International Electronic Journal of Algebra
Volume 34 (2023) 182-196
DOI: 10.24330/ieja. 1299278

$$
\text { UNITS IN } F\left(C_{n} \times Q_{12}\right) \text { AND } F\left(C_{n} \times D_{12}\right)
$$

Sheere Farhat Ansari and Meena Sahai
Received: 16 September 2022; Revised: 13 March 2023; Accepted 20 March 2023
Communicated by Abdullah Harmancı

Abstract

Let C_{n}, Q_{n} and D_{n} be the cyclic group, the quaternion group and the dihedral group of order n, respectively. Recently, the structures of the unit groups of the finite group algebras of 2-groups that contain a normal cyclic subgroup of index 2 have been studied. The dihedral groups $D_{2 n}, n \geq 3$ and the generalized quaternion groups $Q_{4 n}, n \geq 2$ also contain a normal cyclic subgroup of index 2 . The structures of the unit groups of the finite group algebras $F Q_{12}, F D_{12}, F\left(C_{2} \times Q_{12}\right)$ and $F\left(C_{2} \times D_{12}\right)$ over a finite field F are well known. In this article, we continue this investigation and establish the structures of the unit groups of the group algebras $F\left(C_{n} \times Q_{12}\right)$ and $F\left(C_{n} \times D_{12}\right)$ over a finite field F of characteristic p containing p^{k} elements.

Mathematics Subject Classification (2020): 16S34
Keywords: Group algebra, unit group, dihedral group, cyclic group, quaternion group

1. Introduction

Let $F G$ be the group algebra of a finite group G over a finite field F of characteristic p having $q=p^{k}$ elements. Let $U(F G)$ be the unit group of $F G$ and let $J(F G)$ be the Jacobson radical of $F G$. If $V=1+J(F G)$, then $U(F G) \cong V \rtimes U(F G / J(F G))$ [16]. A good description of the structure of $U(F G)$ has applications in various areas like the group ring cryptography [10] and the combinatorial number theory [5], etc. This necessitates finding the explicit structure of $U(F G)$. A comprehensive review of the well-known properties of $U(F G)$ is given in [3].

If K is a normal subgroup of G then the natural group epimorphism $G \rightarrow G / K$ can be extended to an F-algebra epimorphism $F G \rightarrow F(G / K)$. The kernel of this epimorphism $\omega(K)$, is the ideal of $F G$ generated by $\{k-1 \mid k \in K\}$. In particular, if $K=G$, then the epimorphism $\epsilon: F G \rightarrow F$ given by $\epsilon\left(\sum_{g \in G} a_{g} g\right)=$ $\sum_{g \in G} a_{g}$ is called the augmentation mapping of $F G$ and the ideal $\omega(G)$ is called the augmentation ideal of $F G$. Clearly, $F G / \omega(G) \cong F$.

[^0] Fellowship from the University Grants Commission, India is gratefully acknowledged.

Let C_{n}, Q_{n} and D_{n} be the cyclic group, the quaternion group and the dihedral group of order n, respectively. The four non-isomorphic nonabelian groups of order 2^{n} which have a cyclic subgroup of index 2 are the dihedral group $D_{2^{n}}$, the generalized quaternion group $Q_{2^{n}}$, the semidihedral group $S D_{2^{n}}$ and the modular group $M_{2^{n}}$, see [4]. Certain properties of the group of normalized units of the modular group algebras of these groups were studied in [1,2]. Moreover, the structures of the semisimple group algebras of these groups have been obtained in [17,21]. The groups $D_{2 n}, n \geq 3$ and $Q_{4 n}, n \geq 2$ also contain a normal cyclic subgroup of index 2 and the unit groups of the group algebras of these groups and their extensions have been extensively studied $[6,7,9,11,13,14,16,17,18,21,23,25,26]$. In this paper, we aim to contribute in this direction further by describing the structures of $U\left(F\left(C_{n} \times Q_{12}\right)\right)$ and $U\left(F\left(C_{n} \times D_{12}\right)\right)$.

There is only one nonabelian group of order $2 p$, up to isomorphism, namely $D_{2 p}$ for any prime $p \geq 3$. The structure of $U\left(\mathbb{Z}_{2} D_{2 p}\right)$ for an odd prime p is described in [11]. This was extended to a field containing 2^{k} elements in [13]. In [14], the structure of the centre of the maximal p-subgroup of $U\left(F D_{2 p^{n}}\right)$ for $n \geq 2$ is discussed. Further, by using an established isomorphism between $F G$ and a certain ring of $n \times n$ matrices in conjunction with other techniques, Gildea [6] has obtained the order of $U\left(F D_{2 p^{n}}\right)$ for an odd prime p as $p^{2 k\left(p^{n}-1\right)}\left(p^{k}-1\right)^{2}$ whereas in [7], he has proved that the centre of the maximal p-subgroup of $U\left(F D_{2 p}\right)$ is $C_{p}^{k(p+1) / 2}$. The three nonabelian groups of order 12 are D_{12}, Q_{12} and A_{4}, the alternating group on 4 letters. The structures of the unit groups of $F Q_{12}$ and $F\left(C_{2} \times Q_{12}\right)$ have been studied in $[9,18,25,26]$. Also, the unit groups of $F D_{12}$ and $F\left(C_{2} \times D_{12}\right)$ have been obtained in $[9,16,18,23,25]$, whereas $U\left(F A_{4}\right)$ is given in $[8,24]$.

Throughout the paper, C_{n}^{k} is the direct product of k copies of C_{n}, F_{n} is the extension field of F of degree n and $G L(n, F)$ is the general linear group of degree n over F. For co-prime integers l and $m, \operatorname{ord}_{m}(l)$ denotes the multiplicative order of l modulo m.

It is well known that, if G and H are groups, then $F(G \times H) \cong(F G) H$, the group ring of H over the ring $F G$, see [20, Chap 3, Page 134]. This result will be used frequently. Now we state here some of the Lemmas needed for our work.

Lemma 1.1. [15, Theorem 2.1] Let F be a field of characteristic p having $q=p^{k}$ elements. If $(n, p)=1$, where $n \in \mathbb{N}$, then

$$
F C_{n} \cong F \oplus\left(\oplus_{l>1, l \mid n} F_{d_{l}}^{e_{l}}\right)
$$

where $d_{l}=\operatorname{ord}_{l}(q)$ and $e_{l}=\frac{\phi(l)}{d_{l}}$.

Lemma 1.2. [25, Lemma 3.3] Let F be a finite field of characteristic p with $|F|=$ $q=p^{k}$. If $p \neq 2$, then

$$
F C_{4} \cong \begin{cases}F^{4}, & \text { if } p \equiv 1 \bmod 4 \text { or } n \text { is even } \\ F^{2} \oplus F_{2}, & \text { if } p \equiv-1 \bmod 4 \text { and } n \text { is odd }\end{cases}
$$

Lemma 1.3. [15, Lemma 2.3] Let F be a finite field of characteristic p with $|F|=$ $q=p^{k}$. Then

$$
U\left(F C_{p^{n}}\right) \cong \begin{cases}C_{p}^{(p-1) k} \times C_{p^{k}-1}, & \text { if } n=1 \\ \prod_{s=1}^{n} C_{p^{s}}^{h_{s}} \times C_{p^{k}-1}, & \text { otherwise }\end{cases}
$$

where $h_{n}=k(p-1)$ and $h_{s}=k p^{n-s-1}(p-1)^{2}$, for all $s, 1 \leq s<n$.
Lemma 1.4. [22, Lemma 3.2] Let F be a finite field of characteristic p with $|F|=$ $q=p^{k}$. If $p \neq 2$, then

$$
U\left(F C_{2}^{n}\right) \cong C_{q-1}^{2^{n}}
$$

2. Units in $F\left(C_{n} \times Q_{12}\right)$

The quaternion group $Q_{12}=\left\langle x, y \mid x^{6}=1, x^{3}=y^{2}, x y=y x^{5}\right\rangle$. The structures of the unit groups of the finite group algebras $F Q_{12}$ and $F\left(C_{2} \times Q_{12}\right)$ have been studied in $[9,18,25,26]$. In this section, we establish the structure of the unit group of $F\left(C_{n} \times Q_{12}\right)$. We shall use the following presentation of $C_{n} \times Q_{12}$:

$$
C_{n} \times Q_{12}=\left\langle x, y, z \mid x^{3}=y^{4}=z^{n}=1, x y=y x^{2}, x z=z x, y z=z y\right\rangle
$$

Theorem 2.1. Let F be a finite field of characteristic 2 containing $q=2^{k}$ elements and let $G=C_{n} \times Q_{12}$. If n is odd, then
$U(F G) \cong\left(C_{2}^{5 n k} \times C_{4}^{n k}\right) \rtimes\left(\left(C_{q-1} \times G L(2, F)\right) \times\left(\prod_{l>1, l \mid n}\left(C_{q^{d_{l}-1}} \times G L\left(2, F_{d_{l}}\right)\right)^{e_{l}}\right)\right)$.
Proof. Since n is odd, $F C_{n}$ is semisimple. Thus by Lemma 1.1,

$$
\begin{aligned}
F G & \cong\left(F C_{n}\right) Q_{12} \\
& \cong\left(F \oplus\left(\oplus_{l>1, l \mid n} F_{d_{l}}^{e_{l}}\right)\right) Q_{12} \\
& \cong F Q_{12} \oplus\left(\oplus_{l>1, l \mid n}\left(F_{d_{l}} Q_{12}\right)^{e_{l}}\right)
\end{aligned}
$$

Now by [26, Theorem 3.2], $U\left(F Q_{12}\right) \cong\left(C_{2}^{5 k} \times C_{4}^{k}\right) \rtimes\left(C_{q-1} \times G L(2, F)\right)$ and so

$$
U\left(F_{d_{l}} Q_{12}\right)^{e_{l}} \cong\left(C_{2}^{5 \phi(l) k} \times C_{4}^{\phi(l) k}\right) \rtimes\left(C_{q^{d_{l}-1}} \times G L\left(2, F_{d_{l}}\right)\right)^{e_{l}}
$$

As $\sum_{l \mid n} \phi(l)=n$, so
$U(F G) \cong\left(C_{2}^{5 n k} \times C_{4}^{n k}\right) \rtimes\left(\left(C_{q-1} \times G L(2, F)\right) \times\left(\prod_{l>1, l \mid n}\left(C_{q^{d_{l}-1}} \times G L\left(2, F_{d_{l}}\right)\right)^{e_{l}}\right)\right)$.

Theorem 2.2. Let F be a finite field of characteristic 3 containing $q=3^{k}$ elements and let $G=C_{n} \times Q_{12}$. Then

$$
U(F G) \cong\left(C_{3}^{6 n k} \rtimes C_{3}^{2 n k}\right) \rtimes U\left(F\left(C_{n} \times C_{4}\right)\right)
$$

Proof. Let $K=\langle x\rangle$. Then $G / K \cong H=\langle y, z\rangle=C_{n} \times C_{4}$. Thus from the ring epimorphism $F G \rightarrow F H$ given by

$$
\sum_{l=0}^{n-1} \sum_{j=0}^{3} \sum_{i=0}^{2} a_{i+3 j+12 l} x^{i} y^{j} z^{l} \mapsto \sum_{l=0}^{n-1} \sum_{j=0}^{3} \sum_{i=0}^{2} a_{i+3 j+12 l} y^{j} z^{l}
$$

we get a group epimorphism $\theta: U(F G) \rightarrow U(F H)$.
Further, from the inclusion map $F H \rightarrow F G$, we have $i: U(F H) \rightarrow U(F G)$ such that $\theta i=1_{U(F H)}$. Therefore $U(F G)$ is a split extension of $U(F H)$ by $V=k e r(\theta)=$ $1+\omega(K)$. Hence

$$
U(F G) \cong V \rtimes U(F H)
$$

Now, let $u=\sum_{l=0}^{n-1} \sum_{j=0}^{3} \sum_{i=0}^{2} a_{i+3 j+12 l} x^{i} y^{j} z^{l} \in U(F G)$, then $u \in V$ if and only if $\sum_{i=0}^{2} a_{i}=1$ and $\sum_{i=0}^{2} a_{i+3 j}=0$ for $j=1,2, \ldots,(4 n-1)$. Therefore

$$
V=\left\{1+\sum_{l=0}^{n-1} \sum_{j=0}^{3} \sum_{i=1}^{2}\left(x^{i}-1\right) b_{i+2 j+8 l} y^{j} z^{l} \mid b_{i} \in F\right\}
$$

and $|V|=3^{8 n k}$. Since $\omega(K)^{3}=0, V^{3}=1$. We now study the structure of V in the following steps:

Step 1: $C_{V}(x)=\{v \in V \mid v x=x v\} \cong C_{3}^{6 n k}$.

If $v=1+\sum_{l=0}^{n-1} \sum_{j=0}^{3} \sum_{i=1}^{2}\left(x^{i}-1\right) b_{i+2 j+8 l} y^{j} z^{l} \in C_{V}(x)=\{v \in V \mid v x=x v\}$, then $v x-x v=\widehat{x} \sum_{l=0}^{n-1}\left(\left(b_{3+8 l}-b_{4+8 l}\right) y+\left(b_{7+8 l}-b_{8+8 l}\right) y^{3}\right) z^{i}$. Thus $v \in C_{V}(x)$ if and only if $b_{j+8 l}=b_{1+j+8 l}$ for $j=3,7$ and $l=0,1, \ldots, n-1$. Hence

$$
\begin{aligned}
C_{V}(x)= & \left\{1+\sum_{l=0}^{n-1} \sum_{j=0}^{1} \sum_{i=1}^{2}\left(x^{i}-1\right) c_{i+2 j+4 l} y^{2 j} z^{l}\right. \\
& \left.+\widehat{x} \sum_{l=0}^{n-1} \sum_{j=0}^{1} c_{4 n+n j+l+1} y^{2 j+1} z^{l} \mid c_{i} \in F\right\}
\end{aligned}
$$

So $C_{V}(x)$ is an abelian subgroup of V and $\left|C_{V}(x)\right|=3^{6 n k}$. Therefore $C_{V}(x) \cong$ $C_{3}^{6 n k}$.

Step 2: Let T be the subset of V consisting of elements of the form

$$
1+\sum_{j=0}^{n-1}\left(\widehat{x}\left(t_{j 1}+t_{j 2} y^{2}\right)+\left(x+2 x^{2}\right)\left(t_{j 3} y+t_{j 4} y^{3}\right)\right) z^{j}
$$

where $t_{j_{i}} \in F$. Then T is an abelian subgroup of V and $T \cong C_{3}^{4 n k}$.
Let

$$
t_{1}=1+\sum_{j=0}^{n-1}\left(\widehat{x}\left(r_{j 1}+r_{j 2} y^{2}\right)+\left(x+2 x^{2}\right)\left(r_{j 3} y+r_{j 4} y^{3}\right)\right) z^{j} \in T
$$

and

$$
t_{2}=1+\sum_{j=0}^{n-1}\left(\widehat{x}\left(s_{j 1}+s_{j 2} y^{2}\right)+\left(x+2 x^{2}\right)\left(s_{j 3} y+s_{j 4} y^{3}\right)\right) z^{j} \in T
$$

Then

$$
\begin{aligned}
t_{1} t_{2}= & 1+\sum_{j=0}^{n-1}\left(\widehat{x}\left(\left(r_{j 1}+s_{j 1}+\gamma_{1}\right)+\left(r_{j 2}+s_{j 2}+\gamma_{2}\right) y^{2}\right)\right. \\
& \left.+\left(x+2 x^{2}\right)\left(\left(r_{j 3}+s_{j 3}\right) y+\left(r_{j 4}+s_{j 4}\right) y^{3}\right)\right) z^{j} \in T
\end{aligned}
$$

where

$$
\begin{aligned}
& \gamma_{1}=2 \sum_{i=0}^{n-1}\left(r_{j 3} s_{i 4}+r_{j 4} s_{i 3}\right) z^{i} \\
& \gamma_{2}=2 \sum_{i=0}^{n-1}\left(r_{j 3} s_{i 3}+r_{j 4} s_{i 4}\right) z^{i}
\end{aligned}
$$

So T is an abelian subgroup of V and $|T|=3^{4 n k}$. Therefore $T \cong C_{3}^{4 n k}$.
Now, let

$$
\begin{aligned}
c & =1+\sum_{l=0}^{n-1} \sum_{j=0}^{1} \sum_{i=1}^{2}\left(x^{i}-1\right) c_{i+2 j+4 l} y^{2 j} z^{l} \\
& +\widehat{x} \sum_{l=0}^{n-1} \sum_{j=0}^{1} c_{4 n+n j+l+1} y^{2 j+1} z^{l} \in C_{V}(x)
\end{aligned}
$$

and

$$
t=1+\sum_{j=0}^{n-1}\left(\widehat{x}\left(t_{j 1}+t_{j 2} y^{2}\right)+\left(x+2 x^{2}\right)\left(t_{j 3} y+t_{j 4} y^{3}\right)\right) z^{j} \in T
$$

Then

$$
\begin{aligned}
t^{-1} & =1+2 \sum_{j=0}^{n-1}\left(\widehat{x}\left(t_{j 1}+t_{j 2} y^{2}\right)+\left(x+2 x^{2}\right)\left(t_{j 3} y+t_{j 4} y^{3}\right)\right) z^{j} \\
& +2 \sum_{j=0}^{n-1} \widehat{x}\left(\left(t_{j 3}^{2}+t_{j 4}^{2}\right) y^{2}+2 t_{j 3} t_{j 4}\right) z^{2 j}
\end{aligned}
$$

and

$$
\begin{aligned}
c^{t} & =c+\widehat{x} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1}\left(\left(c_{1+4 i}-c_{2+4 i}\right) t_{j 3}+\left(c_{3+4 i}-c_{4+4 i}\right) t_{j 4}\right) y z^{i+j} \\
& +\widehat{x} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1}\left(\left(c_{1+4 i}-c_{2+4 i}\right) t_{j 4}+\left(c_{3+4 i}-c_{4+4 i}\right) t_{j 3}\right) y z^{i+j}
\end{aligned}
$$

Clearly, $c^{t} \in C_{V}(x)$. Thus T normalizes $C_{V}(x)$. Now, if $U=C_{V}(x) \cap T$, then

$$
U=\left\{1+\widehat{x} \sum_{j=0}^{n-1}\left(t_{j 1}+t_{j 2} y^{2}\right) z^{j} \mid t_{j i} \in F\right\} \cong C_{3}^{2 n k}
$$

So for some subgroup $W \cong C_{3}^{2 n k}$ of T, we have $T=U \times W, C_{V}(x) \cap W=1$ and $\left|C_{V}(x) W\right|=|V|=3^{8 n k}$. Hence $V \cong C_{V}(x) \rtimes W \cong C_{3}^{6 n k} \rtimes C_{3}^{2 n k}$.

For $U\left(F\left(C_{n} \times C_{4}\right)\right)$, we prove the following:
Theorem 2.3. Let F be a finite field of characteristic 3 containing $q=3^{k}$ elements and let $H=C_{n} \times C_{4}$, where $n=3^{r}$ s such that $r \geq 0$ and $(3, s)=1$. Then $U(F H)$ is isomorphic to
(1) If $3 \nmid n$, then
(a) $C_{q-1}^{4} \times\left(\prod_{l>1, l \mid n} C_{q^{d_{l}-1}}^{4 e_{l}}\right)$, if $q \equiv 1 \bmod 4$;
(b) $C_{q-1}^{2} \times C_{q^{2}-1} \times\left(\prod_{l>1, l \mid n}\left(C_{q^{d_{l}-1}}^{2 e_{l}} \times C_{q^{d_{l}^{\prime}-1}}^{e_{l}^{\prime}}\right)\right)$, if $q \equiv-1 \bmod 4$.
(2) If $3 \mid n$, then
(a) $C_{q-1}^{4} \times\left(\prod_{l>1, l \mid s} C_{q^{d_{l}-1}}^{4 e_{l}}\right) \times\left(\prod_{t=1}^{r} C_{3^{t}}^{4 s n_{t}}\right)$, if $q \equiv 1 \bmod 4$;
(b) $C_{q-1}^{2} \times C_{q^{2}-1} \times\left(\prod_{l>1, l \mid s}\left(C_{q^{d_{l}-1}}^{2 e_{l}} \times C_{q^{d_{l}^{\prime}-1}}^{e_{l}^{\prime}}\right)\right) \times\left(\prod_{t=1}^{r}\left(C_{3^{t}}^{2 s n_{t}} \times C_{3^{t}}^{s n_{t}^{\prime}}\right)\right)$, if $q \equiv-1 \bmod 4$;
where $d_{l}^{\prime}=\operatorname{ord}_{l}\left(q^{2}\right), e_{l}^{\prime}=\frac{\phi(l)}{d_{l}^{\prime}}, n_{r}=2 k, n_{t}=4.3^{r-t-1} k$, for all $1 \leq t<r$ and $n_{t}^{\prime}=2 n_{t}$, for all $1 \leq t \leq r$.

Proof. As $F H \cong\left(F C_{4}\right) C_{n}$, so using Lemma 1.2, we have

$$
F H \cong \begin{cases}\left(F C_{n}\right)^{4}, & \text { if } q \equiv 1 \bmod 4 \\ \left(F C_{n}\right)^{2} \oplus F_{2} C_{n}, & \text { if } q \equiv-1 \bmod 4\end{cases}
$$

(1) If $3 \nmid n$, then by Lemma 1.1,

$$
F C_{n} \cong F \oplus\left(\oplus_{l>1, l \mid n} F_{d_{l}}^{e_{l}}\right)
$$

and so

$$
F_{2} C_{n} \cong F_{2} \oplus\left(\oplus_{l>1, l \mid n} F_{d_{l}^{\prime}}^{e_{l}^{\prime}}\right)
$$

where $d_{l}^{\prime}=\operatorname{ord}_{l}\left(q^{2}\right)$ and $e_{l}^{\prime}=\frac{\phi(l)}{d_{l}^{\prime}}$. Hence

$$
F H \cong \begin{cases}F^{4} \oplus\left(\oplus_{l>1}, l \mid n F_{d_{l}}^{4 e_{l}}\right), & \text { if } q \equiv 1 \bmod 4 \\ F^{2} \oplus F_{2} \oplus\left(\oplus_{l>1, l \mid n}\left(F_{d_{l}}^{2 e_{l}} \oplus F_{d_{l}^{\prime}}^{e_{l}^{\prime}}\right)\right), & \text { if } q \equiv-1 \bmod 4\end{cases}
$$

It is obvious that

$$
d_{l}^{\prime}= \begin{cases}d_{l} / 2, & \text { if } d_{l} \text { is even } \\ d_{l}, & \text { if } d_{l} \text { is odd }\end{cases}
$$

Also

$$
e_{l}^{\prime}= \begin{cases}2 e_{l}, & \text { if } d_{l} \text { is even } \\ e_{l}, & \text { if } d_{l} \text { is odd }\end{cases}
$$

(2) If $3 \mid n$, then by Lemma 1.1,

$$
\begin{aligned}
F C_{n} & \cong\left(F C_{s}\right) C_{3^{r}} \\
& \cong\left(F \oplus\left(\oplus_{l>1, l \mid s} F_{d_{l}}^{e_{l}}\right)\right) C_{3^{r}} \\
& \cong F C_{3^{r}} \oplus\left(\oplus_{l>1, l \mid s}\left(F_{d_{l}} C_{3^{r}}\right)^{e_{l}}\right)
\end{aligned}
$$

By Lemma 1.3,

$$
U\left(F C_{3^{r}}\right) \cong C_{3^{k}-1} \times\left(\prod_{t=1}^{r} C_{3^{t}}^{n_{t}}\right)
$$

where $n_{r}=2 k, n_{t}=4.3^{r-t-1} k$. Thus

$$
U\left(F_{d_{l}} C_{3^{r}}\right)^{e_{l}} \cong C_{3^{d_{l} k}-1}^{e_{l}} \times\left(\prod_{t=1}^{r} C_{3^{t}}^{\phi(l) n_{t}}\right)
$$

Since $\sum_{l \mid s} \phi(l)=s$,

$$
U\left(F C_{n}\right) \cong C_{3^{k}-1} \times\left(\prod_{l>1, l \mid s} C_{3^{d_{l} k}-1}^{e_{l}}\right) \times\left(\prod_{t=1}^{r} C_{3^{t}}^{s n_{t}}\right)
$$

and

$$
U\left(F_{2} C_{n}\right) \cong C_{3^{2 k}-1} \times\left(\prod_{l>1, l \mid s} C_{3^{d_{l}^{\prime} k}-1}^{e^{\prime}}\right) \times\left(\prod_{t=1}^{r} C_{3^{t}}^{s n_{t}^{\prime}}\right)
$$

where $n_{t}^{\prime}=2 n_{t}$, for all $1 \leq t \leq r$. Hence the claim holds.

Theorem 2.4. Let F be a finite field of characteristic $p>3$ containing $q=p^{k}$ elements and let $G=C_{n} \times Q_{12}$ where $n=p^{r} s, r \geq 0$ such that $(p, s)=1$. If $V=1+J(F G)$, then $U(F G) / V$ is isomorphic to
(1) $C_{q-1}^{4} \times G L(2, F)^{2} \times\left(\prod_{l>1, l \mid s}\left(C_{q^{d_{l}-1}}^{4} \times G L\left(2, F_{d_{l}}\right)^{2}\right)^{e_{l}}\right)$, if $q \equiv 1,5 \bmod$ 12 ;
(2) $C_{q-1}^{2} \times C_{q^{2}-1} \times G L(2, F)^{2} \times\left(\prod_{l>1, l \mid s}\left(C_{q^{d_{l}-1}}^{2} \times C_{q^{2 d_{l}-1}} \times G L\left(2, F_{d_{l}}\right)^{2}\right)^{e_{l}}\right)$, if $q \equiv-1,-5 \bmod 12$;
where V is a group of exponent p^{r} and order $p^{12 s k\left(p^{r}-1\right)}$.

Proof. Let $K=\left\langle z^{s}\right\rangle$. Then $G / K \cong H=C_{s} \times Q_{12}$. If $\theta: F G \rightarrow F H$ is the canonical ring epimorphism, then $J(F G)=\operatorname{ker}(\theta), F G / J(F G) \cong F H$ and $\operatorname{dim}_{F}(J(F G))=12 s\left(p^{r}-1\right)$. Hence $U(F G) \cong V \rtimes U(F H)$, where $V=1+J(F G)$. Clearly, exponent of $V=p^{r}$ and $|V|=p^{12 s k\left(p^{r}-1\right)}$.

By Lemma 1.1,

$$
\begin{aligned}
F H & \cong\left(F C_{s}\right) Q_{12} \\
& \cong\left(F \oplus\left(\oplus_{l>1, l \mid s} F_{d_{l}}^{e_{l}}\right)\right) Q_{12} \\
& \cong F Q_{12} \oplus\left(\oplus_{l>1, l \mid s}\left(F_{d_{l}} Q_{12}\right)^{e_{l}}\right)
\end{aligned}
$$

Now, by [25, Theorem 4.2],

$$
F Q_{12} \cong \begin{cases}F^{4} \oplus M(2, F)^{2}, & \text { if } q \equiv 1,5 \bmod 12 \\ F^{2} \oplus F_{2} \oplus M(2, F)^{2}, & \text { if } q \equiv-1,-5 \bmod 12\end{cases}
$$

and so

$$
\left(F_{d_{l}} Q_{12}\right)^{e_{l}} \cong \begin{cases}F_{d_{l}}^{4 e_{l}} \oplus M\left(2, F_{d_{l}}\right)^{2 e_{l}}, & \text { if } q \equiv 1,5 \bmod 12 \\ F_{d_{l}}^{2 e_{l}} \oplus F_{2 d_{l}}^{e_{l}} \oplus M\left(2, F_{d_{l}}\right)^{2 e_{l}}, & \text { if } q \equiv-1,-5 \bmod 12\end{cases}
$$

In the above theorem, if $r=0$, then we have the unit group of the semisimple group algebra $F G$ given by
(1) $U(F G) \cong C_{q-1}^{4} \times G L(2, F)^{2} \times\left(\prod_{l>1, l \mid n}\left(C_{q^{d_{l}-1}}^{4} \times G L\left(2, F_{d_{l}}\right)^{2}\right)^{e_{l}}\right)$, if $q \equiv$ $1,5 \bmod 12$.
(2) $U(F G) \cong C_{q-1}^{2} \times C_{q^{2}-1} \times G L(2, F)^{2} \times\left(\prod_{l>1, l \mid n}\left(C_{q^{d_{l}-1}}^{2} \times C_{q^{2 d_{l}-1}} \times\right.\right.$ $\left.\left.G L\left(2, F_{d_{l}}\right)^{2}\right)^{e_{l}}\right)$, if $q \equiv-1,-5 \bmod 12$.

3. Units in $F\left(C_{n} \times D_{12}\right)$

The dihedral group $D_{12}=\left\langle x, y \mid x^{6}=y^{2}=1, y x=x^{5} y\right\rangle$. The structure of the unit group of the finite group algebra $F D_{12}$ has been studied in [9,16,25] whereas the structure of unit group of $F\left(C_{2} \times D_{12}\right)$ is described in [12,18,23]. In this section, we establish the structure of the unit group of $F\left(C_{n} \times D_{12}\right)$. We shall use the following presentation of $C_{n} \times D_{12}$:

$$
C_{n} \times D_{12}=\left\langle x, y, z \mid x^{6}=y^{2}=z^{n}=1, y x=x^{5} y, x z=z x, y z=z y\right\rangle
$$

Theorem 3.1. Let F be a finite field of characteristic 2 containing $q=2^{k}$ elements and let $G=C_{n} \times D_{12}$. If n is odd, then

$$
U(F G) \cong C_{2}^{7 n k} \rtimes\left(C_{q-1} \times G L(2, F) \times\left(\prod_{l>1, l \mid n}\left(C_{q^{d_{l}-1}} \times G L\left(2, F_{d_{l}}\right)\right)^{e_{l}}\right)\right)
$$

Proof. Since n is odd, $F C_{n}$ is semisimple. Thus by Lemma 1.1,

$$
\begin{aligned}
F G & \cong\left(F C_{n}\right) D_{12} \\
& \cong\left(F \oplus\left(\oplus_{l>1, l \mid n} F_{d_{l}}^{e_{l}}\right)\right) D_{12} \\
& \cong F D_{12} \oplus\left(\oplus_{l>1, l \mid n}\left(F_{d_{l}} D_{12}\right)^{e_{l}}\right)
\end{aligned}
$$

Now by [16, Theorem 2.6],

$$
U\left(F D_{12}\right) \cong C_{2}^{7 k} \rtimes\left(C_{q-1} \times G L(2, F)\right)
$$

and so

$$
U\left(F_{d_{l}} D_{12}\right)^{e_{l}} \cong C_{2}^{7 \phi(l) k} \rtimes\left(C_{q^{d_{l}-1}}^{e_{l}} \times G L\left(2, F_{d_{l}}\right)^{e_{l}}\right)
$$

Since $\sum_{l \mid n} \phi(l)=n$,

$$
U(F G) \cong C_{2}^{7 n k} \rtimes\left(C_{q-1} \times G L(2, F) \times\left(\prod_{l>1, l \mid n}\left(C_{q^{d_{l}-1}} \times G L\left(2, F_{d_{l}}\right)\right)^{e_{l}}\right)\right)
$$

Theorem 3.2. Let F be a finite field of characteristic 3 containing $q=3^{k}$ elements and let $G=C_{n} \times D_{12}$. Then

$$
U(F G) \cong\left(C_{3}^{6 n k} \rtimes C_{3}^{2 n k}\right) \rtimes U\left(F\left(C_{n} \times C_{2}^{2}\right)\right)
$$

Proof. Let $K=\left\langle x^{2}\right\rangle$. Then $G / K \cong H=\left\langle x^{3}, y, z\right\rangle=C_{2} \times C_{2} \times C_{n}$. Thus from the ring epimorphism $F G \rightarrow F H$ given by

$$
\begin{aligned}
& \sum_{l=0}^{1} \sum_{j=0}^{n-1} \sum_{i=0}^{2} x^{2 i}\left(a_{i+6(j+n l)}+x^{3} a_{i+6(j+n l)+3}\right) y^{l} z^{j} \mapsto \\
& \sum_{l=0}^{1} \sum_{j=0}^{n-1} \sum_{i=0}^{2}\left(a_{i+6(j+n l)}+x^{3} a_{i+6(j+n l)+3}\right) y^{l} z^{j}
\end{aligned}
$$

we get a group epimorphism $\theta: U(F G) \rightarrow U(F H)$.
Further, from the inclusion map $i: F H \rightarrow F G$, we have $i: U(F H) \rightarrow U(F G)$ such that $\theta i=1_{U(F H)}$. Therefore $U(F G)$ is a split extension of $U(F H)$ by $V=$ $\operatorname{ker}(\theta)=1+\omega(K)$. Hence

$$
U(F G) \cong V \rtimes U(F H) .
$$

Let $u=\sum_{l=0}^{1} \sum_{j=0}^{n-1} \sum_{i=0}^{2} x^{2 i}\left(a_{i+6(j+n l)}+x^{3} a_{i+6(j+n l)+3}\right) y^{l} z^{j} \in U(F G)$, then $u \in V$ if and only if $\sum_{i=0}^{2} a_{i}=1$ and $\sum_{i=0}^{2} a_{i+3 j}=0$ for $j=1,2, \ldots,(4 n-1)$. Therefore

$$
V=\left\{1+\sum_{l=0}^{1} \sum_{j=0}^{n-1} \sum_{i=1}^{2}\left(x^{2 i}-1\right)\left(b_{i+4(j+n l)}+x^{3} b_{i+4(j+n l)+2}\right) y^{l} z^{j} \mid b_{i} \in F\right\}
$$

and $|V|=3^{8 n k}$. Since $\omega(K)^{3}=0, V^{3}=1$. We now study the structure of V in the following steps:

Step 1: $C_{V}\left(x^{2}\right)=\left\{v \in V \mid v x^{2}=x^{2} v\right\} \cong C_{3}^{6 n k}$.
If $v=1+\sum_{l=0}^{1} \sum_{j=0}^{n-1} \sum_{i=1}^{2}\left(x^{2 i}-1\right)\left(b_{i+4(j+n l)}+x^{3} b_{i+4(j+n l)+2}\right) y^{l} z^{j} \in C_{V}\left(x^{2}\right)=$ $\left\{v \in V \mid v x^{2}=x^{2} v\right\}$, then $v x^{2}-x^{2} v=\widehat{x^{2}} \sum_{j=0}^{n-1}\left(\left(b_{1+4(j+n)}-b_{2+4(j+n)}\right)+\right.$ $\left.x^{3}\left(b_{3+4(j+n)}-b_{4+4(j+n)}\right)\right) y z^{j}$. Thus $v \in C_{V}\left(x^{2}\right)$ if and only if $b_{i+4(j+n)}=b_{1+i+4(j+n)}$ for $j=0,1, \ldots, n-1$ and $i=1,3$. Hence

$$
\begin{aligned}
C_{V}\left(x^{2}\right)= & \left\{1+\sum_{j=0}^{n-1} \sum_{i=1}^{2}\left(x^{2 i}-1\right)\left(c_{i+4 j}+x^{3} c_{i+4 j+2}\right) z^{j}\right. \\
& \left.+\widehat{x^{2}} \sum_{j=0}^{n-1} \sum_{i=0}^{1} c_{n(i+4)+j+1} x^{3 i} y z^{j} \mid c_{i} \in F\right\} .
\end{aligned}
$$

So $C_{V}\left(x^{2}\right)$ is an abelian subgroup of V and $\left|C_{V}\left(x^{2}\right)\right|=3^{6 n k}$. Therefore $C_{V}\left(x^{2}\right) \cong$ $C_{3}^{6 n k}$.

Step 2: Let S be the subset of V consisting of elements of the form

$$
1+\sum_{j=0}^{n-1} x^{2}\left(1-x^{2}\right)\left(s_{j_{1}}+s_{j_{2}} x^{3}\right)(1+y) z^{j},
$$

where $s_{j_{1}}, s_{j_{2}} \in F$. Then S is an abelian subgroup of V and $S \cong C_{3}^{2 n k}$.
Let

$$
s_{1}=1+\sum_{j=0}^{n-1} x^{2}\left(1-x^{2}\right)\left(r_{j_{1}}+r_{j_{2}} x^{3}\right)(1+y) z^{j} \in S
$$

and

$$
s_{2}=1+\sum_{j=0}^{n-1} x^{2}\left(1-x^{2}\right)\left(t_{j_{1}}+t_{j_{2}} x^{3}\right)(1+y) z^{j} \in S
$$

Then

$$
s_{1} s_{2}=1+\sum_{j=0}^{n-1} x^{2}\left(1-x^{2}\right)\left(\left(r_{j_{1}}+t_{j_{1}}\right)+\left(r_{j_{2}}+t_{J_{2}}\right) x^{3}\right)(1+y) z^{j} \in S
$$

So S is an abelian subgroup of V and $|S|=3^{2 n k}$. Therefore $S \cong C_{3}^{2 n k}$.
Now, let

$$
\begin{aligned}
c= & +\sum_{j=0}^{n-1} \sum_{i=1}^{2}\left(x^{2 i}-1\right)\left(c_{i+4 j}+x^{3} c_{i+4 j+2}\right) z^{j} \\
& +\widehat{x^{2}} \sum_{j=0}^{n-1} \sum_{i=0}^{1} c_{n(i+4)+j+1} x^{3 i} y z^{j} \in C_{V}\left(x^{2}\right)
\end{aligned}
$$

and

$$
s=1+\sum_{j=0}^{n-1} x^{2}\left(1-x^{2}\right)\left(s_{j_{1}}+s_{j_{2}} x^{3}\right)(1+y) z^{j} \in S
$$

Then

$$
c^{s}=c+\widehat{x^{2}}\left(\gamma_{1}+\gamma_{2} x^{3}\right) y
$$

where

$$
\begin{aligned}
& \gamma_{1}=\sum_{j=0}^{n-1} \sum_{i=0}^{n-1}\left(s_{j_{1}}\left(c_{1+4 i}-c_{2+4 i}\right)+s_{j_{2}}\left(c_{3+4 i}-c_{4+4 i}\right)\right) z^{i+j} \\
& \gamma_{2}=\sum_{j=0}^{n-1} \sum_{i=0}^{n-1}\left(s_{j_{1}}\left(c_{3+4 i}-c_{4+4 i}\right)+s_{j_{2}}\left(c_{1+4 i}-c_{2+4 i}\right)\right) z^{i+j}
\end{aligned}
$$

Clearly, $c^{s} \in C_{V}\left(x^{2}\right)$. Thus S normalizes $C_{V}\left(x^{2}\right)$. Since $C_{V}\left(x^{2}\right) \cap S=1,\left|C_{V}\left(x^{2}\right) S\right|=$ $3^{8 n k}=|V|$. Therefore

$$
V=C_{V}\left(x^{2}\right) S \cong C_{V}\left(x^{2}\right) \rtimes S \cong C_{3}^{6 n k} \rtimes C_{3}^{2 n k}
$$

Hence the claim holds.
For $U\left(F\left(C_{n} \times C_{2}^{2}\right)\right)$, we prove the following:
Theorem 3.3. Let F be a finite field of characteristic 3 containing $q=3^{k}$ elements and let $H=C_{n} \times C_{2}^{2}$, where $n=3^{r} s$ such that $r \geq 0$ and $(3, s)=1$. Then $U(F H)$ is isomorphic to
(1) $C_{q-1}^{4} \times\left(\prod_{l>1, l \mid n} C_{q^{d_{l}}-1}^{4 e_{l}}\right)$, if $3 \nmid n$;
(2) $C_{q-1}^{4} \times\left(\prod_{l>1, l \mid s} C_{q^{d_{l}}-1}^{4 e_{1}}\right) \times\left(\prod_{t=1}^{r} C_{3^{t}}^{4 s n_{t}}\right)$, if $3 \mid n$;
where $n_{r}=2 k$ and $n_{t}=4 k 3^{r-t-1}$, for all $t, 1 \leq t<r$.
Proof. By Lemma 1.4, we have

$$
F H \cong\left(F C_{2}^{2}\right) C_{n} \cong\left(F C_{n}\right)^{4} .
$$

(1) If $3 \nmid n$, i.e., if $r=0$, then by Lemma 1.1,

$$
F C_{n} \cong F \oplus\left(\oplus_{l>1, l \mid n} F_{d_{l}}^{e_{l}}\right)
$$

Hence

$$
U(F H) \cong C_{3^{k}-1}^{4} \times\left(\prod_{l>1, l \mid n} C_{3^{d_{l} k}-1}^{4 e_{l}}\right)
$$

(2) If $3 \mid n$, i.e., if $r>0$, then by Lemma 1.1,

$$
\begin{aligned}
F C_{n} & \cong\left(F C_{s}\right) C_{3^{r}} \\
& \cong\left(F \oplus\left(\oplus_{l>1, l \mid s} F_{d_{l}}^{e_{l}}\right)\right) C_{3^{r}} \\
& \cong F C_{3^{r}} \oplus\left(\oplus_{l>1, l \mid s}\left(F_{d_{l}} C_{3^{r}}\right)^{e_{l}}\right)
\end{aligned}
$$

By Lemma 1.3,

$$
U\left(F C_{3^{r}}\right) \cong C_{3^{k}-1} \times\left(\prod_{t=1}^{r} C_{3^{t}}^{n_{t}}\right)
$$

where $n_{r}=2 k$ and $n_{t}=4 k 3^{r-t-1}$, for all $t, 1 \leq t<r$ and

$$
U\left(F_{d_{l}} C_{3^{r}}\right)^{e_{l}} \cong C_{3^{d_{l} k}-1}^{e_{l}} \times\left(\prod_{t=1}^{r} C_{3^{t}}^{\phi(l) n_{t}}\right)
$$

Since $\sum_{l \mid s} \phi(l)=s$,

$$
U\left(F C_{n}\right) \cong C_{3^{k}-1} \times\left(\prod_{l>1, l \mid s} C_{3^{d_{l} k}-1}^{e_{l}}\right) \times\left(\prod_{t=1}^{r} C_{3^{t}}^{s n_{t}}\right)
$$

and hence

$$
U(F H) \cong C_{3^{k}-1}^{4} \times\left(\prod_{l>1, l \mid s} C_{3^{d_{l} k}-1}^{4 e_{l}}\right) \times\left(\prod_{t=1}^{r} C_{3^{t}}^{4 s n_{t}}\right)
$$

Theorem 3.4. Let F be a finite field of characteristic $p>3$ containing $q=p^{k}$ elements and let $G=C_{n} \times D_{12}$, where $n=p^{r} s, r \geq 0$ such that $(p, s)=1$. If $V=1+J(F G)$, then

$$
U(F G) / V \cong C_{q-1}^{4} \times G L(2, F)^{2} \times\left(\prod_{l>1, l \mid s}\left(C_{q^{d_{l}-1}}^{4} \times G L\left(2, F_{d_{l}}\right)^{2}\right)^{e_{l}}\right)
$$

where V is a group of exponent p^{r} and order $p^{12 s k\left(p^{r}-1\right)}$.

Proof. Let $K=\left\langle z^{s}\right\rangle$. Then $G / K \cong H=C_{s} \times D_{12}$. If $\theta: F G \rightarrow F H$ is the canonical ring epimorphism, then by [19, Theorem 7.2.7 and Lemma 8.1.17], $J(F G)=\operatorname{ker}(\theta), F G / J(F G) \cong F H$ and $\operatorname{dim}_{F}(J(F G))=12 s\left(p^{r}-1\right)$. Hence $U(F G) \cong V \rtimes U(F H)$. Clearly, exponent of $V=p^{r}$ and $|V|=p^{12 s k\left(p^{r}-1\right)}$. Now by Lemma 1.1,

$$
\begin{aligned}
F H & \cong\left(F C_{s}\right) D_{12} \\
& \cong\left(F \oplus\left(\oplus_{l>1, l \mid s} F_{d_{l}}^{e_{l}}\right)\right) D_{12} \\
& \cong F D_{12} \oplus\left(\oplus_{l>1, l \mid s}\left(F_{d_{l}} D_{12}\right)^{e_{l}}\right)
\end{aligned}
$$

Now, by [25, Theorem 4.3], $F D_{12} \cong F^{4} \oplus M(2, F)^{2}$. Hence

$$
U(F H) \cong C_{q-1}^{4} \times G L(2, F)^{2} \times\left(\prod_{l>1, l \mid s}\left(C_{q^{d_{l}-1}}^{4} \times G L\left(2, F_{d_{l}}\right)^{2}\right)^{e_{l}}\right)
$$

In the above theorem, if $r=0$, then we have the unit group of the semisimple group algebra $F G$ given by

$$
U(F G) \cong C_{q-1}^{4} \times G L(2, F)^{2} \times\left(\prod_{l>1, l \mid n}\left(C_{q^{d_{l}}-1}^{4} \times G L\left(2, F_{d_{l}}\right)^{2}\right)^{e_{l}}\right)
$$

Acknowledgement. The authors would like to gratefully acknowledge the reviewers for their careful reading of the manuscript and many insightful comments and suggestions.

References

[1] Zs. Balogh and A. Bovdi, On units of group algebras of 2-groups of maximal class, Comm. Algebra, 32(8) (2004), 3227-3245.
[2] Zs. Balogh, The structure of the unit group of some group algebras, Miskolc Math. Notes, 21(2) (2020), 615-620.
[3] A. Bovdi, The group of units of a group algebra of characteristic p, Publ. Math. Debrecen, 52(1-2) (1998), 193-244.
[4] W. Burnside, Theory of Groups of Finite Order, 2nd ed., Dover Publication, Inc., New York, 1955.
[5] W. D. Gao, A. Geroldinger and F. Halter-Koch, Group algebras of finite abelian groups and their applications to combinatorial problems, Rocky Mountain J. Math., 39(3) (2009), 805-823.
[6] J. Gildea, On the order of $U\left(F_{p^{k}} D_{2 p^{m}}\right)$, Int. J. Pure Appl. Math., 46(2) (2008), 267-272.
[7] J. Gildea, The centre of the maximal p-subgroup of $U\left(F_{p^{k}} D_{2 p^{m}}\right)$, Glasg. Math. J., 51(3) (2009), 651-657.
[8] J. Gildea, The structure of the unit group of the group algebra of $F_{2^{k}} A_{4}$, Czechoslovak Math. J., 61(136) (2011), 531-539.
[9] J. Gildea and F. Monaghan, Units of some group algebras of groups of order 12 over any finite field of characteristic 3, Algebra Discrete Math., 11(1) (2011), 46-58.
[10] P. Hurley and T. Hurley, Codes from zero-divisors and units in group rings, Int. J. Inf. Coding Theory, 1(1) (2009), 57-87.
[11] K. Kaur and M. Khan, Units in $F_{2} D_{2 p}$, J. Algebra Appl., 13(2) (2014), 1350090 (9 pp).
[12] S. Maheshwari, Finitely Presented Groups and Units in Group Ring, Ph.D. Thesis, IIT Delhi, (2016).
[13] N. Makhijani, R. K. Sharma and J. B. Srivastava, Units in $F_{2^{k}} D_{2 n}$, Int. J. Group Theory, 3(3) (2014), 25-34.
[14] N. Makhijani, R. K. Sharma and J. B. Srivastava, A note on units in $F_{p^{m}} D_{2 p^{n}}$, Acta Math. Acad. Paedagog. Nyházi., 30(1) (2014), 17-25.
[15] N. Makhijani, R. K. Sharma and J. B. Srivastava, The unit group of algebra of circulant matrices, Int. J. Group Theory, 3(4) (2014), 13-16.
[16] N. Makhijani, R. K. Sharma and J. B. Srivastava, Units in finite dihedral and quaternion group algebras, J. Egyptian Math. Soc., 24(1) (2016), 5-7.
[17] N. Makhijani, R. K. Sharma and J. B. Srivastava, The unit group of some special semi-simple group algebras, Quaest. Math., 39(1) (2016), 9-28.
[18] F. Monaghan, Units of some group algebras of non-abelian groups of order 24 over any finite field of characteristic 3, Int. Electron. J. Algebra, 12 (2012), 133-161.
[19] D. S. Passman, The Algebraic Structure of Group Rings, Wiley Interscience, New York, 1977.
[20] C. Polcino Milies and S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.
[21] M. Sahai and S. F. Ansari, Unit groups of the finite group algebras of generalized quaternion groups, J. Algebra Appl., 19(6) (2020), 2050112 (5 pp).
[22] M. Sahai and S. F. Ansari, Unit groups of finite group algebras of abelian groups of order at most 16, Asian-Eur. J. Math., 14(3) (2021), 2150030 (17 pp).
[23] M. Sahai and S. F. Ansari, Group of units of finite group algebras of groups of order 24, Ukrainian Math. J., 75(2) (2023), 215-229.
[24] R. K. Sharma, J. B. Srivastava and M. Khan, The unit group of $F A_{4}$, Publ. Math. Debrecen, 71(1-2) (2007), 21-26.
[25] G. Tang and Y. Gao, The unit groups of FG of groups with order 12, Int. J. Pure Appl. Math., 73(2) (2011), 143-158.
[26] G. Tang, Y. Wei and Y. Li, Unit groups of group algebras of some small groups, Czechoslovak Math. J., 64(139) (2014), 149-157.

Sheere Farhat Ansari

Department of Mathematics and Statistics
Integral University, Lucknow
226026, U.P., India
e-mail: sheere_farhat@rediffmail.com

Meena Sahai (Corresponding Author)
Department of Mathematics and Astronomy
University of Lucknow, Lucknow
226007, U.P., India
e-mail: sahai_m@lkouniv.ac.in

[^0]: The financial assistance provided to the first author (SFA) in the form of a Senior Research

