

International Electronic Journal of Algebra Volume 34 (2023) 152-158 DOI: 10.24330/ieja.1260486

NIL_{*}-ARTINIAN RINGS

Xiaolei Zhang and Wei Qi

Received: 3 August 2022; Revised: 29 December 2022; Accepted: 31 December 2022 Communicated by Burcu Üngör

ABSTRACT. In this paper, we say a ring R is Nil*-Artinian if any descending chain of nil ideals stabilizes. We first study Nil*-Artinian properties in terms of quotients, localizations, polynomial extensions and idealizations, and then study the transfer of Nil*-Artinian rings to amalgamated algebras. Besides, some examples are given to distinguish Nil*-Artinian rings, Nil*-Noetherian rings and Nil*-coherent rings.

Mathematics Subject Classification (2020): 13F05, 13C11 Keywords: Nil*-Artinian ring, idealization, amalgamated algebra

1. Introduction

Throughout this paper, all rings are commutative with identity and all modules are unitary. Let R be a ring. We denote by $\operatorname{Spec}(R)$ the set of all prime ideals of R and by $\operatorname{Nil}(R)$ the nil-radical of R, that is, the set of all nilpotent elements in R. An ideal I of R is said to be a nil ideal provided that any element in I is nilpotent.

It is well-known that coherent rings with finite weak global dimensions and rings with global dimensions at most 2 are all reduced rings, i.e., rings with zero nilradical (see [6, Corollary 4.2.4, Corollary 4.2.5]). So the nil radical is very crucial to study rings with infinite homological dimensions (also see [5] for example). Some algebraic researchers began to study rings by only consider their nil ideals. In 2014, Xiang [10] introduced the notions of Nil*-coherent rings in terms of nil ideals. A ring R is said to be Nil*-coherent provided that any finitely generated nil ideal is finitely presented. Later in 2017, Ismaili et al. [8] studied the Nil*-coherent properties via idealization and amalgamated algebras under several assumptions. Recently, Zhang [11] defined Nil*-Noetherian rings to be rings in which every nil ideal is finitely generated. He showed that the Hilbert Basis Theorem holds for Nil*-Noetherian rings and also studied Nil*-Noetherian properties via idealization and bi-amalgamated algebras under several assumptions.

The main motivation of this paper is to introduce and study Nil_* -Artinian rings. We say a ring R is Nil_* -Artinian if any descending chain of nil ideals stabilizes.

We study the quotient rings and localization of Nil_{*}-Artinian rings, and then show when a polynomial ring is Nil_{*}-Artinian. We also show that an idealization R(+)M is a Nil_{*}-Artinian ring if and only if R is a Nil_{*}-Artinian ring and the R-module M is Artinian (see Theorem 2.9). Finally, we study the transfer of Nil_{*}-Artinian rings to amalgamated algebras in Theorem 3.2. In particular, we show that $A \bowtie J$ is Nil_{*}-Artinian if and only if A is Nil_{*}-Artinian (see Corollary 3.3).

2. Basic properties of Nil_{*}-Artinian rings

Recall that an ideal of R is said to be nil provided every element in I is nilpotent. We begin with the concept of Nil*-Artinian rings.

Definition 2.1. A ring R is said to be a Nil_{*}-Artinian ring provided that any descending chain of nil ideals stabilizes, i.e., let $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$ be a descending chain of nil ideals, then there exists an integer k such that $I_n = I_k$ for any $n \ge k$.

Trivially, reduced rings and Artinian rings are Nil_* -Artinian. Obviously, a ring R is Nil_* -Artinian if and only if the nil-radical Nil(R) is an Artinian R-module.

Lemma 2.2. Let R be a Nil_* -Artinian ring. If I is a nil ideal of R, then R/I is also Nil_* -Artinian.

Proof. Let $\{K_i \mid i \in \mathbb{Z}^+\}$ be a family of descending chain of nil ideals of R/I. Then $K_i = J_i/I$ for some R-ideal J_i containing I. Since I is a nil ideal, each J_i is also a nil ideal of R. Hence the descending chain $\{J_i \mid i \in \mathbb{Z}^+\}$ stabilizes. \square

Note that the condition "I is a nil ideal of R" in Lemma 2.2 cannot be removed.

Example 2.3. [11, Example 1.3] Let $S = k[x_1, x_2, \cdots]$ be the polynomial ring over a field k with countably infinite variables. Then S is Nil_{*}-Artinian. Set the quotient ring $R = S/\langle x_i^2 \mid i \geq 1 \rangle$. Then Nil $(R) = \langle \overline{x_1}, \overline{x_2}, \cdots \rangle$, where $\overline{x_i}$ denotes the representative of x_i in R for each i. Let $J_i = \{\langle \overline{x_i}, \overline{x_{i+1}}, \cdots \rangle\}$, then $J_1 \supseteq J_2 \supseteq \cdots$ is a descending chain which does not stop.

Proposition 2.4. A finite direct product $R = R_1 \times \cdots \times R_n$ of rings R_1, \cdots, R_n is Nil_* -Artinian if and only if each R_i is Nil_* -Artinian $(i = 1, \cdots, n)$.

Proof. It follows by $Nil(R) = Nil(R_1) \times \cdots \times Nil(R_n)$ and we will have Nil(R) is an Artinian R-module if and only if each $Nil(R_i)$ is an Artinian R_i -module $(i = 1, \dots, n)$.

Proposition 2.5. Let R be Nil_* -Artinian and S a multiplicative subset of R. Then R_S is also Nil_* -Artinian.

Proof. Let $(I_1)_S \supseteq (I_2)_S \supseteq \cdots \supseteq (I_n)_S \supseteq \cdots$ be a descending chain of nil ideals of R_S . Since $\operatorname{Nil}(R_S) = \operatorname{Nil}(R)_S$, we may assume each I_i is a nil ideal of R. Since R is Nil_* -Artinian, there exists an integer k such that $I_n = I_k$ for any $n \ge k$. Hence $(I_n)_S = (I_k)_S$ for any $n \ge k$. Consequently, R_S is also Nil_* -Artinian.

Next, we will focus on the Nil_{*}-Artinian properties of polynomial rings.

Lemma 2.6. [9, Exercise 1.47] Let R be a ring. Then J(R[x]) = Nil(R)[x].

Proposition 2.7. Let R be a ring. If R[x] is a Nil_* -Artinian ring, then R is a Nil_* -Artinian ring.

Proof. Suppose R[x] is a Nil_{*}-Artinian ring. Let $I_{\bullet} := \{I_i \mid i \in \mathbb{Z}^+\}$ be a descending chain of nil R-ideals. Then $I_{\bullet}R[x] := \{I_iR[x] \mid i \in \mathbb{Z}^+\}$ is a descending chain of nil R[x]-ideals, and so stabilizes. Consequently, the constant terms of the ideals in $I_{\bullet}R[x]$, i.e., I_{\bullet} also stabilizes.

The following example shows the converse of Proposition 2.7 does not hold.

Example 2.8. Let $R = \mathbb{Z}_4$. Then R is an Artinian, and so is Nil_{*}-Artinian. Then Nil($\mathbb{Z}_4[x]$) = Nil(\mathbb{Z}_4)[x] = $2\mathbb{Z}_4[x]$ by Lemma 2.6. Note that the descending chain $\langle 2x \rangle \supseteq \langle 2x^2 \rangle \supseteq \cdots$ of nil ideals does not stabilize. Hence R[x] is not Nil_{*}-Artinian.

Some non-reduced rings are constructed by the idealization R(+)M where M is an R-module (see [7]). Let $R(+)M = R \oplus M$ as an R-module, and define

- (1) (r,m)+(s,n)=(r+s,m+n),
- (2) (r,m)(s,n)=(rs,sm+rn),

where $r, s \in R$ and $m, n \in M$. Under this construction, R(+)M is a commutative ring with identity (1,0).

Theorem 2.9. Let R be a ring and M an R-module. Then R(+)M is a Nil_* -Artinian ring if and only if R is a Nil_* -Artinian ring and M is an Artinian R-module.

Proof. For necessity, since $R \cong R(+)M/0(+)M$ and 0(+)M is a nil ideal, R is Nil_{*}-Artinian by Lemma 2.2. Since 0(+)M is a nil ideal, any descending chain of sub-ideals of 0(+)M is stabilizing, which is equivalence to that M is an Artinian R-module.

For sufficiency, consider the exact sequence of R(+)M-modules: $0 \to 0(+)M \xrightarrow{i} R(+)M \xrightarrow{\pi} R \to 0$. Let $O^{\bullet}: O_1 \supseteq O_2 \supseteq \cdots$ be a descending chain of nil R(+)M-ideals. Then there is a descending chain of nil R-ideals: $\pi(O^{\bullet}): \pi(O_1) \supseteq \pi(O_2) \supseteq \cdots$. Thus there exists $k \in \mathbb{Z}^+$ such that $\pi(O_n) = \pi(O_k)$ for any $n \ge k$. Similarly, $O^{\bullet} \cap 0(+)M: O_1 \cap 0(+)M \supseteq O_2 \cap 0(+)M \supseteq \ldots$ is a descending chain of nil sub-ideals of 0(+)M which are equivalent to some submodules of M. So there exists $k' \in \mathbb{Z}^+$ such that $O_n \cap 0(+)M = O_k \cap 0(+)M$ for any $n \ge k'$ as M is an Artinian module. Let $l = \max(k, k')$ and $n \ge l$. Consider the following natural commutative diagram with exact rows:

$$0 \longrightarrow O_n \cap 0(+)M \longrightarrow O_n \longrightarrow \pi(O_n) \longrightarrow 0$$

$$\parallel \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$0 \longrightarrow O_l \cap 0(+)M \longrightarrow O_l \longrightarrow \pi(O_l) \longrightarrow 0.$$

Then we have $O_n = O_l$ for any $n \ge l$. So R(+)M is a Nil_{*}-Artinian ring.

Recall from [11] that a ring R is called Nil_{*}-Noetherian provided that any nil ideal is finitely generated. The following example shows that Nil_{*}-Noetherian rings need not be Nil_{*}-Artinian in general.

Example 2.10. Let D be an integral domain which is not a field. Then D is not an Artinian D-module. Set R = D(+)D. Then R is Nil_{*}-Noetherian by [11, Theorem 1.8], but not Nil_{*}-Artinian by Theorem 2.9.

The following example shows that Nil*-Artinian rings need not be Nil*-Noetherian.

Example 2.11. Let $D = \mathbb{Z}$ be the ring of all integers with its quotient field \mathbb{Q} and p a prime number. Let $\mathbb{Q}_p = \{x \in \mathbb{Q} \mid p^n x \in \mathbb{Z} \text{ for some } n\}$. Set $M = \mathbb{Q}_p/\mathbb{Z}$. Then M is an Artinian \mathbb{Z} -module but not finitely generated (see [9, Example 2.8.16]). Set R = D(+)M. Then R is Nil_{*}-Artinian by Theorem 2.9, but not Nil_{*}-Noetherian by [11, Theorem 1.8].

Recall from [10] that a ring R is called Nil*-coherent provided that any finitely generated ideal in Nil(R) is finitely presented. Similar to the classical case, Nil*-coherent rings are not Nil*-Artinian in general. Indeed, let D be a coherent domain but not a field, then R = D(+)D is also coherent by [1, Lemma 3.2], and hence Nil*-coherent. Since D is not an Artinian ring, R is not Nil*-Artinian by Theorem 2.9. The following example shows that Nil*-Artinian rings are not Nil*-coherent in general.

Example 2.12. [11, Example 1.11] Let $S = k[x_1, x_2, \cdots]$ be the polynomial ring over a field k with countably infinite variables. Set $R = S/\langle x_1x_i \mid i \geq 1 \rangle$. Then $\operatorname{Nil}(R) = \langle \overline{x_1} \rangle$ is the only non-trivial nil ideal of R. So R is Nil_* -Artinian. However, since $(0:_R \overline{x_1}) = \langle \overline{x_1}, \overline{x_2}, \cdots \rangle$ is infinitely generated, $\operatorname{Nil}(R)$ is not finitely presented. Hence R is not Nil_* -coherent.

By Proposition 2.5, if R is a Nil_{*}-Artinian ring, then $R_{\mathfrak{p}}$ is also Nil_{*}-Artinian for any prime ideal \mathfrak{p} of R. However, the converse does not hold in general.

Example 2.13. Let $S = \prod_{i=1}^{\infty} k$ be countably infinite direct product of a field k. Then for any prime ideal \mathfrak{p} of S, we have $S_{\mathfrak{p}} \cong k$. Set R = S(+)S. Then $\operatorname{Spec}(R) = \{\mathfrak{p}(+)S \mid \mathfrak{p} \in \operatorname{Spec}(S)\}$ by [2, Theorem 3.2(2)]. Since S is not an Artinian ring, R is not Nil_* -Artinian by Theorem 2.9. However, by [2, Theorem 4.1(2)], we have $R_{\mathfrak{p}} = S_{\mathfrak{p}}(+)S_{\mathfrak{p}} = k(+)k$ which is Nil_* -Artinian by Theorem 2.9 again.

3. Transfer of Nil_{*}-Artinian rings to amalgamated algebras

We recall the amalgamated algebras constructed in [3]. Let $f: A \to B$ be a ring homomorphism and let I an ideal of B. The amalgamated algebra of A with B along J with respect to f is the subring of $A \times B$ given by:

$$A \bowtie^f J := \{(a, f(a) + j) \mid a \in A, j \in J\}.$$

Set $\pi_1: A \bowtie^f J \to A$ where $\pi_1((a, f(a) + j)) = a, \pi_2: A \bowtie^f J \to B$ where $\pi_2((a, f(a) + j)) = f(a) + j$. Then π_1 and π_2 are ring homomorphisms.

Lemma 3.1. [8, Lemma 5.2] Let $f: A \to B$ be a ring homomorphism and J an ideal of B. Then

$$\operatorname{Nil}(A\bowtie^f J) = \operatorname{Nil}(A)\bowtie^f (J\cap\operatorname{Nil}(f(A)+J)) = \operatorname{Nil}(A)\bowtie^f (J\cap\operatorname{Nil}(B)).$$

Theorem 3.2. Let $f: A \to B$ be a ring homomorphism and J an ideal of B. If A and f(A) + J are Nil_* -Artinian rings, then $A \bowtie^f J$ is a Nil_* -Artinian ring. Moreover, suppose one of the following cases holds:

- (1) Ker(f) is nil and f is surjective.
- (2) Ker(f) is nil and J is a nil ideal of B.

Then the converse also holds.

Proof. Suppose A and f(A) + J are Nil_{*}-Artinian rings. Let $L_{\bullet} := L_1 \supseteq L_2 \supseteq \cdots$ be a descending chain of nil ideals of $A \bowtie^f J$. Then $\pi_1(L_{\bullet})$ and $\pi_2(L_{\bullet})$ are descending chains of ideals of A and f(A) + J, respectively. Certainly, $\pi_1(L_{\bullet})$ is composed of nil ideals of A by Lemma 3.1. Let $i \ge 1$. Then $\pi_2(L_i) = \{f(a) + j \mid A = 1\}$

 $(a, f(a) + j) \in L_i$ } with $a \in \text{Nil}(A)$ and $j \in J \cap \text{Nil}(f(A) + J)$ by Lemma 3.1. So f(a) + j is nilpotent in B, and thus $\pi_2(L_i)$ is also a nil ideal. Hence there exists an integer k such $\pi_1(L_n) = \pi_1(L_k)$ and $\pi_2(L_n) = \pi_2(L_k)$ for any $n \geq k$. So $L_n = L_k$ for any $n \geq k$. Consequently, $A \bowtie^f J$ is Nil_* -Artinian.

On the other hand, suppose $A \bowtie^f J$ is Nil_* -Artinian. Let $I_{\bullet} := I_1 \supseteq I_2 \supseteq \cdots$ be a descending chain of nil ideals of A. Set $I'_i = \{(a, f(a)) \mid a \in I_i\}$. Then $I'_{\bullet} := I'_1 \supseteq I'_2 \supseteq \cdots$ be a descending chain of nil ideals of $A \bowtie^f J$. Thus I'_{\bullet} stabilizes. Hence I_{\bullet} also stabilizes, and thus A is Nil_* -Artinian. Let $K_{\bullet} := K_1 \supseteq K_2 \supseteq \cdots$ be a descending chain of nil ideals of f(A) + J. We consider the following two cases.

- (1) Suppose $\operatorname{Ker}(f)$ is a nil ideal of A and f is surjective. Set $K'_i = \{(a, f(a)) \mid f(a) \in K_i\}$. We claim that a is nilpotent. Indeed, suppose $(f(a))^n = 0$. Then $a^n \in \operatorname{Ker}(f)$. Since $\operatorname{Ker}(f)$ is a nil ideal of A, a is also nilpotent. Hence K'_i is a nil ideal of $A \bowtie^f J$. Since $A \bowtie^f J$ is Nil_* -Artinian, there exists an integer k such that $K'_n = K'_k$ for any $n \geq k$. Hence $K_n = K_k$ for any $n \geq k$, and thus f(A) + J is also Nil_* -Artinian.
- (2) Suppose $\operatorname{Ker}(f)$ is nil and J is a nil ideal of B. Set $K'_i = \{(a, f(a) + j) \mid \text{there exists } j \in J \text{ such that } f(a) + j \in K_i\}$. We claim that a is nilpotent. Indeed, since f(a) + j and j is nilpotent, f(a) is also nilpotent. Since $\operatorname{Ker}(f)$ is nil, a is nilpotent. As in (1), we can show f(A) + J is Nil_* -Artinian.

Recall from [4] that, by setting $f = \operatorname{Id}_A : A \to A$ to be the identity homomorphism of A, we denote by $A \bowtie J = A \bowtie^{\operatorname{Id}_A} J$ and call it the amalgamated algebra of A along J. By Theorem 3.2, we obviously have the following result.

Corollary 3.3. Let J be an ideal of A. Then $A \bowtie J$ is a Nil_* -Artinian ring if and only if A is a Nil_* -Artinian ring.

References

- [1] K. Adarbeh and S. Kabbaj, Trivial extensions subject to semi-regularity and semi-coherence, Quaest. Math., 43(1) (2020), 45-54.
- [2] D. D. Anderson and M. Winders, *Idealization of a module*, J. Commut. Algebra, 1(1) (2009), 3-56.
- [3] M. D'Anna, C. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, Commutative Algebra and its Applications, Walter de Gruyter, Berlin, (2009), 155-172.
- [4] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443-459.

- [5] G. Donadze and V. Z. Thomas, Bazzoni-Glaz conjecture, J. Algebra, 420 (2014), 141-160.
- [6] S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Berlin, Spring-Verlag, 1989.
- [7] J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
- [8] K. A. Ismaili, D. E. Dobbs and N. Mahdou, Commutative rings and modules that are Nil_{*}-coherent or special Nil_{*}-coherent, J. Algebra Appl., 16(10) (2017), 1750187 (24 pp).
- [9] F. G. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Algebra and Applications, 22, Singapore, Springer, 2016.
- [10] Y. Xiang and L. Ouyang, Nil_* -coherent rings, Bull. Korean Math. Soc., 51(2) (2014), 579-594.
- [11] X. L. Zhang, Nil, Noetherian rings, https://arxiv.org/abs/2205.11724.

Xiaolei Zhang (Corresponding Author) and Wei Qi

School of Mathematics and Statistics Shandong University of Technology 255000 Zibo, China

e-mails: zxlrghj@163.com (X. L. Zhang) qwrghj@126.com (W. Qi)