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Abstract. For any commutative ring A we introduce a generalization of S–

noetherian rings using a hereditary torsion theory σ instead of a multiplica-

tively closed subset S ⊆ A. It is proved that totally noetherian w.r.t. σ is a

local property, and if A is a totally noetherian ring w.r.t σ, then σ is of finite

type.
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1. Introduction

In [6], the authors study the problem of determining the structure of the poly-

nomial ring D[X], over an integral domain D with field of fractions K, through

the structure of the Euclidean domain K[X]. In particular, an ideal a ⊆ D[X] is

said to be almost principal whenever there exist a polynomial F ∈ a, of positive

degree, and an element 0 6= s ∈ D such that as ⊆ FD[X] ⊆ a. The integral domain

D is an almost principal domain whenever every ideal a ⊆ D[X], which extends

properly to K[X], is almost principal. Noetherian and integrally closed domains

are examples of almost principal domains.

Later, in [2], the authors extend this notion to non–necessarily integral domains

in defining, for a given multiplicatively closed subset S ⊆ A of a ring A, an ideal

a ⊆ A to be S–finite if there exist a finitely generated ideal a′ ⊆ a and an element

s ∈ S such that as ⊆ a′, and define a ring A to be S–noetherian whenever every

ideal a ⊆ A is S–finite. Many authors have worked on S–noetherian rings and

related notions, and have shown relevant results about their structure. See for

instance [1,4,7,11,12,13,14].
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and Consejeŕıa de Economı́a, Conocimiento, Empresas y Universidad de la Junta de Andalućıa
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The main aim of this paper is to give a new approach to S–noetherian rings

and modules, and their applications, using the more abstract notion of hereditary

torsion theory. From this new point of view, several results appear more evident

and appear inlaid in a more general theory, which clarifies the original approach.

The background we use will be the hereditary torsion theories on a commutative

(and unitary) ring A, see [5,15], we denote by Mod–A the category of A–modules.

Thus, a hereditary torsion theory σ in Mod–A is given by one of the following

objects:

(1) a torsion class Tσ, a class of modules which is closed under submodules,

homomorphic images, direct sums and group extensions,

(2) a torsionfree class Fσ, a class of modules which is closed under submodules,

essential extensions, direct products and group extensions,

(3) a Gabriel filter of ideals L(σ), a non–empty filter of ideals satisfying that

every b ⊆ A, for which there exists an ideal a ∈ L(σ) such that (b : a) ∈ L(σ),

for every a ∈ a, belongs to L(σ),

(4) a left exact kernel functor σ : Mod–A −→Mod–A.

The relationships between these notions are the following. If σ is the left exact

kernel functor, then

Tσ = {M ∈Mod–A | σM = M},
Fσ = {M ∈Mod–A | σM = 0},
L(σ) = {a ⊆ A | A/a ∈ Tσ}.

If L is the Gabriel filter of a hereditary torsion theory σ, and T is the torsion class,

for any A–module M we have:

σM = {m ∈M | (0 : m) ∈ L} =
∑
{N ⊆M | N ∈ T }.

Example 1.1. (1) Let Σ ⊆ A be a multiplicatively closed subset, there exists a

hereditary torsion theory, σΣ, defined by

L(σΣ) = {a ⊆ A | a ∩ Σ 6= ∅}.

Observe that σΣ has a filter basis constituted by principal ideals. A hereditary

torsion theory σ such that L(σ) has a filter basis of principal ideals is called

a principal hereditary torsion theory. We can show there is a correspon-

dence between principal hereditary torsion theories in Mod–A, and saturated

multiplicatively closed subsets in A.

(2) For any ring A the set L = {a ⊆ A | Ann(a) = 0} is a Gabriel filter, it defines

the hereditary torsion theory λ.
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The paper is organized in sections. In Section 2 we introduce totally σ–noetherian

rings and modules and show that necessarily the hereditary torsion theory σ is of

finite type whenever the ring A is totally σ–noetherian. In Section 3 we study

how prime ideals and prime submodules appears naturally when studying totally

σ–finitely generated modules and obtain a relative version of Cohen’s theorem. The

natural notion of maximal condition in relation with totally σ–noetherian modules

is studied in Section 4. Section 5 is devoted to study some extensions of totally

σ–noetherian rings. In particular, we find that it is necessary to impose some extra

conditions to σ in order to assure that A[X] is totally σ–noetherian whenever A

is. The local behaviour of totally σ–noetherian modules is studied in Section 6 in

which we can reduce to consider only prime ideals in K(σ). In the last section,

Section 7, we study the particular case of totally σ–principal ideal rings.

Through this paper we try to study σ–noetherian rings and modules and, in a

parallel way, totally σ-noetherian rings and modules. The first one (σ–noetherian)

has a categorical behaviour, but not the second one (totally σ–noetherian). For

that reason, the study of the last one is more difficult and it is not in the literature.

On the other hand, it produces results as Proposition 6.2 which shows that to be

totally σ–noetherian, as opposed to σ-noetherian, is a local property.

2. Totally σ–noetherian rings and modules

For any σ–torsion finitely generated A–module M , say M = m1A+ · · ·+mtA,

since (0 : mi) ∈ L(σ), for any i = 1, . . . , t, if h := ∩ti=1(0 : mi) ∈ L(σ), it satisfies

Mh = 0. In general, this result does not hold for σ–torsion non–finitely generated

A–modules. Therefore, we shall define an A–module M to be totally σ–torsion

whenever there exists h ∈ L(σ) such that Mh = 0. This notion of totally torsion

appears, for instance, in [8, page 462].

For any ideal a ⊆ A we have two different notions of finitely generated ideal

relative to σ:

(1) a ⊆ A is σ–finitely generated whenever there exists a finitely generated ideal

a′ ⊆ a such that a/a′ is σ–torsion.

(2) a ⊆ A is totally σ–finitely generated whenever there exists a finitely gener-

ated ideal a′ ⊆ a such that a/a′ is totally σ–torsion.

In the same way, for any ring A we have two different notions of noetherian ring

relative to σ:

(1) A is σ–noetherian if every ideal is σ–finitely generated.

(2) A is totally σ–noetherian whenever every ideal is totally σ–finitely generated.
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Example 2.1. (1) Every finitely generated ideal is totally σ–finitely generated and

every totally σ–finitely generated ideal is σ–finitely generated.

(2) If S ⊆ A is a multiplicatively closed subset, an ideal a ⊆ A is S–finite if, and

only if, it is totally σS–finitely generated; and the ring A is S–noetherian if,

and only if, A is totally σS–noetherian.

These two notions of torsion, and the notions derived from them, are completely

different in their behaviour and their categorical properties. For instance, due to

the definition, for any A–module M there exists a maximum submodule belonging

to Tσ, the submodule: σM , and it satisfies M/σM ∈ Fσ. In the totally σ–torsion

case we can not assure the existence of a maximal totally σ–torsion submodule.

The existence of a maximum σ–torsion submodule allows us to build new concepts

relative to σ as lattices, closure operators and localizations; concepts that we have

not in the totally σ–torsion case. Nevertheless, the totally σ–torsion case allows us

to study arithmetic properties of rings and modules which are hidden with the use

of σ–torsion, and these properties are those which we are interested in studying.

As we pointed out before, the σ–torsion allows, for any A–module M , to define

a lattice structure on

C(M,σ) = {N ⊆M | M/N ∈ Fσ},

and a closure operator ClMσ (−) : L(M) −→ C(M,σ) ⊆ L(M), from L(M), the

lattice of all submodules of M , defined by the equation ClMσ (N)/N = σ(M/N).

The elements in C(M,σ) are called the σ–closed submodules of M , and the lattice

operations in C(M,σ), for any N1, N2 ∈ C(M,σ), are defined by

N1 ∧N2 = N1 ∩N2,

N1 ∨N2 = ClMσ (N1 +N2).

Dually, the submodules N ⊆M such that M/N ∈ Tσ are called σ–dense submod-

ules. The set of all σ–dense submodules of M is represented by L(M,σ).

In the following, we assume A is a ring, Mod–A is the category of A–modules

and σ is a hereditary torsion theory on Mod–A. Modules are represented by

Latin letters: M,N,N1, . . ., and ideals by Gothics letters: a, b, b1, . . . Different

hereditary torsion theories will be represented by Greek letters: σ, τ, σ1, . . ., and

induced hereditary torsion theories by adorned Greek letters: σ′, τ , . . .

The notions of (totally) σ–finitely generated and (totally) σ–noetherian can be

extended to A–modules in an easy way. Properties on the behaviour of totally σ–

finitely generated and σ–noetherian modules are collected in the following result.
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Proposition 2.2. (1) Every homomorphic image of a totally σ–finitely generated

A–module also is.

(2) For every submodule N ⊆M , we have: M is totally σ–noetherian if, and only

if, N and M/N are totally σ–noetherian.

(3) Finite direct sums of totally σ–noetherian modules also are.

The first restriction we have found in studying totally σ–noetherian rings is

that the hereditary torsion theory σ must be of an special type: it is a finite

type hereditary torsion theory. This is an extension of principal hereditary torsion

theories, and means that L(σ) has a filter basis constituted by finitely generated

ideals.

Proposition 2.3. If A is a totally σ–noetherian ring then σ is of finite type.

Proof. For any a ∈ L(σ) there exist a′ ⊆ a, finitely generated, and h ∈ L(σ) such

that ah ⊆ a′. Since L(σ) is closed under product of ideals, we have a′ ∈ L(σ). �

Directly from the definition we have that every totally σ–torsion module is totally

σ–noetherian, and an A–module M is totally σ–finitely generated if, and only if, it

contains a finitely generated submodule N ⊆M such that M/N is totally σ–torsion.

Our aim is to explore more conditions equivalent to totally σ–noetherian.

Remember, an A–module M is σ–noetherian if, and only if, for every sub-

module N ⊆ M there exists a finitely generated submodule H ⊆ N such that

ClMσ (H) = ClMσ (N); and M is totally σ–noetherian if, and only if, for every sub-

module N ⊆ M there exist a finitely generated submodule H ⊆ N and h ∈ L(σ)

such that Nh ⊆ H. In this sense, since every totally σ–noetherian module is σ–

noetherian, the question is what properties are necessary to add to σ–noetherianness

to get totally σ–noetherian.

The next proposition is based on [2, Proposition 2].

Proposition 2.4. Let σ be a finite type hereditary torsion theory in Mod–A, and

let M be an A–module. The following statements are equivalent:

(a) M is totally σ–noetherian.

(b) M is σ–noetherian, and for every N ⊆ M , finitely generated, there exists h ∈
L(σ), finitely generated, such that ClMσ (N) = (N : h).

Proof. (a)⇒ (b) If ClMσ (N) is totally σ–finitely generated; for reader convenience

we prove that ClMσ (N) = (N : h) for some h ∈ L(σ). By the hypothesis, there

exist H ⊆ ClMσ (N), finitely generated, and h ∈ L(σ), finitely generated, such that
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ClMσ (N)h ⊆ H ⊆ ClMσ (N). Since M is totally σ–noetherian, there exists h′ ∈ L(σ),

finitely generated, such that Hh′ ⊆ N . Therefore,

Nhh′ ⊆ ClMσ (N)hh′ ⊆ Hh′ ⊆ N.

In particular, ClMσ (N) ⊆ (N : hh′). On the other hand, (N : hh′)hh′ ⊆ N , hence

ClMσ (N) = (N : hh′).

(b) ⇒ (a) For any submodule H ⊆M , there is N ⊆ H, finitely generated, such

that ClMσ (H) = ClMσ (N), and there exists h ∈ L(σ), finitely generated such that

ClMσ (N) = (N : h). Therefore we have:

Hh ⊆ ClMσ (H)h = ClMσ (N)h ⊆ N ⊆ H. �

We know how to induce hereditary torsion theories through a ring map; here we

study the particular case of a ring map f : A −→ B such that every ideal of B is

extended of an ideal of A, i.e., for any ideal b ⊆ B there exists an ideal a ⊆ A such

that f(a)B = b.

If σ is a hereditary torsion theory in Mod–A, then f(σ) is a hereditary torsion

theory in Mod–B and their Gabriel filter is

L(f(σ)) = {b ⊆ B | f−1(b) ∈ L(σ)}.

It is clear that f(σ) is of finite type whenever σ is.

In this situation we have:

Lemma 2.5. Let σ be a finite type hereditary torsion theory, and let f : A −→ B be

a ring map such that every ideal of B is an extended ideal. In this case L(f(σ)) =

{f(a)B | a ∈ L(σ)}.
If A is totally σ–noetherian, then B is totally f(σ)–noetherian.

Proof. For any ideal b ⊆ B, there exists a ⊆ A such that b = f(a)B. There exists

h ∈ L(σ), finitely generated, such that ah ⊆ a′ ⊆ a, for some finitely generated

ideal a′ ⊆ a. Therefore, bf(h)B = f(a)f(h)B ⊆ f(a′)B ⊆ b. �

Examples of this situation are the following:

(1) B is the quotient of a ring A by an ideal a, i.e., p : A −→ A/a.

(2) B is the localized ring of A at a multiplicatively closed subset Σ ⊆ A, i.e.,

q : A −→ AΣ.
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3. Prime ideals

If σ is a hereditary torsion theory in Mod–A, it is well known that for any prime

ideal p ⊆ A we have either p ∈ C(A, σ) or p ∈ L(σ), i.e., either A/p is σ–torsionfree

or A/p is σ–torsion. In consequence, σ produces a partition of Spec(A) in two sets:

Spec(A) = K(σ) ∪ Z(σ), with K(σ) ⊆ C(A, σ), and Z(σ) ⊆ L(σ). In addition, for

every p ∈ K(σ) we have σ ≤ σA\p, and σ = ∧{σA\p | p ∈ K(σ)} whenever σ is of

finite type.

Is any maximal, among the non totally σ–finitely generated submodules, a prime

submodule? We know that it holds in the case of finitely generated modules. We

now prove it for totally σ–finitely generated modules.

Proposition 3.1. Let σ be a finite type hereditary torsion theory, and let M be a

totally σ–finitely generated A–module. Any N ⊆ M , maximal among the submod-

ules of M which are not totally σ–finitely generated, is a prime submodule.

Proof. Given a maximal submodule N ⊆ M . If N ⊆ M is not prime, there exist

m ∈M \N and a ∈ A \ (N : M) such that ma ∈ N .

Since a /∈ (N : M), we have Ma * N , and N $ N +Ma is totally σ–

finitely generated. On the other hand, N $ (N : a) is totally σ–finitely gen-

erated, since m ∈ (N : a) \ N . Therefore, there exist finitely generated sub-

modules F = (f1, . . . , fr) ⊆ N +Ma and G = (g1, . . . , gs) ⊆ (N : a), and

h = (h1, . . . , ht) ∈ L(σ), finitely generated, such that (N + Ma)h ⊆ F ⊆ N +Ma

and (N : a)h ⊆ G ⊆ (N : a). Say fi = ni + mia for i = 1, . . . , r, ni ∈ N and

mi ∈M .

For any n ∈ N and hi ∈ {h1, . . . , ht}, since nhi ∈ F , there exists a linear

combination nhi =
∑
l flci,l =

∑
l nlci,l +

∑
lmlci,la, and (

∑
lmlci,l)a = nhi −∑

l nlci,l ∈ N . In consequence
∑
lmlci,l ∈ (N : a).

For any hj ∈ {h1, . . . , ht} we have (
∑
lmlci,l)hj ∈ G, and there exists a linear

combination (∑
l

mlci,l

)
hj =

∑
k

gkdi,j,k.

Therefore, we have

nhihj =

(∑
l

nlci,l +
∑
l

mlci,la

)
hj =

∑
l

nlci,lhj +
∑
l

mlci,lhja

=
∑
l

nlci,lhj +
∑
k

gkdi,j,ka,
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which means that nhh is contained in the submodule generated by {n1, . . . , nr} ∪
{g1a, . . . , gsa} ⊆ N . Thus reaching a contradiction. �

Corollary 3.2. Let σ be a finite type hereditary torsion theory in Mod–A, and

let M be a totally σ–finitely generated module. If N ⊆ M is maximal among all

non–totally σ–finitely generated submodules of M , then (N : M) is a prime ideal.

The next one is a result of the finite type hereditary torsion theories.

Lemma 3.3. Let σ be a finite type hereditary torsion theory in Mod–A. For

every totally σ–finitely generated A–module M , and any L ∈ C(M,σ), L $ M ,

there exists a maximal element N ∈ C(M,σ) such that L ⊆ N . In addition, if

Γ = {N ⊆ M | L ⊆ N ∈ C(M,σ), N 6= M}, every maximal element in Γ is a

prime submodule.

Proof. For any chain {Ni | i ∈ I} in Γ we define N = ∪i∈INi. If ClMσ (N) 6= M ,

then ClMσ (N) is an upper bound of the chain in Γ. If ClMσ (N) = M , since there exist

m1, . . . ,mt ∈M and h ∈ L(σ), finitely generated, such thatMh ⊆ (m1, . . . ,mt)A ⊆
M , then there exists b ∈ L(σ), finitely generated, such that (m1, . . . ,mt)b ⊆ ∪iNi =

N ; therefore, there exists an index i such that (m1, . . . ,mt)b ⊆ Ni. In consequence,

Ni = ClMσ (Ni) = M , which is a contradiction because Ni ∈ Γ. �

The following result is based on [10, Theorem 1], see also [2, Proposition 4].

Theorem 3.4. Given a finite type hereditary torsion theory σ in Mod–A. For

any totally σ–finitely generated module M , the following statements are equivalent:

(a) M is totally σ–noetherian.

(b) For every prime ideal p ∈ K(σ) the submodule Mp ⊆ M is totally σ–finitely

generated.

Proof. Clearly, if p ∈ Z(σ), then Mp ⊆ M is σ–dense, whence Mp is totally

σ–finitely generated, because M is.

(a) ⇒ (b) is obvious.

(b) ⇒ (a) Since M is totally σ–finitely generated, there exist h ∈ L(σ), finitely

generated, and a1, . . . , at ∈ M such that Mh ⊆ (a1, . . . , at) ⊆ M . If M is not

totally σ–noetherian, the set

Γ = {N ⊆M | N is not totally σ–finitely generated}

is not empty. Since any chain in Γ has a upper bound in Γ, by Zorn’s lemma,

there exists N ∈ Γ maximal. By Corollary 3.2, the ideal p = (N : M) is prime.
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If p ∈ Z(σ), then N is totally σ–finitely generated as M is, which is a contradic-

tion. Therefore, p ∈ K(σ), and, by the hypothesis, since Mp is totally σ–finitely

generated, there exist h′ ∈ L(σ), finitely generated, and b1, . . . , bs ∈Mp, such that

Mph′ ⊆ (b1, . . . , bs) ⊆Mp.

Since p is prime and p = (N : M) ⊆ (N : (a1, . . . , at)) ⊆ (N : Mh) = ((N :

M) : h) = (p : h) = p, we have p = (N : a1) ∩ . . . ∩ (N : at), and there exists an

index i such that p = (N : ai); this means that ai /∈ N , whence N $ N +Aai,

and N +Aai is totally σ–finitely generated. In consequence, there exist h′′ ∈ L(σ),

n1, . . . , nr ∈ N , and x1, . . . , xr ∈ A such that Nh′′ ⊆ (n1 + x1ai, . . . , nr + xrai) ⊆
N +Aai, whence Nh′′ ⊆ (n1, . . . , nr)+aip. In conclusion, Nh′′h′ ⊆ (n1, . . . , nr)h

′+

(b1, . . . , bs) ⊆ N +Mp ⊆ N , and N must be totally σ–finitely generated, which is

a contradiction. �

As a direct consequence we have:

Corollary 3.5. [Cohen–like theorem] Given a finite type hereditary torsion theory

σ in Mod–A, the following statements are equivalent:

(a) A is totally σ–noetherian.

(b) Every prime ideal in K(σ) is totally σ–finitely generated.

Proof. It is a direct consequence of Theorem 3.4. �

When we particularize to the hereditary torsion theory σ = 0, i.e., when L(σ) =

{A}, we have that A is a noetherian ring if, and only if, every prime ideal is finitely

generated, which is Cohen’s Theorem. On the other hand, if σ = σS , for some

multiplicatively closed subset S ⊆ A, then A is S–noetherian if, and only if, every

prime ideal, in K(σS), is totally S–finite, see [2].

4. Maximal conditions

Let M be an A–module, an increasing chain of submodules {Ni | i ∈ I} (as

usual, this induces a relation in I: for any i, j ∈ I we have i ≤ j whenever Ni ⊆ Nj)
is totally σ–stable whenever there exist an index j ∈ I and h ∈ L(σ) such that

(∪iNi)h ⊆ Nj . The chain {Ni | i ∈ I} is a countable chain whenever the index

set I is countable.

Proposition 4.1. For any hereditary torsion theory σ in Mod–A and any A–

module M , the following statements are equivalent:

(a) M is totally σ–noetherian.

(b) Every increasing chain {Ni | i ∈ I} of submodules of M is totally σ–stable.
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(c) Every increasing countable chain {Nn | n ∈ N} of submodules of M is totally

σ–stable.

Proof. (a) ⇒ (b) Given {Ni | i ∈ I}, an increasing chain of submodules of M ,

we define N = ∪iNi. By the hypothesis, there exist h ⊆ L(σ) and x1, . . . , xt ∈ N
such that Nh ⊆ (x1, . . . , xt) ⊆ N . Therefore, since there exists an index j such

that x1, . . . , xt ∈ Nj , and we have (∪iNi)h = Nh ⊆ Nj .
(b) ⇒ (c) is obvious.

(c)⇒ (a) If M is not totally σ–noetherian there is a submodule N ⊆M which is

not totally σ–finitely generated. Always we may take a non–zero finitely generated

submodule N0 ⊆ N , there exists a non–zero totally σ–finitely generated submodule

of N , and since N is not totally σ–finitely generated, for any h ∈ L(σ) there exists

x ∈ N \N0 such that xh * N0. If we define N1 = N0 + xA, it is totally σ–

finitely generated; hence we may build N2 ⊆ N totally σ–finitely generated such

that N2h * N1 for every h ∈ L(σ), and so on.

In this way we have a countable chain {Nn | n ∈ N} such that Nn+1h * Nn for

any h ∈ L(σ), and any n ∈ N. By the hypothesis there exist an ideal h ∈ L(σ) and

an index m ∈ N such that (∪nNn)h ⊆ Nm, which is a contradiction. �

For any A–module M , we do the following definitions:

(1) Let N ⊆ L(M) be a family of submodules of M . An element N ∈ N is σ–

maximal if there exists h ∈ L(σ) such that for every H ∈ N satisfying N ⊆ H
we have Hh ⊆ N .

(2) The A–module M satisfies the σ-MAX condition if every nonempty family

of submodules of M has σ–maximal elements.

(3) A family N of submodules of M is σ–upper closed if for every submodule

H ⊆ M such that there exist N ∈ N and h ∈ L(σ) satisfying N ⊆ H and

Hh ⊆ N , or equivalently N ⊆ H ⊆ (N : h), we have H ∈ N .

Proposition 4.2. For any A–module M , the following statements are equivalent:

(a) M is totally σ–noetherian.

(b) Every nonempty σ–upper closed family of submodules of M has maximal ele-

ments.

(c) Every nonempty family of submodules of M has σ–maximal elements.

Proof. (a)⇒ (b) Let N be a nonempty σ–upper closed family of submodules of M .

For any increasing chain {Ni | i ∈ I} in N we define N = ∪iNi. By the hypothesis

there exist an index j ∈ J and h ∈ L(σ) such that (∪iNi)h ⊆ Nm. Hence Nh ⊆ Nj ,
and N ∈ N . In consequence, by Zorn’s lemma, N contains maximal elements.
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(b) ⇒ (c) Let N be a nonempty family of submodules of M . We define a new

family

N = {H ⊆M | there exist N ∈ N and h ∈ L(σ) such that Hh ⊆ N},

the σ–upper closure of N . We claim N is σ–upper closed. Indeed, if L ⊆ M ,

H ∈ N and h ∈ L(σ) satisfy L ⊆ (H : h), by the hypothesis there exist N ∈ N and

h′ ∈ L(σ) such that H ⊆ (N : h′), hence we have L ⊆ (H : h) ⊆ ((N : h′) : h) =

(N : h′h), and L ∈ N .

By the hypothesis, there exists a maximal element, say H, in N , and there exist

N ∈ N and h ∈ L(σ) such that H ⊆ (N : h). Since (N : h) ∈ N , we have

H = (N : h). We claim N is σ–maximal in N . Indeed, if N ⊆ L for some L ∈ N ,

then H = (N : h) ⊆ (L : h), by the maximality of H we have (L : h) = (N : h),

hence Lh ⊆ N .

(c)⇒ (a) For any {Ni | i ∈ I} increasing chain of submodules of M . We consider

the family N = {Ni | i ∈ I}. By the hypothesis N has σ–maximal elements. If

Nj ∈ N is σ–maximal, there exists h ∈ L(σ) such that Nih ⊆ Nj for every i ≥ j;

hence M is totally σ–noetherian. �

Observe that if M is an A–module, for any submodule N ⊆M we may consider

the family N = {N}, and their σ–upper closure

{N} = {H ⊆M | there exists h ∈ L(σ) such that N ⊆ H ⊆ (N : h)},

hence for every H ∈ {N} we have N ⊆ H ⊆ ClMσ (N). In addition, we have:

Proposition 4.3. If N = {N}, then we have; N has only one maximal element

if, and only if, ClMσ (N) ∈ N .

Proof. Given H ∈ N be the only maximal element, if there exists x ∈ ClMσ (N)\H,

there are h ∈ L(σ) such that Hh ⊆ N and xh ⊆ N , hence (H + (x))h ⊆ N , and

H + (x) ∈ N , which is a contradiction. �

Proposition 4.4. Given an A–module M , and a totally σ–torsion submodule T ⊆
M , the following statements are equivalent:

(a) M is totally σ–noetherian.

(b) M/T is totally σ–noetherian.

Proof. (a) ⇒ (b) Given {Ni/T | i ∈ I}, an increasing chain of submodules of

M/T , there exist j ∈ I and h ∈ L(σ) such that Nih ⊆ Nj , for every i ≥ j.

Therefore,
Ni
T

h =
Nih + T

T
⊆ Nj

T
.
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(b) ⇒ (a) If {Ni | i ∈ I} is an increasing chain of submodules of M , then

{(Ni +T )/T | i ∈ I} is an increasing chain of submodules of M/T , and there exist

j ∈ I, h ∈ L(σ) such that Ni+T
T h ⊆ Nj+T

T , for every i ≥ j. On the other hand,

there exists h′ ∈ L(σ) such that Th′ = 0. Therefore,

Nihh
′ = (Nih + T )h′ ⊆ (Nj + T )h′ = Njh

′ ⊆ Nj . �

5. Ring extensions

Let σ be a hereditary torsion theory in Mod–A, and f : A −→ B be a ring map.

To indicate that M is an A–module we may write MA; thus for any B–module M

we write MB whenever we are considering the B–module structure on M , and write

MA for the A–module structure.

Proposition 5.1. The set L(f(σ)) = {b ⊆ B | f−1(b) ∈ L(σ)} is a Gabriel filter

in B, and it defines a hereditary torsion theory in Mod–B, being

(1) Tf(σ) = {MB | MA ∈ Tσ} and

(2) Ff(σ) = {MB | MA ∈ Fσ}.

We name f(σ) the hereditary torsion theory induced by σ through the ring

map f .

Proposition 5.2. For any finite type hereditary torsion theory σ in Mod–A, and

any ring map f : A −→ B, the induced hereditary torsion theory f(σ) is of finite

type.

Proof. For any b ∈ L(f(σ)), there exists a ∈ L(σ), finitely generated, such that

a ⊆ f−1(b). Therefore, f(a)B ∈ L(f(σ)) is finitely generated, and f(a) ⊆ b, hence

f(σ) is finitely generated. �

Theorem 5.3. [Eakin–Nagata–like theorem] Let σ be a finite type hereditary tor-

sion theory in Mod–A, and f : A ↪→ B be a ring extension such that B is a

totally σ–finitely generated A–module, and pB is a totally f(σ)–finitely generated

B–module for every prime ideal p ∈ K(σ), then A is totally σ–noetherian.

Proof. It is sufficient to prove that B is a totally σ–noetherian A–module because

A is a submodule of B, or equivalently that for every prime ideal p ∈ K(σ) we

have that pB ⊆ B is totally σ–finitely generated, see Theorem 3.4. There exists

a ∈ L(σ) such that apB ⊆ (p1, . . . , pt)B ⊆ pB, and there exists a′ ∈ L(σ) such that

a′B ⊆ (b1, . . . , bs)A ⊆ A, hence

a′apB ⊆ a′(p1, . . . , pt)B ⊆ (p1, . . . , pt)(b1, . . . , bs)A.
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�

Corollary 5.4. [Eakin–Nagata–like theorem] Let σ be a finite type hereditary tor-

sion theory in Mod–A, f : A ↪→ B be a ring extension such that B is a totally

σ–finitely generated A–module and totally f(σ)–noetherian B–module, then A is a

totally σ–noetherian.

Proposition 5.5. For any finite type hereditary torsion theory σ in Mod–A, and

any ring extension f : A ↪→ B such that aB ∩A = a for every ideal a ⊆ A (e.g., B

is faithfully flat). If B is totally f(σ)–noetherian, then A is totally σ–noetherian.

Proof. Given an ideal a ⊆ A, since aB ⊆ B is totally f(σ)–finitely generated, there

exists c ∈ L(σ) such that caB ⊆ (b1, . . . , bt)B, for some b1, . . . , bt ∈ a. Therefore,

ca = c(aB ∩A) ⊆ (b1, . . . , bt)B ∩A = (b1, . . . , bt)A. �

This means that faithfully flat extensions are a good test for checking the totally

noetherian property.

In order to consider polynomial extensions, we introduce a new kind of finite type

hereditary torsion theories. A finite type hereditary torsion theory σ in Mod–A

is almost jansian or anti–Archimedean if for every ideal a ∈ L(σ) we have

∩∞n=1a
n ∈ L(σ).

Examples 5.6. (1) An example of almost jansian hereditary torsion theories are

the jansian torsion theories. A hereditary torsion theory σ is jansian when-

ever L(σ) has a filter basis constituted by an ideal a; in this case a must be

idempotent. If in addition, σ is of finite type then a is finitely generated, hence

generated by an idempotent element, say e ∈ A, and the localization of A at σ

is just the ring eA.

(2) A multiplicatively closed subset Σ ⊆ A is anti–Archimedean whenever, for

each a ∈ Σ, we have ∩∞n=1a
nA ∩ Σ 6= ∅; hence if, and only if, σΣ is almost

jansian.

(3) An integral domain D is anti–Archimedean if ∩∞n=1a
nD 6= 0 for each a ∈

D \ {0}, hence we can rewrite D is anti–Archimedean if, and only if, σD\{0} is

almost jansian.

(4) For every prime ideal p ⊆ A, the hereditary torsion theory σA\p is of finite

type, and it is almost jansian if, and only if, for any ideal a ⊆ A if a * p, then

∩nan * p if, and only if, for any a ∈ A \ p we have ∩nanA * p. Let us call

such a p an almost jansian prime ideal of A.
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On the other hand, the integral domain A/p is anti–Archimedean if, and

only if, for any a ∈ A \ p we have ∩n(anA + p) 6= p if, and only if, p is not

closed in the a–adic topology in A.

In this case we have the inclusions: p ⊆ p+∩nanA ⊆ ∩n(p+anA); therefore

if σA\p is almost jansian then A/p is anti–Archimedean, i.e., p is not closed in

the a–adic topology in A.

The converse not necessarily holds as the following example shows. Let

A = Z, and p = 3Z. If we take 2 ∈ Z \ 3Z we have ∩n2nZ = 0 ⊆ p = 3Z; hence

and σZ\3Z is not almost jansian. On the other hand, Z/3Z3 = F3 is a finite

field, hence it is anti–Archimedean.

In general, for any ring A and any maximal ideal m ⊆ A we have that A/m

is an anti–Archimedean domain, but σA\m is not almost jansian.

(5) For every strongly prime ideal p ⊆ A, see [9], the hereditary torsion theory

σA\p is almost jansian.

(6) Since the intersection of finitely many finite type hereditary torsion theories is of

finite type, if {p1, . . . , pt} are almost jansian prime ideals of A, then ∧ti=1σA\pi

is almost jansian.

Theorem 5.7. [Hilbert–like basis theorem] Let σ be a finite type almost jansian

hereditary torsion theory in Mod–A, and σ′ the induced hereditary torsion theory

in Mod–A[X]. If A is totally σ–noetherian, then A[X] is totally σ′–noetherian.

Proof. Given b ⊆ A[X] be an ideal, we define a = {lc(F ) | F ∈ b}, being lc(F )

the leading coefficient of the polynomial F , and, for convenience, lc(0) = 0. Thus

a ⊆ A is an ideal, and there exist h ∈ L(σ), finitely generated, and a1, . . . , at ∈ a

such that ah ⊆ (a1, . . . , at)A ⊆ a. Let F1, . . . , Ft ∈ b such that lc(Fi) = ai for any

i ∈ {1, . . . , t}, and d = max{deg(Fi) | i ∈ {1, . . . , t}}.
For any n ∈ N \ {0}, we define Hn = {F ∈ b | deg(F ) < n}, thus Hn is an

A–module isomorphic to a submodule of the free A–module An, hence it is totally σ–

finitely generated. There exist hn ∈ L(σ), finitely generated, and H1, . . . ,Hs ∈ Hn
such that Hnhn ⊆ (H1, . . . ,Hs)A ⊆ Hn.

When we take Hd, we may assume that hn and h are equal. Let us suppose that

h = (h1, . . . , hr)A.

For any F ∈ b, if f = deg(F ) < d, then F ∈ Hd. If f = deg(F ) ≥ d, we

have lc(F ) ∈ a, and lc(F )h ⊆ (a1, . . . , at)A. For any j ∈ {1, . . . , r} there exists an

A–linear combination lc(F )hj =
∑t
i=1 aici,j . Hence there exist natural numbers

e1, . . . , et such that Fhj −
∑t
i=1 FiX

eici,j = Gj is a polynomial in b of degree

less than f , i.e., Gj ∈ Hf . Since Fhj =
∑t
i=1 FiX

eici,j + Gj , we have Fh ⊆
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(F1, . . . , Ft)A[X] + (G1, . . . , Gr)A. We resume this fact saying that for any 0 6=
F ∈ b of degree f ≥ d, there exists a finite subset G ⊆ Hf such that Fh ⊆
(F1, . . . , Ft)A[X] + GA; if f < d, then G = {H1, . . . ,Hs} ⊆ Hd.

Starting from a polynomial F ∈ b of degree f ≥ d there exists a finite subset G1 ⊆
Hf such that Fh ⊆ (F1, . . . , Ft)A[X]+G1A. For any G ∈ G1 there exists G′ ⊆ Hf−1

such that Gh ⊆ (F1, . . . , Ft)A[X]+G′A, hence there exists a finite subset G2 ⊆ Hf−1

such that Fh2 ⊆ (F1, . . . , Ft)A[X] + G2A. And, iterating this process, there exist

k ∈ N and a finite subset G ⊆ Hd such that Fhk ⊆ (F1, . . . , Ft)A[X] +HdA.

In consequence, b(∩k∈Nhk) ⊆ (F1, . . . , Ft, H1, . . . ,Hs)A[X] ⊆ b, where we have

H1, . . . ,Hs ∈ Hd, and since σ is almost jansian ∩khk ∈ L(σ), b is totally σ′–finitely

generated. �

The following consequence also holds.

Corollary 5.8. Let σ be a finite type almost jansian hereditary torsion theory in

Mod–A, and σ′ be the induced hereditary torsion theory in Mod–A[X1, . . . , Xn].

If A is totally σ–noetherian, then A[X1, . . . , Xn] is totally σ′–noetherian.

For this result it is convenient to point out that if σ is almost jansian then σ′ is

also.

Since totally σ–noetherianness is preserved by localization at multiplicatively

closed subsets, see Lemma 2.5, we also have the corollary.

Corollary 5.9. Let A be a ring and σ be an almost jansian finite type hereditary

torsion theory such that A is totally σ–noetherian, if σ′ is the induced hereditary

torsion theory in A[X,X−1], then A[X,X−1] is totally σ′–noetherian.

Proof. We have ring maps A
f−→ A[X]

g−→ A[X,X−1]. If we consider Σ =

{Xt | t ∈ N} ⊆ A[X], then A[X,X−1] = A[X]Σ. Since σ is almost jansian, A

is totally σ–noetherian, then A[X] is totally f(σ)–noetherian, and A[X,X−1] is

totally gf(σ)–noetherian, by Lemma 2.5. �

In the following theorem we’ll use the characterization of totally σ–noetherian

rings, see Cohen’s Theorem 3.5, and totally σ–principal ideal integral domains, see

Kaplansky’s Theorem 7.1, see below.

Theorem 5.10. [Hilbert–like basis theorem] Let A be an integral domain and σ

be a finite type almost jansian hereditary torsion theory in Mod–A, and σ′ the

induced hereditary torsion theory in Mod–AJXK. If A is a totally σ–principal ideal

ring, then AJXK is totally σ′–noetherian.
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Proof. For any prime ideal q ⊆ AJXK in K(σ′) we define an ideal of A as follows:

q0 =
{(

F
Xn

)
(0) | F ∈ q ∩ (Xn)

}
. By the hypothesis, there exist a ∈ q0 and h ∈

L(σ) such that q0h ⊆ aA.

If X ∈ q, then q = q0AJXK + (Xn), hence q is totally σ–finitely generated.

Indeed, since a ∈ q, we have: qh = (q0, X)AJXK ⊆ (a,X)AJXK.
If X /∈ q, let H ∈ q; if H = XG, then G ∈ q, and we may assume H(0) 6= 0. Let

F ∈ q such that F (0) = a; if b = H(0), we have bh ⊆ aA, and, for any h ∈ h, there

exists ch ∈ A such that bh = ach; hence Hh − Fch = XH2, for some H2 ∈ q; in

consequence, Hh ⊆ (F,X)AJXK. By induction assume that Hht ⊆ (F,Xt)AJXK,
for some t ≥ 1; hence that exists a finitely generated ideal b ⊆ AJXK such that

Hht ⊆ (F ) +Xtb. (∗)

In addition we have bh ⊆ (F,X)AJXK, hence, multiplying by (*) we obtain Hht+1 ⊆
(F,Xt+1)AJXK. In consequence,

H
(
∩tht

)
⊆ ∩tHht ⊆ ∩t(F,Xt)AJXK = (F ),

the last identity is consequence of [3, Lemma 2], hence q is totally σ′–finitely gen-

erated, and AJXK is totally σ′–noetherian. �

Observe that Theorem 5.10 could be extended to consider A to be a totally

σ–noetherian integral domain whenever AJXK satisfies the following condition:

• each finitely generated ideal of AJXK is closed in the X–adic topology.

Therefore, for any finite type almost jansian hereditary torsion theory σ on an

integral domain A the power series ring AJXK is totally σ′–noetherian whenever A

is.

6. Study through prime ideals

For any prime ideal p ⊆ A, we consider σA\p, the hereditary torsion theory

cogenerated by A/p, or equivalently, the hereditary torsion theory generated by the

multiplicatively closed subset A \ p. For every torsion theory σ we consider the

following sets of ideals:

(1) L(σ), the Gabriel filter of σ.

(2) Z(σ) = L(σ) ∩ Spec(A). In particular, if p ⊆ q are prime ideals and p ∈ Z(σ),

then q ∈ Z(σ).

(3) C(A, σ) = {a | A/a ∈ Fσ}.
(4) K(σ) = C(A, σ) ∩ Spec(A); it is the complement of Z(σ) in Spec(A). In par-

ticular, if p ⊆ q are prime ideals and q ∈ K(σ), then p ∈ K(σ).
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(5) C(σ) = MaxK(σ).

If σ is of finite type, then σ = ∧{σA\p | p ∈ K(σ)}. On the other hand, σ =

∧{σA\p | p ∈ C(σ)} whenever A is σ–noetherian, because σA\q ≤ σA\p if p ⊆ q, for

any prime ideals p, q.

An A–module M is totally p–noetherian whenever M is totally σA\p–noethe-

rian.

Lemma 6.1. Let A be a local (non necessarily noetherian) ring with maximal ideal

m, and M be an A–module. The following statements are equivalent:

(a) M is noetherian.

(b) M is totally σA\m–noetherian.

Proof. It is immediate because every element in A \m is invertible. �

Proposition 6.2. Let σ a finite type hereditary torsion theory in A, and M be an

A–module. The following statements are equivalent:

(a) M is totally σ–noetherian.

(b) M is totally σA\p–noetherian for every p ∈ C(σ) = MaxK(σ).

Proof. (a) ⇒ (b) is immediate because σ ≤ σA\p.

(b) ⇒ (a) Given N ⊆ M , for every m ∈ C(σ) there exist sm ∈ A \m and

H(m) ⊆ N , finitely generated, such that Nsm ⊆ H(m) ⊆ N . Since b =
∑

m smA

belongs to L(σ) = ∩mL(σA\m), there exists c ∈ L(σ), finitely generated, such that

c ⊆ b. In consequence, there are finitely many elements sm1
, . . . , smt

such that

c ⊆
∑t
i=1 smiA ⊆ b, and we have Nc ⊆

∑t
i=1H(mi) ⊆ N . Hence, N is totally

σ–finitely generated, and M is totally σ–noetherian. �

When we take the hereditary torsion theory σ = 0, i.e., when L(σ) = {A}, we

have that M is noetherian if, and only if, M is totally σA\m–noetherian for every

maximal ideal m ∈ Supp(M), which is [2, Proposition 12].

7. Principal ideal rings

If σ be a hereditary torsion theory in Mod–A, and a ⊆ A an ideal, then we

have:

(1) a is σ–principal if there exists a ∈ a such that ClAσ (aA) = ClAσ (a).

(2) A is a σ–principal ideal ring, σ-PIR, whenever every ideal is σ–principal.

(3) a is totally σ–principal if there exist a ∈ a and h ⊆ L(σ) such that ah ⊆
aA ⊆ a.
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(4) A is a totally σ–principal ideal ring, totally σ–PIR, whenever every ideal

is totally σ–principal.

Proposition 7.1. [Kaplansky–like Theorem] For any finite type hereditary torsion

theory σ in Mod–A, the following statements are equivalent:

(a) A is totally σ–PIR.

(b) Every prime ideal p ∈ K(σ) is totally σ–principal.

See also [2, Proposition 16].

Proof. (a) ⇒ (b) This direction is evident.

(b)⇒ (a) Let Γ = {a ⊆ A | a is not totally σ–principal}. Let us assume Γ 6= ∅,

{ai | i ∈ I} ⊆ Γ be a chain in Γ, and take a = ∪iai. If a is totally σ–principal, there

are h ∈ L(σ), finitely generated, and a ∈ a such that ah ⊆ aA ⊆ a, and there exists

an index i such that a ∈ ai, hence aih ⊆ ah ⊆ aA ⊆ ai, which is a contradiction. In

conclusion, every chain in Γ has a upper bound in Γ, and by Zorn’s lemma there

exist maximal elements in Γ.

For any a ∈ Γ maximal; we claim a = ClAσ (a). If a 6= ClAσ (a) then ClAσ (a) is

totally σ–principal, and there exist h1 ∈ L(σ), x ∈ ClAσ (a) such that ClAσ (a)h1 ⊆
xA ⊆ ClAσ (a). On the other hand, there exists h2 ∈ L(σ) such that xh2 ⊆ a;

therefore ah1h2 ⊆ xAh2 ⊆ a, and a is totally σ–principal, which is a contradiction.

We claim that any a ∈ Γ, maximal, is prime. Let a, b ∈ A \ a such that ab ∈ a.

Since a + aA is totally σ–principal, there exist x ∈ a + aA and h1 ∈ L(σ), finitely

generated, such that (a+aA)h1 ⊆ xA. Since bx ∈ a, we have a $ (a : x). Therefore,

(a : x) is totally σ–principal, and there exist y ∈ (a : x) and h2 ∈ L(σ) such that

(a : x)h2 ⊆ yA.

If x ∈ a, then (a+aA)h2 ⊆ xA ⊆ a, and a ∈ ClAσ (a) = a, which is a contradiction.

Hence, x /∈ a; since ah1 ⊆ xA, there exists an ideal k ⊆ A such that ah1 = xk; hence

k ⊆ (a : x). Therefore,

ah1h2 = xkh2 ⊆ xyA,

and a is totally σ–principal, which is a contradiction. In conclusion, any maximal

element of Γ belongs to K(σ), hence it is totally σ–principal, which is a contradic-

tion. �

Corollary 7.2. For any a finite type hereditary torsion theory σ in Mod–A, the

following statements are equivalent:

(a) A is totally σ–PIR.

(b) A is σ-PIR and every prime ideal p is totally σ–finitely generated.
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Proof. (a) ⇒ (b) is evident.

(b) ⇒ (a) Given p ∈ K(σ), by the hypothesis, there exist h1 ∈ L(σ), finitely

generated, and p1, . . . , pt ∈ p such that ph1 ⊆ (p1, . . . , pt) ⊆ p. On the other

hand, there exist p ∈ (p1, . . . , pt) and h2 ∈ L(σ), finitely generated, such that

(p1, . . . , pt)h2 ⊆ pA ⊆ (p1, . . . , pt). Observe that ClAσ (pA) = p = ClAσ (p1, . . . , pt).

Therefore, we have

ph1h2 ⊆ (p1, . . . , pt)h2 ⊆ pA ⊆ p,

and p is totally σ–principal. �
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