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Abstract. It is well-known that in general polynomials lose their CNS prop-

erty by addition of small positive integers. We comment on a conjecture of S.

Akiyama on addition of sufficiently large positive constants to CNS polynomi-

als.
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1. Introduction

Canonical number systems (usually abbreviated by CNS) can be regarded as

generalizations of the classical decimal or binary numeration systems. They have

first been introduced by the Hungarian school some decades ago (see [23,24,25,

27]); special cases had already been studied in [20,21,26]. The works [7,8] are

recommended as profound surveys on this subject in a broader context.

The concept of CNS polynomials (see Section 2 for the definition) was introduced

by A. Pethő [32] and generalized in the sequel (see for example [2,6,34]). Some

results on these polynomials are known (e.g., see [4,5,11,12,22,29]), however, until

now the characterization of CNS polynomials for degrees at least 3 has remained

an open problem and seems to be difficult. Moreover, the set of CNS polynomials

seems to have poor algebraic properties. For instance, polynomials can lose their

CNS property by addition of small positive integers.

In view of this situation, S. Akiyama [1] put forward the following interesting

conjecture: For every CNS polynomial P there exists a positive integer N such that

P + n is a CNS polynomial for all n ≥ N .

In this short note we collect several examples in support of Akiyama’s Conjecture.

Further, aiming at a quantitative version of this conjecture we propose a mapping

on a certain subset of integer polynomials which contains the CNS polynomials,

but which is very easy to describe. Finally, we speculate on other aspects which

are related to Akiyama’s Conjecture.
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2. Some comments on Akiyama’s Conjecture

Let us first recall the definition of a CNS polynomial1. The monic integer

polynomial P with nonzero constant term is called a CNS polynomial if every

element in Z[X]/P has a polynomial representative with coefficients in the set

{0, 1, . . . , |P (0)| − 1}. The CNS property of a given polynomial can be decided

algorithmically [9,17,35], and we tacitly use this fact in the sequel.

It is well-known that the set C of all CNS polynomials is not closed under addition

of positive integers. K. Scheicher and J. Thuswaldner [33, Section 7] published the

first example of a CNS polynomial P such that P + 1 is not a CNS polynomial;

more examples can be found in the sequel. Clearly, Akiyama’s Conjecture means

that the CNS property is preserved provided that the added integer is large enough.

We observe that the truth of this conjecture would imply necessary conditions for

CNS polynomials provided that these conditions have been established for CNS

polynomials with a strictly dominant constant term. Recall that a polynomial is

said to have a strictly dominant (dominant, resp.) constant term if the modulus of

its constant term is strictly larger than (greater than or equal to, resp.) the sum of

the moduli of its remaining coefficients (cf. [18]).

Akiyama’s Conjecture is supported by several straightforward consequences of

well-known results collected in Proposition 2.2 below. In its proof we exploit the

following obvious, but useful fact.

Lemma 2.1. Let P be a monic integer polynomial of positive degree with a positive

strictly dominant constant term. Then P ∈ C if and only if P + 1 ∈ C.

Proof. Let d = deg(P ) and e ∈ {0, 1}d. Then the orbits of e under the iterates

of τP and τP+1 coincide (the reader is referred to [2] for the definition and the

necessary background). This means in particular that they have the same set of

periodic elements, and in view of [15, Lemma 3.1] this fact implies our assertion. �

Proposition 2.2. Let P =
∑d

i=0 piX
i be a CNS polynomial of degree d. Then

Akiyama’s Conjecture holds for P provided that one of the following conditions

holds.

(i) p2, . . . , pd−1 ≥ 0,

(ii) pk < 0 for exactly one k ∈ {1, . . . , d− 1} and∑
1≤ki≤d

pki ≥ 0. (2.1)

1CNS polynomials are named complete base polynomials in [17].



ON AKIYAMA’S CONJECTURE ON CNS POLYNOMIALS 169

(iii) P is a trinomial,

(iv) d ≤ 3,

(v) P has a dominant constant term and d ≤ 5,

(vi) P has a strictly dominant constant term.

(vii) P is weakly Hurwitz stable.

(viii) d ≥ 4 and P has exactly one non-real root ρ which satisfies

0 < <(ρ) ≤ −1

2

d−2∑
i=1

ri

and

ai−1 ≤
|ρ|2

2<(ρ)
ai (i = 2, . . . , d− 2),

where we set
d−2∑
i=0

aiX
i :=

d−2∏
i=1

(X − ri) ,

and r1, . . . , rd−2 are the real roots of P .

Proof. (i) In view of [4, Lemma 2] clear by [5, Theorem 3.2] or [33, Theorem 5.8].

(ii) Clear by [5, Theorem 3.5].

(iii) Obvious by [11, Theorem 3].

(iv) This is immediate by the well-known characterization of linear (e.g., see [20])

and quadratic (e.g., see [20,23]) CNS polynomials and Gilbert’s conditions for cubic

CNS polynomials ([3, Theorem 3.1]).

(v) Clear by [5] and [15].

(vi) This is an immediate consequence of Lemma 2.1.

(vii) Recall that we have <(ρ) ≤ 0 for every root ρ of P (e.g., see [10]). Thus all

coefficients of P are non-negative and our claim is clear by (i).

(viii) Observing

P = Xd + (ad−3 − 2<(ρ))Xd−1 +

d−2∑
i=1

(|ρ|2 ai − 2<(ρ)ai−1)Xi + |ρ|2 a0

and

ad−3 = −
d−2∑
i=1

ri

our claim follows from (i). �

Let us give an example how Akiyama’s Conjecture can be exploited to derive a

necessary condition on CNS polynomials. Consider P =
∑d

i=0 piX
i ∈ C such that

pk < 0 for exactly one k ∈ {1, . . . , d− 1}. If Akiyama’s Conjecture holds true then
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(2.1) must be satisfied: Indeed, then there exists some2 n ∈ N such that P + n ∈ C
with strictly dominant constant term, and [5, Theorem 3.5] settles our claim.

Proposition 2.2, results of [5] and further numerical examples suggest the follow-

ing.

Conjecture 2.3. Let P =
∑d

i=0 piX
i ∈ C with d ≥ 2 and (p1, . . . , pd−1) 6=

(0, . . . , 0). If m := max {i ∈ {1, . . . , d− 1} : pi 6= 0} then pm ≥ −1.

By [4, Theorem 3] Conjecture 2.3 holds under the dominant condition, and

the truth of Akiyama’s Conjecture would imply this conjecture for every CNS

polynomial.

In view of [4, Lemma 2] Akiyama’s Conjecture is equivalent to the statement

that the constant

α(f) := inf {N ∈ N : f + n ∈ C for all n ≥ N} (f ∈M)

is finite for every CNS polynomial f ; here we put

M := {f ∈ Z[X] : f monic, f(1) ≥ f(0) ≥ 2 and f(−1) ≥ 1} .

Trivially, the set M is closed under multiplication. Further, M is obviously closed

under addition of positive integers, and we recall that C is contained inM. Indeed,

let f ∈ C. Then f is expansive by [30, Theorem 6.1]3, therefore we have f(0) ≥ 2 by

[20, Proposition 6]4, finally we have f(1) ≥ f(0) by [4, Lemma 2] and we conclude

f(−1) ≥ 1.

In the following we collect some easy properties of the map α : M→ N ∪ {∞}.
To this end, we introduce a function δ : M→ N0 which might be regarded as the

distance of a polynomial to the nearest suitable polynomial with a strictly dominant

constant term. Specifically, we set

δ
( d∑
i=0

aiX
i
)

:= max

{
1− a0 +

d∑
i=1

|ai| , 0

}
.

Proposition 2.4. Let f ∈M.

(i) For n ∈ N0 we have

α(f) = n+ α(f + n) .

2N is the set of positive rational integers and N0 = N ∪ {0}.
3[20, Corollary 4] shows the every root of an irreducible CNS polynomial lies outside the open unit

disk. In the respective part of the proof of [30, Theorem 6.1] the assumption ”without multiple

roots” is not used.
4Irreducibility is not used in the proof of [20, Proposition 6].
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(ii) For n ∈ N we have

α(f(Xn)) = α(f(X)) .

In particular, f(Xn) satisfies Akiyama’s Conjecture if and only if f(X)

does.

(iii) Let f ∈ C. Then α(f) <∞ if and only f + δ(f) ∈ C. In this case, we have

α(f) ≤ δ(f) + 1 . (2.2)

Proof. (i) Clear by the definition.

(ii) Clear by [11, Theorem 1].

(iii) If α(f) < ∞ then we can find some n such that f + n is a CNS polynomial

with strictly dominant constant term. Since f + δ(f) also has a strictly dominant

constant term our assertion is clear by Lemma 2.1.

Conversely, if f + δ(f) ∈ C then we have f + δ(f) + n ∈ C for all n ∈ N by

Lemma 2.1, hence

α(f + δ(f)) = 1,

and therefore (2.2) by (i). �

Remark 2.5. (i) The bound for α given in Proposition 2.4 can certainly be im-

proved for particular classes of CNS polynomials. For instance, let P ∈ C with

P (0) = 2 and degree at most 11. Then we have

α(P ) ≤ δ(P ).

Indeed, apply [33, Theorem 5.8] to the lists of these CNS polynomials in [28, Sec-

tion 2.5] and [16, Section 4].

(ii) Let f ∈M be a trinomial. The well-known characterization of CNS trinomials

[11] shows α(f) ∈ {1, 2, 3,∞}; in particular, f ∈ C yields α(f) = 1.

This remark also shows that the CNS property is sensitive for inserting zeroes

into the sequence of the coefficients of polynomials. Indeed, consider the CNS tri-

nomial X4 − X2 + 3 with α(X4 − X2 + 3) = 1, but X5 − X2 + 3 ∈ M \ C with

α(X5 −X2 + 3) =∞.

We now present a bound for α for a polynomial in our larger set M.

Proposition 2.6. Let P =
∑d

i=0 piX
i ∈ M with degree d ≥ 2 and assume that

there is exactly one index k such that pk < 0. If∑
1≤ki≤d

pki ≥ 0

then inequality (2.2) holds.
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Proof. Clear by [15, Theorem 3.5]. �

To conclude, let us consider some more examples to motivate further conjectures.

Example 2.7. (i) Exploiting the well-known characterization of linear and

quadratic CNS polynomials we have

α(Xd + c) = α(X2 + bX + c) = 1 (d ∈ N, c ≥ 2, −1 ≤ b ≤ c).

(ii) For P := X3 + 31X2 − 8X + 31 we have P ∈M \ C and α(P ) = 3.

(iii) For n ≥ 3 we have

P := X3 + 2nX2 − nX + 3n ∈M \ C

by [3, Counterexamples]. We infer α(P ) = 1 from [15, Theorem 3.5], and

numerical experiments suggest

α(P − bn/2c) = n− 1 (n ≥ 3).

(iv) For

Pn = X3 + (15n+ 50)X2 + (22n+ 73)X + 17n+ 55 (n ∈ N0)

we have

2 ≤ α(Pn) ≤ 5n+ 18

by [14, Proposition 10] and [13, Corollary 6]. Further, we suspect α(Pn) =

2.

(v) For a+ b ≥ 0, b ≥ −1 and c ≥ 2 we have

α(X4 −X3 + aX2 + bX + c) =∞

by [5, Theorem 5.4].

(vi) If a > 0 and 1 < k < d then Xd − aXk + c /∈ C by [11, Theorem 3], hence

α(Xd − aXk + c) =∞ (c ≥ 2).

Note that in case a = 1 the condition of [4, Lemma 5] is satisfied.

(vii) The author is indebted to A. Pethő [31] for the following examples:

X3 + 98X2 + 143X + p0 ∈ C (p0 = 106, . . . , 109), X3 + 98X2 + 143X + 110 /∈ C

and

X3 + 410X2 + 611X + p0 ∈ C (p0 = 417, . . . , 473), X3 + 410X2 + 611X + 474 /∈ C.

Now, using Proposition 2.2 one can easily check

α(X3 + 98X2 + 143X+ 106) = 5 and α(X3 + 410X2 + 611X+ 417) = 57 .
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Note that in view of Proposition 2.4 (ii) this example shows that for any

positive n there exists a CNS polynomials P of degree 3n with α(P ) = 5.

(viii) For the CNS polynomials P = X2 −X + 2 and Q = X2 −X + 3 we have

α(P ) = α(Q) = 1 ,

but α(PQ) = ∞ , since for n ≥ 6 the orbit of (1, 0, 0, 1) ∈ Z4 under the

iterates of τPQ+n is periodic (of period length 4).

In view of these examples we are lead to the following speculations.

Conjecture 2.8. (i) For every n ∈ N there exists a cubic CNS polynomial

P such that

α(P ) = n .

(ii) For every cubic CNS polynomial P with negative linear coefficient we have

α(P ) = 1.
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[9] T. Borbély, Általánośıtott számrendszerek, Master Thesis, University of Debre-

cen, 2003.
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