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Abstract. Let Cn, Qn and Dn be the cyclic group, the quaternion group

and the dihedral group of order n, respectively. Recently, the structures of

the unit groups of the finite group algebras of 2-groups that contain a normal

cyclic subgroup of index 2 have been studied. The dihedral groups D2n, n ≥ 3

and the generalized quaternion groups Q4n, n ≥ 2 also contain a normal cyclic

subgroup of index 2. The structures of the unit groups of the finite group alge-

bras FQ12, FD12, F (C2 ×Q12) and F (C2 ×D12) over a finite field F are well

known. In this article, we continue this investigation and establish the struc-

tures of the unit groups of the group algebras F (Cn ×Q12) and F (Cn ×D12)

over a finite field F of characteristic p containing pk elements.
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1. Introduction

Let FG be the group algebra of a finite groupG over a finite field F of characteris-

tic p having q = pk elements. Let U(FG) be the unit group of FG and let J(FG) be

the Jacobson radical of FG. If V = 1 +J(FG), then U(FG) ∼= V oU(FG/J(FG))

[16]. A good description of the structure of U(FG) has applications in various areas

like the group ring cryptography [10] and the combinatorial number theory [5], etc.

This necessitates finding the explicit structure of U(FG). A comprehensive review

of the well-known properties of U(FG) is given in [3].

If K is a normal subgroup of G then the natural group epimorphism G→ G/K

can be extended to an F -algebra epimorphism FG → F (G/K). The kernel of

this epimorphism ω(K), is the ideal of FG generated by {k − 1 | k ∈ K}. In

particular, if K = G, then the epimorphism ε : FG → F given by ε(
∑
g∈G agg) =∑

g∈G ag is called the augmentation mapping of FG and the ideal ω(G) is called

the augmentation ideal of FG. Clearly, FG/ω(G) ∼= F .
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Let Cn, Qn and Dn be the cyclic group, the quaternion group and the dihedral

group of order n, respectively. The four non-isomorphic nonabelian groups of or-

der 2n which have a cyclic subgroup of index 2 are the dihedral group D2n , the

generalized quaternion group Q2n , the semidihedral group SD2n and the modular

group M2n , see [4]. Certain properties of the group of normalized units of the mod-

ular group algebras of these groups were studied in [1,2]. Moreover, the structures

of the semisimple group algebras of these groups have been obtained in [17,21].

The groups D2n, n ≥ 3 and Q4n, n ≥ 2 also contain a normal cyclic subgroup of

index 2 and the unit groups of the group algebras of these groups and their ex-

tensions have been extensively studied [6,7,9,11,13,14,16,17,18,21,23,25,26]. In this

paper, we aim to contribute in this direction further by describing the structures

of U(F (Cn ×Q12)) and U(F (Cn ×D12)).

There is only one nonabelian group of order 2p, up to isomorphism, namely D2p

for any prime p ≥ 3. The structure of U(Z2D2p) for an odd prime p is described in

[11]. This was extended to a field containing 2k elements in [13]. In [14], the struc-

ture of the centre of the maximal p-subgroup of U(FD2pn) for n ≥ 2 is discussed.

Further, by using an established isomorphism between FG and a certain ring of

n × n matrices in conjunction with other techniques, Gildea [6] has obtained the

order of U(FD2pn) for an odd prime p as p2k(p
n−1)(pk − 1)2 whereas in [7], he has

proved that the centre of the maximal p-subgroup of U(FD2p) is C
k(p+1)/2
p . The

three nonabelian groups of order 12 are D12, Q12 and A4, the alternating group on

4 letters. The structures of the unit groups of FQ12 and F (C2 × Q12) have been

studied in [9,18,25,26]. Also, the unit groups of FD12 and F (C2 ×D12) have been

obtained in [9,16,18,23,25], whereas U(FA4) is given in [8,24].

Throughout the paper, Ckn is the direct product of k copies of Cn, Fn is the

extension field of F of degree n and GL(n, F ) is the general linear group of degree

n over F . For co-prime integers l and m, ordm(l) denotes the multiplicative order

of l modulo m.

It is well known that, if G and H are groups, then F (G × H) ∼= (FG)H, the

group ring of H over the ring FG, see [20, Chap 3, Page 134]. This result will be

used frequently. Now we state here some of the Lemmas needed for our work.

Lemma 1.1. [15, Theorem 2.1] Let F be a field of characteristic p having q = pk

elements. If (n, p) = 1, where n ∈ N, then

FCn ∼= F ⊕
(
⊕l>1, l|n F

el
dl

)
,

where dl = ordl(q) and el = φ(l)
dl

.
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Lemma 1.2. [25, Lemma 3.3] Let F be a finite field of characteristic p with |F | =
q = pk. If p 6= 2, then

FC4
∼=

F 4, if p ≡ 1 mod 4 or n is even;

F 2 ⊕ F2, if p ≡ −1 mod 4 and n is odd.

Lemma 1.3. [15, Lemma 2.3] Let F be a finite field of characteristic p with |F | =
q = pk. Then

U(FCpn) ∼=

C
(p−1)k
p × Cpk−1, if n = 1;∏n
s=1 C

hs
ps × Cpk−1, otherwise,

where hn = k(p− 1) and hs = kpn−s−1(p− 1)2, for all s, 1 ≤ s < n.

Lemma 1.4. [22, Lemma 3.2] Let F be a finite field of characteristic p with |F | =
q = pk. If p 6= 2, then

U(FCn2 ) ∼= C2n

q−1.

2. Units in F (Cn ×Q12)

The quaternion group Q12 = 〈x, y | x6 = 1, x3 = y2, xy = yx5〉. The structures

of the unit groups of the finite group algebras FQ12 and F (C2 × Q12) have been

studied in [9,18,25,26]. In this section, we establish the structure of the unit group

of F (Cn ×Q12). We shall use the following presentation of Cn ×Q12:

Cn ×Q12 = 〈x, y, z | x3 = y4 = zn = 1, xy = yx2, xz = zx, yz = zy〉.

Theorem 2.1. Let F be a finite field of characteristic 2 containing q = 2k elements

and let G = Cn ×Q12. If n is odd, then

U(FG) ∼= (C5nk
2 ×Cnk4 )o

((
Cq−1×GL(2, F )

)
×
( ∏
l>1, l|n

(
Cqdl−1×GL(2, Fdl)

)el)).
Proof. Since n is odd, FCn is semisimple. Thus by Lemma 1.1,

FG ∼= (FCn)Q12,

∼=
(
F ⊕

(
⊕l>1, l|n F

el
dl

))
Q12,

∼= FQ12 ⊕
(
⊕l>1, l|n (FdlQ12)el

)
.

Now by [26, Theorem 3.2], U(FQ12) ∼= (C5k
2 × Ck4 ) o

(
Cq−1 ×GL(2, F )

)
and so

U(FdlQ12)el ∼= (C
5φ(l)k
2 × Cφ(l)k4 ) o

(
Cqdl−1 ×GL(2, Fdl)

)el .
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As
∑
l|n φ(l) = n, so

U(FG) ∼= (C5nk
2 ×Cnk4 )o

((
Cq−1×GL(2, F )

)
×
( ∏
l>1, l|n

(
Cqdl−1×GL(2, Fdl)

)el)).
�

Theorem 2.2. Let F be a finite field of characteristic 3 containing q = 3k elements

and let G = Cn ×Q12. Then

U(FG) ∼= (C6nk
3 o C2nk

3 ) o U
(
F (Cn × C4)

)
.

Proof. Let K = 〈x〉. Then G/K ∼= H = 〈y, z〉 = Cn × C4. Thus from the ring

epimorphism FG→ FH given by

n−1∑
l=0

3∑
j=0

2∑
i=0

ai+3j+12lx
iyjzl 7→

n−1∑
l=0

3∑
j=0

2∑
i=0

ai+3j+12ly
jzl,

we get a group epimorphism θ : U(FG)→ U(FH).

Further, from the inclusion map FH → FG, we have i : U(FH)→ U(FG) such

that θi = 1U(FH). Therefore U(FG) is a split extension of U(FH) by V = ker(θ) =

1 + ω(K). Hence

U(FG) ∼= V o U(FH).

Now, let u =
∑n−1
l=0

∑3
j=0

∑2
i=0 ai+3j+12lx

iyjzl ∈ U(FG), then u ∈ V if and

only if
∑2
i=0 ai = 1 and

∑2
i=0 ai+3j = 0 for j = 1, 2, . . . , (4n− 1). Therefore

V =
{

1 +

n−1∑
l=0

3∑
j=0

2∑
i=1

(xi − 1)bi+2j+8ly
jzl | bi ∈ F

}
and |V | = 38nk. Since ω(K)3 = 0, V 3 = 1. We now study the structure of V in the

following steps:

Step 1: CV (x) = {v ∈ V | vx = xv} ∼= C6nk
3 .

If v = 1 +
∑n−1
l=0

∑3
j=0

∑2
i=1(xi − 1)bi+2j+8ly

jzl ∈ CV (x) = {v ∈ V | vx = xv},
then vx− xv = x̂

∑n−1
l=0

(
(b3+8l − b4+8l)y+ (b7+8l − b8+8l)y

3
)
zi. Thus v ∈ CV (x) if

and only if bj+8l = b1+j+8l for j = 3, 7 and l = 0, 1, . . . , n− 1. Hence

CV (x) =
{

1 +

n−1∑
l=0

1∑
j=0

2∑
i=1

(xi − 1)ci+2j+4ly
2jzl

+ x̂

n−1∑
l=0

1∑
j=0

c4n+nj+l+1y
2j+1zl | ci ∈ F

}
.
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So CV (x) is an abelian subgroup of V and |CV (x)| = 36nk. Therefore CV (x) ∼=
C6nk

3 .

Step 2: Let T be the subset of V consisting of elements of the form

1 +

n−1∑
j=0

(
x̂(tj1 + tj2y

2) + (x+ 2x2)(tj3y + tj4y
3)
)
zj ,

where tji ∈ F . Then T is an abelian subgroup of V and T ∼= C4nk
3 .

Let

t1 = 1 +

n−1∑
j=0

(
x̂(rj1 + rj2y

2) + (x+ 2x2)(rj3y + rj4y
3)
)
zj ∈ T

and

t2 = 1 +

n−1∑
j=0

(
x̂(sj1 + sj2y

2) + (x+ 2x2)(sj3y + sj4y
3)
)
zj ∈ T.

Then

t1t2 =1 +

n−1∑
j=0

(
x̂
(
(rj1 + sj1 + γ1) + (rj2 + sj2 + γ2)y2

)
+ (x+ 2x2)

(
(rj3 + sj3)y + (rj4 + sj4)y3

))
zj ∈ T,

where

γ1 = 2

n−1∑
i=0

(rj3si4 + rj4si3)zi,

γ2 = 2

n−1∑
i=0

(rj3si3 + rj4si4)zi.

So T is an abelian subgroup of V and |T | = 34nk. Therefore T ∼= C4nk
3 .

Now, let

c = 1 +

n−1∑
l=0

1∑
j=0

2∑
i=1

(xi − 1)ci+2j+4ly
2jzl

+ x̂

n−1∑
l=0

1∑
j=0

c4n+nj+l+1y
2j+1zl ∈ CV (x)

and

t = 1 +

n−1∑
j=0

(
x̂(tj1 + tj2y

2) + (x+ 2x2)(tj3y + tj4y
3)
)
zj ∈ T.
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Then

t−1 = 1 + 2

n−1∑
j=0

(
x̂(tj1 + tj2y

2) + (x+ 2x2)(tj3y + tj4y
3)
)
zj

+ 2

n−1∑
j=0

x̂
(

(t2j3 + t2j4)y2 + 2tj3tj4

)
z2j

and

ct = c+ x̂

n−1∑
i=0

n−1∑
j=0

(
(c1+4i − c2+4i)tj3 + (c3+4i − c4+4i)tj4

)
yzi+j

+ x̂
n−1∑
i=0

n−1∑
j=0

(
(c1+4i − c2+4i)tj4 + (c3+4i − c4+4i)tj3

)
yzi+j .

Clearly, ct ∈ CV (x). Thus T normalizes CV (x). Now, if U = CV (x) ∩ T , then

U =
{

1 + x̂

n−1∑
j=0

(tj1 + tj2y
2)zj | tji ∈ F

}
∼= C2nk

3 .

So for some subgroup W ∼= C2nk
3 of T , we have T = U ×W , CV (x) ∩W = 1 and

|CV (x)W | = |V | = 38nk. Hence V ∼= CV (x) oW ∼= C6nk
3 o C2nk

3 . �

For U
(
F (Cn × C4)

)
, we prove the following:

Theorem 2.3. Let F be a finite field of characteristic 3 containing q = 3k elements

and let H = Cn × C4, where n = 3rs such that r ≥ 0 and (3, s) = 1. Then U(FH)

is isomorphic to

(1) If 3 - n, then

(a) C4
q−1 ×

(∏
l>1, l|n C

4el
qdl−1

)
, if q ≡ 1 mod 4;

(b) C2
q−1 × Cq2−1 ×

(∏
l>1, l|n(C2el

qdl−1 × C
e′l

qd
′
l−1

)
)
, if q ≡ −1 mod 4.

(2) If 3|n, then

(a) C4
q−1 ×

(∏
l>1, l|s C

4el
qdl−1

)
×
(∏r

t=1 C
4snt

3t

)
, if q ≡ 1 mod 4;

(b) C2
q−1×Cq2−1×

(∏
l>1, l|s(C

2el
qdl−1×C

e′l

qd
′
l−1

)
)
×
(∏r

t=1(C2snt

3t ×Csn
′
t

3t )
)
,

if q ≡ −1 mod 4;

where d′l = ordl(q
2), e′l = φ(l)

d′l
, nr = 2k, nt = 4.3r−t−1k, for all

1 ≤ t < r and n′t = 2nt, for all 1 ≤ t ≤ r.

Proof. As FH ∼= (FC4)Cn, so using Lemma 1.2, we have

FH ∼=

(FCn)4, if q ≡ 1 mod 4;

(FCn)2 ⊕ F2Cn, if q ≡ −1 mod 4.
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(1) If 3 - n, then by Lemma 1.1,

FCn ∼= F ⊕
(
⊕l>1, l|n F

el
dl

)
and so

F2Cn ∼= F2 ⊕
(
⊕l>1, l|n F

e′l
d′l

)
,

where d′l = ordl(q
2) and e′l = φ(l)

d′l
. Hence

FH ∼=

F 4 ⊕ (⊕l>1, l|nF
4el
dl

), if q ≡ 1 mod 4;

F 2 ⊕ F2 ⊕
(
⊕l>1, l|n (F 2el

dl
⊕ F e

′
l

d′l
)
)
, if q ≡ −1 mod 4.

It is obvious that

d′l =

dl/2, if dl is even;

dl, if dl is odd.

Also

e′l =

2el, if dl is even;

el, if dl is odd.

(2) If 3|n, then by Lemma 1.1,

FCn ∼= (FCs)C3r ,

∼=
(
F ⊕ (⊕l>1, l|sF

el
dl

)
)
C3r ,

∼= FC3r ⊕
(
⊕l>1, l|s (FdlC3r )el

)
.

By Lemma 1.3,

U(FC3r ) ∼= C3k−1 ×
( r∏
t=1

Cnt

3t

)
where nr = 2k, nt = 4.3r−t−1k. Thus

U(FdlC3r )el ∼= Cel
3dlk−1 ×

( r∏
t=1

C
φ(l)nt

3t

)
.

Since
∑
l|s φ(l) = s,

U(FCn) ∼= C3k−1 ×
( ∏
l>1, l|s

Cel
3dlk−1

)
×
( r∏
t=1

Csnt

3t

)
and

U(F2Cn) ∼= C32k−1 ×
( ∏
l>1, l|s

C
e′l

3d
′
l
k−1

)
×
( r∏
t=1

C
sn′

t

3t

)
,

where n′t = 2nt, for all 1 ≤ t ≤ r. Hence the claim holds.
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�

Theorem 2.4. Let F be a finite field of characteristic p > 3 containing q = pk

elements and let G = Cn × Q12 where n = prs, r ≥ 0 such that (p, s) = 1. If

V = 1 + J(FG), then U(FG)/V is isomorphic to

(1) C4
q−1 × GL(2, F )2 ×

(∏
l>1, l|s

(
C4
qdl−1 × GL(2, Fdl)

2
)el), if q ≡ 1, 5 mod

12;

(2) C2
q−1×Cq2−1×GL(2, F )2×

(∏
l>1, l|s

(
C2
qdl−1×Cq2dl−1×GL(2, Fdl)

2
)el),

if q ≡ −1,−5 mod 12;

where V is a group of exponent pr and order p12sk(p
r−1).

Proof. Let K = 〈zs〉. Then G/K ∼= H = Cs × Q12. If θ : FG → FH is

the canonical ring epimorphism, then J(FG) = ker(θ), FG/J(FG) ∼= FH and

dimF (J(FG)) = 12s(pr− 1). Hence U(FG) ∼= V oU(FH), where V = 1 +J(FG).

Clearly, exponent of V = pr and |V | = p12sk(p
r−1).

By Lemma 1.1,

FH ∼= (FCs)Q12,

∼=
(
F ⊕ (⊕l>1, l|sF

el
dl

)
)
Q12,

∼= FQ12 ⊕
(
⊕l>1, l|s (FdlQ12)el

)
.

Now, by [25, Theorem 4.2],

FQ12
∼=

F 4 ⊕M(2, F )2, if q ≡ 1, 5 mod 12;

F 2 ⊕ F2 ⊕M(2, F )2, if q ≡ −1,−5 mod 12,

and so

(FdlQ12)el ∼=

F
4el
dl
⊕M(2, Fdl)

2el , if q ≡ 1, 5 mod 12;

F 2el
dl
⊕ F el2dl

⊕M(2, Fdl)
2el , if q ≡ −1,−5 mod 12. �

In the above theorem, if r = 0, then we have the unit group of the semisimple

group algebra FG given by

(1) U(FG) ∼= C4
q−1 ×GL(2, F )2 ×

(∏
l>1, l|n

(
C4
qdl−1 ×GL(2, Fdl)

2
)el), if q ≡

1, 5 mod 12.

(2) U(FG) ∼= C2
q−1 × Cq2−1 × GL(2, F )2 ×

(∏
l>1, l|n

(
C2
qdl−1 × Cq2dl−1 ×

GL(2, Fdl)
2
)el), if q ≡ −1,−5 mod 12.
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3. Units in F (Cn ×D12)

The dihedral group D12 = 〈x, y | x6 = y2 = 1, yx = x5y〉. The structure

of the unit group of the finite group algebra FD12 has been studied in [9,16,25]

whereas the structure of unit group of F (C2 × D12) is described in [12,18,23]. In

this section, we establish the structure of the unit group of F (Cn ×D12). We shall

use the following presentation of Cn ×D12:

Cn ×D12 = 〈x, y, z | x6 = y2 = zn = 1, yx = x5y, xz = zx, yz = zy〉.

Theorem 3.1. Let F be a finite field of characteristic 2 containing q = 2k elements

and let G = Cn ×D12. If n is odd, then

U(FG) ∼= C7nk
2 o

(
Cq−1 ×GL(2, F )×

( ∏
l>1, l|n

(
Cqdl−1 ×GL(2, Fdl)

)el)).
Proof. Since n is odd, FCn is semisimple. Thus by Lemma 1.1,

FG ∼= (FCn)D12,

∼=
(
F ⊕ (⊕l>1, l|nF

el
dl

)
)
D12,

∼= FD12 ⊕
(
⊕l>1, l|n (FdlD12)el

)
.

Now by [16, Theorem 2.6],

U(FD12) ∼= C7k
2 o

(
Cq−1 ×GL(2, F )

)
and so

U(FdlD12)el ∼= C
7φ(l)k
2 o

(
Cel
qdl−1 ×GL(2, Fdl)

el
)
.

Since
∑
l|n φ(l) = n,

U(FG) ∼= C7nk
2 o

(
Cq−1 ×GL(2, F )×

( ∏
l>1, l|n

(
Cqdl−1 ×GL(2, Fdl)

)el)). �

Theorem 3.2. Let F be a finite field of characteristic 3 containing q = 3k elements

and let G = Cn ×D12. Then

U(FG) ∼= (C6nk
3 o C2nk

3 ) o U
(
F (Cn × C2

2 )
)
.

Proof. Let K = 〈x2〉. Then G/K ∼= H = 〈x3, y, z〉 = C2 × C2 × Cn. Thus from

the ring epimorphism FG→ FH given by

1∑
l=0

n−1∑
j=0

2∑
i=0

x2i(ai+6(j+nl) + x3ai+6(j+nl)+3)ylzj 7→

1∑
l=0

n−1∑
j=0

2∑
i=0

(ai+6(j+nl) + x3ai+6(j+nl)+3)ylzj
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we get a group epimorphism θ : U(FG)→ U(FH).

Further, from the inclusion map i : FH → FG, we have i : U(FH) → U(FG)

such that θi = 1U(FH). Therefore U(FG) is a split extension of U(FH) by V =

ker(θ) = 1 + ω(K). Hence

U(FG) ∼= V o U(FH).

Let u =
∑1
l=0

∑n−1
j=0

∑2
i=0 x

2i(ai+6(j+nl) + x3ai+6(j+nl)+3)ylzj ∈ U(FG), then

u ∈ V if and only if
∑2
i=0 ai = 1 and

∑2
i=0 ai+3j = 0 for j = 1, 2, . . . , (4n − 1).

Therefore

V =
{

1 +
1∑
l=0

n−1∑
j=0

2∑
i=1

(x2i − 1)(bi+4(j+nl) + x3bi+4(j+nl)+2)ylzj | bi ∈ F
}

and |V | = 38nk. Since ω(K)3 = 0, V 3 = 1. We now study the structure of V in the

following steps:

Step 1: CV (x2) = {v ∈ V | vx2 = x2v} ∼= C6nk
3 .

If v = 1+
∑1
l=0

∑n−1
j=0

∑2
i=1(x2i−1)(bi+4(j+nl)+x3bi+4(j+nl)+2)ylzj ∈ CV (x2) =

{v ∈ V | vx2 = x2v}, then vx2 − x2v = x̂2
∑n−1
j=0

(
(b1+4(j+n) − b2+4(j+n)) +

x3(b3+4(j+n)−b4+4(j+n))
)
yzj . Thus v ∈ CV (x2) if and only if bi+4(j+n) = b1+i+4(j+n)

for j = 0, 1, . . . , n− 1 and i = 1, 3. Hence

CV (x2) =
{

1 +

n−1∑
j=0

2∑
i=1

(x2i − 1)(ci+4j + x3ci+4j+2)zj

+ x̂2
n−1∑
j=0

1∑
i=0

cn(i+4)+j+1x
3iyzj | ci ∈ F

}
.

So CV (x2) is an abelian subgroup of V and |CV (x2)| = 36nk. Therefore CV (x2) ∼=
C6nk

3 .

Step 2: Let S be the subset of V consisting of elements of the form

1 +

n−1∑
j=0

x2(1− x2)(sj1 + sj2x
3)(1 + y)zj ,

where sj1 , sj2 ∈ F . Then S is an abelian subgroup of V and S ∼= C2nk
3 .

Let

s1 = 1 +

n−1∑
j=0

x2(1− x2)(rj1 + rj2x
3)(1 + y)zj ∈ S
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and

s2 = 1 +

n−1∑
j=0

x2(1− x2)(tj1 + tj2x
3)(1 + y)zj ∈ S.

Then

s1s2 = 1 +

n−1∑
j=0

x2(1− x2)
(

(rj1 + tj1) + (rj2 + tJ2)x3
)

(1 + y)zj ∈ S.

So S is an abelian subgroup of V and |S| = 32nk. Therefore S ∼= C2nk
3 .

Now, let

c =1 +

n−1∑
j=0

2∑
i=1

(x2i − 1)(ci+4j + x3ci+4j+2)zj

+ x̂2
n−1∑
j=0

1∑
i=0

cn(i+4)+j+1x
3iyzj ∈ CV (x2)

and

s = 1 +

n−1∑
j=0

x2(1− x2)(sj1 + sj2x
3)(1 + y)zj ∈ S.

Then

cs = c+ x̂2(γ1 + γ2x
3)y,

where

γ1 =

n−1∑
j=0

n−1∑
i=0

(
sj1(c1+4i − c2+4i) + sj2(c3+4i − c4+4i)

)
zi+j ,

γ2 =

n−1∑
j=0

n−1∑
i=0

(
sj1(c3+4i − c4+4i) + sj2(c1+4i − c2+4i)

)
zi+j .

Clearly, cs ∈ CV (x2). Thus S normalizes CV (x2). Since CV (x2)∩S = 1, |CV (x2)S| =
38nk = |V |. Therefore

V = CV (x2)S ∼= CV (x2) o S ∼= C6nk
3 o C2nk

3 .

Hence the claim holds. �

For U
(
F (Cn × C2

2 )
)
, we prove the following:

Theorem 3.3. Let F be a finite field of characteristic 3 containing q = 3k elements

and let H = Cn ×C2
2 , where n = 3rs such that r ≥ 0 and (3, s) = 1. Then U(FH)

is isomorphic to

(1) C4
q−1 ×

(∏
l>1, l|n C

4el
qdl−1

)
, if 3 - n;
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(2) C4
q−1 ×

(∏
l>1, l|s C

4el
qdl−1

)
×
(∏r

t=1 C
4snt

3t

)
, if 3|n;

where nr = 2k and nt = 4k3r−t−1, for all t, 1 ≤ t < r.

Proof. By Lemma 1.4, we have

FH ∼= (FC2
2 )Cn ∼= (FCn)4.

(1) If 3 - n, i.e., if r = 0, then by Lemma 1.1,

FCn ∼= F ⊕
(
⊕l>1, l|n F

el
dl

)
.

Hence

U(FH) ∼= C4
3k−1 ×

( ∏
l>1, l|n

C4el
3dlk−1

)
.

(2) If 3|n, i.e., if r > 0, then by Lemma 1.1,

FCn ∼= (FCs)C3r ,

∼=
(
F ⊕ (⊕l>1, l|sF

el
dl

)
)
C3r ,

∼= FC3r ⊕
(
⊕l>1, l|s (FdlC3r )el

)
.

By Lemma 1.3,

U(FC3r ) ∼= C3k−1 ×
( r∏
t=1

Cnt

3t

)
,

where nr = 2k and nt = 4k3r−t−1, for all t, 1 ≤ t < r and

U(FdlC3r )el ∼= Cel
3dlk−1 ×

( r∏
t=1

C
φ(l)nt

3t

)
.

Since
∑
l|s φ(l) = s,

U(FCn) ∼= C3k−1 ×
( ∏
l>1, l|s

Cel
3dlk−1

)
×
( r∏
t=1

Csnt

3t

)
and hence

U(FH) ∼= C4
3k−1 ×

( ∏
l>1, l|s

C4el
3dlk−1

)
×
( r∏
t=1

C4snt

3t

)
. �

Theorem 3.4. Let F be a finite field of characteristic p > 3 containing q = pk

elements and let G = Cn × D12, where n = prs, r ≥ 0 such that (p, s) = 1. If

V = 1 + J(FG), then

U(FG)/V ∼= C4
q−1 ×GL(2, F )2 ×

( ∏
l>1, l|s

(
C4
qdl−1 ×GL(2, Fdl)

2
)el),

where V is a group of exponent pr and order p12sk(p
r−1).
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Proof. Let K = 〈zs〉. Then G/K ∼= H = Cs × D12. If θ : FG → FH is

the canonical ring epimorphism, then by [19, Theorem 7.2.7 and Lemma 8.1.17],

J(FG) = ker(θ), FG/J(FG) ∼= FH and dimF (J(FG)) = 12s(pr − 1). Hence

U(FG) ∼= V o U(FH). Clearly, exponent of V = pr and |V | = p12sk(p
r−1). Now

by Lemma 1.1,

FH ∼= (FCs)D12,

∼=
(
F ⊕ (⊕l>1, l|sF

el
dl

)
)
D12,

∼= FD12 ⊕
(
⊕l>1, l|s (FdlD12)el

)
.

Now, by [25, Theorem 4.3], FD12
∼= F 4 ⊕M(2, F )2. Hence

U(FH) ∼= C4
q−1 ×GL(2, F )2 ×

( ∏
l>1, l|s

(
C4
qdl−1 ×GL(2, Fdl)

2
)el). �

In the above theorem, if r = 0, then we have the unit group of the semisimple

group algebra FG given by

U(FG) ∼= C4
q−1 ×GL(2, F )2 ×

( ∏
l>1, l|n

(
C4
qdl−1 ×GL(2, Fdl)

2
)el).
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