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Abstract. The rings considered in this article are commutative with identity

and the modules are assumed to be unitary. If R is a subring of a ring T ,

then it is assumed that R contains the identity element of T . Let S be a

multiplicatively closed subset (m.c. subset) of a ring R. In this paper, we

consider the concept of S-accr, the generalization by Hamed and Hizem of the

notion of (accr) in module theory given by Lu. We say that R satisfies (accr) if

the increasing sequence of residuals of the form (I :R B) ⊆ (I :R B2) ⊆ (I :R

B3) ⊆ · · · is stationary for any ideal I of R and for any finitely generated ideal

B of R. Focusing on certain pairs of rings R ⊆ T , the aim of this paper is

to study whether S-accr on each intermediate ring A between R and T for a

suitable m.c. subset S of A (depending on A) implies that A satisfies (accr)

for each such A.
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1. Introduction

The rings considered in this article are commutative with identity. Modules

considered are assumed to be modules over commutative rings and are unitary. Let

M be a module over a ring R. Recall from [10, Definition 1] that M is said to

satisfy (accr) (respectively, (accr∗)) if the increasing sequence of residuals of the

form (N :M B) ⊆ (N :M B2) ⊆ (N :M B3) ⊆ · · · terminates for every submodule

N of M and for every finitely generated (respectively, principal) ideal B of R. We

use the abbreviation accr for ascending chain condition on residuals. A ring R is

said to satisfy (accr) (respectively, (accr∗)) if it does as a module over itself. For

interesting and inspiring theorems proved on rings and modules satisfying (accr),

one can refer [10, 11]. If R is a subring of a ring T , then it is assumed that R

contains the identity element of T . We say that (R, T ) is an accr pair (respectively,

accr∗ pair) if A satisfies (accr) (respectively, (accr∗)) for each subring A of T with
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R ⊆ A. We use the abbreviation ACCRP (respectively, ACCR∗P) for accr pair

(respectively, accr∗ pair). It was proved in [10, Theorem 1] that for any module M

over a ring R, the two properties (accr) and (accr∗) are equivalent. Hence, for any

subring R of a ring T , (R, T ) is an ACCRP if and only if (R, T ) is an ACCR∗P.

Let M be module over a ring R. Let S be a multiplicatively closed subset (m.c.

subset) of R. We use f.g. for finitely generated. Recall from [1] that M is said to be

S-finite if there exist s ∈ S and a f.g. submodule N of M such that sM ⊆ N ⊆M .

Recall that M is called S-Noetherian if every submodule of M is S-finite [1]. A ring

R is said to be S-Noetherian if it is S-Noetherian as an R-module. In [1], Anderson

and Dumitrescu stated and proved S-variant of Cohen’s Theorem and Eakin-Nagata

Theorem (see [1, Corollaries 5 and 7]). With certain suitable hypotheses, they also

investigated the transfer of S-Noetherian property to the ring of polynomials and

the ring of formal power series (see [1, Propositions 9 and 10]).

Let M be a module over a ring R. Let S be a m.c. subset of R. Recall from

[6, Definition 2.1(1)] that an increasing sequence of submodules of M , N1 ⊆ N2 ⊆
N3 ⊆ · · · is said to be S-stationary if there exist s ∈ S and k ∈ N such that

sNj ⊆ Nk for all j ≥ k. In [6], Hamed and Hizem generalized (accr) condition by

introducing the definition of rings and modules satisfying S-accr condition. Recall

from [6, Definition 3.1] that a module M is said to satisfy S-accr (respectively,

S-accr∗) if the increasing sequence of residuals of the form (N :M B) ⊆ (N :M

B2) ⊆ (N :M B3) ⊆ · · · is S-stationary for any submodule N of M and for any

f.g. (respectively, principal) ideal B of R. The ring R is said to satisfy S-accr

(respectively, S-accr∗) if it does as an R-module. Several interesting results on

modules satisfying S-accr were proved in [6]. It was shown in [6, Proposition 3.1]

that for any R-module M , the properties S-accr and S-accr∗ are equivalent. Let

N be a submodule of an R-module M . It was proved in [6, Theorem 3.2] that M

satisfies S-accr if and only if N and M
N satisfy S-accr. Let M be a f.g. module over

R. If R satisfies S-accr, then it was shown in [6, Theorem 3.3] that M satisfies S-

accr. If S is finite, then it was proved in [6, Theorem 3.4] that the polynomial ring

R[X] in one variable X over R satisfies S-accr if and only if R is an S-Noetherian

ring.

Let R ⊆ T be rings. In [15], certain pairs of rings R ⊆ T were characterized

such that (R, T ) is an accr pair. The aim of this article is to determine whether A

satisfies S-accr for each intermediate ring A between R and T for a suitable m.c.

subset S of A (depending on A) implies that (R, T ) is an accr pair.
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Let M be a module over a ring R. Recall from [3, Exercise 23, page 295] that

M is said to be a Laskerian R-module if M is a f.g. R-module and every proper

submodule of M is a finite intersection of primary submodules of M . R is said to

be a Laskerian ring if R is Laskerian as an R-module.

Let N be a p-primary submodule of an R-module M . N is said to be strongly

primary if there exists a positive integer k such that pkM ⊆ N . A f.g. R-module

M is said to be a strongly Laskerian R-module if every proper submodule of M is a

finite intersection of strongly primary submodules of M . R is said to be a strongly

Laskerian ring if R is strongly Laskerian as an R-module [3, Exercise 28, page 298].

Several interesting and inspiring theorems were proved on Laskerian (respec-

tively, strongly Laskerian) rings by Heinzer and Lantz in [8].

Let P be a property of rings. Let R be a subring of a ring T . We say that (R, T )

is a P pair if A satisfies the property P for each intermediate ring A between R

and T . Let S be a m.c. subset of R. We say that (R, T ) is an S-P pair if A

satisfies the property S-P for each intermediate ring A between R and T . We use

the abbreviation NP (respectively, S-NP) for Noetherian pair (respectively, for S-

Noetherian pair). The abbreviation LP (respectively, SLP) is used for Laskerian

pair (respectively, for strongly Laskerian pair). We use the abbreviation S-ACCRP

(respectively, S-ACCR∗P) for S-accr pair (respectively, for S-accr∗ pair). By [6,

Proposition 3.1], it follows that for any subring R of a ring T and any m.c. subset

S of R, (R, T ) is an S-ACCRP if and only if (R, T ) is an S-ACCR∗P.

For a ring R, let Spec(R) denote the set of all prime ideals of R and let Max(R)

denote the set of all maximal ideals of R. If S is a m.c. subset of R, then we assume

that 0 /∈ S. This article consists of five sections including the introduction. We

denote by R[X] (respectively, R[[X]]) the polynomial ring (respectively, the power

series ring) in one variable X over R. In Section 2, we discuss the effect of S-accr

on each intermediate ring A between R and R[X] for a suitable m.c. subset S of A

(depending on A) on the (accr) property of the intermediate rings between R and

R[X]. It is proved in Theorem 2.7 that the following statements are equivalent:

(1) (R,R[X]) is an SLP; (2)(R,R[X]) is an LP; (3) (R,R[X]) is an ACCRP; (4)

For any p ∈ Spec(R) and for any r ∈ R\p, the ring R + (1 + rX)R[X] satisfies

Sr-accr, where Sr = {rn | n ∈ N ∪ {0}}; and (5) R is Artinian. For a m.c. subset

S of a ring R, the concept of S-primary (respectively, S-strongly primary) ideals

of R was introduced in [16] and also, the concept of S-Laskerian (respectively, S-

strongly Laskerian) rings was introduced and studied in [16]. (The details of such

a study is given in Remark 2.2 of this article.) The concept of S-strong accr∗ was
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introduced and studied in [17]. We use the abbreviation S-LP (respectively, S-

SLP) for S-Laskerian pair (respectively, for S-strongly Laskerian pair). For a ring

R, it is proved in Proposition 2.8 that the statements (1) to (5) of Theorem 2.7 are

equivalent to each one of the following statements: (1′) For any p ∈ Spec(R) and

for any r ∈ R\p, the ring R+ (1 + rX)R[X] is Sr-strongly Laskerian; (2′) For any

p ∈ Spec(R) and for any r ∈ R\p, the ring R+ (1 + rX)R[X] is Sr-Laskerian; and

(3′) For any p ∈ Spec(R) and for any r ∈ R\p, the ring R+ (1 + rX)R[X] satisfies

Sr-strong accr∗.

Let R be a ring and let S be a m.c. subset of R. Let f : R → S−1R denote

the usual homomorphism of rings defined by f(r) = r
1 . For any ideal I of R, the

ideal f−1(S−1I) is called the saturation of I with respect to S and is denoted by

either SatS(I) or S(I). Let R be a subring of a ring T . We denote the collection

{A | A is a subring of T with R ⊆ A} by [R, T ].

We denote the nilradical of a ring R by nil(R). A ring R is said to be reduced

if nil(R) = (0). Let S be a m.c. subset of a ring R. We use the abbreviation

S-SACCR∗P for S-strong accr∗ pair. It is shown in Theorem 2.9 that the following

statements are equivalent: (1) (R,R[X]) is an S-SLP; (2) (R,R[X]) is an S-LP; (3)

(R,R[X]) is an S-SACCR∗P and for any A ∈ [R,R[X]] and for any ideal I of A,

there exists s ∈ S (depending on I) such that S(I) = (I :A s); (4) (R,R[X]) is an

S-ACCRP and for any A ∈ [R,R[X]] and for any ideal I of A, there exists s ∈ S
(depending on I) such that S(I) = (I :A s); and (5) S−1R is Artinian and for any

A ∈ [R,R[X]] and for any ideal I of A, there exists s ∈ S (depending on I) such

that S(I) = (I :A s). Moreover, if R is reduced, then it is proved in Theorem 2.9

that the above statements (1) to (5) are equivalent to the following statement (6)

(R,R[X]) is an S-NP.

Whenever a set A is a subset of a set B and A 6= B, we denote it by A ⊂ B. Let

R ⊂ T be rings. Let X be an indeterminate over T . Let S = {Xn | n ∈ N ∪ {0}}.
It is clear that S is a m.c. subset of R + XT [X] (respectively, R + XT [[X]]).

In Section 3, necessary and sufficient conditions are determined in order that (R+

XT [X], T [X]) (respectively, (R+XT [[X]], T [[X]])) to be an S-ACCRP. It is proved

in Theorem 3.6 that the following statements are equivalent: (1) (R+XT [X], T [X])

(respectively, (R + XT [[X]], T [[X]])) is an S-SLP; (2) (R + XT [X], T [X]) (re-

spectively, (R + XT [[X]], T [[X]])) is an S-LP; (3) (R + XT [X], T [X]) (respec-

tively, (R + XT [[X]], T [[X]])) is an S-SACCR∗P; (4) (R + XT [X], T [X]) (respec-

tively, (R + XT [[X]], T [[X]])) is an S-ACCRP; (5) T [X] (respectively, T [[X]])
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satisfies S-accr; (6) T is Noetherian; and (7) (R + XT [X], T [X]) (respectively,

(R+XT [[X]], T [[X]])) is an S-NP.

Let F1 ⊂ F2 be fields. Let n ≥ 1 and let for any field F , F [X1, . . . , Xn] (respec-

tively, F [[X1, . . . , Xn]]) denote the polynomial (respectively, the power series) ring

in n variables X1, . . . , Xn over F . It is convenient to denote F1[X1, . . . , Xn] by R

and F2[X1, . . . , Xn] by T . In Section 4 of this article, for some m.c. subsets S of

R, necessary and sufficient conditions are determined in order that an S-ACCRP

(R, T ) to be an ACCRP. Let n = 1. Let f(X1) ∈ R\F1. Let S = {f(X1)m |
m ∈ N ∪ {0}}. It is proved in Proposition 4.2 that the following statements are

equivalent: (1) (R, T ) is an LP; (2) (R, T ) is an S-LP; (3) (R, T ) is an ACCRP; (4)

(R, T ) is an S-ACCRP; (5) F2 is an algebraic extension of F1 ; and (6) T is integral

over R. Let n ≥ 2. Let S = {Xm
n | m ∈ N ∪ {0}}. It is shown in Proposition 4.3

that the following statements are equivalent: (1) (R, T ) is an SLP; (2) (R, T ) is an

LP; (3) (R, T ) is an ACCRP; (4) (R, T ) is an S-ACCRP; (5) F2 is a finite algebraic

extension of F1; and (6) (R, T ) is an NP. It is proved in Proposition 4.4 that the

statements (1) to (6) of Proposition 4.3 are equivalent to each one of the following

statements: (1′) (R, T ) is an S-SLP; (2′) (R, T ) is an S-LP; and (3′) (R, T ) is an

S-SACCR∗P. Let us denote F1[[X1, . . . , Xn]] by A and F2[[X1, . . . , Xn]] by B. Let

n = 1. Let S = {Xm
1 | m ∈ N∪{0}}. It is proved in Proposition 4.5 that the follow-

ing statements are equivalent: (1) (A,B) is an LP; (2) (A,B) is an S-LP; (3) (A,B)

is an ACCRP; (4) (A,B) is an S-ACCRP; (5) B is algebraic over A; and (6) B is

integral over A. If char(F1) = 0, then it is deduced in Corollary 4.6 that (A,B) is

an ACCRP if and only if (A,B) is an NP. Let n ≥ 2. Let S = {Xm
n | m ∈ N∪{0}}.

It is shown in Theorem 4.7 that the following statements are equivalent: (1) (A,B)

is an SLP; (2) (A,B) is an LP; (3) (A,B) is an ACCRP; (4) (A,B) is an S-ACCRP;

(5) F2 is a finite algebraic extension of F1; and (6) (A,B) is an NP. It is proved in

Proposition 4.8 that the statements (1) to (6) of Theorem 4.7 are equivalent to each

one of the following statements: (1′) (A,B) is an S-SLP; (2′) (A,B) is an S-LP;

and (3′) (A,B) is an S-SACCR∗P.

Let R be a Noetherian domain which is not a field. Let S be a m.c. subset of

R. It is proved in Theorem 5.1 that the following statements are equivalent: (1)

(R,S−1R) is an SLP; (2) (R,S−1R) is an LP; (1) (R,S−1R) is an ACCRP; (4)

(R,S−1R) is {sn | n ∈ N ∪ {0}}-ACCRP for each s ∈ S such that s is not a unit

of R; (5) S ⊆ C, where C is the set of all elements of R which are contained in

no m ∈ Max(R) with heightm ≥ 2; and (6) (R,S−1R) is an NP. For a ring T ,

we denote the group of units of T by U(T ) and the set of all non-units of T by



106 S. VISWESWARAN

NU(T ). With the same hypotheses as in the statement of Theorem 5.1, it is shown

in Proposition 5.2 that the statements (1) to (6) of Theorem 5.1 are equivalent to

each one of the following statements: (1′) (R,S−1R) is an {sn | n ∈ N ∪ {0}}-SLP

for each s ∈ S ∩ NU(R); (2′) (R,S−1R) is an {sn | n ∈ N ∪ {0}}-LP for each

s ∈ S ∩ NU(R); and (3′) (R,S−1R) is an {sn | n ∈ N ∪ {0}}-SACCR∗P for each

s ∈ S ∩NU(R).

2. The effect of S-accr on intermediate rings between R and R[X]

Let R be a ring. The aim of this section is to determine whether A satisfies

S-accr for a suitable m.c. subset S of A (S depends on A) for each A ∈ [R,R[X]]

implies that (R,R[X]) is an ACCRP. Let T = R[X] or R[[X]]. We first verify in

Proposition 2.1 that T satisfies SX -accr with SX = {Xn | n ∈ N∪ {0}} if and only

if R is Noetherian.

Proposition 2.1. Let R be a ring and let T = R[X] or R[[X]]. The following

statements are equivalent:

(1) T is strongly Laskerian.

(2) T is Laskerian.

(3) T satisfies (accr).

(4) T satisfies S-accr for each m.c. subset S of T .

(5) T satisfies SX-accr, where SX = {Xn | n ∈ N ∪ {0}}.
(6) R is Noetherian.

Proof. (1)⇒ (2) This is clear, since any strongly Laskerian ring is Laskerian.

(2) ⇒ (3) As T is Laskerian, we obtain from [10, Proposition 3] that T satisfies

(accr).

(3)⇒ (4) This is clear, since if a ring A satisfies (accr), then A satisfies S-accr for

any m.c. subset S of A.

(4)⇒ (5) This is clear, since SX = {Xn | n ∈ N ∪ {0}} is a m.c. subset of T .

(5) ⇒ (6) The proof proceeds along the same lines as the proof of [11, Theorem

2] except for some slight modifications. Let I0 ⊆ I1 ⊆ I2 ⊆ · · · be an increasing

sequence of ideals of R. Let I be the ideal of R[X] consisting of all f(X) ∈ R[X] of

the form f(X) =
∑n
i=0 aiX

i for some n ≥ 0 with ai ∈ Ii for each i ∈ {0, . . . , n} in

the case T = R[X] and in the case T = R[[X]], let I be the ideal of T consisting of

all f(X) ∈ R[[X]] of the form f(X) =
∑∞
i=0 aiX

i with ai ∈ Ii for each i ∈ N∪ {0}.
By assumption T satisfies SX -accr. Therefore, the increasing sequence of ideals

of T , (I :T X) ⊆ (I :T X2) ⊆ (I :T X3) ⊆ · · · is SX -stationary. Hence, there
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exist s ∈ SX and k ∈ N such that s(I :T Xj) ⊆ (I :T Xk) for all j ≥ k. We

can assume that s = Xn for some n ∈ N. Thus Xn(I :T Xj) ⊆ (I :T Xk)

for all j ≥ k. Let m ≥ 1. Let a ∈ In+k+m. Then a ∈ (I :T Xn+k+m) and

from Xn(I :T Xn+k+m) ⊆ (I :T Xk), we get that aXn+k ∈ I. It follows from

the definition of I that a ∈ In+k. This proves that In+k+m ⊆ In+k and hence,

In+k+m = In+k. This is true for all m ≥ 1. This shows that any increasing

sequence of ideals of R is stationary and therefore, R is Noetherian.

(6)⇒ (1) We are assuming that R is Noetherian. Hence, we obtain from Hilbert’s

Basis Theorem [2, Theorem 7.5] that R[X] is Noetherian and we obtain from [9,

Theorem 71] that R[[X]] is Noetherian. Since any Noetherian ring is strongly

Laskerian (see [2, Theorem 7.13 and Proposition 7.14]), we get that T is strongly

Laskerian. �

Remark 2.2. Let S be a m.c. subset of a ring R. Motivated by the work on S-

prime ideals of a ring in [7], the concept of S-primary ideals of a ring was introduced

and studied in [16]. Let q be an ideal of R with q ∩ S = ∅. Recall from [16] that

q is an S-primary ideal of R if the following condition holds: there exists s ∈ S

such that for all a, b ∈ R with ab ∈ q, either sa ∈ q or sb ∈ √q. If in addition,

there exist s′ ∈ S and n ∈ N such that s′(
√
q )n ⊆ q, then q is said to be an

S-strongly primary ideal of R. (In [16], an S-strongly primary ideal was referred to

as a strongly S-primary ideal.) Some basic properties of S-primary (respectively,

S-strongly primary) ideals of a ring were proved in [16]. Also, the concept of S-

Laskerian rings was introduced and studied in [16]. Let I be an ideal of R such

that I ∩ S = ∅. Recall from [16, Introduction to Section 3] that I is said to be

S-decomposable (respectively, S-strongly decomposable) if I is a finite intersection

of S-primary (respectively, S-strongly primary) ideals of R. (In [16], an S-strongly

decomposable ideal was referred to as a strongly S-decomposable ideal.) Also, recall

from [16] that R is said to be S-Laskerian (respectively, S-strongly Laskerian) if

each proper ideal I of R, either I ∩ S 6= ∅ or there exists s ∈ S such that (I :R s)

is S-decomposable (respectively, S-strongly decomposable). (In [16], an S-strongly

Laskerian ring was referred to as a strongly S-Laskerian ring.) It was verified in

[16, Introduction to Section 3] that any Laskerian (respectively, strongly Laskerian)

ring is S-Laskerian (respectively, S-strongly Laskerian).

Recall from [17] that a ring R is said to satisfy strong accr∗ if for any ideal I

of R and for any sequence < an > of elements of R, the increasing sequence of

residuals of the form (I :R a1) ⊆ (I :R a1a2) ⊆ (I :R a1a2a3) ⊆ · · · terminates. Let

S be a m.c. subset of R. Recall from [17] that R is said to satisfy S-strong accr∗ if
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for any ideal I of R and for any sequence < an > of elements of R, the increasing

sequence of residuals of the form (I :R a1) ⊆ (I :R a1a2) ⊆ (I :R a1a2a3) ⊆ · · · is

S-stationary.

Proposition 2.3. Let R, T be as in the statement of Proposition 2.1. The state-

ments (1) to (6) of Proposition 2.1 are equivalent to each one of the following

statements:

(1′) T is SX-strongly Laskerian, where SX = {Xn | n ∈ N ∪ {0}}.
(2′) T is SX-Laskerian.

(3′) T satisfies SX-strong accr∗.

Proof. If A is any Laskerian (respectively, strongly Laskerian) ring, then A is S-

Laskerian (respectively, S-strongly Laskerian) for any m.c. subset S of A. There-

fore, (1)⇒ (1′) and (2)⇒ (2′).

(1′) ⇒ (3′) As T is SX -strongly Laskerian by assumption, it follows from [16,

Corollary 3.9(2)] that T satisfies SX -strong accr∗.

(3′) ⇒ (1) If a ring A satisfies S-strong accr∗ for some m.c. subset S of A, then

it is clear that A satisfies S-accr∗ and so, A satisfies S-accr by [6, Proposition

3.1]. Hence, if (3′) holds, then it follows that T satisfies SX -accr and so, (5) of

Proposition 2.1 holds. Therefore, (1) of Proposition 2.1 holds.

(2′) ⇒ (2) As T is SX -Laskerian, we obtain from [16, Corollary 3.9(1)] that T

satisfies SX -accr∗ and so, T satisfies SX -accr. Therefore, (5) of Proposition 2.1

holds and so, (2) of Proposition 2.1 holds. �

Proposition 2.4. Let r be a non-zero-divisor of a ring R. Let Sr = {rn | n ∈
N ∪ {0}}. Consider the following statements:

(1) (R,R[X]) is an ACCRP.

(2) (R,R[X]) is an Sr-ACCRP.

(3) A = R+ (1 + rX)R[X] satisfies Sr-accr.

(4) r ∈ U(R) and R is Noetherian.

Then (1)⇒ (2)⇒ (3)⇔ (4).

Proof. It is clear that Sr is a m.c. subset of R and hence, for each A ∈ [R,R[X]].

(1)⇒ (2) This is clear, since if a ring A satisfies (accr), then it satisfies S-accr for

any m.c. subset S of A.

(2)⇒ (3) This is clear, since A = R+ (1 + rX)R[X] ∈ [R,R[X]].

(3)⇒ (4) We are assuming that A = R+ (1 + rX)R[X] satisfies Sr-accr. We prove

r ∈ U(R) by using the arguments found in the proof of [15, Proposition 1.3]. Let
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us denote the ideal A(1 + rX) of A by I. Since A satisfies Sr-accr, we obtain that

the increasing sequence of ideals of A, (I :A r) ⊆ (I :A r2) ⊆ (I :A r3) ⊆ · · ·
is Sr-stationary. Hence, it follows that there exist s ∈ Sr and k ∈ N such that

s(I :A rj) ⊆ (I :A rk) for all j ≥ k. We can assume that s = rn for some

n ∈ N. Now, as I = A(1 + rX) and (1 + rX)Xn+k+1, rX ∈ A, we get that

(1 + rX)Xn+k+1 ∈ (I :A r
n+k+1). Therefore, rn(1 + rX)Xn+k+1 ∈ (I :A r

k). This

implies that rn(1 + rX)Xn+k+1rk = (1 + rX)a for some a ∈ A. Since there is

no non-zero y ∈ R such that (1 + rX)y = 0, it follows from McCoy’s Theorem

[12, Theorem 2] that 1 + rX is a non-zero-divisor of R[X]. Hence, we obtain that

rn+kXn+k+1 = a ∈ A. As rn+k−1Xn+k = (1+rX)rn+k−1Xn+k−rn+kXn+k+1 and

(1 + rX)rn+k−1Xn+k, rn+kXn+k+1 ∈ A, it follows that rn+k−1Xn+k ∈ A. From

rn+k−2Xn+k−1 = (1 + rX)rn+k−2Xn+k−1 − rn+k−1Xn+k, we get that

rn+k−2Xn+k−1 ∈ A. Proceeding like this, we obtain that X ∈ A. Therefore,

X = y + (1 + rX)f(X) for some y ∈ R and f(X) ∈ R[X]. Since r is a non-zero-

divisor of R, it follows that f(X) ∈ R\{0}. By comparing the coefficient of X on

both sides of X = y + (1 + rX)f(X), we obtain that 1 ∈ Rr and so, r ∈ U(R). In

such a case, from rX ∈ A and r−1 ∈ A, we get that X ∈ A. Therefore, A = R[X]

satisfies Sr-accr. It follows from r ∈ U(R), the properties Sr-accr and (accr) are

equivalent. Therefore, R[X] satisfies (accr) and so, we obtain from [11, Theorem 2]

that R is Noetherian.

(4) ⇒ (3) By (4), r ∈ U(R). It is observed in the proof of (3) ⇒ (4) of this

proposition that A = R + (1 + rX)R[X] = R[X]. By (4) R is Noetherian and so,

R[X] is Noetherian. Therefore, R[X] satisfies (accr). As r ∈ U(R), Sr-accr is the

same as (accr). �

We provide Example 2.5(1) to illustrate that (4) ⇒ (3) of Proposition 2.4 can

fail to hold if we drop the assumption that R is Noetherian in the statement (4).

We provide Example 2.5(2) to illustrate that (3) ⇒ (2) of Proposition 2.4 can fail

to hold. We say that a ring R is quasiocal if R has a unique maximal ideal. A

Noetherian quasilocal ring is referred to as a local ring.

Example 2.5. (1) Let V be an infinite dimensional vector space over a field

K. Let R = K(+)V be the ring obtained by using Nagata’s principle of

idealization. Then each non-zero-divisor of R is a unit in R but (3) of

Proposition 2.4 does not hold.

(2) Let K be a field. Let T = K[[X,Y ]] and let I = TX2 + TXY . Let R = T
I .

Then each non-zero-divisor of R is a unit in R and the statement (3) of
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Proposition 2.4 holds for R but the statement (2) of Proposition 2.4 does

not hold for R.

Proof. (1) Let m = (0)(+)V . It is clear that m ∈ Max(R). From m2 is the zero

ideal of R, it follows that R is quasilocal with m as its unique maximal ideal. From

m = Z(R), we obtain that any non-zero-divisor of R is a unit in R. Let r be any

non-zero-divisor of R. Let A = R + (1 + rX)R[X]. It is clear that A = R[X].

By assumption, V is an infinite dimensional vector space over K and so, R is not

Noetherian. Therefore, we obtain from [11, Theorem 2] that R[X] does not satisfy

(accr). Since r ∈ U(R), the property Sr-accr coincides with (accr). Hence, we get

that R[X] does not satisfy Sr-accr.

(2) It follows from [2, Exercise 5(iv), page 11] that m = TX + TY is the unique

maximal ideal of T . Hence, m
I is the unique maximal ideal of R = T

I . Let m ∈ m.

Then m = t1X + t2Y for some t1, t2 ∈ T . Notice that X /∈ I = TX2 + TXY

and (m + I)(X + I) = t1X
2 + t2XY + I = 0 + I. This shows that m

I ⊆ Z(R)

and so, Z(R) = m
I . From R\(m

I ) = U(R), we get that each non-zero divisor

of R is a unit in R. We know from [9, Theorem 71] that T is Noetherian and

so, R = T
I is Noetherian. Let R[Z] be the polynomial ring in one variable Z

over R. Let r be any non-zero-divisor of R. Let A = R + (1 + rZ)R[Z]. Since

r ∈ U(R), it follows that A = R[Z]. Since R is Noetherian, we obtain that R[Z]

is Noetherian and so, A = R[Z] satisfies (accr). Hence, A satisfies Sr-accr, where

Sr = {rn | n ∈ N ∪ {0}}. Thus the statement (3) of Proposition 2.4 holds. Notice

that TX
I ∈ Spec(R)\Max(R) and so, we obtain from [2, Proposition 8.1] that R is

not Artinian. Hence, we obtain from (1)⇒ (2) of [15, Theorem 1.1] that (R,R[Z])

is not an ACCRP. Equivalently, (R,R[Z]) is not an Sr-ACCRP. Therefore, the

statement (2) of Proposition 2.4 does not hold. �

Lemma 2.6. Let R, T be rings. Let φ : R → T be a homomorphism of rings such

that φ is onto. If S is a m.c. subset of R such that φ(s) 6= 0 for each s ∈ S, then

S = {φ(s) | s ∈ S} is a m.c. subset of T . Moreover, if R satisfies S-accr, then T

satisfies S-accr.

Proof. It can be easily verified that S is a m.c. subset of T . Assume that R satisfies

S-accr. As the properties S-accr and S-accr∗ are equivalent by [6, Proposition

3.1], it is enough to show that the increasing sequence of ideals of T of the form

(A :T t) ⊆ (A :T t
2) ⊆ (A :T t

3) ⊆ · · · is S-stationary for any ideal A of T and for

any element t ∈ T . Since φ is onto, there exist an ideal J of R with J ⊇ ker(φ) and

r ∈ R such that A = φ(J) and t = φ(r). As R satisfies S-accr, there exist s ∈ S and
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k ∈ N such that s(J :R rj) ⊆ (J :R rk) for all j ≥ k. Let j ≥ k. Let t′ ∈ (A :T t
j).

Then t′ = φ(r′) for some r′ ∈ R. From t′tj ∈ φ(J) and J ⊇ ker(φ), it follows

that r′rj ∈ J and so, sr′ ∈ (J :R rk). Hence, φ(s)φ(r′)(φ(r))k ∈ φ(J) = A. This

shows that φ(s)t′ ∈ (A :T tk). Therefore, we obtain that there exist φ(s) ∈ S and

k ∈ N such that φ(s)(A :T t
j) ⊆ (A :T t

k) for all j ≥ k. This proves that T satisfies

S-accr. �

The Krull dimension of a ring R is simply referred to as the dimension of R and

is denoted by dimR.

Theorem 2.7. Let R be a ring. The following statements are equivalent:

(1) (R,R[X]) is an SLP.

(2) (R,R[X]) is an LP.

(3) (R,R[X]) is an ACCRP.

(4) For any p ∈ Spec(R) and for any r ∈ R\p, the ring R + (1 + rX)R[X]

satisfies Sr-accr, where Sr = {rn | n ∈ N ∪ {0}}.
(5) R is Artinian.

Proof. (1)⇒ (2) This is clear, since any strongly Laskerian ring is Laskerian.

(2)⇒ (3) It follows from (2) and [10, Proposition 3] that (R,R[X]) is an ACCRP.

(3)⇒ (4) Let p ∈ Spec(R) and let r ∈ R\p. The ring R+(1+rX)R[X] ∈ [R,R[X]]

and so by (3), R+ (1 + rX)R[X] satisfies (accr). Hence, R+ (1 + rX)R[X] satisfies

Sr-accr.

(4) ⇒ (5) Let p ∈ Spec(R). Notice that 1 ∈ R\p. By (4), R + (1 + X)R[X]

satisfies S1-accr. It is clear that R + (1 +X)R[X] = R[X]. Therefore, we get that

R[X] satisfies S1-accr. As S1-accr and (accr) are equivalent, we obtain from [11,

Theorem 2] that R is Noetherian. Let p ∈ Spec(R) and let t be a non-zero element

of R
p . Let r ∈ R be such that t = r + p. From t 6= 0 + p, it follows that r /∈ p.

Let φ : R[X] → R
p [X] be the homomorphism of rings defined by φ(

∑n
i=0 riX

i) =∑n
i=0(ri+p)Xi. It is clear that φ is an onto homomorphism of rings. Let us denote

the subring R + (1 + rX)R[X] of R[X] by A. By assumption, A satisfies Sr-accr.

For an element a ∈ R, we denote a + p by a. From φ(A) = R
p + (1 + rX)Rp [X]

and φ(Sr) = {rn | n ∈ N ∪ {0}} = Sr. As A satisfies Sr-accr, we obtain from

Lemma 2.6 that φ(A) satisfies Sr-accr. Since R
p is an integral domain, it follows

that t = r is a non-zero-divisor of R
p . From φ(A) satisfies Sr-accr, we obtain from

(3)⇒ (4) of Proposition 2.4 that t = r is a unit in R
p . This shows that each non-zero

element of R
p is a unit in R

p and so, R
p is a field. Therefore, p ∈ Max(R). Hence,
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Spec(R) = Max(R) and so, dimR = 0. Thus R is Noetherian and dimR = 0.

Therefore, we obtain from [2, Theorem 8.5] that R is Artinian.

(5)⇒ (1) This is (2)⇒ (3) of [15, Theorem 1.1]. �

Proposition 2.8. For any ring R, the statements (1) to (5) of Theorem 2.7 are

equivalent to each one of the following statements:

(1′) For any p ∈ Spec(R) and for any r ∈ R\p, the ring R + (1 + rX)R[X] is

Sr-strongly Laskerian, where Sr = {rn | n ∈ N ∪ {0}}.
(2′) For any p ∈ Spec(R) and for any r ∈ R\p, the ring R + (1 + rX)R[X] is

Sr-Laskerian.

(3′) For any p ∈ Spec(R) and for any r ∈ R\p, the ring R + (1 + rX)R[X]

satisfies Sr-strong accr∗.

Proof. This proposition can be proved using arguments similar to those that are

used in the proof of Proposition 2.3. �

Let R be a subring of a ring T . Let S be a m.c. subset of R. We say that

(R, T ) is an S-Laskerian pair (respectively, S-strongly Laskerian pair) if A is S-

Laskerian (respectively, S-strongly Laskerian) for each A ∈ [R, T ]. We use the

abbreviation S-LP (respectively, S-SLP) for S-Laskerian pair (respectively, for S-

strongly Laskerian pair). We use the abbreviation S-SACCR∗P for S-strong accr∗

pair.

Theorem 2.9. Let S be a m.c. subset of a ring R. The following statements are

equivalent:

(1) (R,R[X]) is an S-SLP.

(2) (R,R[X]) is an S-LP.

(3) (R,R[X]) is an S-SACCR∗P and for any A ∈ [R,R[X]] and for any given

ideal I of A, there exists s ∈ S (depending on I) such that S(I) = (I :A s).

(4) (R,R[X]) is an S-ACCRP and for any A ∈ [R,R[X]] and for any given

ideal I of A, there exists s ∈ S (depending on I) such that S(I) = (I :A s).

(5) S−1R is Artinian and for any A ∈ [R,R[X]] and for any given ideal I of

A, there exists s ∈ S (depending on I) such that S(I) = (I :A s).

Moreover, if R is reduced, then the above equivalent statements (1) to (5)

are equivalent to the following statement:

(6) (R,R[X]) is an S-NP.

Proof. (1)⇒ (2) This is clear, since any S-strongly Laskerian ring is S-Laskerian.
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(1) ⇒ (3) We know from [16, Corollary 3.9(2)] that any S-strongly Laskerian ring

satisfies S-strong accr∗. Thus if (1) holds, then (R,R[X]) is an S-SACCR∗P. Let

A ∈ [R,R[X]]. Let I be an ideal of A. If I ∩ S 6= ∅, then S(I) = A = (I :A s) for

any s ∈ I ∩ S. If I ∩ S = ∅, then it follows from (1)⇒ (2) of [16, Proposition 3.2]

that there exists s ∈ S (depending on I) such that S(I) = (I :A s).

(3)⇒ (4) Let A ∈ [R,R[X]]. As A satisfies S-strong accr∗, it follows that A satisfies

S-accr∗ and so, A satisfies S-accr by [6, Proposition 3.1]. Therefore, (R,R[X]) is

an S-ACCRP. The rest of the assertion stated in (4) follows immediately from (3).

(4) ⇒ (5) Let A be any subring of R[X] such that R ⊆ A. By hypothesis, A

satisfies S-accr. Hence, it is clear that A satisfies S-accr∗. As A satisfies S-accr∗,

we obtain from [6, Example 3.1(3)] that S−1A satisfies (accr∗). Let B be a subring

of S−1R[X] = (S−1R)[X] such that S−1R ⊆ B. Then B = S−1A for some subring

A of R[X] such that R ⊆ A. Hence, B = S−1A satisfies (accr∗). This shows

that (S−1R, (S−1R)[X]) is an ACCRP. Therefore, it follows from (1)⇒ (2) of [15,

Theorem 1.1] that S−1R is Artinian. Let A ∈ [R,R[X]]. By (4), for any given ideal

I of A, there exists s ∈ S (depending on I) such that S(I) = (I :A s).

(5)⇒ (1) Since S−1R is Artinian, we know from (2)⇒ (3) of [15, Theorem 1.1] that

(S−1R, (S−1R)[X]) is an SLP. Let A ∈ [R,R[X]]. From S−1(R[X]) = (S−1R)[X],

we get that S−1A ∈ [S−1R, (S−1R)[X]]. Hence, S−1A is strongly Laskerian. By

(5), for any ideal I of A, there exists s ∈ S (depending on I) such that S(I) = (I :R

s). Hence, we obtain from (2) ⇒ (1) of [16, Proposition 3.2] that A is S-strongly

Laskerian. This proves that (R,R[X]) is an S-SLP.

(2) ⇒ (4) This can be proved using arguments similar to those that are used in

the proof of (1) ⇒ (3) of this theorem with the help of [16, Corollary 3.9(1)], [6,

Proposition 3.1], and (1)⇒ (2) of [16, Proposition 3.2].

Assume that R is reduced and the statement (1) holds. We know from (1) ⇒
(5) of this theorem that S−1R is Artinian. As R is reduced by assumption, it

follows that S−1R is reduced. Since a local Artinian reduced ring is a field, we

obtain from [2, Theorem 8.7] that S−1R is isomorphic to a finite direct product

of fields. It follows from (3) ⇒ (2) of [5, Theorem 2.3] that (S−1R, (S−1R)[X])

is an NP. Let A ∈ [R,R[X]]. As S−1(R[X]) = (S−1R)[X], we get that S−1A ∈
[S−1R, (S−1R)[X]] and so, S−1A is Noetherian. It is already noted in the proof of

(1)⇒ (3) of this theorem that for any A ∈ [R,R[X]] and for any ideal I of A, there

exists s ∈ S (depending on I) such that S(I) = (I :A s). Hence, we obtain from [1,

Proposition 2(f)] that A is S-Noetherian. This shows that (R,R[X]) is an S-NP.

This proves (1)⇒ (6).
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(6)⇒ (1) Assume that (6) holds. Let A ∈ [R,R[X]]. Then A is S-Noetherian. We

know from [16, Corollary 3.3] that any S-Noetherian ring (it can be non-reduced)

is S-strongly Laskerian. Therefore, A is S-strongly Laskerian. Hence, we obtain

that (R,R[X]) is an S-SLP. Notice that the proof of (6) ⇒ (1) does not need the

assumption that R is reduced. �

In Example 2.10, we provide an integral domain D and a m.c. subset S of D

such that S−1D is Artinian but (D,D[X]) is not an S-ACCRP.

Example 2.10. Let p be a prime number and let D = ZpZ. Let S = {pn | n ∈
N ∪ {0}}. Then S−1D = Q but (D,D[X]) is not an S-ACCRP.

Proof. It is well-known that D = ZpZ is a local one-dimensional domain with

pD as its unique maximal ideal. Notice that S = {pn | n ∈ N ∪ {0}} is a m.c.

subset of D and S−1D = Q. Thus S−1D is a field and hence, it is Artinian. Let

A = D+ (1 + pX)D[X]. Since p is a non-zero-divisor of D but not a unit of D, we

obtain from (3)⇒ (4) of Proposition 2.4 that A does not satisfy S-accr. Therefore,

(D,D[X]) is not an S-ACCRP. �

We provide Example 2.11 to illustrate that (1)⇒ (6) of Theorem 2.9 can fail to

hold if R is not reduced.

Example 2.11. Let R = Z4 and let S = {1}. Then (R,R[X]) is an S-SLP but

(R,R[X]) is not an S-NP.

Proof. Notice that R = Z4 is Artinian. Hence, we obtain from (2) ⇒ (3) of [15,

Theorem 1.1] that (R,R[X]) is an SLP. It is clear that A = Z4+2Z4[X] ∈ [R,R[X]].

If the ideal 2Z4[X] of A is a f.g. ideal of A, then from 22 = 0, it follows that 2Z4[X]

is a f.g. Z4-module. This is not true and so, 2Z4[X] is not a f.g. ideal of A.

Therefore, A is not Noetherian and so, (R,R[X]) is not an NP. As S = {1}, we

get that S-SLP agrees with SLP and S-NP agrees with NP. Hence, (R,R[X]) is an

S-SLP but it is not an S-NP. �

3. The effect of S-accr on the intermediate rings between R+XT [X]

(respectively, R+XT [[X]]) and T [X] (respectively, T [[X]])

Let R ⊂ T be rings. Let X be an indeterminate over T . Let S = {Xn |
n ∈ N ∪ {0}}. The aim of this section is to study the effect of S-accr on all

the intermediate rings between R + XT [X] (respectively, R + XT [[X]]) and T [X]

(respectively, T [[X]]).
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Lemma 3.1. Let A ⊆ B be rings. Let C be a non-zero proper ideal of B such that

C ⊂ A. Let S be a m.c. subset of A such that C ∩S 6= ∅. The following statements

are equivalent:

(1) A satisfies S-accr.

(2) B satisfies S-accr.

(3) (A,B) is an S-ACCRP.

Proof. (1) ⇒ (2) In view of [6, Proposition 3.1], it is enough to show that B

satisfies S-accr∗. Let J be any ideal of B and let b be any element of B. We claim

that the increasing sequence of ideals of B, (J :B b) ⊆ (J :B b2) ⊆ (J :B b3) ⊆ · · ·
is S-stationary. Let c ∈ C ∩ S. Notice that J ∩A is an ideal of A and bc ∈ C ⊂ A.

Since A satisfies S-accr, the increasing sequence of ideals of A, (J ∩ A :A bc) ⊆
(J ∩ A :A b2c2) ⊆ (J ∩ A :A b3c3) ⊆ · · · is S-stationary. Hence, there exist s ∈ S
and k ∈ N such that s(J ∩A :A b

jcj) ⊆ (J ∩A :A b
kck) for all j ≥ k. As s, c2k ∈ S,

it follows that sc2k ∈ S. We verify that sc2k(J :B bj) ⊆ (J :B bk) for all j ≥ k. Let

j ≥ k and let x ∈ (J :B bj). Then xck ∈ C ⊂ A is such that (xck)(bjcj) ∈ J ∩ A.

Hence, s(xck) ∈ (J ∩ A :A ckbk). This implies that sc2kxbk ∈ J ∩ A ⊆ J and so,

sc2kx ∈ (J :B bk). This proves that sc2k(J :B bj) ⊆ (J :B bk) for all j ≥ k. Thus the

increasing sequence of ideals of B of the form (J :B b) ⊆ (J :B b2) ⊆ (J :B b3) ⊆ · · ·
is S-stationary, where J is any ideal of B and b is any element of B. Therefore, we

obtain that B satisfies S-accr.

(2) ⇒ (1) In view of [6, Proposition 3.1], it is enough to show that A satisfies

S-accr∗. Let I be any ideal of A and let a be any element of A. We claim that

the increasing sequence of ideals of A, (I :A a) ⊆ (I :A a2) ⊆ (I :A a3) ⊆ · · ·
is S-stationary. Since B satisfies S-accr, the increasing sequence of ideals of B,

(IB :B a) ⊆ (IB :B a2) ⊆ (IB :B a3) ⊆ · · · is S-stationary. Hence, there exist

s ∈ S and k ∈ N such that s(IB :B aj) ⊆ (IB :B ak) for all j ≥ k. Let c ∈ C ∩ S.

As s, c ∈ S, it follows that sc ∈ S. We verify that sc(I :A aj) ⊆ (I :A ak) for all

j ≥ k. Let j ≥ k and let x ∈ (I :A aj). As (I :A aj) ⊆ (IB :B aj), it follows

that x ∈ (IB :B aj) and so, sx ∈ (IB :B ak). This implies that (sc)xak ∈ cIB =

(cB)I ⊆ CI ⊆ I. This shows that sc(I :A aj) ⊆ (I :A ak) for all j ≥ k. Thus the

increasing sequence of ideals of A of the form (I :A a) ⊆ (I :A a
2) ⊆ (I :A a

3) ⊆ · · ·
is S-stationary for any ideal I of A and for any a ∈ A. Therefore, we get that A

satisfies S-accr.

(1)⇒ (3) Let R ∈ [A,B]. Notice that C is an ideal common to both R and A, and

S is a m.c. subset of A with C ∩ S 6= ∅. Hence, it follows from (1) ⇒ (2) of this

lemma that R satisfies S-accr. This proves that (A,B) is an S-ACCRP.
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(3)⇒ (1) is clear. �

Example 3.2 given below illustrates that (2)⇒ (1) of Lemma 3.1 can fail to hold

if the hypothesis that C ∩ S 6= ∅ is omitted.

Example 3.2. Let B = Z[X] and let A = Z + (1 + 2X)Z[X]. Let S = {2n | n ∈
N ∪ {0}}. Then B satisfies S-accr but A does not satisfy S-accr.

Proof. Notice that (1+2X)B is a non-zero proper ideal of both B and A. Observe

that S = {2n | n ∈ N∪{0}} is a m.c. subset of Z. Since 2 is not a zero-divisor of Z
and 2 /∈ U(Z), it follows from (3)⇒ (4) of Proposition 2.4 that A does not satisfy

S-accr. Notice that B = Z[X] is Noetherian and so, B satisfies S-accr. Thus this

example illustrates that (2) ⇒ (1) of Lemma 3.1 can fail to hold if the hypothesis

that C ∩ S 6= ∅ is omitted. �

Example 3.4 given below illustrates that (1)⇒ (2) of Lemma 3.1 can fail to hold

if the hypothesis that C ∩ S 6= ∅ is omitted. We use Lemma 3.3 in the verification

of Example 3.4.

Lemma 3.3. Let A be a ring and let a, b be non-units of A such that Aa+Ab = A.

The following statements are equivalent:

(1) A satisfies (accr).

(2) A satisfies both Sa-accr and Sb-accr, where Sa = {an | n ∈ N ∪ {0}} and

Sb = {bn | n ∈ N ∪ {0}}.

Proof. By hypothesis, a, b ∈ NU(A) are such that Aa+ Ab = A. For any n ∈ N,

an, bn ∈ NU(A) and Aan + Abn = A. Hence, a, b /∈ nil(A). Now, Sa = {an | n ∈
N ∪ {0}} (respectively, Sb = {bn | n ∈ N ∪ {0}}) is a m.c. subset of A.

(1)⇒ (2) As A satisfies (accr), it follows that A satisfies both Sa-accr and Sb-accr.

(2)⇒ (1) By hypothesis, a, b ∈ NU(A) are such that Aa+Ab = A and A satisfies

both Sa-accr and Sb-accr. We claim that A satisfies (accr). In view of [10, Theorem

1], it is enough to show that A satisfies (accr∗). Consider the increasing sequence

of ideals of A of the form (I :A x) ⊆ (I :A x
2) ⊆ (I :A x

3) ⊆ · · · , where I is an ideal

of A and x ∈ A. By assumption, A satisfies Sa-accr and Sb-accr. Therefore, there

exist n, k ∈ N such that an(I :A xj) ⊆ (I :A xk) and bn(I :A xj) ⊆ (I :A xk) for

all j ≥ k. From Aa+ Ab = A, we obtain that Aan + Abn = A. Hence, there exist

λ, µ ∈ A such that λan + µbn = 1. Let j ≥ k. It is clear that (I :A xj) = 1(I :A

xj) = (λan+µbn)(I :A x
j) ⊆ (I :A x

k) ⊆ (I :A x
j). Therefore, (I :A x

j) = (I :A x
k)

for all j ≥ k. This proves that the increasing sequence of ideals of A of the form
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(I :A x) ⊆ (I :A x
2) ⊆ (I :A x

3) ⊆ · · · is stationary for any ideal I of A and for any

x ∈ A. This proves that A satisfies (accr). �

Example 3.4. Let K be a field. Let B be the subring of the polynomial ring

K[X,Y ] given by B = K[X] + (1 +XY )K[X,Y ]. Let A be the subring of B given

by A = K+(1+XY )K[X,Y ]. Let SXY = {(XY )n | n ∈ N∪{0}}. Then A satisfies

SXY -accr but B does not satisfy SXY -accr.

Proof. Notice that C = (1 + XY )K[X,Y ] is a non-zero proper ideal of both A

and B. It is clear that SXY = {(XY )n | n ∈ N ∪ {0}} is a m.c. subset of A. We

know from (3) ⇒ (4) of [15, Lemma 5.9] that A is strongly Laskerian and so, we

obtain from [10, Proposition 3] that A satisfies (accr). Hence, A satisfies S-accr

for any m.c. subset S of R. In particular, A satisfies SXY -accr. We claim that

B does not satisfy SXY -accr. Suppose that B satisfies SXY -accr. Let S1+XY =

{(1 + XY )n | n ∈ N ∪ {0}}. Notice that S1+XY is also a m.c. subset of A and

C ∩S1+XY 6= ∅. As A satisfies S1+XY -accr, it follows from (1)⇒ (2) of Lemma 3.1

that B satisfies S1+XY -accr. As X is a non-zero-divisor of K[X] but not a unit of

K[X], we obtain from (3)⇒ (4) of Proposition 2.4 that B does not satisfy SX -accr,

where SX = {Xn | n ∈ N ∪ {0}}. Hence, B does not satisfy (accr). It is clear that

Aa + Ab = A with a = XY and b = 1 + XY . Hence, Ba + Bb = B. Notice that

B satisfies S1+XY -accr. As B does not satisfy (accr), it follows from (2) ⇒ (1) of

Lemma 3.3 that B does not satisfy SXY -accr. �

Lemma 3.5. Let A,B,C and S be as in the statement of Lemma 3.1. The following

statements are equivalent:

(1) A is S-Noetherian.

(2) B is S-Noetherian.

(3) (A,B) is an S-NP.

Proof. (1)⇒ (2) This is (1)⇒ (2) of [16, Corollary 3.7].

(2)⇒ (1) This is (2)⇒ (1) of [16, Corollary 3.7].

(1)⇒ (3) This can be proved using arguments similar to those that are used in the

proof of (1)⇒ (3) of Lemma 3.1.

(3)⇒ (1) This is clear. �

Theorem 3.6. Let R be a subring of a ring T . Let X be an indeterminate over

T . Let S = {Xn | n ∈ N ∪ {0}}. The following statements are equivalent:

(1) (R+XT [X], T [X]) (respectively, (R+XT [[X]], T [[X]])) is an S-SLP.

(2) (R+XT [X], T [X]) (respectively, (R+XT [[X]], T [[X]])) is an S-LP.
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(3) (R+XT [X], T [X]) (respectively, (R+XT [[X]], T [[X]])) is an S-SACCR∗P.

(4) (R+XT [X], T [X]) (respectively, (R+XT [X]], T [[X]])) is an

S-ACCRP.

(5) T [X] (respectively, T [[X]]) satisfies S-accr.

(6) T is Noetherian.

(7) (R+XT [X], T [X]) (respectively, (R+XT [[X]], T [[X]])) is an S-NP.

Proof. Notice that S = {Xn | n ∈ N ∪ {0}} is a m.c. subset of R + XT [X]

(respectively, R + XT [[X]]) and the non-zero proper ideal XT [X] (respectively,

XT [[X]]) of T [X] (respectively, T [[X]]) is also an ideal of R+XT [X] (respectively,

R + XT [[X]]). The m.c. subset S of R + XT [X] (respectively. R + XT [[X]]) is

such that XT [X] ∩ S 6= ∅ (respectively, XT [[X]] ∩ S 6= ∅).
(1)⇒ (2) This is clear, since any S-strongly Laskerian ring is S-Laskerian.

(1)⇒ (3) This follows from [16, Corollary 3.9(2)].

(3)⇒ (4) This is clear, since S-strong accr∗ implies S-accr.

(4) ⇒ (5) Notice that T [X] ∈ [R + XT [X], T [X]] (respectively, T [[X]] ∈ [R +

XT [[X]], T [[X]]]). Hence, T [X] (respectively, T [[X]]) satisfies S-accr.

(5) ⇒ (6) By assumption, T [X] (respectively, T [[X]]) satisfies S-accr. Hence, we

obtain from (5)⇒ (6) of Proposition 2.1 that T is Noetherian.

(6) ⇒ (7) We are assuming that T is Noetherian. Hence, we obtain that T [X] is

Noetherian. We know from [9, Theorem 71] that T [[X]] is Noetherian. Therefore,

T [X] (respectively, T [[X]]) is S-Noetherian. Hence, we obtain from (2) ⇒ (3)

of Lemma 3.5 that (R + XT [X], T [X]) (respectively, (R + XT [[X]], T [[X]])) is an

S-NP.

(7)⇒ (1) We know from [16, Corollary 3.3] that any S-Noetherian ring is S-strongly

Laskerian. Therefore, we obtain from (7) that (R + XT [X], T [X]) (respectively,

(R+XT [[X]], T [[X]]) is an S-SLP.

(2) ⇒ (4) Since any S-Laskerian ring satisfies S-accr, it follows from (2) that

(R+XT [X], T [X]) (respectively, (R+XT [[X]], T [[X]])) is an S-ACCRP. �

Example 3.7. Let R = K[X] and let T = K[X,Y ], where T = K[X,Y ] is the

polynomial ring in two variables X,Y over a field K. Let Z be an indeterminate

over T . Let S = {Zn | n ∈ N ∪ {0}}. Then (R + ZT [Z], T [Z]) is an S-SLP but it

is not an LP.

Proof. It is well-known that T = K[X,Y ] is Noetherian. Hence, we obtain from

(6) ⇒ (1) of Theorem 3.6 that (R + ZT [Z], T [Z]) is an S-SLP. Let us denote
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ZT [Z] by p. It is clear that p ∈ Spec(T [Z]) and as p ⊂ R + ZT [Z], it follows

that p ∈ Spec(R + ZT [Z]). Notice that R+ZT [Z]
p

∼= R = K[X] as rings and
T [Z]
p
∼= T = K[X,Y ] as rings. If (R+ZT [Z], T [Z]) is an LP, then we obtain from [14,

Lemma 1.2(1)] that (R+ZT [Z]
p , T [Z]

p ) is an LP. This implies that (K[X],K[X,Y ])

is an LP. Observe that B = K[X] + (1 + XY )K[X,Y ] ∈ [K[X],K[X,Y ]]. It is

already verified in Example 3.4 that the ring B does not satisfy SXY -accr. Hence,

B is not SXY -Laskerian and so, B is not Laskerian. Therefore, we obtain that

(R+ ZT [Z], T [Z]) is not an LP. �

4. The effect of S-accr on the intermediate rings between

F1[X1, . . . , Xn] (respectively, F1[[X1, . . . , Xn]]) and F2[X1, . . . , Xn]

(respectively, F2[[X1, . . . , Xn]])

Let F1 ⊂ F2 be fields. Let n ≥ 1. Let us denote F1[X1, . . . , Xn] by R and

F2[X1, . . . , Xn] by T . Let us denote F1[[X1, . . . , Xn]] by A and F2[[X1, . . . , Xn]] by

B. Focusing on some m.c. subsets S of R (respectively, A), the aim of this section is

to study whether S-accr on all intermediate rings between R and T (respectively, A

and B) implies that each intermediate ring between R and T (respectively, A and B)

has a ring-theoretic property stronger than S-accr. Throughout this section, unless

otherwise specified, the symbols n, F1, F2, R, T,A,B have the above meanings.

Lemma 4.1. Let n = 1 and let f(X1) ∈ R be such that f(X1) /∈ F1. Let S =

{f(X1)m | m ∈ N ∪ {0}}. If (R, T ) is an S-ACCRP, then F2 is algebraic over F1.

Proof. We are assuming that (R, T ) is an S-ACCRP. First, we verify that T is

algebraic over R. Let t ∈ T . Suppose that t is not algebraic over R. Let C =

R+ (1 + tf(X1))R[t]. Notice that f(X1) is a non-zero-divisor of R and C ∈ [R, T ].

Since C satisfies S-accr, we obtain from (3)⇒ (4) of Proposition 2.4 that f(X1) ∈
U(R). This is impossible, since we know from [2, Exercise 2(i), page 11] that

U(R) = F1\{0}. Therefore, T is algebraic over R.

Let β ∈ F2\{0}. Since T is algebraic over R, there exist k ∈ N, fi(X1) ∈ R for

each i ∈ {0, . . . , k} with fk(X1) 6= 0 such that
∑k
i=0 fi(X1)βi = 0. Let j ≥ 0 be

least with the property that the coefficient of Xj
1 in fk(X1) is not equal to 0. For

each i ∈ {0, . . . , k}, let αij ∈ F1 be the coefficient of Xj
1 in fi(X1). Notice that

αkj 6= 0. By comparing the coefficient of Xj
1 on both sides of

∑k
i=0 fi(X1)βi = 0,

we get that
∑k
i=0 αijβ

i = 0. This implies that β is algebraic over F1. This is true

for any β ∈ F2. Hence, F2 is algebraic over F1. �
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Proposition 4.2. Let n = 1. Let f(X1) ∈ R\F1. The following statements are

equivalent:

(1) (R, T ) is an LP.

(2) (R, T ) is an S-LP, where S = {f(X1)m | m ∈ N ∪ {0}}.
(3) (R, T ) is an ACCRP.

(4) (R, T ) is an S-ACCRP, where S = {f(X1)m | m ∈ N ∪ {0}}.
(5) F2 is algebraic over F1.

(6) T is integral over R.

Proof. (1)⇒ (2) This is clear, since any Laskerian ring is S-Laskerian.

(1)⇒ (3) This is clear, since we know from [10, Proposition 3] that any Laskerian

ring satisfies (accr).

(3)⇒ (4) This is clear, since (accr) implies S-accr.

(2)⇒ (4) This is clear, since any S-Laskerian ring satisfies S-accr.

(4)⇒ (5) This follows from Lemma 4.1.

(5)⇒ (6) Since F2 is algebraic over F1 and F1 is a field, we get that F2 is integral

over F1. Let t ∈ T\{0} be such that deg(t) > 0. Now, there exist k ∈ N and βi ∈ F2

for each i ∈ {0, . . . , k} such that t =
∑k
i=0 βiX

i
1 with βk 6= 0. Notice that for each

i ∈ {0, . . . , k}, βiXi
1 is integral over R. Therefore, we obtain from [2, Corollary 5.2]

that C = R[β0, β1X1, . . . , βkX
k
1 ] is a finitely generated R-module. It is clear that

R[t] is a subring of C. Hence, we obtain from (iii) ⇒ (i) of [2, Proposition 5.1]

that t is integral over R. This proves that T is integral over R.

(6)⇒ (1) This is (3)⇒ (4) of [15, Proposition 3.4]. �

Proposition 4.3. Let n ≥ 2. The following statements are equivalent:

(1) (R, T ) is an SLP.

(2) (R, T ) is an LP.

(3) (R, T ) is an ACCRP.

(4) (R, T ) is an S-ACCRP, where S is the m.c. subset of R given by S =

{Xm
n | m ∈ N ∪ {0}}.

(5) F2 is a finite algebraic extension of F1.

(6) (R, T ) is an NP.

Proof. (1)⇒ (2) This is clear, since any strongly Laskerian ring is Laskerian.

(2)⇒ (3) This is clear, any Laskerian ring satisfies (accr).

(3)⇒ (4) This follows immediately, since (accr) implies S-accr.
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(4) ⇒ (5) Let C ∈ [F1[X1, . . . , Xn−1], F2[X1, . . . , Xn−1]]. It is clear that C[Xn] ∈
[R, T ]. By hypothesis, C[Xn] satisfies S-accr. Hence, we obtain from (5) ⇒ (6) of

Proposition 2.1 that C is Noetherian. Therefore, (F1[X1, . . . , Xn−1], F2[X1, . . . , Xn−1])

is an NP. It now follows as in the proof of (2) ⇒ (3) of [15, Proposition 3.6] that

F2 is a finite algebraic extension of F1.

(5)⇒ (6) This is (3)⇒ (4) of [15, Proposition 3.6].

(6)⇒ (1) This is clear, since any Noetherian ring is strongly Laskerian. �

Proposition 4.4. Let n ≥ 2 and let S = {Xm
n | m ∈ N∪{0}}. Then the statements

(1) to (6) of Proposition 4.3 are equivalent to each one of the following statements:

(1′) (R, T ) is an S-SLP.

(2′) (R, T ) is an S-LP.

(3′) (R, T ) is an S-SACCR∗P.

Proof. This can be proved using arguments similar to those that are used in the

proof of Proposition 2.3. �

If n = 1, then we show in Proposition 4.5, that (A,B) is an ACCRP if and only

if (A,B) is an S-ACCRP, where S = {Xm
1 | m ∈ N ∪ {0}}.

Proposition 4.5. Let n = 1. Let S = {Xm
1 | m ∈ N ∪ {0}}. The following

statements are equivalent:

(1) (A,B) is an LP.

(2) (A,B) is an S-LP.

(3) (A,B) is an ACCRP.

(4) (A,B) is an S-ACCRP.

(5) B is algebraic over A.

(6) B is integral over A.

Proof. (1)⇒ (2) This is clear, since any Laskerian ring is S-Laskerian.

(1)⇒ (3) This is clear, since any Laskerian ring satisfies (accr) by [10, Proposition

3].

(3)⇒ (4) This is clear, since (accr) implies S-accr.

(4)⇒ (5) Let f(X1) ∈ B. Suppose that f(X1) is transcendental over A. Let C be

the subring of A[f(X1)] given by C = A+ (1 +X1f(X1))A[f(X1)]. It is clear that

C ∈ [A,B]. By assumption, C satisfies S-accr. As X1 is a non-zero-divisor of A, we

obtain from (3)⇒ (4) of Proposition 2.4 that X1 ∈ U(A). This is a contradiction.

Therefore, B is algebraic over A.
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(5)⇒ (6) From B is algebraic over A, it can be shown as in the proof of Lemma 4.1

that F2 is algebraic over F1. As B is algebraic over A, we obtain from [4, Corollary

5.2] that B is integral over A.

(6)⇒ (1) This is (2)⇒ (3) of [15, Proposition 3.5].

(2)⇒ (4) This is clear, since any S-Laskerian ring satisfies S-accr by [16, Corollary

3.9(1)] and [6, Proposition 3.1]. �

We denote the characteristic of a field F by char(F ).

Corollary 4.6. Let n = 1. Let char(F1) = 0. Let S = {Xm
1 | m ∈ N ∪ {0}}. The

following statements are equivalent:

(1) (A,B) is an S-ACCRP.

(2) (A,B) is an NP.

(3) (A,B) is an SLP.

(4) (A,B) is an S-SLP.

(5) (A,B) is an S-SACCR∗P.

(6) (A,B) is an LP.

(7) (A,B) is an S-LP.

Proof. (1) ⇒ (2) It follows from (4) ⇒ (5) of Proposition 4.5 that B is algebraic

over A. In such a case, it is observed in the proof of (5)⇒ (6) of Proposition 4.5 that

F2 is algebraic over F1. By hypothesis, char(F1) = 0. Therefore, F2 is a separable

extension of F1. As B is algebraic over A, we obtain from [4, Corollary 4.2] that

F2 is a finite extension of F1. Therefore, B is a finitely generated A-module. It is

well-known that A is Noetherian. Hence, it follows as in the proof of (3) ⇒ (4) of

[15, Proposition 3.6] that (A,B) is an NP.

(2)⇒ (3) This is clear, since any Noetherian ring is strongly Laskerian.

(3)⇒ (4) This is clear, since strongly Laskerian ring is S-strongly Laskerian.

(4)⇒ (5) This is clear, since any S-strongly Laskerian ring satisfies S-strong accr∗.

(5)⇒ (1) This is clear, since S-strong accr∗ implies S-accr.

Since any strongly Laskerian ring is Laskerian and any Laskerian ring is S-

Laskerian, (3)⇒ (6) and (6)⇒ (7) are clear.

(7)⇒ (1) This is clear, since any S-Laskerian ring satisfies S-accr. �

Theorem 4.7. Let n ≥ 2. Let S be the m.c. subset of A given by S = {Xm
n | m ∈

N ∪ {0}}. The following statements are equivalent:

(1) (A,B) is an SLP.
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(2) (A,B) is an LP.

(3) (A,B) is an ACCRP.

(4) (A,B) is an S-ACCRP.

(5) F2 is a finite extension of F1.

(6) (A,B) is an NP.

Proof. The implications (1)⇒ (2), (2)⇒ (3), (3)⇒ (4), (5)⇒ (6), and (6)⇒ (1)

can be proved as in the proof of (1) ⇒ (2), (2) ⇒ (3), (3) ⇒ (4), (5) ⇒ (6), and

(6)⇒ (1) of Proposition 4.3. We need only to prove (4)⇒ (5).

(4)⇒ (5) Let C be a subring of F2[[X1, . . . , Xn−1]] such that

C ⊇ F1[[X1, . . . , Xn−1]]. Then C[[Xn]] ∈ [A,B]. By hypothesis, C[[Xn]] satisfies

S-accr. Hence, we obtain from (5) ⇒ (6) of Proposition 2.1 that C is Noetherian.

Therefore, we get that (F1[[X1, . . . , Xn−1]], F2[[X1, . . . , Xn−1]]) is an NP. This im-

plies that (F1[[X1]], F2[[X1]]) is an NP. Now, it follows from the Remark following

Theorem 2 of [18] that F2 is a finite extension of F1. �

Proposition 4.8. Let n,A,B, S be as in the statement of Theorem 4.7. Then the

statements (1) to (6) of Theorem 4.7 are equivalent to each one of the following

statements:

(1′) (A,B) is an S-SLP.

(2′) (A,B) is an S-LP.

(3′) (A,B) is an S-SACCR∗P.

Proof. This can be proved using arguments similar to those that are used in the

proof of Proposition 2.3. �

5. The effect of S-accr on the intermediate rings between R and S−1R,

where R is a Noetherian domain

Let T be an integral domain. Recall from [18] that m ∈Max(T ) is said to be a

low maximal if heightm = 1 and m is said to be a high maximal if heightm > 1.

Let R be a Noetherian domain which is not a field. Let S be a m.c. subset of

R. We prove in Theorem 5.1 that if A satisfies {sn | n ∈ N ∪ {0}}-accr for each

A ∈ [R,S−1R] and for each s ∈ S ∩NU(R), then (R,S−1R) is an NP.

Theorem 5.1. Let S be a m.c. subset of a Noetherian integral domain R which is

not a field. The following statements are equivalent:

(1) (R,S−1R) is an SLP.

(2) (R,S−1R) is an LP.
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(3) (R,S−1R) is an ACCRP.

(4) (R,S−1R) is an {sn | n ∈ N ∪ {0}}-ACCRP for each s ∈ S ∩NU(R).

(5) S ⊆ C, where C is the set of all elements of R which are contained in no

high maximal ideal of R.

(6) (R,S−1R) is an NP.

Proof. It is clear that for any s ∈ S ∩NU(R), {sn | n ∈ N ∪ {0}} is a m.c. subset

of R.

(1)⇒ (2) This is clear, since any strongly Laskerian ring is Laskerian.

(2)⇒ (3) This is clear, since any Laskerian ring satisfies (accr).

(3)⇒ (4) This is clear, since if a ring A satisfies (accr), then it satisfies S1-accr for

any m.c. subset S1 of A.

(4) ⇒ (5) We use some arguments found in the proof of [15, Proposition 4.3]. Let

s ∈ S. We claim that s ∈ C. This is clear if s ∈ U(R). Suppose that s ∈ NU(R).

Let m ∈ Max(R) such that s ∈ m. Let p ∈ Spec(R)\{(0)} be such that p ⊆ m.

Let x ∈ p\{0}. Let A be the subring of S−1R given by A = R + x
sR[ 1s ]. Let

S1 = {sn | n ∈ N ∪ {0}}. Then S1 is a m.c. subset of R. Let us denote the

ideal x
sA of A by I. By assumption, A satisfies S1-accr. Hence, the increasing

sequence of ideals of A, (I :A s) ⊆ (I :A s2) ⊆ (I :A s3) ⊆ · · · is S1-stationary.

Therefore, there exist n, k ∈ N such that sn(I :A sj) ⊆ (I :A sk) for all j ≥ k.

As sn+k+1 x
sn+k+2 = x

s ∈ I, we get that sn x
sn+k+2 ∈ sn(I :A sn+k+1) ⊆ (I :A sk).

Hence, we obtain that sn x
sn+k+2 s

k ∈ I. This implies that x
s2 = x

sa for some a ∈ A
and so, it follows that 1

s = a ∈ A. Hence, 1
s = r + xr1

sm+1 for some r, r1 ∈ R and

m ∈ N. Therefore, sm = rsm+1 + xr1 and so, sm(1 − rs) = xr1 ∈ p. We claim

that 1 − rs /∈ p. If 1 − rs ∈ p, then as p ⊆ m, it follows that 1 − rs ∈ m. From

s ∈ m, we obtain that rs ∈ m and so, 1 = 1 − rs + rs ∈ m. This is impossible.

Hence, 1 − rs /∈ p. It follows from sm(1 − rs) ∈ p and p ∈ Spec(R) that sm ∈ p

and so, s ∈ p. This shows that s ∈ p for any non-zero p ∈ Spec(R) with p ⊆ m.

We claim that heightm = 1. If heightm > 1, then since R is Noetherian, it follows

from [9, Theorem 144] that there exist infinitely many p ∈ Spec(R) with p ⊂ m

and heightp = 1. Thus s belongs to infinitely many height one prime ideals of R.

This is impossible in view of [2, Theorem 7.13] and [2, Proposition 4.6]. Therefore,

heightm = 1. This shows that S ⊆ C.

(5)⇒ (6) Since R is a Noetherian domain and S ⊆ C, we obtain from [18, Corollary

12] that (R,S−1R) is an NP.

(6)⇒ (1) This is clear, since any Noetherian ring is strongly Laskerian. �
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Proposition 5.2. Let S,R be as in the statement of Theorem 5.1. Then the

statements (1) to (6) of Theorem 5.1 are equivalent to each one of the following

statements:

(1′) (R,S−1R) is an {sn | n ∈ N ∪ {0}}-SLP for each s ∈ S ∩NU(R).

(2′) (R,S−1R) is an {sn | n ∈ N ∪ {0}}-LP for each s ∈ S ∩NU(R).

(3′) (R,S−1R) is an {sn | n ∈ N ∪ {0}}-SACCR∗P for each s ∈ S ∩NU(R).

Proof. This can be proved using arguments similar to those that are used in the

proof of Proposition 2.3. �

In Example 5.5, we illustrate that (5) ⇒ (3) of Theorem 5.1 can fail to hold if

we omit the hypothesis that R is Noetherian in the statement of Theorem 5.1. We

use Lemma 5.3 in the verification of Examples 5.4 and 5.5.

Lemma 5.3. Let V be a discrete valuation ring with m = V π as its unique maximal

ideal. Let R = V [X]. Then p = (1 + πX)V [X] ∈Max(R) and heightp = 1.

Proof. Let us denote the quotient field of V by K. Let φ : V [X]→ K be the ring

homomorphism defined by φ(f(X)) = f(−1π ) for any f(X) ∈ V [X]. Let α ∈ K.

It is clear that α can be expressed in the form α = v
π2m for some v ∈ V and

m ∈ N. As φ(vX2m) = v
π2m = α, we obtain that φ is onto. Since φ(1 + πX) = 0,

we get that (1 + πX)V [X] ⊆ ker(φ). Let f(X) ∈ ker(φ). Then f(−1π ) = 0.

Since (1 +πX)K[X] ∈Max(K[X]), it follows that f(X) = (1 +πX)g(X) for some

g(X) ∈ K[X]. By comparing the coefficients of powers of X on both sides of f(X) =

(1+πX)g(X), we obtain that g(X) ∈ V [X]. Therefore, f(X) ∈ (1+πX)V [X]. This

proves that ker(φ) ⊆ (1+πX)V [X] and so, p = (1+πX)V [X] = ker(φ). Thus φ is a

homomorphism of rings from R = V [X] onto K with ker(φ) = p. Hence, it follows

from the fundamental theorem of homomorphism of rings that R
p
∼= K as rings.

Since K is a field, we obtain from [2, page 3] that p ∈ Max(R). Let S = V \{0}.
Then S is a m.c. subset of V and S−1R = K[X]. Since p ∩ S = ∅, it follows from

[2, Proposition 3.11(iv)] that S−1p ∈ Spec(K[X])\{(0)} = Max(K[X]). Therefore,

heightS−1p = 1 and hence, we obtain from [2, Proposition 3.11(iv)] that heightp =

1. �

Example 5.4. Let p be a prime number and let V = ZpZ. Let R = V [X]. Let

S = {(1 + pX)n | n ∈ N ∪ {0}}. Then S is a m.c. subset of R and (R,S−1R) is an

NP.

Proof. It is well-known that V is a discrete valuation ring (see [2, Example (1),

page 94]). Notice that pV is the unique maximal ideal of V . As V is Noetherian,



126 S. VISWESWARAN

R = V [X] is Noetherian. We know from Lemma 5.3 that p = (1+pX)R ∈Max(R)

and heightp = 1. It is clear that S = {(1 + pX)n | n ∈ N∪ {0}} is a m.c. subset of

R and S ⊆ C, where C is the set of all elements of R which are contained in no high

maximal ideal of R. Therefore, we obtain from [18, Corollary 12] that (R,S−1R)

is an NP. �

Example 5.5. Let K(X1, X2) be the field of rational functions in two variables

X1, X2 over a field K. Let Y be an indeterminate over K(X1, X2) and let A =

K(X1, X2)[Y ]. Let V = AY A. Let T = V [Z], where Z is an indeterminate over

V . Let R = K + (1 + Y Z)V [Z]. Let S = {(1 + Y Z)n | n ∈ N ∪ {0}}. Then

S is a m.c. subset of R, S ⊆ C, where C is the set of all elements of R which

are contained in no high maximal ideal of R and the ring B = K[X1] + (1 +

X1X2)K[X1, X2]+(1+Y Z)V [Z] is such that it does not satisfy SX1X2 -accr, where

SX1X2
= {(X1X2)n | n ∈ N ∪ {0}}.

Proof. As A is a principal ideal domain (PID) and Y A ∈Max(A), it follows that

V = AY A is a discrete valuation ring with V Y as its unique maximal ideal. Let us

denote the ideal (1+Y Z)V [Z] by p. We know from Lemma 5.3 that p ∈Max(V [Z])

and heightp = 1 in T = V [Z]. It is clear that p is also an ideal of R = K + p.

It follows from R
p
∼= K as rings and K being a field that p ∈ Max(R). We

claim that heightp = 1 in R. Suppose that heightp > 1 in R. Then there exists

q ∈ Spec(R)\{(0)} such that q ⊂ p. Hence, q 6⊇ p. Since p is an ideal common to

both R and T , we obtain from [13, Lemma 6] that there exists q′ ∈ Spec(T ) such

that q′ ∩ R = q. As q 6= (0), it follows that q′ 6= (0). From heightp = 1 in T , we

obtain that q′ 6⊆ p. Since p ∈Max(T ), it follows that q′+p = T and so, there exist

t ∈ q′ and x ∈ p such that t+x = 1. Now, t = 1−x ∈ q′ ∩R = q ⊂ p. This implies

that 1 = t + x ∈ p. This is in contradiction to the fact that p 6= T . Therefore,

heightp = 1 in R.

It is clear that S = {(1 + Y Z)n | n ∈ N ∪ {0}} is a m.c. subset of R. We

verify that S ⊆ C, where C is the set of all elements of R which are contained

in no high maximal ideal of R. First, we show that p =
√

(1 + Y Z)R. From

1 + Y Z ∈ p, it follows that
√

(1 + Y Z)R ⊆ p. If p ∈ p, then p2 ∈ (1 + Y Z)R

and so, p ⊆
√

(1 + Y Z)R. This proves that p =
√

(1 + Y Z)R. From heightp = 1,

p ∈ Max(R), and p =
√

(1 + Y Z)R, we obtain that if s is any element of S, then

s does not belong to any high maximal ideal of R. This proves that S ⊆ C. We

know from Example 3.4 that K[X1]+(1+X1X2)K[X1, X2] does not satisfy SX1X2
-

accr. Since p is an ideal common to both R and T and p ∩ S 6= ∅, it follows that

S−1R = S−1T . It is clear that R ⊂ B = K[X1] + (1 + X1X2)K[X1, X2] + (1 +
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Y Z)V [Z] ⊂ T = V [Z] ⊂ S−1T = S−1R. It follows from p ∩K[X1, X2] = (0) that
B
p
∼= K[X1] + (1 +X1X2)K[X1, X2] as rings. It is clear that SX1X2 is a m.c. subset

of B and s /∈ p for each s ∈ SX1X2
. From B

p
∼= K[X1] + (1 + X1X2)K[X1, X2]

as rings, it follows that B
p does not satisfy SX1X2

= {s + p | s ∈ SX1X2
}-accr.

Therefore, we obtain from Lemma 2.6 that B does not satisfy SX1X2
-accr. Hence,

(R,S−1R) is not an ACCRP. �

Acknowledgements

I am very much thankful to the referees for their carefully reading the manuscript

and their useful and helpful suggestions. I am also very much thankful to Professor

Abdullah Harmanci for his support.

References

[1] D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra, 30(9)

(2002), 4407-4416.

[2] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra,

Addison-Wesley, Reading, Massachusetts, 1969.

[3] N. Bourbaki, Commutative Algebra, Addison-Wesley, Reading, Massachusetts,

1972.

[4] R. Gilmer, Integral dependence in power series rings, J. Algebra, 11 (1969),

488-502.

[5] R. Gilmer and W. Heinzer, Finitely generated intermediate rings, J. Pure Appl.

Algebra, 37(3) (1985), 237-264.

[6] A. Hamed and S. Hizem, Modules satisfying S-Noetherian property and S-

ACCR, Comm. Algebra, 44(5) (2016), 1941-1951.

[7] A. Hamed and A. Malek, S-prime ideals of a commutative ring, Beitr. Algebra

Geom., 61(3) (2020), 533-542.

[8] W. Heinzer and D. Lantz, The Laskerian property in commutative rings, J.

Algebra, 72(1) (1981), 101-114.

[9] I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago,

1974.

[10] C. P. Lu, Modules satisfying ACC on a certain type of colons, Pacific J. Math.,

131(2) (1988), 303-318.

[11] C. P. Lu, Modules and rings satisfying (accr), Proc. Amer. Math. Soc., 117(1)

(1993), 5-10.



128 S. VISWESWARAN

[12] N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly, 49 (1942),

286-295.

[13] N. Radu, Sur les Anneaux Laskeriens, in: Proceedings of the Week of Algebraic

Geometry, Bucharest, (1980), 158-163.

[14] S. Visweswaran, Laskerian pairs, J. Pure Appl. Algebra, 59(1) (1989), 87-110.

[15] S. Visweswaran, ACCR pairs, J. Pure Appl. Algebra, 81(3) (1992), 313-334.

[16] S. Visweswaran, Some results on S-primary ideals of a commutative ring, Beitr

Algebra Geom., (2021) https://doi.org/10.1007/s13366-021-00580-5.

[17] S. Visweswaran and P. T. Lalchandani, Some results on modules satisfying

S-strong accr∗, Arab J. Math. Sci., 25(2) (2019), 145-155.

[18] A. R. Wadsworth, Pairs of domains where all intermediate domains are Noe-

therian, Trans. Amer. Math. Soc., 195 (1974), 201-211.

S. Visweswaran

Retired Faculty

Department of Mathematics

Saurashtra University

Rajkot, India, 360005

e-mail: s visweswaran2006@yahoo.co.in


