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1. Introduction

We recall a classic notion “Goldie dimension” from [5], a module M is said to

have finite Goldie dimension if for any strictly ascending sequence of submodules

U1 ⊂ U2 ⊂ · · · , there exists i such that Uj ≤e Uj+1 for every j ≥ i or equivalently

M does not contain a direct sum of infinite number of nonzero submodules of M .

In 1979, P. Fleury [3] introduced a class of “modules with finite spanning di-

mension” in order to dualize the concept of Goldie dimension. According to [3], a

module M has finite spanning dimension if for every strictly decreasing sequence of

submodules U1 ⊃ U2 ⊃ · · · there exists i such that Uj ≤s M for every j ≥ i. This

class is actually a class of modules with descending chain condition on non-small

submodules.

In 2011, Lomp and Ozcan [9] discussed some properties of a class of modules with

ascending chain condition on non-small submodules. In this paper, we continue the

study of this class of modules and call it as ns-Noetherian modules. A module is
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called ns-Noetherian if, it satisfies ascending chain condition on non-small submod-

ules; a ring R is called right (respectively, left) ns-Noetherian if, RR (respectively,

RR) is an ns-Noetherian module; and a ring R is called an ns-Noetherian ring if

it is left and right ns-Noetherian. Similarly, the notion of ns-Artinian modules is

equivalent to the modules with finite spanning dimension.

The main aim of this work is to investigate some new properties of ns-Noetherian

modules neither analogous to Noetherian modules nor to the modules with finite

spanning dimensions. Furthermore, we provide some examples to support our view.

We also explore some new properties of the class of modules with finite spanning di-

mension. We generalize [9, Theorem 4.2] by giving an alternate method of proof. As

a consequence of Proposition 4.10 and Proposition 4.11, we find that the condition

of quasi-projective is superfluous in [11, Proposition 3.5].

Throughout this paper, all rings are associative rings with identity and all mod-

ules are right unital modules unless otherwise stated. Recall from [13], a submodule

N of a module M is called essential (in M) and denoted by N ≤e M if N ∩K ̸= 0

for every nonzero submodule K of M , otherwise N is called non-essential. We

denote a non-essential submodule N in M by N ≤ne M . Dually, a submodule N

of a module M is called small (in M) and denoted by N ≤s M if N + K ̸= M

for any proper submodule K of M , otherwise N is called non-small. We denote

a non-small submodule N in M by N ≤ns M . We refer readers to [13] for all

undefined terminologies and notions.

2. ns-Noetherian modules

We begin by observing the following facts:

Lemma 2.1. Let M be a module.

(1) M is ns-Noetherian if and only if for every nonempty family of non-small

submodules of M has a maximal element.

(2) M is Noetherian if and only if it is ns-Noetherian and satisfies ACC on

small submodules.

Let M be a module over a commutative ring R. Then, the set consisting of all

ordered pairs (r,m) where r ∈ R,m ∈ M form a commutative ring with respect to

the addition and multiplication defined by (r1,m1)+ (r2,m2) = (r1 + r2,m1 +m2)

and (r1,m1)(r2,m2) = (r1r2,m1r2+r1m2), respectively, for all r1, r2 ∈ R,m1,m2 ∈
M . This ring is known as trivial extension of M by R and usually denoted by

R(+)M [1].
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Lemma 2.2. Let M be a divisible module over a commutative integral domain R

and K be an ideal of R(+)M . Then,

(1) K is non-small if and only if K = I(+)M for some non-small ideal I of R.

(2) K is small if and only if K = I(+)M for some small ideal I of R or

K = 0(+)N for some submodule N of M .

Proof. Let K be a proper ideal of S = R(+)M . Then, by [1, Corollary 3.4], either

K = I(+)M for some proper ideal I of R or K = 0(+)N for some submodule

N of M . First assume that K = 0(+)N for some submodule N of M . Then,

K is always a small ideal as K + (0(+)N ′) ̸= S for any submodule N ′ of M and

K + (I ′(+)M) = S if and only if I ′ = R. Next assume that K = I(+)M for some

proper ideal I of R. Then, K + (0(+)N ′) ̸= S for any submodule N ′ of M and

K + (I ′(+)M) = S if and only if I + I ′ = R. It follows that K = I(+)M is small

if and only if I is small in R. Thus, the result follows. □

Recall from [13], a module M is called a hollow module if its every proper sub-

module is small. By applying Lemma 2.2, in Proposition 2.3(1), we generalize [9,

Example 4.4] analogous to [12, Corollary 4.2].

Proposition 2.3. Let M be a divisible module over a commutative integral domain

R. Then,

(1) R(+)M is ns-Noetherian (has finite spanning dimension) if and only if R

is so.

(2) R(+)M is hollow if and only if R is hollow.

Remarks 2.4. (1) Obviously, Noetherian modules and hollow modules are ns-

Noetherian modules. But, an ns-Noetherian module need not be Noetherian or

hollow. Also, a right ns-Noetherian ring need not be right Noetherian. For example,

since Q is a divisible Z-module and Z is an ns-Noetherian commutative domain,

the ring R = Z(+)Q is an ns-Noetherian ring but not hollow by Proposition 2.3.

Since Q is not a Noetherian Z-module, the ring R is not Noetherian as it has ideals

of the form 0(+)N , where N ’s are submodules of Q.

(2) We observe that some properties of modules with finite spanning dimension

do not hold in case of ns-Noetherian modules. For example, Z as a Z-module is

ns-Noetherian but it does not satisfy [3, Lemma 2.2, Lemma 2.3, Theorem 3.1 and

Theorem 5.1].

Since every nonzero proper direct summand of a module is non-essential and non-

small, ACC on either non-small submodules or non-essential submodules implies
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ACC on direct summands. Throughout this paper, we use the following notations

for ACC on all submodules, non-small submodules, non-essential submodules and

direct summands: ACC, ns-ACC (ns-Noetherian), ne-ACC and ds-ACC, respec-

tively. We have the following diagram:

ns-ACC

ACC ds-ACC

ne-ACC

Now, we show that all the implications are strict; and there is no implication

between ns-ACC and ne-ACC.

Examples 2.5. (1) An ns-Noetherian module need not be Noetherian. Also, a

module satisfying ACC on non-essential submodules need not be Noetherian. For

example, Zp∞ is an ns-Noetherian Z-module and satisfies ACC on non-essential

submodules as a Z-module but not Noetherian.

(2) A module satisfying ACC on direct summands need not satisfy ACC on non-

small and non-essential submodules. For example, let R be the formal triangular

matrix ring

[
Z Zp∞

0 Z

]
, then RR satisfies ACC on direct summands but does not

satisfy ACC on non-small and non-essential submodules.

(3) An ns-Noetherian module need not satisfy ACC on non-essential submodules.

For example, assume that V is an infinite dimensional vector space over a field F

and R is the commutative ring F (+)V , then RR is ns-Noetherian by Proposition

2.3 but does not satisfy ACC on non-essential submodules [12, Corollary 4.2].

(4) A module satisfyingACC on non-essential submodules need not be ns-Noetherian.

For example, Q satisfies ACC on non-essential Z-submodules as it is uniform. How-

ever, by Theorem 3.9(2), which will be shown further that it is not ns-Noetherian

because Q as a Z-module is neither hollow nor has any maximal submodule.

We observe that the Morita-equivalent ring of a right ns-Noetherian ring is

not analogous to Noetherian rings. For example, let R be a ring which is right

ns-Noetherian but not right Noetherian (see Remarks 2.4(2.4) for such example).

Then, the matrix ring S = M2(R) is not right ns-Noetherian.
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3. Characterizations and properties

Recall from [7], a submodule N of a module M is called co-closed in M (denoted

by N ≤cc M) if, N/K ≤s M/K =⇒ K = N for every submodule K of M with

K ⊆ N . Note that every nonzero co-closed submodule is non-small.

Proposition 3.1. Let N be a submodule of an ns-Noetherian module M . Then

(1) M/N is ns-Noetherian.

(2) N is ns-Noetherian whenever N is co-closed.

Proof. (1) It follows from the fact that L/N ≤ns M/N =⇒ L ≤ns M .

(2) Since N is co-closed, L ≤ns N =⇒ L ≤ns M [7, Lemma 1.1]. Hence the

result follows. □

Recall from [7], a submodule K is called a supplement of a submodule N of M if,

K is minimal with the property K +N = M . Since every supplement submodule

is co-closed (see [7, Lemma 1.1]), the second statement of Proposition 3.1 holds for

supplement submodules also.

Proposition 3.2. Let N be a small and Noetherian submodule of a module M .

Then M is ns-Noetherian if and only if M/N is ns-Noetherian.

Proof. Suppose that M/N is ns-Noetherian and let {Li}∞i=1 be an ascending chain

of non-small submodules of M . Since Li ≤ns M , Li + N ≤ns M . Therefore,

(Li +N)/N ≤ns M/N because N is small. Thus {(Li +N)/N}∞i=1 is an ascending

chain of non-small submodules of M/N . It follows that there exists m ∈ N such

that Li + N = Lj + N, ∀i, j ≥ m. Also, since N is Noetherian and {Li ∩ N}∞i=1

is an ascending chain of submodules of N , there exists n ∈ N such that Li ∩N =

Lj ∩ N, ∀i, j ≥ n. From above two equations, it follows that there exists k ∈ N
such that Li = Lj ,∀i, j ≥ k. Thus, M is ns-Noetherian. The converse follows from

Proposition 3.1(1). □

Recall from [7], let B ≤ A ≤ M . Then B is called an s-closure of A in M if,

B ≤cc M and A/B ≤s M/B. Note that s-closure of every non-small submodule (if

exists) is nonzero. In the following, we provide an alternate proof for [9, Theorem

4.2].

Theorem 3.3. Consider the following statements for a module M :

(1) M is ns-Noetherian.

(2) For every non-small submodule N of M , M/N is Noetherian.

(3) Every decomposable factor module of M is Noetherian.
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(4) For every nonzero co-closed submodule C of M , M/C is Noetherian.

Then, (1) ⇐⇒ (2) ⇐⇒ (3) =⇒ (4). If every non-small submodule has an

s-closure, then (4) =⇒ (1).

Proof. (1) =⇒ (2) Let N be a non-small submodule of M . Let N1/N ≤ N2/N ≤
N3/N ≤ · · · be an ascending chain of submodules of M/N . Since N is a non-small

submodule of M , each Ni is non-small in M . So, there exists k ∈ N such that

Ni = Nk, for all i ≥ k. Thus, M/N is Noetherian.

(2) =⇒ (3) Let M/N be a decomposable factor module. Then we have two sub-

modules N ⊊ K1,K2,⊊ M such that M/N = K1/N ⊕K2/N . Clearly, K1/N and

K2/N are non-small submodules ofM/N . So, K1 andK2 are non-small submodules

of M . Therefore, by (2), M/K1 and M/K2 are Noetherian. Since

K1/N ∼= (M/N)/(K1/N) ∼= M/K1 and K2/N ∼= (M/N)/(K2/N) ∼= M/K2,

it follows that K1/N and K2/N are Noetherian. Hence, M/N = K1/N ⊕K2/N is

Noetherian.

(3) =⇒ (1) Let M1 ≤ M2 ≤ M3 ≤ · · · be an ascending chain of non-small

submodules of M . If M1 = M , we are done. Suppose that M1 ⊊ M . Since

M1 ≤ns M , there exists a nonzero proper submodule M ′
1 such that M = M1 +M ′

1.

Let K = M1 ∩ M ′
1. Then K is a proper submodule of M1 and M ′

1 such that

M/K = M1/K ⊕ M ′
1/K. This implies that M/K is decomposable and M1/K ≤

M2/K ≤ M3/K ≤ · · · is an ascending chain of submodules of M/K. Hence, by

(3), the given chain terminates.

(2) =⇒ (4) It follows from the fact that every nonzero co-closed submodule of

M is always non-small.

(4) =⇒ (1) Suppose that every non-small submodule has an s-closure. Let

N1 ≤ N2 ≤ N3 ≤ · · · be an ascending chain of non-small submodules of M . Since

N1 is non-small, it has an s-closure N (say). It follows that N is a nonzero co-

closed submodule of M such that N ≤ N1. Hence, by (4), the ascending chain

N1/N ≤ N2/N ≤ N3/N ≤ · · · of submodules of M/N terminates and so the

ascending chain N1 ≤ N2 ≤ N3 ≤ · · · terminates. Thus, M is ns-Noetherian. □

By [7, Lemma 1.7], ifM is an amply supplemented module, then every submodule

of M has an s-closure in M but its converse need not be true. Therefore, as a

consequence of Theorem 3.3 we have the following:

Corollary 3.4. [9, Theorem 4.2] The following conditions are equivalent for a

module M :
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(a) M satisfies ACC on non-small submodules;

(b) M/N is Noetherian for every non-small submodule N of M ;

(c) every decomposable factor module of M is Noetherian.

If M is amply supplemented then (a− c) is also equivalent to:

(d) M/N is Noetherian for every nonzero co-closed submodule N of M .

Corollary 3.5. A module M is Noetherian if and only if M is ns-Noetherian and

it has a non-small Noetherian submodule.

Proof. Suppose that M is ns-Noetherian and it has a non-small Noetherian sub-

module, say, N . ThenM/N is Noetherian by Theorem 3.3. HenceM is Noetherian.

The converse is clear. □

The analogue of Hilbert’s Basis Theorem does not hold for ns-Noetherian rings.

For example, let R be a commutative non-Noetherian local integral domain (such

rings exist, e.g.- [6, Example 2.1]). Also, since R is local, RR is hollow and so

ns-Noetherian. Since R is an integral domain, J(R[x]) = 0 by [8, 5.10 Amitsur’s

Theorem]. If possible, suppose that R[x] is ns-Noetherian. Then R[x] is Noetherian

as J(R[x]) = 0. Hence, R is Noetherian which is a contradiction. Thus, R[x] is not

ns-Noetherian. However, we have the following result.

Proposition 3.6. Let R be a ring. Then the polynomial ring R[x] is an ns-

Noetherian right R-module if and only if R = 0.

Proof. Suppose that R ̸= 0 and let N0 = Rx2 + Rx4 + Rx6 + · · · Then N0

is a non-small R-submodule of R[x] because there exists a proper R-submodule

K0 = R + Rx + Rx3 + Rx5 + · · · of R[x] such that N0 + K0 = R[x]. Now, if we

define

N1 = N0 +Rx

N2 = N0 +Rx+Rx3

N3 = N0 +Rx+Rx3 +Rx5

· · · ·· · · · · · ·
Nn = N0 +Rx+Rx3 +Rx5 + · · ·+Rx2n−1

then we have a non-terminating ascending chain N0 ⊊ N1 ⊊ N3 ⊊ · · · of non-small

R-submodules of R[x]. Hence R[x] is not an ns-Noetherian R-module. The converse

is clear. □

Recall from [5], let S be a multiplicative set in a ring R and M be an R-module.

The submodule tS(M) = {m ∈ M : ms = 0 for some s ∈ S} is called an S-torsion
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submodule of M . The module M is called S-torsion (respectively, S-torsion free)

module if tS(M) = M (respectively, tS(M) = 0). Note that for any homomorphism

f : M → N , f(tS(M)) ⊆ tS(N). Recall from [4], a module is called generalized

Hopfian (gH) if any of its surjective endomorphisms has a small kernel. It follows

from [4, Proposition 1.15] that every module with finite spanning dimension is gH. It

raises a natural question: Is an ns-Noetherian module gH? By following [4, Corollary

1.18], the answer is positive. In the following, we generalize [5, Proposition 4.23]

and its proof is analogous to that. As a consequence, we get [4, Corollary 1.18].

Theorem 3.7. Let S be a multiplicative set in a ring R and M be an S-torsion

free, ns-Noetherian R-module. If f is an endomorphism of M such that M/f(M)

is S-torsion, then ker(f) ≤s M . In particular, every ns-Noetherian module is gH.

Proof. If possible, suppose that ker(f) ≤ns M . Then we have an ascending chain

ker(f) ≤ ker(f2) ≤ · · · of non-small submodules of M . Since M is ns-Noetherian,

there exists n ∈ N such that ker(fn) = ker(fn+1). Since M/f(M) is S-torsion

and the map f̄ i : M/f(M) → f i(M)/f i+1(M) given by f̄ i(m+ f(M)) = f i(m) +

f i+1(M),∀m+ f(M) ∈ M/f(M) is an epimorphism for each i, f i(M)/f i+1(M) is

S-torsion for each i. It follows that M/fn(M) is S-torsion.

Now let m ∈ ker(f). Then m + fn(M) ∈ M/fn(M). Since M/fn(M) is S-

torsion, ∃s ∈ S such that (m+fn(M))s = fn(M) which implies that ms = fn(m′)

for some m′ ∈ M . Since m ∈ ker(f), fn+1(m′) = f(ms) = f(m)s = 0 which

implies that m′ ∈ ker(fn+1) = ker(fn). Thus, ms = fn(m′) = 0 which implies

that m ∈ tS(M) = 0. Hence ker(f) = 0 which is a contradiction as we have

assumed that ker(f) ≤ns M . Therefore, ker(f) ≤s M .

Let M ′ be an ns-Noetherian module and f ∈ End(M ′) be a surjective endomor-

phism. If we take S = {1}, then M ′ is S-torsion free, ns-Noetherian module and

M ′/f(M ′) = 0 is S-torsion. Hence ker(f) ≤s M
′ by above argument. □

Corollary 3.8. [4, Corollary 1.18] Every module satisfying ACC on non-small

submodules is generalized Hopfian.

It is well known that every Noetherian module have a maximal submodule. But,

an ns-Noetherian module need not has a maximal submodule. For example, Zp∞ is

an ns-Noetherian Z-module while it has no maximal submodule. However, in the

following we observe that every non hollow ns-Noetherian module has a maximal

submodule.

An ns-Noetherian module need not have a finite uniform dimension (Krull di-

mension). For example, let V be an infinite dimensional vector space over a field



ON MODULES WITH CHAIN CONDITION ON NON-SMALL SUBMODULES 117

F . Then V is a divisible F -module and F is an ns-Noetherian commutative do-

main. Hence the ring R = F (+)V is ns-Noetherian by Proposition 2.3. Since

V is an infinite dimensional vector space, it has a submodule W :=
⊕∞

i=1 Wi,

where each Wi is a nonzero submodule of V . It follows that RR has a submodule

I :=
⊕∞

i=1{0(+)Wi}. Therefore, RR does not have finite uniform dimension (Krull

dimension).

Theorem 3.9. Let M be an ns-Noetherian module. Then

(1) M is Noetherian or indecomposable.

(2) M is hollow or M has a non-small maximal submodule.

(3) M is Dedekind finite.

(4) If every infinitely generated submodule of M is co-closed, then M has finite

uniform dimension.

Proof. (1) Suppose that M is not indecomposable. Then, there exist two nonzero

proper submodules S1, S2 ofM such thatM = S1⊕S2. Clearly S1, S2 are non-small

submodules of M . Hence M/S1
∼= S2 and M/S2

∼= S1 are Noetherian modules by

Theorem 3.3. This implies that M = S1 ⊕S2 is a Noetherian module being a finite

direct sum of Noetherian modules.

(2) If M is zero, nothing to prove. Suppose that M is nonzero, not hollow and let

{Ni}i∈I be the family of all proper submodules of M . We can rewrite this family as

{Ni}i∈I = {Sj}j∈J∪{Lk}k∈K , where each Sj is a small submodule and Lk is a non-

small submodule of M . Since M is not hollow, M has at least one proper non-small

submodule. It follows that both families {Sj}j∈J and {Lk}k∈K are nonempty and

Lk ⊈ Sj ,∀j, k. Since M is ns-Noetherian, then the family {Lk}k∈K has a maximal

element that will be a maximal element of the family {Ni}i∈I .

(3) If M is Noetherian, we are done. Suppose that M is not Noetherian and let

f, g ∈ EndR(M) such that fg = I. Since (I − gf)2 = I − gf and (I − gf)g = 0, we

have M = g(M)⊕ (I−gf)(M). By Theorem 3.9(1), g(M) = 0 or (I−gf)(M) = 0.

Since g is monic, g(M) ̸= 0. Therefore, (I − gf)(M) = 0 and g(M) = M . Hence g

is an isomorphism and so gf = I.

(4) If possible, suppose that M does not have finite uniform dimension. Then, M

has a submodule of the form K =:
⊕∞

i=1 Ki, where each Ki is a nonzero submodule

of M . Since each Ki is non-small in K, we have a strictly increasing chain K1 ⊊
K1⊕K2 ⊊ K1⊕K2⊕K3 ⊊ · · · of non-small submodules of K. If K = M , we get a

contradiction as M is ns-Noetherian. If K ̸= M , then K is a co-closed submodule
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by hypothesis and so K is ns-Noetherian by Proposition 3.1(2). Hence, we again

get a contradiction. Thus, M has finite uniform dimension. □

Recall from [3], a module M is called s3-free if, it contains no nonzero J-

semisimple supplement.

Theorem 3.10. Let M be a module with finite spanning dimension. Then

(1) M is Artinian or indecomposable and s3-free.

(2) M is Dedekind finite.

Proof. (1) Since M has finite spanning dimension, by [3, Theorem 5.6], we have

M = N ⊕ P where N is a maximal J-semisimple supplement submodule and P

is s3-free. Suppose that M is not Artinian. Then, by the similar argument as in

the proof of Theorem 3.9(1), M is indecomposable. Hence, it follows that M = N

or M = P . If possible, suppose that M = N . Then M is a J-semisimple module

with finite spanning dimension and so M is Artinian by [3, Corollary 5.2] which is

a contradiction. Thus, M = P is s3-free.

(2) It is similar to that of Theorem 3.9(3). □

The direct sum of two ns-Noetherian modules need not be ns-Noetherian. For

example, Zp∞ is an ns-Noetherian module. But, Zp∞⊕Zp∞ is not an ns-Noetherian

module as we have an strictly ascending chain {Zp∞ ⊕ ( 1
pkZ)/Z}∞k=1 of non-small

submodules. As a consequence of Theorem 3.9(1) and Theorem 3.10(1), we have

the following conclusions.

Theorem 3.11. (1) Let R and S be two nonzero rings and M be an (R,S)-

bimodule. Then, the formal triangular matrix ring T =

[
R M

0 S

]
is right

(respectively, left) Noetherian if and only if it is right (respectively, left)

ns-Noetherian.

(2) The direct sum of two ns-Noetherian modules is ns-Noetherian if and only

if both modules are Noetherian.

(3) The direct sum of two modules having finite spanning dimension has finite

spanning dimension if and only if both modules are Artinian.

(4) If M is an ns-Noetherian module or a module having finite spanning di-

mension, then M is a direct sum of finitely many indecomposable modules.

4. Properties over certain rings

Let I be an ideal of a commutative ring R. Recall from [14], I is called irreducible

if, there do not exist ideals I1 ⊋ I and I2 ⊋ I such that I = I1 ∩ I2. I is called
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primary if, for any a, b ∈ R, ab ∈ I =⇒ a ∈ I or ∃n ∈ N such that bn ∈ I. I is

called decomposable if it is finite intersection of primary ideals.

Proposition 4.1. Let I be a non-small ideal of a commutative ns-Noetherian ring

R. Then

(1) I contains a finite product of prime ideals.

(2) I is the intersection of finitely many irreducible ideals.

(3) I is primary whenever I is irreducible.

(4) I is decomposable.

Proof. (1) Let µ be a family of all non-small ideals of R which does not contain

any finite product of prime ideals of R. If possible, suppose that µ ̸= ϕ. Then, µ

has a maximal element, say, A. Clearly, A is not a prime ideal and so there exist

two ideals J,K of R such that JK ⊆ A but J,K ⊈ A. This implies that A+I, A+J

are non-small ideals of R such that A ⊊ A+ I, A+ J . Hence, by the maximality of

A, A+I and A+J contain product of prime ideals. But then A contains a product

of prime ideals as (A + I)(A + J) ⊆ A + IJ ⊆ A, a contradiction. Thus µ = ϕ.

This completes the proof.

(2) Let µ be the family of all non-small ideals of R which are not intersection of

finitely many irreducible ideals. Now, rest of the proof is on the same line to (1).

(3) Let a, b ∈ R such that ab ∈ I and a /∈ I. Then we show that bn ∈ I

for some positive integer n. Consider the quotient ring R̄ = R/I. Then āb̄ = 0̄,

ā ̸= 0̄ and there is an ascending chain ann(b̄) ⊆ ann(b̄2) ⊆ · · · ideals of R/I. By

Theorem 3.3, there exists n ∈ N such that ann(b̄n) = ann(b̄n+1). It follows that

< b̄n > ∩ < ā >= 0̄. Since I is irreducible, 0̄ is irreducible and so < b̄n >= 0̄ as

< ā ≯= 0̄. Thus bn ∈ I.

(4) It follows from (2) and (3). □

In Example 2.5(3), we show that a right ns-Noetherian ring need not satisfy

ACC on non-essential right ideals. Similarly, a ring having finite right spanning

dimension need not satisfy DCC on non-essential right ideals. For example, let V

be an infinite dimensional vector space over a field F . Then V is a divisible F -

module over a commutative domain F having finite spanning dimension. Hence the

commutative ring R = F (+)V has finite spanning dimension by Proposition 2.3.

Since V is infinite dimensional, V is not Artinian and so R is not Artinian as it has

ideals of the form 0(+)W , where W are subspaces of V . Since V is decomposable

and not Artinian, it follows from Theorem 3.10 and [12, Corollary 4.2] that R does
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not satisfyDCC on non-essential ideals. In the following, we provide some sufficient

conditions to hold it.

Proposition 4.2. Let R be a semiprime ring. If R is right ns-Noetherian ring (with

finite right spanning dimension), then R is either right uniform or right Noetherian

(Artinian). In particular, R satisfies ACC (DCC) on non-essential right ideals.

Proof. Suppose that R is not right Noetherian. Then we show that soc(RR) = 0.

Let S be a simple right ideal of R. Since R is not right ns-Noetherian, by Theorem

3.3, S must be a small right ideal and so S ⊆ J(R). It follows that soc(RR) ⊆ J(R)

and so (soc(RR))
2 = 0. Since R is semiprime, soc(RR) = 0. Hence R is right

uniform.

In another case, suppose that R is not right Artinian. Then RR is s3-free

by Theorem 3.10(2). Hence, by [3, Proposition 5.5], soc(RR) ⊆ J(R) and so

(soc(RR))
2 = 0. Since R is semiprime, soc(RR) = 0. Hence R is right uniform. □

Corollary 4.3. Let R be a semiprime ring. If R is right ns-Noetherian or R has

finite right spanning dimension, then R is a direct sum of finitely many uniform

right ideals.

Proposition 4.4. Let R be a right ns-Noetherian ring. Then for any c ∈ R, c is

nilpotent or r(c) ≤s RR or r(cn) ≤ne RR , cnR ≤ne RR and r(cn) ∩ cnR = 0 for

some n ∈ N.

Proof. Suppose that neither c is nilpotent nor r(c) ≤s RR. Then r(c) is a non-

small right ideal of R and so we have an ascending chain r(c) ⊆ r(c2) ⊆ r(c3) ⊆ · · ·
of non-small right ideals of R. Since R is right ns-Noetherian, there exists n ∈ N
such that r(cn) = r(cn+1). It follows that r(cn) ∩ cnR = 0. Since r(c) is non-small

and c is not a nilpotent element of R, r(cn) ̸= 0 and cn ̸= 0. Hence r(cn) ≤ne RR

and cnR ≤ne RR. □

Recall from [12], a ring R has many essential right ideals provided, for every

a ∈ R, aR ≤e RR or r(a) ≤e RR. The following result is analogous to [12, Lemma

2.11].

Corollary 4.5. Let R be a right ns-Noetherian ring. If R has many essential right

ideals, then for any c ∈ R, either c is nilpotent or r(c) ≤s RR.

Proof. If possible, suppose that neither c is nilpotent nor r(c) ≤s RR. Then,

by Proposition 4.4, r(cn) ≤ne RR and cnR ≤ne RR for some n ∈ N which is a

contradiction to the fact that R has many essential right ideals. So our assumption

is wrong. Thus, either c is nilpotent or r(c) ≤s RR. □
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The following result is a dualization to [12, Lemma 2.2].

Proposition 4.6. Let R be a ring which is right ns-Noetherian (with finite right

spanning dimension) but not right Noetherian (Artinian). Then for any c ∈ R,

either r(c) ≤s RR or cR ≤s RR.

Proof. Suppose that R is a ring which is right ns-Noetherian but not right Noether-

ian. Let c ∈ R and suppose that r(c) is a non-small right ideal. Then R/r(c) ∼= cR

is Noetherian right R-module by Theorem 3.3. This implies that R/cR is not right

Noetherian R-module by the hypothesis that R is not right Noetherian. Therefore

cR ≤s RR by Theorem 3.3. The proof for the other case is similar. □

Recall from [2, 18.26], a left self-injective ring having ACC (orDCC) on essential

left or right ideals is quasi-Frobenius. However, a self-injective ns-Noetherian ring

need not be quasi-Frobenius. For example, let p be a prime. If Z(p) denotes the

ring of p-adic integers which is a commutative principal ideal domain with unique

irreducible element, then the Prüfer p-group Zp∞ is a divisible Z(p)-module and

Z(p) is a hollow Z(p)-module. Hence, the ring R = Z(p)(+)Zp∞ is an ns-Noetherian

ring by Proposition 2.3. But, R is not quasi-Frobenius by [2, Example 18.18]. Here,

we give a sufficient condition under which it holds. First, we discuss the following

lemma.

Lemma 4.7. Let R be a ring such that r(Zl(R)) ≤ns RR. If R is right ns-

Noetherian, then R satisfies ACC on right annihilator ideals and cR is a Noe-

therian R-module for every c ∈ Zl(R), where Zl(R) denotes the set of all left zero

divisors in R.

Proof. Let S be a nonempty subset of R. If S has a left regular element, i.e., there

exists s ∈ S such that sx = 0 =⇒ x = 0 for any x ∈ R, then r(S) = 0. If S has no

left regular element, i.e., every element of S is a left zero divisor, then S ⊆ Zl(R)

and so r(Zl(R)) ⊆ r(S). Thus, for any S ⊆ R, either r(S) = 0 or r(S) ≤ns RR

as r(Zl(R)) ≤ns RR. Now, it follows that R satisfies ACC on left annihilator

ideals as R is right ns-Noetherian. Next, let c ∈ Zl(R). Then r(c) ≤ns RR as

r(Zl(R)) ⊆ r(c) and r(Zl(R)) ≤ns RR. Therefore, by Theorem 3.3, cR ∼= R/r(c) is

a Noetherian R-module. □

With the help of above lemma, we conclude that results analogous to [12, Lemma

2.10, Lemma 2.11 and Theorem 2.12] are true for any ring R with the property that

r(Zl(R)) ≤ns RR.
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Proposition 4.8. Let R be a self-injective ring such that r(Zl(R)) ≤ns RR. If R

is right ns-Noetherian, then R is quasi-Frobenius.

Proof. It follows from Lemma 4.7 and [2, Proposition 18.9]. □

Recall from [10], consider the following three conditions for a module M : (D1)

For every submodule N of M , there is a decomposition M = M1 ⊕M2 such that

M1 ≤ N and N ∩M2 ≤s M . (D2) If N ≤ M , such that M/N is isomorphic to a

direct summand of M , then N is a direct summand of M . (D3) If N and K are

direct summands of M such that M = N +K, then N ∩K is a direct summand of

M .

An R-module M is called discrete if it has (D1) and (D2); M is called quasi-

discrete if it has (D1) and (D3).

Proposition 4.9. Let M be a quasi-discrete module. If M is either ns-Noetherian

or M has finite spanning dimension, then M is discrete if and only if it is Hopfian.

Proof. Suppose that M is discrete. Since M is ns-Noetherian, every surjective

endomorphism of M has small kernel by Corollary 3.8. Therefore, every surjective

endomorphism of M is an isomorphism by [10, Lemma 5.1]. Thus, M is Hopfian.

The converse is clear by [10, Lemma 5.1]. □

Proposition 4.10. Let M be a module satisfying D1-condition. Then, M is ns-

Noetherian (with finite spanning dimension) if and only if it is either hollow or

Noetherian (Artinian).

Proof. Suppose M is ns-Noetherian. Then M is either Noetherian or indecompos-

able by Theorem 3.9(1). If M is not Noetherian, then M is indecomposable and so

M is a hollow module by [10, Corollary 4.9]. The converse is clear. □

Proposition 4.11. Every module with finite spanning dimension is discrete if and

only if it is quasi-projective.

Proof. It follows from [10, Proposition 4.39] and [3, Lemma 2.2]. □

Remarks 4.12. (1) It follows by Proposition 4.10 and Proposition 4.11 that the

condition of quasi-projective is superfluous in [11, Proposition 3.5] that a quasi-

projective module has finite spanning dimension if and only if it is either hollow or

Artinian.

(2) Every ring with right finite spanning dimension is right ns-Noetherian.

(3) In case of a ring R, RR has finite spanning dimension if and only if it is either
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hollow or Artinian. However, this fact is not true for right ns-Noetherian rings (see

Remarks 2.4 for such example).

(4) Let R be a semiprime ring. Then, by Proposition 4.2, Remarks 4.12(2), [12,

Theorem 2.1] and [12, Theorem 2.9], we have the following implications for the ring

R:

ns-ACC ns-DCC

ds-ACC ACC DCC ds-DCC

ne-ACC ne-DCC
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