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Abstract. A ring R is called left comorphic if for every a ∈ R there exists

b ∈ R such that the left and right annihilators satisfy Ra = l(b) and r(a) = bR.

In this paper, the Abelian groups with left comorphic endomorphism rings are

completely determined.
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1. Introduction

An element a of a ring R is called left comorphic (see [1]) if there exists b ∈ R
such that Ra = l(b) and r(a) = bR. In this case b is called a companion of a.

Elements satisfying only r(a) = bR, were termed right G-morphic (see [19]). A

ring is left comorphic if so are all its elements. Such rings are studied in [1].

Note that the equality ab = 0 in any ring R is equivalent to either Ra ⊆ l(b) or

bR ⊆ r(a).

Symmetrically, an element a ∈ R is right comorphic if there exists c ∈ R such

that aR = r(c) and l(a) = Rc. Rings all whose elements are right comorphic are

termed right comorphic. A ring is called comorphic if it is both left and right

comorphic.

(Von Neumann) regular rings and Z/(n) for any n ≥ 2 are comorphic but Z is not

(left or right) comorphic. However, comorphic rings might not be regular: Z/(4) is

comorphic but not regular. Units and idempotents are left (and right) comorphic.

More general, if an = a for some integer n > 1, then b = 1− an−1 is a companion

for a. The only (co)morphic elements in any (not necessarily commutative) domain

are the units and 0.

It is easy to see that a (commutative) domain is comorphic if and only if it is a

division ring, and, a direct product R =
∏
i

Ri is left comorphic if and only if each

Ri is left comorphic.
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In the sequel, some more definitions will occur. A ringR is called right principally

injective (right P-injective for short) if, for each a ∈ R every map aR −→ RR

extends to R, or, equivalently, if lr(a) = Ra for each a ∈ R, or, equivalently, if Ra

is a left annihilator for each a ∈ R. Therefore, a is left comorphic if and only if it

is right P-injective and right G-morphic.

Recall that an element a ∈ R is called left morphic if Ra = l(b) and l(a) = Rb for

some b ∈ R, term which is also used for rings all whose elements are left morphic.

Symmetrically, one defines right morphic elements or rings.

It is clear from the definitions that a commutative ring is comorphic if and only

if it is morphic.

Since unit-regular rings are left (and right) morphic, any regular ring which is

not unit-regular is left (and right) comorphic, but not left nor right morphic. Such

an example is R = EndD(V ) where D is a division ring and DV is a vector space

of countable dimension.

In [1], an Example 24, which comes back to Björk, of ring which is not left nor

right comorphic is given.

A module RM is called image-projective if whenever γ(M) ⊆ α(M) for α, γ ∈
E = EndR(M) then γ ∈ αE, that is, if an endomorphism δ exists in the following

diagram, when endomorphisms α and γ are given.

M

↙ δ ↓ γ
M

α−→ α(M) −→ 0

This property was introduced in [14], in order to compare morphic modules to

modules with left morphic endomorphism rings. In the same context, a module M

with endomorphism ring E is kernel-direct if ker(α) is a direct summand of M , for

every α ∈ E. Such modules were recently also called Rickart modules.

From [14] we note the following chart: for any module M

E unit-regular ⇒ E left morphic ⇒ E DF

⇓ ⇓
E regular ⇒ M ker-direct ⇒ M image-projective

where DF stands for Dedekind finite.

if for every submodule N and every

Finally recall that a module M is quasi-projective if for every submodule N

and every R-morphism γ : M → M/N , there exists an endomorphism δ making
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commutative the diagram

M

↙ δ ↓ γ
M

pN−→ M/N −→ 0

where pN denotes the canonical projection. Clearly quasi-projective modules are

image-projective.

In Section 2, a survey of known results is given and (in Theorem 2.10 and The-

orem 2.13) all Abelian groups with left comorphic endomorphism rings are deter-

mined. In Section 3, we list and comment on three open questions related to this

subject.

All groups we consider are Abelian. For the Abelian group definitions and results

we refer to [7] and [8]. All the rings we consider are unital. For any subset X of

a ring R, l(X) and r(X) denote the left and right annihilators, respectively. For

reader’s convenience we denote by Z(n) the cyclic group with n elements and by

Z/(n) the corresponding ring. For an endomorphism f of a group G, f |H denotes

the restriction homomorphism to a subgroup H of G. A direct sum of cyclic groups

of the same order is called homocyclic.

2. The results

Some immediate examples.

Since End(Z(n)) ∼= Z/(n), the finite cyclic groups have (co)morphic endomor-

phism rings. Since End(Z) ∼= Z, the infinite cyclic groups have not left nor right

(co)morphic endomorphism rings. Since End(Z(p∞)) ∼= End(Jp) ∼= Q∗p, the com-

mutative domain of p-adic integers, which is not a field, the cocyclic divisible group

Z(p∞) and the additive group of p-adic integers Jp, do not have left nor right

(co)morphic endomorphism rings. Since End(Q) ∼= Q, is a field, Q has (co)morphic

endomorphism ring.

Moreover, since (Von Neumann) regular rings are left (and right) comorphic, the

groups which have regular endomorphism ring are also examples of groups with left

(and right) comorphic endomorphism rings. These groups are characterized (see

[8], 112.7) in the following.

Theorem 2.1. (a) f ∈ End(G) is regular if and only if both Im(f) and ker(f)

are direct summands.

(b) If G is not reduced, End(G) is regular if and only if G is a direct sum of a

torsion-free divisible group and an elementary group.

(c) If G is torsion, End(G) is regular if and only if G is elementary.
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(d) If G is reduced and End(G) is regular, then T (G) is elementary, G/T (G)

is divisible and
⊕
p
Gp ≤ G ≤

∏
p
Gp.

Note that (a) was known to Azumaya as early as 1948.

Recall from [15]

Lemma 2.2. The following conditions are equivalent for a ring R.

(i) RR is right P-injective.

(ii) l(r(a)) = Ra for every a ∈ R.

(iii) r(b) ⊆ r(a), a, b ∈ R implies Ra ⊆ Rb.

We saw above that every left comorphic ring is right P-injective. Then

Proposition 2.3. Let MR be an R-module and let E := EndR(M). If E is left

comorphic, then M is image-projective.

Proof. Suppose Mγ ⊆ Mα. Then rE(α) ⊆ rE(γ) and Eγ ⊆ Eα, by the previous

lemma. �

Therefore, E regular =⇒ E left comorphic =⇒ M image-projective.

Moreover, we recall from [3]:

Proposition 2.4. If G is an image-projective group, then

(1) the divisible part of G is torsion-free;

(2) the torsion part of G is quasi-projective;

(3) if p is a prime such that the p-component Gp of G is nonzero, then G/T (G)

is p-divisible.

Thus, for some classes of image-projective groups, we obtain the following char-

acterizations.

Corollary 2.5. (1) A divisible group is image-projective if and only if it is

torsion-free, i.e. a direct sum of copies of Q.

(2) A torsion group is image-projective if and only if it is quasi-projective.

Clearly, all these apply for Abelian groups with left comorphic endomorphism

rings. Comparison with Theorem 2.1 gives at once the following.

Corollary 2.6. A divisible group has left (and right) comorphic endomorphism

ring if and only if it is torsion-free, i.e. a direct sum of copies of Q.
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This also shows that a reduced torsion group has left comorphic endomorphism

ring only if it has homocyclic primary components. However, this way we cannot

decide whether these components must be elementary or not.

The structure theorems which follow will show that only the homocyclic condi-

tion is also necessary.

We just mention (see [3]): The endomorphism ring of a torsion group G is left

morphic if and only if every p-component of G is a homocyclic of finite rank.

In order to state and prove the structure theorems for groups with left comorphic

endomorphism ring we first recall some more definitions and known results.

A ring R is called right self-injective if RR is an injective right R-module. Since

every finitely generated left ideal of a right self-injective ring is an annihilator, any

right self-injective ring is right P-injective (this also follows from Lemma 2.2).

We recall from [5] the following:

Lemma 2.7. Suppose G = A ⊕ B ⊕ C is a group, f ∈ Hom(A,B) and g ∈ E =

End(G), such that g|A = f , g|B⊕C = 0. Then

(1) if f is an epimorphism and r(l(g) = gE, then ker f is a direct summand of

A;

(2) if f is a monomorphism and l(r(g)) = Eg, then im f is a direct summand

of B.

Next we prove:

Proposition 2.8. Let G = D(G)⊕R, where D(G) 6= 0 is the divisible part of the

group G. If the ring E = End(G) is right P-injective, then D(G) is torsion-free

and R is torsion.

Proof. Assume G = A⊕B, where A ∼= Z(p∞), and let π : G→ A be the projection.

Then (pπ)|A is surjective and so l(pπ) = l(π) and r(l(pπ)) = r(l(π)). Hence

πE = (pπ)E and π = pπγ for some γ ∈ E. Then for 0 6= a ∈ A[p] we have

a = π(a) = (pπγ)(a) = 0, a contradiction. So D(G) is torsion-free.

Next we show that not only D(G) is fully invariant in G but R is also fully

invariant in G.

We can represent

E =

{[
ϕ ψ

0 η

]
: ϕ ∈ End(D(G)), ψ ∈ Hom(R,D(G)), η ∈ End(R)

}
.

By the way of contradiction, take 0 6= α ∈ Hom(R,D(G)), and for the pro-

jection π : G → D(G), take θ = 1 − π and α = παθ =

[
0 α

0 0

]
. Then αE =
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{[
0 αη

0 0

]}
and l(α) =

{(
ϕ′ ψ′

0 η′

)
: ϕ′α = 0

}
. Chose α such that imα ≤

D, where D is a direct summand in D(G) of rank 1. We go into two cases.

1) If D = D(G) then all its non-zero endomorphisms are monomorphisms and

so ϕ′ = 0 in l(α). In this case

{[
ϕ ψ

0 0

]}
⊆ r(l(α)) 6= αE, a contradiction.

2) If D(G) = A ⊕ D, with A 6= 0 then

{[
ϕ ψ

0 0

]
: imϕ ≤ D, imψ ≤ D

}
⊆

r(l(α)). If A 6= 0 there exists 0 6= ϕ ∈ End(D(G)), so again r(l(α)) 6= αE, a

contradiction.

Therefore E = End(D(G))× End(R).

Finally, if Hom(R,D(G)) = 0 with torsion-free divisible D(G) and reduced R,

R must be torsion.

Indeed, Hom(A,C) ∼= Hom(A/T (A), C) holds for every group A and torsion-free

group C, and for n = r0(A), Hom(A,
⊕
m
Q) ∼=

∏
n

(⊕
m
Q
)

. �

One more result before our characterizations.

Lemma 2.9. Let G be a group with right P-injective endomorphism ring. Then

all its nonzero p-components Gp are homocyclic. Moreover, if G = Gp ⊕H, then

pH = H. In particular, if Gp = 0 then pG = G.

Proof. From Lemma 2.7, (2) follows that each Gp is a homocyclic or divisible.

Indeed, if G = A⊕B⊕C and f : A→ B is a monomorphism, then im f is a direct

summand of B and so if A and B are cocyclic, then A ∼= B.

Therefore G = Gp⊕H for some H ≤ G. Let π : G→ H be the projection. Since

Hp = 0 we have ker(pπ) = kerπ and so r(pπ) = r(π). Hence l(r(pπ)) = l(r(π))

and so E(pπ) = Eπ. Therefore π = f(pπ) for some f ∈ E and then H = π(G) =

p(fπ(G)), whence pH = H.

Finally, it was already proved in the previous proposition, that the divisible part

of such a group is torsion-free. �

Using these we can characterize the non-reduced groups with left comorphic

endomorphism ring.

Theorem 2.10. Let G = D⊕R, where D = D(G) 6= 0. Then G has left comorphic

endomorphic ring E := End(G) if and only if D is torsion-free and R is torsion

with homocyclic p-components.
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Proof. In view of Proposition 2.8, in order to show the conditions are necessary,

it only remains to prove that R has homocyclic p-components. The condition is

necessary owing to the previous lemma.

As for the converse, we have just to discuss the divisible and primary cases.

1) If D is divisible torsion-free, then E(D) is regular so left comorphic.

2) If G is a homocyclic p-group, then E is right self-injective (see [16]), so it is

right P -injective and so for every f ∈ E, there is an g ∈ E such that Ef = l(g).

Note that im g = ker f . Indeed, if im g  ker f , then G/im g is isomorphic to some

subgroup of G, so there exists ϕ ∈ E with kerϕ = im g, ϕg = 0 and ϕ /∈ Ef .

It only remains to show that r(f) = gE. Let ϕ ∈ r(f), i.e. imϕ ≤ ker f = im g.

Since we already saw that a torsion group all whose p-components are homocyclic is

(quasi-projective and so) image-projective, ϕ = gγ for some γ ∈ E and so ϕ ∈ gE,

as desired. �

Remarks. 1) The groups in the previous theorem are precisely the groups

whose endomorphism rings are right self-injective (see [16] or [10]). Therefore,

for endomorphism rings of Abelian not reduced groups, the properties right self-

injective and left comorphic are equivalent.

2) Both D and R above are fully invariant direct summands in the splitting

group G. Since direct summands of splitting groups are splitting, direct summands

of completely decomposable (torsion-free) groups are completely decomposable and

direct summands of homocyclic groups are homocyclic (every direct summand of

a direct sum of indecomposable p-groups is again a direct sum of indecomposable

groups), it is easy to see that direct summands of nonreduced groups whose endo-

morphism rings are left comorphic, also have left comorphic endomorphism rings.

As for reduced groups, the idea of proof of the following theorem is taken from

[10] (where Theorem 2.1 describes the endomorphism rings with annihilator con-

dition for n-generated left ideals; in particular for right P -injective endomorphism

rings).

In order to simplify the statement of the next result, we recall a general well-

known construction: for groups A and B, set SA(B) =
∑

α∈Hom(A,B)

α(A), a fully

invariant subgroup of B called the A-socle of B (or the trace of A in B).

Proposition 2.11. A reduced group G has right P-injective endomorphism ring if

and only if the following conditions hold:

(1) all p-components of G are homocyclic and the factor group G/T (G) is di-

visible;
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(2) if H is an endomorphic image of the group G then each homomorphism

H → G extends to an endomorphism of group G;

(3) if H = ker f , where f ∈ End(G) and K = SG(H), then H ≤ ker g for each

g ∈ E such that K ≤ ker g.

Proof. (1) By Lemma 2.9, G = Gp⊕F , where if Gp 6= 0, then pF = F . If Gp = 0,

then p1G is a monomorphism and consequently p1G is invertible. Hence pG = G

and so the factor group G/T (G) is divisible.

(2) Let H = f(G) for f ∈ E and let g : H → G be some homomorphism. Then

gf ∈ E and since gf ∈ l(r(f)) = Ef (indeed, if α ∈ r(f), then imα ≤ ker f ≤
ker(gf), i.e. (gf)α = 0) we obtain gf = hf for some h ∈ E. Hence g = h|H .

If f = fi is the mono-epi decomposition of f , the situation is described by the

following diagram

G
f
� H

i
↪→ G

g ↓ ↙ h

G

and g = hi.

(3) Let K = SG(H) and K ≤ M = ker g, where g ∈ E, and let h ∈ r(f), i.e.

imh ≤ H = ker f . Then imh ≤ K and so gh = 0. Consequently g ∈ l(r(f)) = Ef ,

i.e. g = af for some a ∈ E. But then H = ker f ≤ ker g = M .

Conversely, let f ∈ E and g ∈ l(r(f)). We have to show that g ∈ Ef , i.e. Ef =

l(r(f)). Note that H = ker f ≤ ker g. Indeed, if K = SG(H), then K ≤ ker g since

g ∈ l(r(f)), and by hypothesis (3), H ≤ ker g. Hence there exists h ∈ Hom(im f,G)

such that the following diagram is commutative

G
f−→ im f

g ↓ ↙ h

G

By hypothesis (2), the homomorphism h extends to some endomorphism q of

the group G. Therefore g = qf ∈ Ef . �

In order to characterize reduced groups with left comorphic endomorphism rings,

we still need a characterization for right G-morphic groups.

Proposition 2.12. A group G has right G-morphic endomorphism ring if and only

if for every α ∈ E = End(G) there exists β ∈ E such that imβ = SG(kerα), and,

if imϕ ≤ imβ then ϕ = βδ for some δ ∈ E.
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Proof. For α ∈ E suppose there is β ∈ E with r(α) = βE. Then β(G) ≤ SG(kerα)

and we show that K = SG(kerα) ≤ β(G).

If x ∈ K, then x = f1(g1) + · · · + fn(gn) for some fi ∈ Hom(G,K) and gi ∈ G,

i = 1, . . . , n. Therefore fi ∈ r(α) and so fi = βδi for some δi ∈ E. Hence

x = βδ1(x1) + · · ·+ βδn(xn) ∈ β(G) and so K = β(G).

Finally, if imϕ ≤ imβ then ϕ ∈ r(α) = βE and so ϕ = βαδ for some δ ∈ E.

The converse follows from hypothesis and the G-morphic definition. �

Combining the previous propositions we finally obtain:

Theorem 2.13. A reduced group G has left comorphic endomorphism ring if and

only if the following conditions hold:

(1) all p-components of G are homocyclic and the factor group G/T (G) is di-

visible;

(2) if H is an endomorphic image of the group G then each homomorphism

H → G extends to an endomorphism of group G;

(3) if H = ker f , where f ∈ End(G) and K = SG(H), then H ≤ ker g for each

g ∈ E such that K ≤ ker g;

(4) for every α ∈ End(G) there exists β ∈ E such that imβ = SG(kerα), and,

if imϕ ≤ imβ then ϕ = βδ for some δ ∈ End(G).

Note that we may view a group G which satisfies 1) as a pure subgroup of

F =
∏
p∈ΠGp, containing T (F ) =

⊕
p∈ΠGp, where Π is the set of relevant primes,

that is, the condition, known for 50 years, that prevents the characterization of the

reduced Abelian groups which have regular endomorphism ring.

From [8]: ”A satisfactory, more or less explicit description of reduced groups with

regular endomorphism rings seems to be a hard problem. Manifestly, the difficulty

lies in singling out the suitable mixed groups between the direct sum and the direct

product of their p-components”.

Remarks. 1) We were not able to prove (or disprove) that the class of reduced

groups whose endomorphism rings are left comorphic (characterized in the previous

theorem) is closed under direct summands. However, in the last result of this section

this is proved for fully invariant direct summands and their complements.

2) Somehow dual to image-projective, we call (see [3]) a module RM image-

injective if R-linear maps β(M) → M extend to M for each β ∈ E = EndR(M).

Note that RR is image-injective if and only if R is left P-injective. From the

definitions, every right comorphic ring is left P-injective.
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A dual result to Lemma 2.2 holds, quasi-injective groups (i.e. homomorphisms

from subgroups can be extended to endomorphisms) were determined by Kil’p [11]

and these are either divisible or torsion groups with homocyclic p-components.

Clearly, quasi-injective groups are image-injective.

It is easy to prove that right R-modules with right comorphic endomorphism

rings are image-injective. Recall from [3] that if G is an image-injective group,

then the torsion part of G is quasi-injective (see [3]). Hence if a torsion group has

right comorphic endomorphism ring, its p-components are homocyclic.

Notice that if E is right morphic, then MR is image-injective, and so a p-group

has right morphic endomorphism ring if and only if it is homocyclic and finite. The

finiteness follows since left (or right) morphic rings are DF. However this fails for

left (or right) comorphic rings.

As already mentioned we now prove the following.

Theorem 2.14. If G = A⊕B is a group with left comorphic endomorphism ring

E and Hom(B,A) = 0, then E(A) := End(A), E(B) := End(B) are also left

comorphic rings.

Proof. For α ∈ E(A) consider α ∈ E with α|A = α and α|B = 1B , i.e., in

matrix form, α =

[
α 0

0 1

]
. Assume β =

[
β1 0

β2 β3

]
is companion of α. Since

αβ =

[
αβ1 0

β2 β3

]
, we have β2 = 0, β3 = 0 and imβ1 ≤ kerα. Hereinafter

Eα =

{[
ϕ1α 0

ϕ2α ϕ3

]}
, where

E =

{[
ϕ1 0

ϕ2 ϕ3

]
: ϕ1 ∈ E(A), ϕ2 ∈ Hom(A,B), ϕ3 ∈ E(B)

}
.

We show that β1 is companion of α in E(A). First, clearly, β1E(A) ⊆ r(α) and

E(A)α ⊆ l(β1). Further, if f ∈ r(α) then

[
f 0

0 0

]
∈ r(α), and

[
f 0

0 0

]
=[

β1 0

0 0

][
ϕ1 0

ϕ2 ϕ3

]
=

[
β1ϕ1 0

0 0

]
∈ βE whence f = β1ϕ1 ∈ β1E(A), i.e.

r(α) = β1E(A). Finally, if g ∈ l(β1) then

[
g 0

0 0

]
∈ l(β), and

[
g 0

0 0

]
=[

ϕ1 0

ϕ2 ϕ3

][
α 0

0 1

]
=

[
ϕ1α 0

ϕ2α ϕ3

]
∈ Eα whence g = ϕ1α ∈ E(A)α, ϕ2α = 0,

ϕ3 = 0. In particular l(β1) = E(A)α.
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The proof for B is somewhat similar.

Let δ ∈ E(B), that is δ =

[
1 0

0 δ

]
∈ E. Assume that γ =

[
γ1 0

γ2 γ3

]
is

companion of δ. We have δγ =

[
γ1 0

δγ2 δγ3

]
, so γ1 = 0 and im γ2 ≤ ker δ,

im γ3 ≤ ker δ. Hereinafter Eδ =

{[
ϕ1 0

ϕ2 ϕ3δ

]}
. We show that γ3 is a com-

panion of δ in E(B). First, clearly γ3E(B) ⊆ r(δ) and E(B)δ ⊆ l(γ3). Further,

if h ∈ r(δ) then

[
0 0

0 h

]
∈ r(δ), and

[
0 0

0 h

]
=

[
0 0

γ2 γ3

][
ϕ1 0

ϕ2 ϕ3

]
=[

0 0

γ2ϕ1 + γ3ϕ2 γ3ϕ3

]
∈ γE whence γ2ϕ1 + γ3ϕ2 = 0, h = γ3ϕ3 ∈ γ3E(B),

i.e. r(δ) = γ3E(B). Finally if q ∈ l(γ3) then

[
0 0

0 q

]
∈ l(γ), and

[
0 0

0 q

]
=[

ϕ1 0

ϕ2 ϕ3

][
1 0

0 δ

]
=

[
ϕ1 0

ϕ2 ϕ3δ

]
∈ Eδ whence q = ϕ3δ ∈ E(B)δ. �

Observe that a similar statement holds for modules. The proof given above holds

verbatim with the obvious changes.

In closing, related to Proposition 2.3, it is worth mentioning (with a straightfor-

ward proof)

Proposition 2.15. Direct summands of image-projective modules are image-pro-

jective.

3. Open questions

A. If the torsion-free rank of a mixed group is finite, a progress (for groups between

the direct sum and the direct product of their p-components) was made in [9] for the

characterization of S-local groups whose endomorphism rings are right PP (principal

projective). A definite answer to this question was obtained in terms of a maximal

independent torsion-free subset of G and an associated matrix algebra.

Can we characterize in a similar way, the S-local (mixed) groups whose endo-

morphism rings are left (or right) comorphic?

B. In [13], it is proved that for an idempotent e ∈ R, an element a ∈ eRe is left

morphic in eRe if and only if a + e is left morphic in R, and, as a consequence,

corners of left morphic rings are also left morphic.
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If for a ∈ eRe, a + e is left morphic in R, there is an element b ∈ R such that

l(a+e) = Rb and l(b) = R(a+e). The key ingredient in the proof of the sufficiency

is that we can show b ∈ eRe.
However, in the left comorphic case, we can only prove b ∈ eR, not b ∈ eRe, i.e.

the companion of an element in a corner, might not belong to this corner. Hence,

it is unlikely that corners of left comorphic rings are left comorphic.

We were not able to prove (or disprove) whether the class of Abelian groups with

left comorphic endomorphism ring is closed (or not) under direct summands. In

searching for a counterexample, according to our results in the previous section,

one has to take a reduced group and a direct summand which is not fully invariant.

C. There are many classes of rings, e.g. regular, left (or right) morphic, Baer,

Rickart, whose definitions were (the last 50 years or so) transferred to modules (see

[12], [14], [17], [18]). Some of these were further transferred to Abelian categories

(e.g. [4] and [6]).

Morphic modules were defined asking each endomorphism to satisfy the dual of

the Noether isomorphism theorem, i.e. M/im(f) ∼= ker f for every f ∈ EndR(M),

and, a ring was called left (or right) morphic if RR (respectively RR) is morphic.

This way, morphic modules and R-modules whose endomorphism ring is left (or

right) morphic are different notions.

The morphic Abelian groups and the Abelian groups with left morphic endo-

morphism ring were studied in [2] and [3]. It turned out that for large classes of

Abelian groups these notions coincide.

When it comes to left (or right) comorphic rings, the easy way to transfer this

to modules is to consider modules whose endomorphism ring is left (or right) co-

morphic, and this was done for Abelian groups in the previous section.

A natural question remains: can we define left (or right) comorphic modules in

such a way that restricting this to the modules RR (respectively RR) we recover

the above definition for rings?
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