ext1R(R/aR,M) → Ext2R(C,M) = 0

is exact. By hypothesis, M is copure injective, Ext1R(E,M) = 0 holds. Hence

Ext1R(R/aR,M) = 0. Thus M is divisible, as desired.

Now, assmue R is a domain with ciD(R) ≤ 1. Then R is a Matlis domain. Let

M be a divisible module. By [10, Lemma 2.4], M is h-divisible. Since ciD(R) ≤ 1,

M is copure injective. �

Example 2.2. A copure injective R-module is not necessarily divisible. In fact, let

L be a field and set R = L[x, y]. Set M = R/(x, y). Then for any flat R-module N ,

we have Ext1R(M,N) = 0, but Ext2R(M,R) ∼= HomR(M,M) 6= 0. Hence M is not

torsion-free. By [7, Proposition 3.7] and [4, Lemma 3.4], M+ is copure injective.

By [6, Proposition 5.3.7] and [11, Lemma 3.1 & Theorem 3.3], M+ is not divisible.

Lemma 2.3. Let R be a domain. Then ciD(R) ≤ 1 if and only if every h-divisible

module is copure injective.

Proof. The assertion follows from the fact that pdRE ≤ 1 holds for any injective

R-module E by [7]. �

Let M be an R-module. As in [7], the copure projective dimension cpdR(M) of an

R-module M is defined to be the smallest integer n ≥ 0 such that Extn+i
R (M,F ) = 0
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for any flat R-module F and for any i ≥ 0. Of course, if no such n exists, write

cpdR(M) = ∞. Thus cpdR(M) ≤ m is equivalent to M has a strongly copure

projective resolution 0 −→ Pm −→ Pm−1 −→ · · · −→ P1 −→ P0 −→ M −→ 0,

where each Pi is strongly copure projective. The copure projective dimension of a

ring R is defined as cpD(R) = sup{ cpdR(M) |M is an R-module }.
We are now in a position to give an affirmative answer to Question 1.1.

Theorem 2.4. Let R be a domain. Then the following statements are equivalent:

(1) R is a Gorenstein Dedekind domain.

(2) ciD(R) ≤ 1.

(3) Every divisible module is copure injective.

(4) Every h-divisible module is copure injective.

(5) Every divisible module is Gorenstein injective.

(6) Every h-divisible module is Gorenstein injective.

Proof. (1) ⇒ (2) Let E be an injective module. Then pdRE ≤ 1 by [2, Theorem

1.2]. Let X be any R-module. Then Ext2R(E,X) = 0 and cidRX ≤ 1. Hence

ciD(R) ≤ 1.

(2) ⇒ (1) Let P be a nonzero prime ideal of R. Pick 0 6= a ∈ P . Set m =

ciD(T = R/aR). There is a T -module M = M/aM 6= 0 with cidTM = m, and an

injective T -module N with ExtmT (N,M) 6= 0. Let 0 → N → E → C → 0 be an

exact sequence, where E is an injective R-module, and M is an R-module. Thus C

is also an injective T -module. Hence we have the exact sequence ExtmT (E,M) →
ExtmT (N,M) → Extm+1

T (C,M) = 0, which implies ExtmT (E,M) 6= 0. By Rees

Theorem, we get Extm+1
R (E,M) ∼= ExtmT (E,M) 6= 0. Therefore, 1 ≥ cidRM ≥

m + 1. Hence m = 0. Therefore, ciD(T ) = 0. Then T is a QF ring. Since a QF

ring is Artinian, P/(a) is finitely generated. Consequently, P is finitely generated,

and hence R is Noetherian. Thus cpD(R) ≤ 1 by [7, Corollary 5.6]. Hence R is a

Gorenstein Dedekind domain by [7, Theorem 4.18].

(2) ⇔ (3) ⇔ (4) By Lemma 2.1 and Lemma 2.3.

(1)⇔ (5)⇔ (6) Since all Gorenstein Dedekind domains are Matlis domains, the

result holds. �

Corollary 2.5. Let R be a Gorenstein Dedekind domain. Then R is a Dedekind

domain if and only if every copure injective R-module is injective.

We conclude this article with the following examples.

Rings R with ciD(R) ≤ 1 are not necessarily Noetherian.
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Example 2.6. Let R be an umbrella ring with gl.dim(R) ≤ 2 and let P be the

maximum non-finitely generated prime ideal of R. Pick 0 6= a ∈ P . Then R/(a) is

a coherent ring with ciD(R) ≤ 1, and not Noetherian.

Rings R with ciD(R) ≤ 1 are not necessarily hereditary.

Example 2.7. Construct R = Q[x, y]/(x2 + 2y2). Since x2 + 2y2 is an irreducible

polynomial, we have that R is a Gorenstein Dedekind domain. Noting that R is not

integrally closed, we have gl.dim(R) =∞.

Let R be a ring with ciD(R) ≤ 1. Then gl.dim(R) <∞ is not necessarily true.

Example 2.8. We give another example of a ring with ciD(R) ≤ 1 and gl.dim(R) =

∞. Set R = Z4, where Z is the set of integers. Then R is a QF ring with

gl.dim(R) =∞.

Let R be a ring with gl.dim(R) <∞. Then ciD(R) ≤ 1 is not necessarily true.

Example 2.9. Let C be the field of complex numbers and X,Y be the indetermi-

nates over C. We use C(X,Y ) to denote the quotient field of the polynomial ring

C[X,Y ]. Let Z be an indeterminate over C(X,Y ). Then m = (Z) is a maximal

ideal of C(X,Y ). Construct R = C[X,Y ] + ZC(X,Y )[Z]m. Then gl.dim(R) = 3

and ciD(R) > 1.

Let R be a ring with gl.dim(R) = ∞. Then ciD(R) ≤ 1 does not necessarily

hold.

Example 2.10. Construct a ring R = Z4[X,Y ], where X,Y are the indeterminates

over Z4. Then gl.dim(R) =∞ and ciD(R) > 1.
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