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Abstract. Let R be a prime ring of characteristic not equal to 2, U be the

Utumi quotient ring of R and C be the extended centroid of R. Let G and F

be two generalized derivations on R and L be a non-central Lie ideal of R. If

F
(
G(u)

)
u = G(u2) for all u ∈ L, then one of the following holds:

(1) G = 0.

(2) There exist p, q ∈ U such that G(x) = px, F (x) = qx for all x ∈ R with

qp = p.

(3) R satisfies s4.
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1. Introduction

R always stands for the prime ring with center Z(R) throughout this article.

The Utumi quotient ring of R is denoted by U . The center of U is called the

extended centroid of R and it is denoted by C. The definition and construction of

U can be found in [3]. An additive mapping d : R→ R is said to be a derivation if

d(xy) = d(x)y+xd(y) for all x, y ∈ R. For a fixed p ∈ R, the mapping δp : R→ R,

defined by δp(x) = [p, x] for all x ∈ R is a derivation, known as inner derivation

induced by an element p. A derivation that is not inner is called outer derivation.

An additive mapping F : R→ R is said to be a generalized derivation if there exists

a derivation d on R such that F (xy) = F (x)y + xd(y) for all x, y ∈ R. For fixed

a, b ∈ R, the mapping F(a,b) : R→ R defined by F(a,b)(x) = ax+xb is a generalized

derivation on R. The mapping F(a,b) is usually called generalized inner derivation

on R. An additive subgroup L of R is said to be a Lie ideal of R if [L,R] ⊆ L. The

standard polynomial identity s4 in four variables is defined as

s4(x1, x2, x3, x4) =
∑
σ∈S4

(−1)σxσ(1)xσ(2)xσ(3)xσ(4)
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where (−1)σ is +1 or−1 according as σ being even or odd permutation in symmetric

group S4.

In [19], Posner demonstrated that if d is a derivation of a prime ring R such

that [d(x), x] ∈ Z(R) for all x ∈ R, then either d = 0 or R is a commutative

ring. Many mathematicians have extended Posner’s result in various ways. In [14],

Lanski generalized Posner’s result by proving it on a Lie ideal L of R. In [4], Bresar

proved that if f1 and f2 are two derivations such that f1(x)x − xf2(x) = 0 for

all x ∈ L then either f1 = f2 = 0 or R is commutative. More recently in [21],

Tiwari has given the entire structure of F,G and H if they satisfy the identity

F (G(u)u) = H(u2) for all u ∈ S, where F,G and H are generalized derivations and

S is a suitable subset of R. Generalized derivations on Lie ideals and left ideals

have been studied in [1,3,6,7], where further references can be found. Motivated by

the above cited results, it is a very natural question what would be the structure

of F and G if they satisfy the identity F (G(u))u = G(u2). Our main result is the

following:

Theorem 1.1. Let R be a prime ring of characteristic not equal to 2, U be the

Utumi quotient ring of R and C be the extended centroid of R. Let G and F

be two generalized derivations on R and L be a non-central Lie ideal of R. If

F (G(u))u = G(u2) for all u ∈ L, then one of the following holds:

(1) G = 0.

(2) There exist p, q ∈ U such that G(x) = px, F (x) = qx for all x ∈ R with

qp = p.

(3) R satisfies s4.

We use the following remarks in the sequel to prove our result.

Remark 1. [6] Let K be an infinite field and m ≥ 2 be an integer. If P1, . . . , Pk are

non-scalar matrices in Mm(K) then there exists an invertible matrix P ∈ Mm(K)

such that each matrix PP1P
−1, . . . , PPkP

−1 has all non-zero entries.

Remark 2. Let K be any field and R = Mm(K) be the algebra of all m × m
matrices over K with m ≥ 2. Then the matrix unit eij is an element of [R,R] for

all 1 ≤ i 6= j ≤ m.

Remark 3. [2] Every generalized derivation F of R can be uniquely extended to

a generalized derivation of U and it assumes the form F (x) = ax+ d(x), for some

a ∈ U and a derivation d on U .
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Remark 4. [16] If I is a two-sided ideal of R, then R, I and U satisfy the same

differential identities.

Remark 5. [2] If I is a two-sided ideal of R, then R, I and U satisfy the same

generalized polynomial identities with coefficients in U .

Remark 6. [13, Kharchenko Theorem] Let R be a prime ring, d be a non-zero

derivation on R and I be a non-zero ideal of R. If I satisfies the differential identity

f(r1, . . . , rn, d(r1), . . . , d(rn)) = 0

for all r1, . . . , rn ∈ I, then either

(i) I satisfies the generalized polynomial identity f(r1, . . . , rn, x1, . . . , xn) = 0

or

(ii) d is U -inner i.e., for some q ∈ U, d(x) = [q, x] and I satisfies the generalized

polynomial identity f(r1, . . . , rn, [q, r1], . . . , [q, rn]) = 0.

Remark 7. [3, Theorem 4.2.1, (Jacobson density theorem)] Let R be a primitive

ring with VR a faithful irreducible R-module and D = End(VR), then for any

positive integer n if v1, v2, . . . , vn are D-independent in V and w1, w2, . . . , wn are

arbitrary in V then there exists r ∈ R such that vir = wi for i = 1, 2, . . . , n.

Remark 8. [5] Let X = {x1, x2, . . .} be a countable set consisting of non-

commuting indeterminates x1, x2, . . .. Let C{X} be the free algebra over C on

the set X. We denote T = U ∗C C{X}, the free product of the C-algebras U and

C{X}. The elements of T are called the generalized polynomials with coefficients

in U . Let B be a set of C-independent vectors of U . Then any element f ∈ T can

be represented in the form f =
∑
i aini, where ai ∈ C and ni are B-monomials of

the form p0u1p1u2p2 · · ·unpn, with p0, p1, . . . , pn ∈ B and u1, u2, . . . , un ∈ X. Any

generalized polynomial f =
∑
i aini is trivial i.e., zero element in T if and only if

ai = 0 for each i.

2. F and G are generalized inner derivations

In this section we study the case when F and G are generalized inner derivations.

Suppose F (x) = ax+xb and G(x) = cx+xd for all x ∈ R and for some a, b, c, d ∈ U .

To prove our main result, we prove the following proposition.
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Proposition 2.1. Let R be a prime ring of characteristic not equal to 2, U be the

Utumi quotient ring of R and C be the extended centroid of R. Let G and F be two

generalized inner derivations on R and L = [R,R] be a non-central Lie ideal of R.

If F
(
G(u)

)
u = G(u2) for all u ∈ L, then one of the following holds:

(1) G = 0.

(2) There exist p, q ∈ U such that G(x) = px, F (x) = qx for all x ∈ R with

qp = p.

(3) R satisfies s4.

We need the following results to prove Proposition 2.1.

Lemma 2.2. Let R = Mm(K) be the ring of all m × m matrices over an infi-

nite field K with characteristic not equal to 2 and m ≥ 3 and L = [R,R]. Let

a1, a2, a3, a4, a5, a6 ∈ R such that

a1[x1, x2]2 + a2[x1, x2]a3[x1, x2] + a4[x1, x2]a5[x1, x2] + [x1, x2]a6[x1, x2] (1)

= a4[x1, x2]2 + [x1, x2]2a3

for all x1, x2 ∈ R. Then one of the following holds:

(1) a3, a5, a6 ∈ K.Im.

(2) a3, a4, a4a5 + a6 ∈ K.Im.

Proof. By the hypothesis R satisfies

a1u
2 + a2ua3u+ a4ua5u+ ua6u− a4u2 − u2a3 = 0 (2)

for all u ∈ [R,R].

First, we assume that a3 is not central. Since equation (2) is invariant under the

action of all automorphisms of R, a3 may be assumed to have all non-zero entries

by Remark 1. For three different indices i, j, h, let u = [eij , eji] = eii − ejj , then

from equation (2), we have

a1(eii + ejj) + a2(eii − ejj)a3(eii − ejj) + a4(eii − ejj)a5(eii − ejj) (3)

+(eii − ejj)a6(eii − ejj)− a4(eii + ejj)− (eii + ejj)a3 = 0.

Left multiplying by eii and right multiplying by ehh in equation (3), we get the

following

eiia3ehh = (a3)iheih = 0

i.e. (a3)ih = 0, which is a contradiction. Thus a3 ∈ K.Im.

Now, if a4 and a5 are non-central elements, then by the previous arguments, we may
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assume that all the entries of a4 and a5 are non-zero. Since a3 ∈ K.Im therefore

equation (2) reduces to:

(a1 + a2a3 − a4 − a3)u2 + a4ua5u+ ua6u = 0. (4)

Substituting u = [eii, eij ] = eij in equation (4), we get

a4eija5eij + eija6eij = 0. (5)

Left multiplying by eij in equation (5), we have

eija4eija5eij = (a4)ji(a5)jieij = 0

which implies either (a4)ji = 0 or (a5)ji = 0. In each case we get a contradiction

thus either a4 is central or a5 is central.

Case 1: If a4 ∈ K.Im then equation (4) reduces to

(a1 + a2a3 − a4 − a3)u2 + u(a4a5 + a6)u = 0. (6)

Again choosing u = eij in equation (6), we get that

(a4a5 + a6)jieij = 0

i.e. (a4a5 + a6)ji = 0 and thus again by Remark 1, a4a5 + a6 ∈ K.Im. Hence in

this case we have a3, a4, a4a5 + a6 ∈ C, which is our conclusion (2).

Case 2: If a5 ∈ K.Im then from equation (4), we get

(a1 + a2a3 − a4 − a3 + a4a5)u2 + ua6u = 0 (7)

for all u ∈ L. Thus by similar arguments as above, we get a6 ∈ K.Im. Hence in

this case we get our conclusion (1). �

Lemma 2.3. Let R = Mm(K) be the ring of all m×m matrices over a field K with

characteristic not equal to 2 and m ≥ 3 and L = [R,R]. Let a1, a2, a3, a4, a5, a6 ∈ R.

If

a1[x1, x2]2 + a2[x1, x2]a3[x1, x2] + a4[x1, x2]a5[x1, x2] + [x1, x2]a6[x1, x2] (8)

= a4[x1, x2]2 + [x1, x2]2a3

for all x1, x2 ∈ R. Then one of the following holds:

(1) a3, a5, a6 ∈ K.Im.

(2) a3, a4, a4a5 + a6 ∈ K.Im.
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Proof. If K is an infinite field, then the conclusion follows from Lemma 2.2. Oth-

erwise, let F be an infinite field which is an extension of K and let R̄ = Mt(F ) ∼=
R⊗K F . It is worth noting that a multilinear polynomial is an identity for R if and

only if it is an identity for R̄. So R̄ does not satisfy s4 and we may assume that

t ≥ 3. Consider the following generalized polynomial identity

f(Y1, Y2) = a1[Y1, Y2]2 +a2[Y1, Y2]a3[Y1, Y2]+a4[Y1, Y2]a5[Y1, Y2]+ [Y1, Y2]a6[Y1, Y2]

−a4[Y1, Y2]2 − Y1, Y2]2a3 (9)

which is a generalized polynomial identity for R with multi-homogeneous of multi

degree (2, 2) in indeterminates Y1 and Y2. Thus the complete linearization of

f(Y1, Y2) gives a multilinear generalized polynomial H(Y1, Y2, X1, X2) in 4 inde-

terminates. Moreover,

H(Y1, Y2, Y1, Y2) = 4f(Y1, Y2).

Clearly the multilinear polynomial H(Y1, Y2, X1, X2) is a generalized polynomial

identity for R and R̄ too. Since char(K) 6= 2, we obtain f(Y1, Y2) = 0, for all

Y1, Y2 ∈ R̄, and the conclusion follows from Lemma 2.2. �

Lemma 2.4. Let R be a prime ring of characteristic not equal to 2 and a1, a2, a3,

a4, a5, a6 ∈ R such that

a1[x1, x2]2 + a2[x1, x2]a3[x1, x2] + a4[x1, x2]a5[x1, x2] + [x1, x2]a6[x1, x2] (10)

−a4[x1, x2]2 − [x1, x2]2a3 = 0

for all x1, x2 ∈ R. If R does not satisfy any non-trivial generalized polynomial

identity, then one of the following holds:

(1) a3, a5, a6 ∈ C.

(2) a3, a4, a4a5 + a6 ∈ C.

Proof. Suppose that a3, a4, a5 are not central elements. From hypothesis R satis-

fies the following generalized polynomial identity

h(x1, x2) = a1[x1, x2]2 + a2[x1, x2]a3[x1, x2] + a4[x1, x2]a5[x1, x2] (11)

+[x1, x2]a6[x1, x2]− a4[x1, x2]2 − [x1, x2]2a3

for all x1, x2 ∈ R. Since R and U satisfy same generalized polynomial identity

(GPI), U satisfies h(x1, x2) = 0T . Suppose that h(x1, x2) is a trivial GPI for

U . Let T = U ∗C C{x1, x2}, the free product of U and C{x1, x2}, the free C-

algebra in non-commuting indeterminates x1, x2. Then, h(x1, x2) is zero element

in T = U ∗CC{x1, x2}. Since {1, a3} is linearly C-independent therefore by Remark
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8, we get [x1, x2]2a3 = 0 ∈ T , which is a contradiction. Thus a3 must be in C.

Then U satisfies

h(x1, x2) = p[x1, x2]2 + a4[x1, x2]a5[x1, x2] + [x1, x2]a6[x1, x2] (12)

where p = a1+a2a3−a4−a3 ∈ U . It implies that {1, a5, a6} is linearly C-dependent

otherwise a4[x1, x2]a5[x1, x2] will appear as a non-trivial polynomial identity. Then

there exist α1, α2, α3 ∈ C such that α1 + α2a5 + α3a6 = 0. If α3 = 0 then

a5 = −α−12 α1, a contradiction. Therefore α3 6= 0. Then a6 = β1 + β2a5, where

β1 = −α1α
−1
3 and β2 = −α2α

−1
3 . Thus from equation (12), we get

(p+ β1)[x1, x2]2 + a4[x1, x2]a5[x1, x2] + β2[x1, x2]a5[x1, x2] = 0 (13)

for all x1, x2 ∈ R. Since {1, a5} is linearly C-independent, by using Remark 8 in

equation (13), we get

a4[x1, x2]a5[x1, x2] + β2[x1, x2]a5[x1, x2] = 0.

Again since {1, a4} is linearly C-independent, by previous arguments we get

a4[x1, x2]a5[x1, x2] = 0,

a contradiction. Hence either a4 ∈ C or a5 ∈ C.

Case 1: If a5 ∈ C then from a6 = β1 + β2a5, we get a6 ∈ C. Thus in this case we

get our conclusion (1).

Case 2: If a4 ∈ C then equation (12) reduces to

p[x1, x2]2 + [x1, x2](a4a5 + a6)[x1, x2] = 0 (14)

for all x1, x2 ∈ R. Now if a4a5 + a6 /∈ C then from Remark 8 in equation (14),

U satisfies the non-trivial identity [x1, x2](a4a5 + a6)[x1, x2] = 0, a contradiction.

Thus a4a5 + a6 ∈ C. Hence in this case we get our conclusion (2). �

Lemma 2.5. Let R be a prime ring of characteristic not equal to 2 and a1, a2, a3,

a4, a5, a6 ∈ R such that

a1[x1, x2]2 + a2[x1, x2]a3[x1, x2] + a4[x1, x2]a5[x1, x2] + [x1, x2]a6[x1, x2] (15)

−a4[x1, x2]2 − [x1, x2]2a3 = 0

for all x1, x2 ∈ R. Then one of the following holds:

(1) a3, a5, a6 ∈ C.

(2) a3, a4, a4a5 + a6 ∈ C.
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Proof. We may assume that R does not satisfy standard identity s4. By Lemma

2.4, R satisfies the non-trivial generalized polynomial identity

h(x1, x2) = a1[x1, x2]2 + a2[x1, x2]a3[x1, x2] + a4[x1, x2]a5[x1, x2] (16)

+[x1, x2]a6[x1, x2]− a4[x1, x2]2 − [x1, x2]2a3.

Since R and U satisfy the same polynomial identity (see Remark 4) therefore equa-

tion (16) is also satisfied by U . In case C is infinite, we have h(x1, x2) = 0 for all

x1, x2 ∈ U ⊗C C̄, where C̄ is the algebraic closure of C. Since both U and U ⊗C C̄
are prime and centrally closed [9], we may replace R by U or U ⊗C C̄ according to

C is finite or infinite. Then R is centrally closed over C and h(x1, x2) = 0 for all

x1, x2 ∈ R. By Martindale’s theorem, [18], R is then a primitive ring with non-zero

socle soc(R) and with C as its associated division ring. Then, by Jacobson’s theo-

rem [12, p.75], R is isomorphic to a dense ring of linear transformations of a vector

space V over C.

Assume first that V is finite-dimensional over C. Then the density of R on V

implies R ∼= Mk(C), the ring of all k× k matrices over C. Since R does not satisfy

s4, we have k ≥ 3. Thus Mk(C) satisfies the following polynomial identity:

a1[x1, x2]2 + a2[x1, x2]a3[x1, x2] + a4[x1, x2]a5[x1, x2] + [x1, x2]a6[x1, x2] (17)

−a4[x1, x2]2 − [x1, x2]2a3 = 0.

Now suppose that dimC V is infinite. Suppose that a3, a4, a5, a6, a4a5 + a6 /∈ C.

By Martindale’s theorem [18], there exists a non-zero idempotent e2 = e ∈ R such

that eRe ∼= Mn(C) with n = dimC V e. Since a3, a4, a5, a6, a4a5 + a6 /∈ C, there

exist h1, h3, h2, h4, h5 ∈ soc(R) such that [a3, h1] 6= 0, [a4, h3] 6= 0, [a5, h2] 6= 0,

[a6, h4] 6= 0 and [a4a5 + a6, h5] 6= 0. By Litoff’s theorem [10], there exists a non-

trivial idempotent e ∈ soc(R) such that a3h1, h1a3, a2h3, h3a2, a5h2, h2a5 ∈ eRe.

Since we have

e
(
a1[ex1e, ex2e]

2 + a2[ex1e, ex2e]a3[ex1e, ex2e] + a4[ex1e, ex2e]a5[ex1e, ex2e] (18)

+[ex1e, ex2e]a6[ex1e, ex2e]− a4[ex1e, ex2e]
2 − [ex1e, ex2e]

2a3
)
e = 0.

Thus the subring eRe satisfies the following equation

ea1e[x1, x2]2 + ea2e[x1, x2]ea3e[x1, x2] + ea4e[x1, x2]ea5e[x1, x2] (19)

+[x1, x2]ea6e[x1, x2]− ea4e[x1, x2]2 − [x1, x2]2ea3e = 0.

Then by Lemma 2.2, we have either ea3e, ea5e, ea6e ∈ C or ea3e,ea4e, e(a4a5 +

a6)e ∈ C. If ea3e ∈ C then a3h1 = (ea3e)h1 = h1(ea3e) = h1a3, which contradict

the fact that a3 ∈ C. Therefore we must have a3 ∈ C. Thus in the case when ea3e,
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ea5e, ea6e ∈ C we get a3, a5, a6 ∈ C and when ea3e, ea4e, e(a4a5 + a6)e ∈ C then

we get a3, a4, a4a5 + a6 ∈ C. �

Proof of Proposition 2.1: We assume that R does not satisfy s4. Since F,G

are generalized inner derivations, there exist a, b, c, d ∈ U such that F (x) = ax+xb

and G(x) = cx + xd for all x ∈ R. From the hypothesis U satisfies the following

generalized identity

ac[x1, x2]2 + a[x1, x2]d[x1, x2] + c[x1, x2]b[x1, x2] + [x1, x2]db[x1, x2] (20)

−c[x1, x2]2 − [x1, x2]2d = 0

for all x1, x2 ∈ R. From Lemma 2.5, either d, b, db ∈ C or d, c, cb+ db ∈ C.

Case 1: If d, db, b ∈ C then equation (20) reduces to following(
(a+ b)(c+ d)− d− c

)
[x1, x2]2 = 0 (21)

which implies (a + b)(c + d) = (c + d). Thus in this case we get F (x) = (a + b)x,

G(x) = (c+ d)x for all x ∈ R with (a+ b)(c+ d) = (c+ d), which is our conclusion

(2).

Case 2: Again if c, d, cb+ db ∈ C then equation (20) reduces to following(
(a+ b)(c+ d)− d− c

)
[x1, x2]2 = 0 (22)

which implies (a + b)(c + d) = (c + d). If c + d = 0 then G(x) = (c + d)x = 0 for

all x ∈ R, which is our conclusion (1). If (c+ d) 6= 0 then we get F (x) = (a+ b)x,

G(x) = (c+ d)x for all x ∈ R with (a+ b)(c+ d) = (c+ d), which is our conclusion

(2). �

3. Proof of Theorem 1.2

We may assume that R does not satisfy s4. If G = 0, then we are done. Suppose

that G 6= 0. In view of [17], we may assume that, for some a, b ∈ U , there exist

derivations d and g on U such that G(x) = ax + d(x) and F (x) = bx + g(x), for

all x ∈ R. Now since L is not central and char(R) 6= 2, there exists a non-zero

ideal I of R such that 0 6= [I,R] ⊆ L ([11, p.45], [8, Lemma 2 and Proposition

1], [15, Theorem 4]). Therefore we have F (G(u))u − G(u2) = 0, for all u ∈ [I, I].

Since R and I satisfy the same generalized differential identities, we also have

F (G(u))u−G(u2) = 0 for all u ∈ [R,R]. Then by the hypothesis, we have(
b
(
a[x1, x2] + d([x1, x2]

)
+ g
(
a[x1, x2] + d([x1, x2]

))
[x1, x2] (23)

=
(
a[x1, x2]2 + d([x1, x2]2)

)
.
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If d and g both are inner derivations then the result follows from Proposition 2.1.

So assume that both d and g are not inner derivations. Now we have the following

cases.

CASE 1: Let d be an inner derivation and g be an outer derivation. Then for

some q ∈ U , d(x) = [q, x] for all x ∈ R, then from equation (23), we have

b
(
a[x1, x2] +

[
q, [x1, x2]

])
[x1, x2] + g

(
a[x1, x2] +

[
q, [x1, x2]

])
[x1, x2] (24)

=
(
a[x1, x2]2 +

[
q, [x1, x2]2

])
.

That is

b
(
a[x1, x2] +

[
q, [x1, x2]

])
[x1, x2] +

(
g(a+ q)[x1, x2] (25)

+(a+ q)
(
[g(x1), x2] + [x1, g(x2)][x1, x2]

))
[x1, x2]

−
(
([g(x1), x2] + [x1, g(x2)])q + [x1, x2]g(q)

)
[x1, x2]

=
(
a[x1, x2]2 +

[
q, [x1, x2]2

])
.

Since g is an outer derivation on R, by Kharchenko’s theorem (see Remark 6) in

equation (25), we obtain

b
(
a[x1, x2] +

[
q, [x1, x2]

])
[x1, x2] +

(
g(a+ q)[x1, x2] (26)

+(a+ q)
(
[y1, x2] + [x1, y2]

))
[x1, x2]

−
((

[y1, x2] + [x1, y2]
)
q + [x1, x2]g(q)

)
[x1, x2]

=
(
a[x1, x2]2 +

[
q, [x1, x2]2

])
for all x1, x2, y1, y2 ∈ R. In particular R satisfies

(a+ q)
(
[y1, x2] + [x1, y2]

)
[x1, x2]−

((
[y1, x2] + [x1, y2]

)
q
)

[x1, x2]. (27)

It follows from Posner’s theorem [20] that there exist a suitable field K and a

positive integer t such that R and Mt(K) satisfy the same polynomial identities i.e.

Mt(K) also satisfies equation (27). Since R does not satisfies s4 therefore we must

have t ≥ 3. Choosing x1 = y1 = eij , x2 = eji and y2 = 0 in equation (27), we get

eijqeij = qijeij = 0

i.e. qij = 0. Thus q is a diagonal matrix. By standard argument we can show that

q ∈ C. Hence equation (27) reduces to

a
(
[y1, x2] + [x1, y2]

)
[x1, x2] = 0.

In particular, we have 2a[x1, x2]2 = 0, which implies a = 0. Thus we have G(x) = 0,

which is a contradiction.
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CASE 2: Let g be an inner derivation and d be an outer derivation. Then for

some p ∈ U , g(x) = [p, x], for all x ∈ R. Then from equation (23), we have

b
(
a[x1, x2] + d

(
[x1, x2]

))
[x1, x2] +

[
p, a[x1, x2] + d

(
[x1, x2]

)]
[x1, x2] (28)

=
(
a[x1, x2]2 + d

(
[x1, x2]2

))
.

We can rewrite equation (28) as

b
(
a[x1, x2] + [d(x1), x2] + [x1, d(x2)]

)
[x1, x2] (29)

+
[
p, a[x1, x2] +

(
[d(x1), x2] + [x1, d(x2)]

)]
[x1, x2]

=
(
a[x1, x2]2 +

(
[d(x1), x2]+ [x1, d(x2)]

)
[x1, x2]+ [x1, x2]

(
[d(x1), x2]+ [x1, d(x2)]

))
.

Since d is an outer derivation on R, by Kharchenko’s theorem (Remark 6) in equa-

tion (29), we get

b
(
a[x1, x2] + [z1, x2] + [x1, z2]

)
[x1, x2] (30)

+
[
p, a[x1, x2] +

(
[z1, x2] + [x1, z2]

)]
[x1, x2]

=
(
a[x1, x2]2 +

(
[z1, x2] + [x1, z2]

)
[x1, x2] + [x1, x2]

(
[z1, x2] + [x1, z2]

))
for all x1, x2, z1, z2 ∈ R. In particular, if we choose z1 = z2 = 0 then R satisfies the

following blended component

b
(

[z1, x2] + [x1, z2]
)

[x1, x2] +
[
p,
(
[z1, x2] + [x1, z2]

)]
[x1, x2] (31)

=
((

[z1, x2] + [x1, z2]
)
[x1, x2] + [x1, x2]

(
[z1, x2] + [x1, z2]

))
.

Then by Posner’s theorem there exist a suitable field K and positive integer t such

that Mt(K) and R satisfy equation (31). Since R does not satisfy s4, we may

assume that t ≥ 3. Now if we choose z1 = x1 = eij , x2 = ejj and z2 = 0 in

equation (31) then we get

−eijpeij = −pijeij = 0

i.e. pij = 0 which implies p is a diagonal matrix. By standard arguments one can

show that p is a central element. Thus equation (31) reduces to

b
(

[z1, x2] + [x1, z2]
)

[x1, x2] (32)

=
((

[z1, x2] + [x1, z2]
)
[x1, x2] + [x1, x2]

(
[z1, x2] + [x1, z2]

))
.

Now for i 6= j, choosing x1 = eij , x2 = eji, z1 = 0 and z2 = ejh, we reach to the

following contradiction

0 = eih.
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Case 3: Now suppose that none of d and g is an inner derivation, then following

two subcases arises.

Subcase 1: Assume both d and g are C-independent modulo inner derivations of

R. Then from Kharchenko’s theorem on d in equation (23), R satisfies the following

identity(
b
(
a[x1, x2] + [z1, x2] + [x1, z2]

)
+ g
(
a[x1, x2] + [z1, x2] + [x1, z2]

))
[x1, x2] (33)

=
(
a[x1, x2]2 + ([z1, x2] + [x1, z2])[x1, x2] + [x1, x2]([z1, x2] + [x1, z2])

)
.

In particular for z1 = z2 = 0, we obtain(
b
(
[z1, x2] + [x1, z2]

)
+ g
(
[z1, x2] + [x1, z2]

))
[x1, x2] (34)

=
(
([z1, x2] + [x1, z2])[x1, x2] + [x1, x2]([z1, x2] + [x1, z2])

)
.

That is(
b
(
[z1, x2]+[x1, z2]

)
+
(
[g(z1), x2]+[z1, g(x2)]+[g(x1), z2]+[x1, g(z2)]

))
[x1, x2] (35)

=
(
([z1, x2] + [x1, z2])[x1, x2] + [x1, x2]([z1, x2] + [x1, z2])

)
Again from Kharchenko’s theorem on g in equation (35), R satisfies(

b
(
[z1, x2] + [x1, z2]

)
+
(
[y1, x2] + [z1, w2] + [w1, z2] + [x1, y2]

))
[x1, x2] (36)

=
(
([z1, x2] + [x1, z2])[x1, x2] + [x1, x2]([z1, x2] + [x1, z2])

)
.

In particular, for y1 = y2 = 0, R satisfies the blended component ([y1, x2] +

[x1, y2])[x1, x2] = 0. Then by Posner’s theorem there exist a positive integer t ≥ 3

and a suitable field K such that Mt(K) satisfies ([y1, x2] + [x1, y2])[x1, x2] = 0. In

particular, for i 6= j if we choose y1 = x1 = eij , x2 = eji and y2 = 0, we get

([eij , eji] + [eij , 0])[eij , eji] = 0

i.e. eii + ejj = 0, a contradiction.

Subcase 2: Suppose that both d and g are linearly C-dependent modulo inner

derivations. Then there exist γ, δ ∈ C such that γd+ δg = [p1, x] for some p1 ∈ U .

Now if γ = 0 then g will be an inner derivation, which is a contradiction. Similarly,

if δ = 0 then d will be an inner derivation, which is again a contradiction. Thus

both δ, γ are non-zero which gives g = αd(x) + [q1, x], where 0 6= α1 = −δ−1γ and

q1 = δ−1p1. Then from equation (23), R satisfies

b
(
a[x1, x2] + [d(x1), x2] + [x1, d(x2)]

)
[x1, x2] + α1

(
d(a)[x1, x2] (37)

+a[d(x1), x2] + a[x1, d(x2)] + [d2(x1), x2] + 2[d(x1), d(x2)]

+[x1, d
2(x2)]

)
[x1, x2] +

[
q1, a[x1, x2] + [d(x1), x2] + [x1, d(x2)]

]
[x1, x2]
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=
(
a[x1, x2]2 +

(
[d(x1), x2]+ [x1, d(x2)]

)
[x1, x2]+ [x1, x2]

(
[d(x1), x2]+ [x1, d(x2)]

))
.

From Kharchenko’s theorem in equation (37), R satisfies the following identity

b
(
a[x1, x2] + [z1, x2] + [x1, z2]

)
[x1, x2] + α1

(
d(a)[x1, x2] (38)

+a[z1, x2] + a[x1, z2] + [w1, x2] + 2[z1, z2]

+[x1, w2)]
)
[x1, x2] +

[
q1, a[x1, x2] + [z1, x2] + [x1, z2]

]
[x1, x2]

=
(
a[x1, x2]2 +

(
[z1, x2] + [x1, z2]

)
[x1, x2] + [x1, x2]

(
[z1, x2] + [x1, z2]

))
.

In particular for w1 = 0, R satisfies the following blended component

α1[w1, x2][x1, x2] = 0.

Again by Posner’s theorem there exist a suitable field K and a fixed integer t ≥ 3

such that Mt(K) satisfies α1[w1, x2][x1, x2] = 0. In particular, for w1 = x1 = eij ,

and x2 = eji, we get

α1[eij , eji][eij , eji] = eii + ejj = 0

which is a contradiction. �
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