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Abstract. This article is motivated by some results from Chlebowitz and
Külshammer on how the structure of a symmetric local algebra is influenced
by its center. They have shown that a symmetric local algebra is almost
always commutative if its center is at most 5-dimensional. In this article
we are interested in how the ideal property of the radical of the center of a
symmetric local algebra is influenced by the dimension of the algebra itself.
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1. Introduction

When studying the modular representation theory of a block B of a group algebra
FG with G being a finite group, it is of major interest to determine the numbers
k(B) of irreducible ordinary and l(B) of irreducible Brauer characters. On the one
hand there are numerous open conjectures on how these block invariants relate to
each other and to the defect groups of B. On the other hand one can ask the
following question: What can be said about the structure of B itself if only k(B),
l(B) and maybe the structure of the defect groups of B are known? For instance,
one can say that k(B) is just the dimension of the center of B and l(B) is the
number of isomorphism classes of simple B-modules in the modular case.

If one tries to study the representation theory of a block B it is sometimes
useful to replace B by its basic algebra A. If l(B) = 1 then A is a symmetric
local algebra. Hence, studying properties of symmetric local algebras adds to the
knowledge about blocks of group algebras. Some more recent examples of this
principle can be found in the literature, e. g. in [4], the Morita equivalence class
of a whole family of 3-blocks with elementary abelian defect groups of order 9 was
determined by investigating certain 9-dimensional symmetric local algebras. In [7]
the authors were able to determine the isomorphism type of the center of a class
of 2-blocks with elementary abelian defect groups of order 16. A big part of the
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argument was, again, based on investigating symmetric local algebras of a certain
type.

In 1984, Külshammer proved that symmetric local algebras with a center being of
dimension at most 4 have to be commutative (see [5]). Some years later, Chlebowitz
and Külshammer could show that symmetric local algebras with 5-dimensional
center have to be either of dimension 5, and hence commutative, or of dimension 8
(see [1]). However, in order to obtain this result, a fair amount of computation was
needed. These two articles suggest that there should be some more connections
between a symmetric local algebra and its center, at least in low dimensions.

In this article we are interested in the question whether the radical of the center
of a symmetric local algebra is an ideal of the whole algebra. Readers being familiar
with the article [4] by Kessar will remember that showing this fact for a class of
symmetric local algebras of dimension 9 was one of the crucial steps to get the
computations going. In the present article we will, in fact, show that the radical
of the center of a symmetric local algebra is an ideal of the whole algebra if the
dimension of the algebra is at most 10. Hence the corresponding fact in the article
[4] would be an easy corollary from our main result.

The present article is organized as follows: In Section 2 we will gather some well
known properties of symmetric local algebras. In the third section we will first
prove a lemma which characterizes when the radical of the center of a symmetric
local algebra is an ideal of the whole algebra. Moreover, this section will contain the
main result of the present paper. In the final section we will apply a modification
of the main result in characteristic 2 to the setting in [7]. This will allow us to
considerably shorten the computations and give a more elegant proof of the main
result of that article.

2. Preliminaries

Throughout this section F will be an algebraically closed field (of arbitrary
characteristic) and A will be a finite dimensional F -algebra. We will denote the
Jacobson radical of A by J := J(A). Note that under our assumptions A is local
if and only if dimF (A/J) = 1. Moreover, we will use the notation Z(A) for the
center of A and J(Z) := J(Z(A)) for the Jacobson radical of the F -algebra Z(A).
For elements x, y ∈ A we will denote their commutator by [x, y] := xy − yx. For
F -subspaces U, V ⊆ A we set [U, V ] := F {[u, v] |u ∈ U, v ∈ V }. The commutator
subspace of A is given by K(A) := [A,A].

By “ideal” we will always mean “two-sided ideal”.
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If A is symmetric, we fix a symmetrizing linear form s : A → F on A. For an
F -subspace U ⊆ A we denote its orthogonal space by U⊥ := {x ∈ A | s(xU) = 0}.
The following lemma gathers some well-known facts about symmetric local algebras.

Lemma 2.1. Let A be a symmetric local F -algebra. Then the following facts hold.

(i) For an F -subspace U ⊆ A we have dimF U + dimF U
⊥ = dimF A. Moreover,

the identity (U⊥)⊥ = U holds.
(ii) For F -subspaces U, V ⊆ A we have (U ∩ V )⊥ = U⊥ + V ⊥.
(iii) We have J⊥ = soc(A) and K(A)⊥ = Z(A).
(iv) Z(A) is a local F -algebra and J(Z) = Z(A) ∩ J .
(v) We have dimF (soc(A)) = 1.

(vi) We have K(A) ∩ soc(A) = 0.
(vii) If I is an ideal of A then I⊥ also is an ideal of A and I · I⊥ = I⊥ · I = 0.
(viii) If n ∈ N0 is minimal with Jn+1 = 0 then Jn = soc(A).

Proof. The first two items are well-known properties of non-degenerate symmetric
bilinear forms. Note that λ : A×A→ F, (x, y) 7→ s(xy), defines such a form on A.
The definition of soc(A) implies soc(A) ⊆ J⊥. Moreover, from the first part of (i)
we deduce dimF J

⊥ = 1. Since soc(A) 6= 0, one immediately obtains the first part
of (iii), as well as (v). The second part of (iii) is proved in [5, Lemma C]. The
proofs for (iv), (vi), and (viii) of can be found in [4]. Thus, only (vii) needs to be
proved.

Let I be an ideal of A, and let x ∈ I⊥ and a ∈ A be arbitrary. Then

s((xa)I) = s(x(aI)) ⊆ s(xI) = 0,

by the ideal property of I and the definition of I⊥. This shows xa ∈ I⊥. On the
other hand,

s((ax)I)) = s(a(xI)) = s((xI)a) = s(x(Ia)) ⊆ s(xI) = 0,

again by the ideal property of I and the definition of I⊥. This shows ax ∈ I⊥.
Thus, we have proved that I⊥ is an ideal of A. We deduce further

0 = s(I · I⊥) = s((I · I⊥) ·A).

From this, we conclude I · I⊥ ⊆ A⊥ = 0. Similarly, we obtain I⊥ · I = 0. This
finishes the proof. �

We need another lemma which gives a characterization of when a factor algebra
of a symmetric algebra is again symmetric.
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Lemma 2.2. Let A be a symmetric F -algebra and I be an ideal of A. Then the
F -algebra A/I is again symmetric if and only if I = (Az)⊥ for some element
z ∈ Z(A).

Proof. See [2, Theorem 2.6]. �

From Lemma 2.2 we immediately get the following corollary.

Corollary 2.3. Let A be a symmetric local F -algebra and 0 6= z ∈ Z(A). Then
A/(Az)⊥ also is a symmetric local F -algebra.

Proof. By Lemma 2.2 we just need to show that A′ := A/(Az)⊥ is local. But
since A is local we know that dimF (A/J) = 1. Hence it is enough to show that
(Az)⊥ ⊆ J holds. For, from (Az)⊥ ⊆ J we obtain J(A′) = J/(Az)⊥ and thus
A′/J(A′) ∼= A/J . Hence dimF (A′/J(A′)) = dimF (A/J) = 1 and A′ = A/(Az)⊥ is
local.

Since 0 6= z ∈ Az, we have 0 6= Az, which implies (Az)⊥ 6= A. Since A is local
and (Az)⊥ is a proper ideal of A, we immediately get (Az)⊥ ⊆ J . �

Next we will recap a result which gives a nice way of computing a generating set
of a Loewy-layer of a given algebra if a generating set of the previous Loewy-layer
is known.

Lemma 2.4. Let A be an F -algebra, let I be an ideal of A and let n ∈ N. Suppose
that there is some d ∈ N such that

In = F {xi1 . . . xin | i = 1, . . . , d}+ In+1

with elements xik ∈ I. Then we have

In+1 = F {xj1xi1 . . . xin | i, j = 1, . . . , d}+ In+2.

Proof. This is a slightly simplified version of [5, Lemma E]. �

As a last fact in this section we recap one of the results mentioned in the intro-
duction of this article.

Lemma 2.5. Let A be a symmetric local F -algebra. If dimF Z(A) ≤ 4 then A is
commutative.

Proof. See [5, Theorem B]. �
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3. The main result

In this section F will again be an algebraically closed field and A will be a
finite dimensional F -algebra. First we will point out a characterization of when the
radical (resp. the socle) of the center of a symmetric local algebra A is an ideal of
A. Although not hard to prove, this result seems to be new so we will give a proof
here.

Lemma 3.1. Let A be a symmetric local F -algebra.

(i) J(Z) is an ideal of A if and only if K(A) · J(Z) = 0.
(ii) soc(Z(A)) is an ideal of A if and only if K(A) · soc(Z(A)) = 0.

Proof. (i) Let J(Z) be an ideal of A. Then J(Z) = Z(A)∩J , by (iv) of Lemma 2.1.
Switching to orthogonal spaces and using (ii), (iii), (iv), (vi) and (vii) of Lemma
2.1, we obtain that

J(Z)⊥ = (Z(A) ∩ J)⊥ = Z(A)⊥ + J⊥ = K(A)⊕ soc(A)

is an ideal of A and K(A) · J(Z) ⊆ J(Z)⊥ · J(Z) = 0.
Next, we assume that K(A) · J(Z) = 0 holds. Let a, b ∈ A and z ∈ J(Z) be

arbitrary. Then 0 = (ab − ba)z = (az)b − b(az). Since b ∈ A was arbitrary and
z ∈ J(Z) ⊆ J , we conclude az ∈ Z(A) ∩ J = J(Z). But since a ∈ A and z ∈ J(Z)
were arbitrary too, this implies J(Z) ·A = A · J(Z) ⊆ J(Z). This shows the claim.

(ii) The claim is trivial if dimF Z(A) = 1. For, by Lemma 2.5 this identity
implies A = Z(A) = soc(Z(A)) and therefore K(A) = 0. Thus we may assume
dimF Z(A) > 1. Hence, by (iv) of Lemma 2.1, we conclude soc(Z(A)) ⊆ J(Z).

First, let us assume that soc(Z(A)) is an ideal of A. We obtain

K(A)⊕ soc(A) = J(Z)⊥ ⊆ soc(Z(A))⊥

and this implies K(A) · soc(Z(A)) = 0 with the same argument as in the proof of
the first item.

Now we assume thatK(A)·soc(Z(A)) = 0 holds. Therefore, for arbitrary a, b ∈ A
and z ∈ soc(Z(A)) ⊆ J(Z) we get 0 = (ab− ba)z = (az)b− b(az). Hence we must
have az ∈ Z(A) ∩ J = J(Z) since b ∈ A was arbitrary and z ∈ J(Z) ⊆ J . Using
that a ∈ A and z ∈ soc(Z(A)) were arbitrary too, we obtain A · soc(Z(A)) ⊆ J(Z).
Furthermore, we have (A · soc(Z(A))) · J(Z) = 0 since we already have soc(Z(A)) ·
J(Z) = 0. Hence A · soc(Z(A)) ⊆ J(Z) is annihilated by J(Z) and must therefore
be contained in soc(Z(A)). Thus soc(Z(A)) ·A = A · soc(Z(A)) ⊆ soc(Z(A)) which
shows the claim. �
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Next, we will use Lemma 3.1 to show the main result of this article.

Theorem 3.2. Let A be a symmetric local F -algebra. If dimF A ≤ 10 then J(Z)
is an ideal of A.

Proof. Assume dimF A ≤ 10 and that J(Z) is not an ideal of A. Hence, by
Lemma 3.1 there is some 0 6= z ∈ J(Z) with zK(A) 6= 0. In particular, we have
(Az) ·K(A) 6= 0 so that K(A) 6⊆ (Az)⊥. In the following, we will consider the F -
algebra A′ := A/(Az)⊥ and try to constrain its dimension from below. By Corollary
2.3 we know that A′ is also symmetric and local and by (i) of Lemma 2.1 we have

dimF (Az) = dimF A− dimF (Az)⊥ = dimF A
′. (1)

Since K(A) 6⊆ (Az)⊥, we have K(A′) 6= 0. In particular, A′ is not commutative.
By Lemma 2.5 we immediately get

dimF Z(A′) ≥ 5. (2)

We will now show that dimF A
′ ≥ dimF Z(A′) + 3 holds. Since A′ is not commu-

tative, we already know dimF A
′ ≥ dimF Z(A′) + 1.

Assume that dimF A
′ = dimF Z(A′) + 1. Then we find some x′ ∈ A′ such that

A′ = Fx′ ⊕ Z(A′). But this implies

K(A′) = [Fx′ + Z(A′), Fx′ + Z(A′)] = 0

and hence A′ must be commutative, a contradiction.
Next, assume that dimF A

′ = dimF Z(A′) + 2. Similarly to the previous case,
we find x′, y′ ∈ A′ such that A′ = Fx′ ⊕ Fy′ ⊕ Z(A′). Hence

K(A′) = [Fx′ + Fy′ + Z(A′), Fx′ + Fy′ + Z(A′)] ⊆ F [x′, y′] .

But then, using (i) and (iii) of Lemma 2.1, we obtain

dimF Z(A′) = dimF A
′ − 2

= dimF Z(A′) + dimF K(A′)− 2

≤ dimF Z(A′) + 1− 2

= dimF Z(A′)− 1,

a contradiction. This shows that dimF A
′ ≥ dimF Z(A′) + 3 holds. Combining

this result with (1) and (2), we obtain dimF (Az) ≥ 5 + 3 = 8. Since A is a
local F -algebra, we have A = F1 ⊕ J . Therefore, using z ∈ J(Z) we obtain
Az ⊆ Fz + J · J(Z) ⊆ Fz + J2 ⊆ J . Since F1 ⊕ Az ⊆ A and dimF (Az) ≥ 8, we
conclude dimF A ∈ {9, 10}. We distinguish these two cases.
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First, let dimF A = 9. Then we must have A = F1⊕Az ⊆ F1+Fz+J2 and J/J2

is spanned by
{
z + J2}. Using Lemma 2.4, this implies that A is generated, as an

F -algebra, by {1, z}. Since 1, z ∈ Z(A), this means that A must be commutative.
Hence A = Z(A) and J(Z) = J is an ideal of A, a contradiction to our assumption.

Finally, let dimF A = 10. Similarly to the previous case, we deduce that A =
F1 + Fx + Fz + J2 for some x ∈ J . Thus, J/J2 is spanned by a subset of{
x+ J2, z + J2} and A is generated, as an F -algebra, by a subset of {1, x, z}.

Since 1, z ∈ Z(A), all the generators of A commute and thus A is commutative. We
get a contradiction with the same argument as before. This finishes the proof. �

Remark 3.3. Comparing the statement of Theorem 3.2 with that of Lemma 2.5
or that of the main theorem of [1], the reader will notice some analogy. While in
Lemma 2.5 or [1] a bound on the dimension of the center of an algebra is used to
obtain structural results on the whole algebra, Theorem 3.2 uses a bound on the
dimension of the algebra itself to specify the relationship between an algebra and
its center.

4. An application

In this section we are revisiting the article [7], especially its fourth section. The
article mentioned is concerned with determining the isomorphism type of the center
of a non-nilpotent 2-block B with elementary abelian defect group of order 16 and
one isomorphism type of simple modules. By computing all the possible generalized
decomposition matrices in the first part of that article, the authors show that the
center of B must have one of two possible isomorphism types (see [7, Proposition
2.1]). In the following two sections they rule out one of those two possibilities
leaving one unique isomorphism type for the center of B. That part of the paper
is heavily computational and not too illuminating.

In fact, Charles Eaton has classified the 2-blocks with elementary abelian defect
group of order 16, up to Morita equivalence (see [3]). The resulting list contains just
one non-nilpotent block with exactly one isomorphism type of simple modules. His
approach, however, relies on the classification of finite simple groups. The approach
taken in the article [7] and the thesis [6] can be seen as a classification-free attempt
to determine the structure of the unique non-nilpotent 2-block with elementary
abelian defect group of order 16 and one isomorphism type of simple modules.

We will, in this section, prove a stronger result of our Theorem 3.2 which, on
the other hand, needs some more restrictive assumptions. Using this result, we
can give another more elegant proof that one of the two isomorphism types of the
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center given in [7, Proposition 2.1] cannot occur. For this proof, we will only need
[7, Lemma 4.1], which we will quote below, and [7, Lemma 4.2 (i),(iv)] from the
article mentioned. Moreover, the reader should note that the proof of [7, Lemma
4.2 (iv)] is independent of [7, Lemma 4.2 (ii),(iii)].

From now on, F will denote an algebraically closed field of characteristic 2 and B
will be a non-nilpotent block with elementary abelian defect group of order 16 and
one isomorphism type of simple modules. Moreover, A will denote a basic algebra
of B. We will, again, use J := J(A) and J(Z) := J(Z(A)). First we obtain

Lemma 4.1. Let F , B and A be as above. Then

(i) dimF A = 16 and dimF Z(A) = dimF K(A) = 8.
(ii) A is a symmetric local F -algebra.
(iii) Z(A) ∼= Z(B).
(iv) For every w ∈ J we have w2 ∈ K(A).

Proof. This is part of [7, Lemma 4.1]. �

As in the article [7], we will now assume that Z(A) = F {W0 := 1,W1, . . . ,W7}
where the structure constants are given by the following table.

· 1 W1 W2 W3 W4 W5 W6 W7

1 1 W1 W2 W3 W4 W5 W6 W7

W1 W1 . W5 W6 W7 . . .

W2 W2 W5 . . . . . .

W3 W3 W6 . . . . . .

W4 W4 W7 . . . . . .

W5 W5 . . . . . . .

W6 W6 . . . . . . .

W7 W7 . . . . . . .

We immediately obtain J(Z) = F {W1, . . . ,W7}. this, in turn, implies the iden-
tity soc(Z(A)) = J(Z)2 = F {W5,W6,W7}. In particular, we have dimF J(Z) = 7
and dimF J(Z)2 = 3. In addition, from W 2

i = 0 for i = 1, . . . , 7 and char(F ) = 2
we conclude z2 = 0 for any z ∈ J(Z). The aim of this section is to prove that the
assumption of this isomorphism type for Z(A) leads to a contradiction. In order to
do that, we first prove an analogue to Theorem 3.2 for the case we are considering
in this section.

Theorem 4.2. Let F , A and the isomorphism type of Z(A) be as above. Then
J(Z) is an ideal of A.
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Proof. Assume that J(Z) is not an ideal of A. Then we find some 0 6= z ∈ J(Z)
such that zK(A) 6= 0 by Lemma 3.1. Following the same arguments as in the
proof of Theorem 3.2, one can show that dimF (Az) ≥ 8. Since z ∈ J(Z), we have
z2 = 0 and this implies (Az)2 = Az2 = 0. Hence, we obtain Az ⊆ (Az)⊥. Together
with 16 = dimF A = dimF (Az) + dimF (Az)⊥ and dimF (Az) ≥ 8, this implies
dimF (Az) = 8 and Az = (Az)⊥.

We continue by defining A′ := A/(Az)⊥ = A/(Az) as in the proof of Theorem
3.2. Following the lines of that proof again, we see that dimF Z(A′) ≥ 5, as well
as dimF A

′ ≥ dimF Z(A′) + 3 and dimF A
′ = dimF (Az) = 8 hold. Thus, we get

dimF Z(A′) = 5. Hence, dimF K(A′) = 8− 5 = 3 and we obtain

dimF (K(A) +Az) = dimF ((K(A) +Az) /Az) + dimF (Az)

= dimF K(A′) + dimF (Az)

= 11.

Switching to orthogonal spaces and using Az = (Az)⊥, we obtain the identity
dimF (Z(A) ∩ (Az)) = 16− 11 = 5. Keeping in mind that z2 = 0, we easily verify
that the map ϕ : Z(A) + Az → zZ(A), a 7→ za, is a well defined epimorphism of
F -vector spaces with kernel Az. For, we have

ker ϕ ⊆ {a ∈ A | za = 0} = {a ∈ A | a(Az) = 0} ⊆ (Az)⊥ = Az ⊆ ker ϕ.

Hence, we obtain an isomorphism

ϕ′ : (Z(A) +Az) /(Az)→ zZ(A), a+ (Az) 7→ za,

of F -vector spaces. This implies

dimF (zZ(A)) = dimF ((Z(A) +Az)/(Az))

= dimF (Z(A)/(Z(A) ∩ (Az)))

= 8− 5

= 3.

On the other hand, we have Z(A) = F1 ⊕ J(Z). Hence, zZ(A) = Fz ⊕ zJ(Z).
For, z ∈ zJ(Z) would imply z(1 − w) = 0 for some w ∈ J(Z). Since 1 − w is
invertible, we infer z = 0, contradicting to our choice of z. Thus, we have obtained
dimF (zJ(Z)) = dimF (zZ(A)) − 1 = 2. Let us now write z =

∑7
i=1 λiWi with

λi ∈ F for i = 1, . . . , 7. Using the table with the structure constants of Z(A), we
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easily see

dimF (zJ(Z)) =


3 : λ1 6= 0

1 : λ1 = 0 and (λ2, λ3, λ4) 6= (0, 0, 0)

0 : else.

In particular, we always have dimF (zJ(Z)) 6= 2. But this contradicts our compu-
tation above where we have shown that dimF (zJ(Z)) = 2 must hold. This shows
that our assumption from the beginning must be wrong and finishes the proof. �

Next, we will prove a lemma which will enable us to show that the ideal J(Z)
is annihilated by J3. This will be the key ingredient for showing that the assumed
isomorphism type of Z(A) leads to a contradiction. In the following, we will make
extensive use of Lemma 2.4 for computing generating sets of Loewy-layers without
explicitly quoting this lemma every single time.

Lemma 4.3. Let F , A and the isomorphism type of Z(A) be as above. Moreover,
let z ∈ J(Z). Then J3 ⊆ (Az)⊥.

Proof. Since the statement is obvious for z = 0, we may assume z 6= 0 in the
following. Let us assume that J3 6⊆ (Az)⊥. Again, we define A′ := A/(Az)⊥ and
use the notation J ′ := J(A′). Then we have (J ′)3 =

(
J3 + (Az)⊥) /(Az)⊥ 6= 0. In

particular, we have dimF (J ′)3 ≥ 1. By Theorem 4.2, we have Az ⊆ Z(A) and thus
K(A) ⊆ (Az)⊥. Therefore, A′ must be a commutative F -algebra and, by (iv) of
Lemma 4.1, we have (w′)2 = 0 for any w′ ∈ J ′.

Now assume that dimF ((J ′)2/(J ′)3) = 1. Then (J ′)2 = Fx′y′ + (J ′)3 for some
x′, y′ ∈ J ′. But from this and the note above, we get (J ′)3 = F (x′)2y′+(J ′)4 = (J ′)4

which, by Nakayama’s lemma, implies (J ′)3 = 0, a contradiction.
Hence, we may assume dimF ((J ′)2/(J ′)3) ≥ 2. Using Lemma 2.4, we conclude

that also dimF (J ′/(J ′)2) ≥ 2 must hold. Assuming dimF (J ′/(J ′)2) = 2, we could
write J ′ = Fx′ + Fy′ + (J ′)2 with certain x′, y′ ∈ J ′. However, using the notes
from the start of the proof, this would imply (J ′)2 = Fx′y′ + (J ′)3, contradict-
ing dimF (J ′)2/(J ′)3 ≥ 2. Hence, we must even have dimF (J ′/(J ′)2) ≥ 3. Since
A is symmetric and local, we conclude from Lemma 2.2 and z 6= 0 that A′ is
also symmetric and local. Using (v) and (viii) of Lemma 2.1 and the inequal-
ity dimF ((J ′)2/(J ′)3) ≥ 2, we obtain dimF ((J ′)3/(J ′)4) ≥ 1. In particular, we
have dimF A

′ ≥ 1 + 3 + 2 + 1 = 7. Since, on the other hand, the inequality
dimF A

′ = dimF (Az) ≤ dimF J(Z) = 7 does also hold, we must have dimF A
′ = 7

and J(Z) = Az. But this implies J(Z)2 = (Az)2 = Az2 = 0 contradicting
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dimF J(Z)2 = 3. This shows that our assumption is wrong and we indeed have
J3 ⊆ (Az)⊥. �

We immediately obtain the following.

Corollary 4.4. Let F , A and the isomorphism type of Z(A) be as above. Then
J3 ⊆ J(Z)⊥. In particular, J3 · J(Z) = 0.

Proof. By Theorem 4.2, we have J(Z) =
∑

z∈J(Z) Az. Switching to orthogonal
spaces, we get J(Z)⊥ =

⋂
z∈J(Z)(Az)⊥. Using Lemma 4.3, we immediately get

J3 ⊆
⋂

z∈J(Z)(Az)⊥ = J(Z)⊥. The second part of the statement follows from
Theorem 4.2 and (vii) of Lemma 2.1. �

At this point, we quote another result from the article [7] which we will need.

Lemma 4.5. Let F , A and the isomorphism type of Z(A) be as above. Then
dimF

((
J(Z) + J2) /J2) ≤ 2.

Proof. This is [7, Lemma 4.2 (iv)]. �

Now we have everything we need to prove the desired theorem.

Theorem 4.6. Let F and A be as in the beginning of this section. Then Z(A)
cannot have the isomorphism type given after Lemma 4.1.

Proof. Assume that Z(A) has the isomorphism type given after Lemma 4.1. By
Corollary 4.4, we have J3 · J(Z) = 0. In particular, J2 · J(Z) ⊆ J⊥ = soc(A). By
Lemma 4.5, we have dimF

((
J(Z) + J2) /J2) ≤ 2.

First, let us assume dimF

((
J(Z) + J2) /J2) = 0. Then J(Z) ⊆ J2. However,

this implies J(Z)2 ⊆ J2 · J(Z) ⊆ soc(A) contradicting dimF J(Z)2 = 3.
Next, assume that dimF

((
J(Z) + J2) /J2) = 1. Then there is some z ∈ J(Z)

such that J(Z) = Fz + (J(Z) ∩ J2). Using z2 = 0, this implies

J(Z)2 ⊆ Fz2 + J2 · J(Z) ⊆ J2 · J(Z) ⊆ soc(A),

a contradiction as before.
Finally, let dimF

((
J(Z) + J2) /J2) = 2. Then we find z1, z2 ∈ J(Z) with

J(Z) = Fz1+Fz2+(J(Z)∩J2). Keeping in mind that z2
1 = z2

2 = 0 and z1z2 = z2z1,
we obtain J(Z)2 ⊆ Fz1z2 +(J2 ·J(Z)) ⊆ Fz1z2 +soc(A). Since the right hand side
is at most 2-dimensional over F , this is again a contradiction. Thus our assumption
from the beginning of the proof cannot hold and we have shown the claim. �
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