ON SOLUBILITY OF GROUPS WITH FINITELY MANY CENTRALIZERS

Igor Lima and Caio Rodrigues

Received: 22 December 2021; Revised: 29 March 2022; Accepted: 25 May 2022

Communicated by Abdullah Harmanci

Abstract. In this paper we present a new sufficient condition for a solubility criterion in terms of centralizers of elements. This result is a corrigendum of one of Zarrin’s results. Furthermore, we extend some of K. Khoramshahi and M. Zarrin’s results in the primitive case.

Mathematics Subject Classification (2020): 20D10, 20D15

Keywords: Centralizer, n-centralizer group, simple group

1. Introduction

Let G be a group, given $g \in G$ we define $C_G(g) = \{x \in G\mid xg = gx\}$ the centralizer of g in G and $Cent(G) = \{C_G(g)\mid g \in G\}$ the set of all centralizers of elements in G. Denote by $|W|$ the cardinal of the set W. If $|Cent(G)| = n \in \mathbb{N}$ we say that G is a C_n-group or that G is a n-centralizer group. If $G/Z(G)$ is an n-centralizer too, we say that G is a primitive n-centralizer group, or simply primitive n-centralizer.

The study of finite groups in terms of $|Cent(G)|$ was started by Belcastro and Sherman in [3]. It is easy to see that a group is 1-centralizer if and only if it is abelian and there is no n-centralizer group for $n = 2, 3$. An n-centralizer group was constructed for each $n \neq 2, 3$ in [2]. We collect a few results in the following theorem.

Theorem 1.1. Suppose G is a finite n-centralizer group. Then

1. $n = 4 \iff G/Z(G) \cong C_2 \times C_2$ (see [3]).
2. $n = 5 \iff G/Z(G) \cong C_3 \times C_3$ or S_3 (see [3]).
3. $n = 6 \Rightarrow G/Z(G) \cong D_8, A_4, C_2 \times C_2 \times C_2$ or $C_2 \times C_2 \times C_2 \times C_2$ (see [2]).
4. $n = 7 \iff G/Z(G) \cong C_5 \times C_5, D_{10}$ or $\langle x, y\mid x^5 = y^4 = 1, x^y = x^3 \rangle$ (see [1]).
5. $n = 8 \Rightarrow G/Z(G) \cong C_2 \times C_2 \times C_2, A_4$ or D_{12} (see [1]).

The first author was supported by DPI/UnB and FAPDF, Brazil. The second author was supported by CNPq.
(6) \(n = 9 \iff G/Z(G) \cong D_{14}, C_7 \times C_7, \ Hol(C_7) \) or a non-abelian group of order 21 (see [6]).

(7) \(n = 10 \Rightarrow G/Z(G) \cong D_{16}, C_4^2, C_4 \times C_4, (C_4 \times C_2) \times C_2, C_2 \times D_8, C_5^9, C_3^3 \) or \(C_2^2 \times C_7 \) (see [7]).

(8) If \(G \) is a primitive 11-centralizer group of odd order, then \(G/Z(G) \cong (C_9 \times C_3) \times C_3 \) (see [10]).

The concept of isoclinic groups was introduced by P. Hall in [5]. Two groups \(G_1 \) and \(G_2 \) (not necessarily finite) are said to be isoclinic if there are isomorphisms \(\varphi : G_1/Z(G_1) \to G_2/Z(G_2) \) and \(\phi : G_1' \to G_2' \) such that if \(\varphi(a_1Z(G_1)) = a_2Z(G_2) \) and \(\phi(b_1Z(G_1)) = b_2(G_2) \), then \(\phi([a_1, b_1]) = [a_2, b_2] \) for each \(a_1, b_1 \in G_1 \) and \(a_2, b_2 \in G_2 \). It is easy to see that isoclinism is an equivalence relation.

As noted by P. Hall [5], every group \(G_2 \) which is isoclinic with \(G_1 \) also is isoclinic with the product \(G_1 \times A \), where \(A \) is an abelian group. Indeed, if \(G_1 \) is isoclinic with \(G_2 \) and \(G_3 \) is isoclinic with \(G_4 \), then the direct product \(G_1 \times G_3 \) is isoclinic with \(G_2 \times G_4 \). In particular if \(A \) is an abelian group, then \(A \) is isoclinic with the trivial group, say 1, and therefore \(G \) is isoclinic with \(G \times A \), for all group \(G \).

In [13] M. Zarrin establishes a relation between isoclinism and the number centralizers of elements of \(G \). He proves that if \(G_1 \) and \(G_2 \) are isoclinic, then \(|Cent(G_1)| = |Cent(G_2)| \). He also proves that if \(G \) is an arbitrary group with \(|Cent(G)| = n \), then there are only finitely many groups \(J \), up to isoclinism, with \(|Cent(J)| = n \), moreover, there exists a finite group \(K \) that is isoclinic with \(G \) and \(|Cent(G)| = |Cent(K)| \). Theorem 3.5 of the same article is an extension of Theorem 1.1 for arbitrary groups. Note that Zarrin proves in [13] the case \(|Cent(G)| \leq 8 \).

In this short paper we prove that if \(G \) is a finite \(n \)-centralizer group such that \(n \geq 4 \) and \(|G| < \frac{30n}{19} \), then \(G \) is a non-nilpotent solvable group. This fact is a correction of the proof of Theorem B (2) in [12]. Moreover, we extend the Theorem 3.5 in [8] in the primitive case.

Let \(I(G) \) be the set of all involutions of a group \(G \), that is, \(I(G) = \{a \in G \mid a = a^{-1} \} \). The problem with the proof of Theorem B (2) in [12] is that \(|I(G)| \geq \frac{|G|}{15} \) instead of \(|I(G)| > \frac{4|G|}{15} \) and we cannot apply Potter’s result, but this problem can be refined if we change the condition in the statement Theorem B (2) to \(|G| < \frac{30n}{19} \).

2. Preliminaries

We shall need the following results in [9] and [12] for the correction of Theorem B in [12]. For the convenience of the reader, we repeat the statements of the followings results.
Lemma 2.1. Let G be a finite C_n-group. Then

$$n \leq \frac{|G| + |I(G)|}{2}.$$

Theorem 2.2 (Potter, 1988). Suppose G admits an automorphism which inverts more than $\frac{4|G|}{15}$ elements. Then G is solvable.

3. Correction

Now we are ready to prove the following theorem, which is similar to Theorem B in [12], using the same proof outline.

Theorem 3.1. If G is a finite n-centralizer group with $n \geq 4$, then the following holds:

1. $|G| < 2n$, then G is non-nilpotent.
2. $|G| < \frac{30n}{19}$, then G is a non-nilpotent solvable group.

Proof. We will just prove part (2). From part (1), which is proved in Theorem B (1) in [12], we have that G is non-nilpotent, since $|G| < \frac{30n}{19} < 2n$. Moreover, since $2n > \frac{19|G|}{15}$, Lemma 2.1 implies that

$$|I(G)| \geq 2n - |G| > \frac{4|G|}{15}.$$

Since $I(G)$ is the set of all elements of G that is inverted by the identity automorphism, Theorem 2.2 completes the proof. □

The condition (2) above is better than the part (2) of Theorem B in [12]. However using a GAP check [11] we don’t know an example of a group G such that $|G| < \frac{30n+15}{19}$ and G is not a solvable group. It is immediate from Theorem 1.1 examples of groups where both conditions of Theorem 3.1 holds exist, for instance $G = S_3$ and $n = 5$.

4. A condition for isoclinism

We will need of a Lemma (see Lemma 3.3 in [8]).

Lemma 4.1. Let H a subgroup of an arbitrary group G such that $|\text{Cent}(H)| = |\text{Cent}(G)|$. Then $H \cap Z(G) = Z(H)$ and $\frac{H}{Z(H)} \cong \frac{HZ(G)}{Z(G)}$. In particular, H is isoclinic with $HZ(G)$.

Using similar arguments we extend Theorem 3.5 in [8] and for the case $n = 11$, we add the hypothesis that H is a primitive 11-centralizer group.
Theorem 4.2. Let G be a non-abelian arbitrary group. If $H \leq G$, $|\text{Cent}(G)| = |\text{Cent}(H)| = n = 8$, then H is isoclinic with G. This result still holds if $n = 11, H$ is primitive and G is a primitive 11-centralizer of odd order.

Proof. From Lemma 4.1, $1 \neq \frac{H}{Z(H)} \cong \frac{HZ(G)}{Z(G)} \leq \frac{G}{Z(G)}$. By Zarrin’s Theorem 3.3 (2) [13] there is a finite group K which is isoclinic with G and $|\text{Cent}(G)| = |\text{Cent}(K)|$, so $G/Z(G) \cong K/Z(K)$. Let $|\text{Cent}(G)| = |\text{Cent}(K)| = n = 8$. From Theorem 1.1 we have that $K/Z(K) \cong G/Z(G) \cong C_2 \times C_2 \times C_2$, A_4 or D_{12}. If $\frac{HZ(G)}{Z(G)} < \frac{G}{Z(G)}$, we have that $\frac{H}{Z(H)} \cong C_2$, $C_2 \times C_2$, C_3, C_6, or S_3. If $\frac{H}{Z(H)}$ is cyclic, then H is abelian, which is a contradiction. If $\frac{H}{Z(H)} \cong S_3$ or $C_2 \times C_2$, from Theorem 1.1, $|\text{Cent}(H)| = 5$ or 4, which is a contradiction. Therefore from Lemma 4.1 it follows that $H/Z(H) \cong \frac{HZ(G)}{Z(G)} = \frac{G}{Z(G)}$. Let $n = 11$ and suppose that G is a primitive 11-centralizer group of odd order. From Theorem 1.1 we have that $G/Z(G) \cong (C_9 \times C_3) \times C_3$. If $\frac{HZ(G)}{Z(G)} < \frac{G}{Z(G)}$, we have that $\frac{H}{Z(H)} \cong C_3 \times C_3, C_9, C_3 \times C_3$, or $(C_3 \times C_3) \times C_3$. Again, $\frac{H}{Z(H)}$ can’t be cyclic. Using the GAP (see [10]), and the fact that H is primitive, we can verify that if $\frac{H}{Z(H)} \cong C_3 \times C_3, C_9 \times C_3$ or $(C_3 \times C_3) \times C_3$ then $11 = |\text{Cent}(H)| = |\text{Cent}(\frac{H}{Z(H)})| = 1$ or 5, which is a contradiction. Therefore from Lemma 4.1 it follows that $H/Z(H) \cong \frac{HZ(G)}{Z(G)} = \frac{G}{Z(G)}$. In either case we obtain $\frac{H}{Z(H)} \cong \frac{HZ(G)}{Z(G)} = \frac{G}{Z(G)}$, so $HZ(G) = G$. Again by Lemma 4.1, H is isoclinic with $HZ(G) = G$. □

Acknowledgement. The authors would like to thank the referees for the valuable suggestions and comments.

References

Igor Lima (Corresponding Author)
Departamento de Matemática
Universidade de Brasília
Brasília-DF, 70910-900 Brazil
e-mail: igor.matematico@gmail.com

Caio Rodrigues
IMPA
Estrada Dona Castorina, 110
22460-320 Rio de Janeiro, Brazil
e-mail: oiac10@gmail.com