
International Electronic Journal of Algebra

Volume 34 (2023) 21-30

DOI: 10.24330/ieja.1260475

A NOTE ON A FREE GROUP. THE DECOMPOSITION OF A

FREE GROUP FUNCTOR THROUGH THE CATEGORY OF

HEAPS

Bernard Rybo lowicz

Received: 2 November 2021; Revised: 13 December 2022; Accepted: 17 January 2023

Communicated by Abdullah Harmancı

Abstract. This note aims to introduce a left adjoint functor to the functor

which assigns a heap to a group. The adjunction is monadic. It is explained

how one can decompose a free group functor through the previously introduced

adjoint and employ it to describe a slightly different construction of free groups.

Mathematics Subject Classification (2020): 97H40, 20N10, 08A62, 08B20

Keywords: Heap, free group, free group functor

1. Introduction

In the construction of a free group (see [6, Chapter 6] and [7]), one extends a

generating set by a neutral element and inverse elements. The method of adding

those elements happen entirely by using the set-theoretic operation, i.e. a disjoint

union of sets. The aim of this article is to suggest an approach towards free groups

that exhibits an algebraic interpretation of the set-theoretic operation of extending

the generating set by identity and inverses. To give those procedures new algebraic

meaning, we use heaps, a specific variant of universal algebras introduced by R.

Baer [1] and H. Prüfer [9]. Due to both Prüfer [9] (Abelian case) and R. Baer [1]

(general case), we know that with every heap, we can associate a group, and with

every group, we can assign a heap. The latter is a functor.

This paper aims to construct a left adjoint to the functor T : Grp→ Heap be-

tween categories of groups and heaps. In the case of a non-empty heap (H, [−,−,−]),

we can assign to every element e ∈ H a group G(H; e). This assignment is not func-

torial due to the lack of choice of an element for the empty heap. In Theorem 3.5,

we overcome this problem by taking a coproduct of a heap with a singleton heap.

A singleton heap is a free object over a singleton set in the category of heaps. We

observe that taking the coproduct gives us the universal property, see Lemma 3.1.

This work was supported by the EPSRC research grant EP/V008129/1 and Swansea University

Research Excellence Scholarships (SURES).



22 BERNARD RYBO LOWICZ

That allows us to construct a functor from heaps to groups, i.e. it lets us fix added

elements on morphisms. That leads us to the following diagram

Grp
T

%%
UGrp

��

Heap ,

UHeapyy

Gr

ee

Set

G

OO

H
99

where UGrp,UHeap are forgetful functors, G and H are free groups and heap func-

tors, respectively, T is the assignment of a heap to a group, and Gr is a functor

from Theorem 3.5. It is possible to use the adjoint lifting theorem to provide the

existence of the left adjoint Gr of T, which completes the diagram. However, in

this paper, we present an explicit construction of Gr without using the free group

functor, which enables us to provide an alternative explicit construction of the free

group, where the aforementioned set-theoretic operations are rendered more explic-

itly as algebraic operations. In the conclusion part, we compare both constructions

of a free group.

2. Preliminaries

Following Baer [1] and Prüfer [9] a heap is a set H together with a ternary

operation [−,−,−] : H × H × H → H such that for all h1, h2, h3, h4, h5 ∈ H the

following holds

[[h1, h2, h3], h4, h5] = [h1, h2, [h3, h4, h5]], (1)

[h1, h2, h2] = h1 = [h2, h2, h1]. (2)

Equation (1) is called associativity, and equations (2) are called the Malcev identi-

ties. If for all h1, h2, h3 ∈ H, [h1, h2, h3] = [h3, h2, h1] we say that H is Abelian.

A sub-heap S of a heap H is a subset of H closed under the ternary operation.

A homomorphism of heaps is a map between heaps which preserves the ternary

operation. Observe that a constant map between two heaps is a heap homomor-

phism since, by the Malcev identities (2), a single element e ∈ H is a sub-heap of

H.

A sub-heap S is said to be normal if there exists e ∈ S such that for all h ∈ H
and s ∈ S there exists s′ ∈ S such that

[h, e, s] = [s′, e, h] or equivalently [[h, e, s], h, e] = s′.



A NOTE ON A FREE GROUP 23

If S is a normal sub-heap then the quotient heap H/S is well defined and canonical

map π : H → H/S is a heap epimorphism, see [4, Proposition 2.10].

An important property of heaps is that with every heap H we can associate a

group by choosing an element e ∈ H and defining a binary operation

+e := [−, e,−] : H × H → H, we will call the group (H,+e) a retract of H in

e or e-retract and denote by G(H; e). It is worth to mention that an assignment

G is not a functor, as it is not well-defined on the morphisms. If ϕ is a homomor-

phism of heaps then ϕ is a homomorphism of appropriate retracts if and only if it

preserves neutral elements of the retracts.

In the opposite direction, one can associate with every groupG a heap by defining

ternary operation, for all a, b, c ∈ G, as [a, b, c] := ab−1c. We call this heap a heap

associated with a group G and denote it by T(G). In contrast to the assignment

G, the assignment T : Grp→ Heap, between categories of groups and heaps, is a

functor given on morphisms ϕ : G→ G′ by T(ϕ) = ϕ. Every group homomorphism

is a homomorphism of associated heaps.

By employing both assignments to a group G one gets that a group G(T(G); e)

is isomorphic to G, for all e ∈ G. By applying assignments to a heap H, we get

that T(G(H; e)) = H, for all e ∈ H. The second link between groups and heaps

can be used to show that for all h1, h2, h3, h4, h5 ∈ H,

[[h1, h2, h3], h4, h5] = [h1, [h4, h3, h2], h5] = [h1, h2, [h3, h4, h5]], (3)

see Lemma 2.3 of [4].

The general construction of free objects in varieties of algebras is in [3, Theorem

9.3.3]. A more detailed description of the case of heaps is in [5, Section 3]. Let

us briefly describe the construction. Starting with a set X, we define a set of

odd-length words constructed from the set X by

W(X) := {x1x2 . . . x2i+1 | xi ∈ X & i ∈ N}.

On that set, we define a ternary operation as follows, for any three words

w1, w2, w3 ∈W(X),

[w1, w2, w3] := w1w
◦
2w3,

where w1w2 is a juxtaposition of words and w◦2 := x2i+1x2i . . . x1 for any word

w2 = x1x2 . . . x2i+1. Since all the words have odd lengths and the number of letters

of [w1, w2, w3] is the sum of letters of words w1, w2 and w3, we get that the operation

is well-defined and [w1, w2, w3] ∈W(X). To acquire the Malcev identities, one needs

to consider the following relation on the W(X), for any two words w1, w2 ∈W(X)



24 BERNARD RYBO LOWICZ

such that w1 = x1x2 . . . x2i+1

w1 ∼ w2 ⇐⇒ w2 = x1x2 . . . xkx̂x̂xk+1x2i+1 x̂ ∈W(X).

The equivalence relation 〈∼〉 generated by the relation ∼ makes

H(X) := (W(X)/〈∼〉, [−,−,−]) a free heap. Any function f : X → H, from

the set X to any heap H has a unique extension to the heap homomorphism

f̂ : H(X)→ H and makes H a functor by taking H(h) := ι̂Y ◦ h : H(X)→ H(Y ),

where h : X → Y , and ι : Y → H(Y ) is a canonical injection. We will denote the

free heap functor by H : Set → Heap to be coherent with the notation of free

heaps. It is a left adjoint to the forgetful functor UHeap : Heap → Set. Observe

that in this process, we do not enhance the set X of generators of W(X) by any

new letters as it happens in the case of free groups where one needs to add inverses

and a neutral element.

Since heaps form a variety of algebras small colimits in Heap exist (see [3,

Theorem 9.4.14]). For our purposes we are particularly interested in coproducts.

A coproduct of two objects A and B in a category C is an object C with two

morphisms ιA : A → C and ιB : B → C, called canonical injections, such that for

any object D and morphisms f : A → D and g : B → D, there exists a unique

morphism ϕ : C → D such that ϕ ◦ ιA = f and ϕ ◦ ιB = g, i.e. such that the

diagram

D

A
ιA //

f

88

C

ϕ

OO

B
ιBoo

g

ff (4)

commutes.

In Section 3 of [5], one can find the construction of a coproduct in the category

of Abelian heaps Ah, a full subcategory of Heap. The idea is to take two Abelian

heaps A and B, consider the free heap over theirs disjoint union H(AtB) and then

divide it by the normal sub-heap generated by

[[a, a′, a′′], [a, a′, a′′]A, e], [[b, b′, b′′], [b, b′, b′′]B , e], (5)

for all a, a′, a′′ ∈ A, b, b′, b′′ ∈ B, where [− − −], [− − −]A, [− − −]B are ternary

operations in H(A tB), A and B, respectively.

3. Main part

Let us fix some notation. Following [5] we will denote the coproduct of two not

necessarily Abelian heaps H and S by H � S. It exists by [3, Theorem 9.4.14],



A NOTE ON A FREE GROUP 25

though the author focuses on the more general class of algebras and does not in-

clude the explicit description for heaps. We can find the direct description of the

coproduct of Abelian heaps in [5, Section 3]. For our consideration, it is enough

to know that a free functor preserves small coproducts. The unique filler of the

coproduct diagram for morphisms f and g is called a coproduct map and is denoted

by f � g.

Our main goal is to construct a left adjoint functor to the functor T : Grp →
Heap.

A singleton heap is a heap that has only one element, we will denote it by {∗}.
For any heap H, one can consider a group Gr∗(H) := G(H�{∗}; ∗). The following

lemma shows that this group has a very interesting universal property, which will

be essential in the construction of the adjoint.

Lemma 3.1. Let H be a heap, S be a group and f : H → T(S) be a heap homo-

morphism. Then there exists a unique group homomorphism Gr∗(f) : Gr∗(H)→ S

such that f = T(Gr∗(f)) ◦ ιH , where ιH is a canonical injection into coproduct. In

other words, diagram

H
ιH //

f

""

T(Gr∗(H))

∃! T(Gr∗(f))

��
T(S)

(6)

commutes, where ∃! T(Gr∗(f)) reads “there exists exactly one homomorphism of

groups Gr∗(f)”. The pair (Gr∗(H), ιH) is a universal arrow, see [8, Section III.1].

Proof. Observe that by the universal property of coproduct for all groups S and

homomorphisms of heaps f : H → T(S) and g : {∗} → T(S) there exists T(Gr∗(f))

such that the diagram

T(S)

H
ιH //

f

66

T(Gr∗(H))

T(Gr∗(f))

OO

{∗}
ι∗oo

g

hh (7)

commutes. Every homomorphism of groups is a homomorphism of associated heaps.

Moreover, a homomorphism of heaps is a homomorphism of retracts if and only if it

maps a neutral element to a neutral element. Hence, T(Gr∗(f)) is a homomorphism

of retracts if and only if g(ι∗(∗)) is a neutral element of S. Observe that g is unique,



26 BERNARD RYBO LOWICZ

since {∗} is a singleton heap. Therefore T(Gr∗(f)) is a unique homomorphism of

heaps such that it is also a homomorphism of groups to which heaps were associated.

Thus, the preceding diagram commutes. �

Another important observation is that a canonical injection ιH has some sort of

cancellation property.

Lemma 3.2. Let H,L be heaps and f, g : T(Gr∗(H)) → L be homomorphisms of

heaps such that f(ι∗(∗)) = g(ι∗(∗)), then f ◦ ιH = g ◦ ιH implies f = g.

Proof. Let us consider a homomorphism of heaps f : T(Gr∗(H)) → L. One can

easily observe that by the uniqueness of a coproduct map f = (f ◦ ιH) � (f ◦ ι∗).
Thus, because f(ι∗(∗)) = g(ι∗(∗)) and f ◦ ιH = g ◦ ιH , we get that

f = (f ◦ ιH) � (f ◦ ι∗) = (g ◦ ιH) � (g ◦ ι∗) = g. �

Corollary 3.3. Let e ∈ L. If f, g : Gr∗(H) → G(L; e) are homomorphisms of

groups, then f ◦ ιH = g ◦ ιH implies f = g.

Proof. This follows by Lemma 3.2 since a homomorphism of heaps T(f) is equal

to a homomorphism of groups f as functions. �

Now, we are ready to describe the functor. Let us consider an assignment

Gr : Heap → Grp given on a heap H by H 7→ Gr∗(H). One can easily see

that it is a well-defined function. The assignment is given for all homomorphisms

of heaps f : H → H ′ by f 7→ Gr∗(ιH′ ◦ f). The assignment on morphisms is

well-defined since ι′H ◦ f is a composition of homomorphisms of heaps, so it is a

homomorphism of heaps. Therefore by the universal property of Gr∗, Gr∗(ιH′ ◦ f)

is a homomorphism of groups.

The following lemma and theorem follows by Theorem 2 (ii) and Theorem 2 (i)

in [8, Section IV], respectively. We provide direct proofs for the sake of clarity.

Lemma 3.4. The assignment Gr : Heap→ Grp is a functor.

Proof. In the previous discussion, we explained that both assignments are well-

defined functions. Thus, we have to show that Gr∗ preserves identities and compo-

sition.

Obviously Gr∗(ιH ◦ idH) = idGr∗(H).

For the composition let us assume that f : H → H ′ is a homomorphism of

heaps, then ιH′ ◦ f is a composition of homomorphisms of heaps, hence ιH′ ◦ f :

H → T(Gr(H ′))) is a homomorphism of heaps. If f : H → H ′ and h : H ′ → H ′′



A NOTE ON A FREE GROUP 27

are homomorphisms of heaps, then

Gr(h) ◦Gr(f) ◦ ιH = Gr(h) ◦Gr∗(ιH′ ◦ f) ◦ ιH = Gr(h) ◦ T(Gr∗(ιH′ ◦ f)) ◦ ιH

= Gr(h) ◦ ιH′ ◦ f = T(Gr∗(ιH′′ ◦ h)) ◦ ιH′ ◦ f = ιH′′ ◦ h ◦ f

= T(Gr∗(ιH′′ ◦ h ◦ f)) ◦ ιH = T(Gr(h ◦ f)) ◦ ιH = Gr(h ◦ f) ◦ ιH ,

where the second, fourth and eighth equality follows from the fact that T(g) = g

for all group homomorphisms g, while the third and fifth follows by the univer-

sal property of Gr∗, the sixth is a consequence of both combined. Now, since

Gr(g ◦ f) ◦ ιH = Gr(g) ◦Gr(f) ◦ ιH and Gr(g◦f),Gr(g),Gr(f) are homomorphisms

of groups, applying Corollary 3.3, one gets that Gr(g◦f) = Gr(g)◦Gr(f). Therefore

an assignment Gr preserves composition, hence Gr is a functor. �

The following theorem confirms that Gr is a desirable functor.

Theorem 3.5. The functor Gr is the left adjoint to the functor T.

Proof. For all heaps H and groups G let us consider functions between sets of

morphisms:

ϕH,G : Grp(Gr(H), G) −→ Heap(H,T(G)), g 7−→ T(g) ◦ ιH ,

ϕ−1
H,G : Heap(H,T(G)) −→ Grp(Gr(H), G), f 7→ Gr∗(f).

To show that ϕH,G is a bijection let f ∈ Heap(H,T(G)) and g ∈ Grp(Gr(H), G),

then

ϕH,G ◦ ϕ−1
H,G(f) = ϕH,G(Gr∗(f)) = T(Gr∗(f)) ◦ ιH = f,

where the last equality follows by Lemma 3.1, and

ϕ−1
H,G ◦ ϕH,G(g) = Gr∗(T(g) ◦ ιH) = g,

where the last equality follows by the uniqueness of the morphism Gr∗(T(g) ◦ ιH).

Hence, ϕ−1
H,G is an inverse to ϕH,G. Thus, ϕH,G is a bijection.

To check the naturality conditions, letG,S be groups, H,L be heaps and consider

homomorphisms f : L −→ H and g : G −→ S. To prove that the ϕ is natural we

need to show that the following diagram

Grp(Gr(H), G)
ϕH,G //

Grp(Gr(f),g)

��

Heap(H,T(G))

Heap(f,T(g))

��
Grp(Gr(L), S)

ϕL,S // Heap(L,T(S))

(8)



28 BERNARD RYBO LOWICZ

commutes, where for all s : Gr(H) −→ G and t ∈ Heap(H,T(G)), Grp(Gr(f), g)(s) :=

g ◦ s ◦Gr(f) and Heap(f,T(g))(t) := T(g) ◦ t ◦ f . Let s : Gr(H) −→ G, then

ϕL,G(g ◦ s ◦Gr(f)) = T(g ◦ s ◦Gr(f)) ◦ ιL = T(g) ◦ T(s) ◦ T(Gr(f)) ◦ ιL

= T(g) ◦ T(s) ◦ T(Gr∗(ιH ◦ f)) ◦ ιL = T(g) ◦ T(s) ◦ ιH ◦ f

= T(g) ◦ ϕH,G(s) ◦ f,

where the first implication follows from the definition of ϕH,G, the second follows

by the fact that T is a functor and the fourth is the universal property of Gr∗.

Therefore ϕ is a natural isomorphism and the functor Gr is a left adjoint to the

functor T. �

Proposition 3.6. The adjunction Gr a T is monadic.

Proof. By [2, 3.14. Theorem] it is enough to show that T reflects isomorphisms,

Grp has coequalizers of T-split parallel pairs, and T preserves those coequalizers.

Let us start with the property of reflecting isomorphisms. Let g : G → G′ be

a homomorphism of groups such that T(g) is an isomorphism of heaps. Then,

T(g)−1 provides an inverse of g as functions. The fact that T(g)−1 is a group

homomorphism follows from the fact that g is a group homomorphism. Therefore

T reflects isomorphisms.

To prove that coequalizers for T-split parallel pairs exist let s, g : G→ G′ be an

T-split parallel pair, then by definition there exist heapH and heap homomorphisms

h : T(G′)→ H, t : H → T(G′), f : T(G′)→ T(G)

such that h ◦T(s) = h ◦T(g), f and t are sections of T(s) and h, respectively, and

T(g) ◦ f = t ◦ h. One can check that existence of those homomorphisms imply that

a pair (H,h) is a coequalizer of T(s) and T(g). Now, let us denote by e ∈ G and

e′ ∈ G′ the neutral elements of the groups, then we can consider an h(e′)-retract

of H, a group G(H;h(e′)). Observe that all the aforementioned homomorphisms

preserve the neutral elements of groups. Thus, all of those homomorphisms are

homomorphisms of the appropriate retracts. Therefore (G(H, e), h) is a coequalizer

of T-split parallel pair (s, g) and h is surjective. Thus, T(G(H;h(e′))) = H and T

preserves the coequalizers. Hence, the adjunction is monadic. �



A NOTE ON A FREE GROUP 29

To underline the meaning of the preceding theorem in the context of groups let

us consider the following diagram

Grp
T

%%
UGrp

��

Heap ,

UHeapyy

Gr

ee

Set

G

OO

H
99

where UGrp is a forgetful functor and G is its left adjoint, the free functor.

The first observation is that all the opposite arrows are adjoints to each other.

The second observation is that the composition of functors

Grp
T // Heap

UHeap // Set

is a forgetful functor UGrp since for any group G, T(G) and G are equal sets,

and every homomorphism of groups f is the same function as T(f). These two

observations leads to the following corollaries.

Corollary 3.7. A functor Gr ◦ H : Set→ Grp is a free functor, i.e. it is the left

adjoint to the functor UGrp : Grp→ Set.

Corollary 3.8. For any set X, (Gr ◦ H)(X) ∼= G(X).

Proof. Since both functors Gr ◦H and G are left adjoints to the forgetful functor,

they are naturally isomorphic, see [8, Corollary 1, page 85]. �

4. Conclusion

We have shown that a free functor from the category of sets to the category of

groups is decomposable through the category of heaps. That gives us a different

view on adding identity and inverses in the free group construction. In the compo-

sition of functors Gr ◦ H, first, we take a set X, generate a free heap H(X), and

then consider a coproduct of the free heap with a singleton heap H(X)� {∗}. The

singleton heap is a unique free heap over a singleton set, that is {∗} = H({∗}).
Thus the whole process of taking a free group is the same as taking a free heap

over X t {∗}, as the free heap functor preserves colimits. The inverses of group

operation arise naturally as words of the form w−1 = [∗, w, ∗] in H(X) � {∗}.
When constructing the free group, we need to take the following coproducts of sets

X t X−1 t {∗} and go through the whole process of spanning the word algebra.



30 BERNARD RYBO LOWICZ

The classical construction of a free group is more complicated as we have a bigger

set of generators of a word algebra.

Acknowledgements. The author is grateful to the anonymous reviewer, Tomasz

Brzeziński and Paolo Saracco, for all the comments and advice. I would also like

to thank the editor and anonymous reviewer for their helpful comments.

References

[1] R. Baer, Zur einführung des scharbegriffs, J. Reine Angew. Math., 160 (1929),

199-207.

[2] M. Barr and C. Wells, Toposes, triples and theories, Corrected reprint of the

1985 original Repr. Theory Appl. Categ., 12 (2005), 1-288.

[3] G. M. Bergman, An Invitation to General Algebra and Universal Con-

structions, Springer, Cham, Second Edition, 2015, available online,

https://math.berkeley.edu/ gbergman/245/3.2.pdf.

[4] T. Brzeziński, Trusses: paragons, ideals and modules, J. Pure Appl. Algebra,

224(6) (2020), 106258 (39 pp).

[5] T. Brzeziński and B. Rybo lowicz, Modules over trusses vs modules over rings:

direct sums and free modules, Algebr. Represent. Theory, 25(1) (2022), 1-23.

[6] D. S. Dummit and R. M Foote, Abstract Algebra, Prentice Hall, 1991.

[7] W. Dyck, Gruppentheoretische studien, Math. Ann., 20(1) (1882), 1-44.

[8] S. Mac Lane, Categories for the Working Mathematician, Springer, New York,

Second Edition, 1998.

[9] H. Prüfer, Theorie der abelschen gruppen, Math. Z., 20(1) (1924), 165-187.

Bernard Rybo lowicz

Department of Mathematics

Maxwell Institute

Heriot-Watt University

EH14 4AS Edinburgh, UK

e-mail: B.Rybolowicz@hw.ac.uk


