TWO GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS

Ashutosh Pandey and Balchand Prajapati
Received: 19 January 2022; Revised: 3 October 2022; Accepted: 13 December 2022
Communicated by Meltem Altun Özarslan

Abstract

Let R be a prime ring of characteristic not equal to $2, U$ be the Utumi quotient ring of R and C be the extended centroid of R. Let G and F be two generalized derivations on R and L be a non-central Lie ideal of R. If $F(G(u)) u=G\left(u^{2}\right)$ for all $u \in L$, then one of the following holds: (1) $G=0$. (2) There exist $p, q \in U$ such that $G(x)=p x, F(x)=q x$ for all $x \in R$ with $q p=p$. (3) R satisfies s_{4}.

Mathematics Subject Classification (2020): 16N60, 16W25
Keywords: Lie ideal, generalized derivation, extended centroid, Utumi quotient ring

1. Introduction

R always stands for the prime ring with center $Z(R)$ throughout this article. The Utumi quotient ring of R is denoted by U. The center of U is called the extended centroid of R and it is denoted by C. The definition and construction of U can be found in [3]. An additive mapping $d: R \rightarrow R$ is said to be a derivation if $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. For a fixed $p \in R$, the mapping $\delta_{p}: R \rightarrow R$, defined by $\delta_{p}(x)=[p, x]$ for all $x \in R$ is a derivation, known as inner derivation induced by an element p. A derivation that is not inner is called outer derivation. An additive mapping $F: R \rightarrow R$ is said to be a generalized derivation if there exists a derivation d on R such that $F(x y)=F(x) y+x d(y)$ for all $x, y \in R$. For fixed $a, b \in R$, the mapping $F_{(a, b)}: R \rightarrow R$ defined by $F_{(a, b)}(x)=a x+x b$ is a generalized derivation on R. The mapping $F_{(a, b)}$ is usually called generalized inner derivation on R. An additive subgroup L of R is said to be a Lie ideal of R if $[L, R] \subseteq L$. The standard polynomial identity s_{4} in four variables is defined as

$$
s_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{\sigma \in S_{4}}(-1)^{\sigma} x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)} x_{\sigma(4)}
$$

where $(-1)^{\sigma}$ is +1 or -1 according as σ being even or odd permutation in symmetric group S_{4}.

In [19], Posner demonstrated that if d is a derivation of a prime ring R such that $[d(x), x] \in Z(R)$ for all $x \in R$, then either $d=0$ or R is a commutative ring. Many mathematicians have extended Posner's result in various ways. In [14], Lanski generalized Posner's result by proving it on a Lie ideal L of R. In [4], Bresar proved that if f_{1} and f_{2} are two derivations such that $f_{1}(x) x-x f_{2}(x)=0$ for all $x \in L$ then either $f_{1}=f_{2}=0$ or R is commutative. More recently in [21], Tiwari has given the entire structure of F, G and H if they satisfy the identity $F(G(u) u)=H\left(u^{2}\right)$ for all $u \in S$, where F, G and H are generalized derivations and S is a suitable subset of R. Generalized derivations on Lie ideals and left ideals have been studied in $[1,3,6,7]$, where further references can be found. Motivated by the above cited results, it is a very natural question what would be the structure of F and G if they satisfy the identity $F(G(u)) u=G\left(u^{2}\right)$. Our main result is the following:

Theorem 1.1. Let R be a prime ring of characteristic not equal to $2, U$ be the Utumi quotient ring of R and C be the extended centroid of R. Let G and F be two generalized derivations on R and L be a non-central Lie ideal of R. If $F(G(u)) u=G\left(u^{2}\right)$ for all $u \in L$, then one of the following holds:
(1) $G=0$.
(2) There exist $p, q \in U$ such that $G(x)=p x, F(x)=q x$ for all $x \in R$ with $q p=p$.
(3) R satisfies s_{4}.

We use the following remarks in the sequel to prove our result.
Remark 1. [6] Let K be an infinite field and $m \geq 2$ be an integer. If P_{1}, \ldots, P_{k} are non-scalar matrices in $M_{m}(K)$ then there exists an invertible matrix $P \in M_{m}(K)$ such that each matrix $P P_{1} P^{-1}, \ldots, P P_{k} P^{-1}$ has all non-zero entries.

Remark 2. Let K be any field and $R=M_{m}(K)$ be the algebra of all $m \times m$ matrices over K with $m \geq 2$. Then the matrix unit $e_{i j}$ is an element of $[R, R]$ for all $1 \leq i \neq j \leq m$.

Remark 3. [2] Every generalized derivation F of R can be uniquely extended to a generalized derivation of U and it assumes the form $F(x)=a x+d(x)$, for some $a \in U$ and a derivation d on U.

Remark 4. [16] If I is a two-sided ideal of R, then R, I and U satisfy the same differential identities.

Remark 5. [2] If I is a two-sided ideal of R, then R, I and U satisfy the same generalized polynomial identities with coefficients in U.

Remark 6. [13, Kharchenko Theorem] Let R be a prime ring, d be a non-zero derivation on R and I be a non-zero ideal of R. If I satisfies the differential identity

$$
f\left(r_{1}, \ldots, r_{n}, d\left(r_{1}\right), \ldots, d\left(r_{n}\right)\right)=0
$$

for all $r_{1}, \ldots, r_{n} \in I$, then either
(i) I satisfies the generalized polynomial identity $f\left(r_{1}, \ldots, r_{n}, x_{1}, \ldots, x_{n}\right)=0$
or
(ii) d is U-inner i.e., for some $q \in U, d(x)=[q, x]$ and I satisfies the generalized polynomial identity $f\left(r_{1}, \ldots, r_{n},\left[q, r_{1}\right], \ldots,\left[q, r_{n}\right]\right)=0$.

Remark 7. [3, Theorem 4.2.1, (Jacobson density theorem)] Let R be a primitive ring with V_{R} a faithful irreducible R-module and $D=\operatorname{End}\left(V_{R}\right)$, then for any positive integer n if $v_{1}, v_{2}, \ldots, v_{n}$ are D-independent in V and $w_{1}, w_{2}, \ldots, w_{n}$ are arbitrary in V then there exists $r \in R$ such that $v_{i} r=w_{i}$ for $i=1,2, \ldots, n$.

Remark 8. [5] Let $X=\left\{x_{1}, x_{2}, \ldots\right\}$ be a countable set consisting of noncommuting indeterminates x_{1}, x_{2}, \ldots Let $C\{X\}$ be the free algebra over C on the set X. We denote $T=U *_{C} C\{X\}$, the free product of the C-algebras U and $\mathrm{C}\{\mathrm{X}\}$. The elements of T are called the generalized polynomials with coefficients in U. Let B be a set of C-independent vectors of U. Then any element $f \in T$ can be represented in the form $f=\sum_{i} a_{i} n_{i}$, where $a_{i} \in C$ and n_{i} are B-monomials of the form $p_{0} u_{1} p_{1} u_{2} p_{2} \cdots u_{n} p_{n}$, with $p_{0}, p_{1}, \ldots, p_{n} \in B$ and $u_{1}, u_{2}, \ldots, u_{n} \in X$. Any generalized polynomial $f=\sum_{i} a_{i} n_{i}$ is trivial i.e., zero element in T if and only if $a_{i}=0$ for each i.

2. F and G are generalized inner derivations

In this section we study the case when F and G are generalized inner derivations. Suppose $F(x)=a x+x b$ and $G(x)=c x+x d$ for all $x \in R$ and for some $a, b, c, d \in U$. To prove our main result, we prove the following proposition.

Proposition 2.1. Let R be a prime ring of characteristic not equal to $2, U$ be the Utumi quotient ring of R and C be the extended centroid of R. Let G and F be two generalized inner derivations on R and $L=[R, R]$ be a non-central Lie ideal of R. If $F(G(u)) u=G\left(u^{2}\right)$ for all $u \in L$, then one of the following holds:
(1) $G=0$.
(2) There exist $p, q \in U$ such that $G(x)=p x, F(x)=q x$ for all $x \in R$ with $q p=p$.
(3) R satisfies s_{4}.

We need the following results to prove Proposition 2.1.
Lemma 2.2. Let $R=M_{m}(K)$ be the ring of all $m \times m$ matrices over an infinite field K with characteristic not equal to 2 and $m \geq 3$ and $L=[R, R]$. Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6} \in R$ such that

$$
\begin{gather*}
a_{1}\left[x_{1}, x_{2}\right]^{2}+a_{2}\left[x_{1}, x_{2}\right] a_{3}\left[x_{1}, x_{2}\right]+a_{4}\left[x_{1}, x_{2}\right] a_{5}\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] a_{6}\left[x_{1}, x_{2}\right] \tag{1}\\
=a_{4}\left[x_{1}, x_{2}\right]^{2}+\left[x_{1}, x_{2}\right]^{2} a_{3}
\end{gather*}
$$

for all $x_{1}, x_{2} \in R$. Then one of the following holds:
(1) $a_{3}, a_{5}, a_{6} \in K . I_{m}$.
(2) $a_{3}, a_{4}, a_{4} a_{5}+a_{6} \in K . I_{m}$.

Proof. By the hypothesis R satisfies

$$
\begin{equation*}
a_{1} u^{2}+a_{2} u a_{3} u+a_{4} u a_{5} u+u a_{6} u-a_{4} u^{2}-u^{2} a_{3}=0 \tag{2}
\end{equation*}
$$

for all $u \in[R, R]$.
First, we assume that a_{3} is not central. Since equation (2) is invariant under the action of all automorphisms of R, a_{3} may be assumed to have all non-zero entries by Remark 1. For three different indices i, j, h, let $u=\left[e_{i j}, e_{j i}\right]=e_{i i}-e_{j j}$, then from equation (2), we have

$$
\begin{align*}
& a_{1}\left(e_{i i}+e_{j j}\right)+a_{2}\left(e_{i i}-e_{j j}\right) a_{3}\left(e_{i i}-e_{j j}\right)+a_{4}\left(e_{i i}-e_{j j}\right) a_{5}\left(e_{i i}-e_{j j}\right) \tag{3}\\
& \quad+\left(e_{i i}-e_{j j}\right) a_{6}\left(e_{i i}-e_{j j}\right)-a_{4}\left(e_{i i}+e_{j j}\right)-\left(e_{i i}+e_{j j}\right) a_{3}=0
\end{align*}
$$

Left multiplying by $e_{i i}$ and right multiplying by $e_{h h}$ in equation (3), we get the following

$$
e_{i i} a_{3} e_{h h}=\left(a_{3}\right)_{i h} e_{i h}=0
$$

i.e. $\left(a_{3}\right)_{i h}=0$, which is a contradiction. Thus $a_{3} \in K . I_{m}$.

Now, if a_{4} and a_{5} are non-central elements, then by the previous arguments, we may
assume that all the entries of a_{4} and a_{5} are non-zero. Since $a_{3} \in K . I_{m}$ therefore equation (2) reduces to:

$$
\begin{equation*}
\left(a_{1}+a_{2} a_{3}-a_{4}-a_{3}\right) u^{2}+a_{4} u a_{5} u+u a_{6} u=0 \tag{4}
\end{equation*}
$$

Substituting $u=\left[e_{i i}, e_{i j}\right]=e_{i j}$ in equation (4), we get

$$
\begin{equation*}
a_{4} e_{i j} a_{5} e_{i j}+e_{i j} a_{6} e_{i j}=0 \tag{5}
\end{equation*}
$$

Left multiplying by $e_{i j}$ in equation (5), we have

$$
e_{i j} a_{4} e_{i j} a_{5} e_{i j}=\left(a_{4}\right)_{j i}\left(a_{5}\right)_{j i} e_{i j}=0
$$

which implies either $\left(a_{4}\right)_{j i}=0$ or $\left(a_{5}\right)_{j i}=0$. In each case we get a contradiction thus either a_{4} is central or a_{5} is central.
Case 1: If $a_{4} \in K . I_{m}$ then equation (4) reduces to

$$
\begin{equation*}
\left(a_{1}+a_{2} a_{3}-a_{4}-a_{3}\right) u^{2}+u\left(a_{4} a_{5}+a_{6}\right) u=0 \tag{6}
\end{equation*}
$$

Again choosing $u=e_{i j}$ in equation (6), we get that

$$
\left(a_{4} a_{5}+a_{6}\right)_{j i} e_{i j}=0
$$

i.e. $\left(a_{4} a_{5}+a_{6}\right)_{j i}=0$ and thus again by Remark 1, $a_{4} a_{5}+a_{6} \in K . I_{m}$. Hence in this case we have $a_{3}, a_{4}, a_{4} a_{5}+a_{6} \in C$, which is our conclusion (2).
Case 2: If $a_{5} \in K . I_{m}$ then from equation (4), we get

$$
\begin{equation*}
\left(a_{1}+a_{2} a_{3}-a_{4}-a_{3}+a_{4} a_{5}\right) u^{2}+u a_{6} u=0 \tag{7}
\end{equation*}
$$

for all $u \in L$. Thus by similar arguments as above, we get $a_{6} \in K . I_{m}$. Hence in this case we get our conclusion (1).

Lemma 2.3. Let $R=M_{m}(K)$ be the ring of all $m \times m$ matrices over a field K with characteristic not equal to 2 and $m \geq 3$ and $L=[R, R]$. Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6} \in R$. If

$$
\begin{gather*}
a_{1}\left[x_{1}, x_{2}\right]^{2}+a_{2}\left[x_{1}, x_{2}\right] a_{3}\left[x_{1}, x_{2}\right]+a_{4}\left[x_{1}, x_{2}\right] a_{5}\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] a_{6}\left[x_{1}, x_{2}\right] \tag{8}\\
=a_{4}\left[x_{1}, x_{2}\right]^{2}+\left[x_{1}, x_{2}\right]^{2} a_{3}
\end{gather*}
$$

for all $x_{1}, x_{2} \in R$. Then one of the following holds:
(1) $a_{3}, a_{5}, a_{6} \in K . I_{m}$.
(2) $a_{3}, a_{4}, a_{4} a_{5}+a_{6} \in K . I_{m}$.

Proof. If K is an infinite field, then the conclusion follows from Lemma 2.2. Otherwise, let F be an infinite field which is an extension of K and let $\bar{R}=M_{t}(F) \cong$ $R \otimes_{K} F$. It is worth noting that a multilinear polynomial is an identity for R if and only if it is an identity for \bar{R}. So \bar{R} does not satisfy s_{4} and we may assume that $t \geq 3$. Consider the following generalized polynomial identity

$$
\begin{gather*}
f\left(Y_{1}, Y_{2}\right)=a_{1}\left[Y_{1}, Y_{2}\right]^{2}+a_{2}\left[Y_{1}, Y_{2}\right] a_{3}\left[Y_{1}, Y_{2}\right]+a_{4}\left[Y_{1}, Y_{2}\right] a_{5}\left[Y_{1}, Y_{2}\right]+\left[Y_{1}, Y_{2}\right] a_{6}\left[Y_{1}, Y_{2}\right] \\
\left.-a_{4}\left[Y_{1}, Y_{2}\right]^{2}-Y_{1}, Y_{2}\right]^{2} a_{3} \tag{9}
\end{gather*}
$$

which is a generalized polynomial identity for R with multi-homogeneous of multi degree $(2,2)$ in indeterminates Y_{1} and Y_{2}. Thus the complete linearization of $f\left(Y_{1}, Y_{2}\right)$ gives a multilinear generalized polynomial $H\left(Y_{1}, Y_{2}, X_{1}, X_{2}\right)$ in 4 indeterminates. Moreover,

$$
H\left(Y_{1}, Y_{2}, Y_{1}, Y_{2}\right)=4 f\left(Y_{1}, Y_{2}\right)
$$

Clearly the multilinear polynomial $H\left(Y_{1}, Y_{2}, X_{1}, X_{2}\right)$ is a generalized polynomial identity for R and \bar{R} too. Since $\operatorname{char}(K) \neq 2$, we obtain $f\left(Y_{1}, Y_{2}\right)=0$, for all $Y_{1}, Y_{2} \in \bar{R}$, and the conclusion follows from Lemma 2.2.

Lemma 2.4. Let R be a prime ring of characteristic not equal to 2 and a_{1}, a_{2}, a_{3}, $a_{4}, a_{5}, a_{6} \in R$ such that

$$
\begin{gather*}
a_{1}\left[x_{1}, x_{2}\right]^{2}+a_{2}\left[x_{1}, x_{2}\right] a_{3}\left[x_{1}, x_{2}\right]+a_{4}\left[x_{1}, x_{2}\right] a_{5}\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] a_{6}\left[x_{1}, x_{2}\right] \tag{10}\\
-a_{4}\left[x_{1}, x_{2}\right]^{2}-\left[x_{1}, x_{2}\right]^{2} a_{3}=0
\end{gather*}
$$

for all $x_{1}, x_{2} \in R$. If R does not satisfy any non-trivial generalized polynomial identity, then one of the following holds:
(1) $a_{3}, a_{5}, a_{6} \in C$.
(2) $a_{3}, a_{4}, a_{4} a_{5}+a_{6} \in C$.

Proof. Suppose that a_{3}, a_{4}, a_{5} are not central elements. From hypothesis R satisfies the following generalized polynomial identity

$$
\begin{align*}
h\left(x_{1}, x_{2}\right)= & a_{1}\left[x_{1}, x_{2}\right]^{2}+a_{2}\left[x_{1}, x_{2}\right] a_{3}\left[x_{1}, x_{2}\right]+a_{4}\left[x_{1}, x_{2}\right] a_{5}\left[x_{1}, x_{2}\right] \tag{11}\\
& +\left[x_{1}, x_{2}\right] a_{6}\left[x_{1}, x_{2}\right]-a_{4}\left[x_{1}, x_{2}\right]^{2}-\left[x_{1}, x_{2}\right]^{2} a_{3}
\end{align*}
$$

for all $x_{1}, x_{2} \in R$. Since R and U satisfy same generalized polynomial identity (GPI), U satisfies $h\left(x_{1}, x_{2}\right)=0_{T}$. Suppose that $h\left(x_{1}, x_{2}\right)$ is a trivial GPI for U. Let $T=U *_{C} C\left\{x_{1}, x_{2}\right\}$, the free product of U and $C\left\{x_{1}, x_{2}\right\}$, the free C algebra in non-commuting indeterminates x_{1}, x_{2}. Then, $h\left(x_{1}, x_{2}\right)$ is zero element in $T=U *_{C} C\left\{x_{1}, x_{2}\right\}$. Since $\left\{1, a_{3}\right\}$ is linearly C-independent therefore by Remark

8, we get $\left[x_{1}, x_{2}\right]^{2} a_{3}=0 \in T$, which is a contradiction. Thus a_{3} must be in C. Then U satisfies

$$
\begin{equation*}
h\left(x_{1}, x_{2}\right)=p\left[x_{1}, x_{2}\right]^{2}+a_{4}\left[x_{1}, x_{2}\right] a_{5}\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] a_{6}\left[x_{1}, x_{2}\right] \tag{12}
\end{equation*}
$$

where $p=a_{1}+a_{2} a_{3}-a_{4}-a_{3} \in U$. It implies that $\left\{1, a_{5}, a_{6}\right\}$ is linearly C-dependent otherwise $a_{4}\left[x_{1}, x_{2}\right] a_{5}\left[x_{1}, x_{2}\right]$ will appear as a non-trivial polynomial identity. Then there exist $\alpha_{1}, \alpha_{2}, \alpha_{3} \in C$ such that $\alpha_{1}+\alpha_{2} a_{5}+\alpha_{3} a_{6}=0$. If $\alpha_{3}=0$ then $a_{5}=-\alpha_{2}^{-1} \alpha_{1}$, a contradiction. Therefore $\alpha_{3} \neq 0$. Then $a_{6}=\beta_{1}+\beta_{2} a_{5}$, where $\beta_{1}=-\alpha_{1} \alpha_{3}^{-1}$ and $\beta_{2}=-\alpha_{2} \alpha_{3}^{-1}$. Thus from equation (12), we get

$$
\begin{equation*}
\left(p+\beta_{1}\right)\left[x_{1}, x_{2}\right]^{2}+a_{4}\left[x_{1}, x_{2}\right] a_{5}\left[x_{1}, x_{2}\right]+\beta_{2}\left[x_{1}, x_{2}\right] a_{5}\left[x_{1}, x_{2}\right]=0 \tag{13}
\end{equation*}
$$

for all $x_{1}, x_{2} \in R$. Since $\left\{1, a_{5}\right\}$ is linearly C-independent, by using Remark 8 in equation (13), we get

$$
a_{4}\left[x_{1}, x_{2}\right] a_{5}\left[x_{1}, x_{2}\right]+\beta_{2}\left[x_{1}, x_{2}\right] a_{5}\left[x_{1}, x_{2}\right]=0 .
$$

Again since $\left\{1, a_{4}\right\}$ is linearly C-independent, by previous arguments we get

$$
a_{4}\left[x_{1}, x_{2}\right] a_{5}\left[x_{1}, x_{2}\right]=0,
$$

a contradiction. Hence either $a_{4} \in C$ or $a_{5} \in C$.
Case 1: If $a_{5} \in C$ then from $a_{6}=\beta_{1}+\beta_{2} a_{5}$, we get $a_{6} \in C$. Thus in this case we get our conclusion (1).
Case 2: If $a_{4} \in C$ then equation (12) reduces to

$$
\begin{equation*}
p\left[x_{1}, x_{2}\right]^{2}+\left[x_{1}, x_{2}\right]\left(a_{4} a_{5}+a_{6}\right)\left[x_{1}, x_{2}\right]=0 \tag{14}
\end{equation*}
$$

for all $x_{1}, x_{2} \in R$. Now if $a_{4} a_{5}+a_{6} \notin C$ then from Remark 8 in equation (14), U satisfies the non-trivial identity $\left[x_{1}, x_{2}\right]\left(a_{4} a_{5}+a_{6}\right)\left[x_{1}, x_{2}\right]=0$, a contradiction. Thus $a_{4} a_{5}+a_{6} \in C$. Hence in this case we get our conclusion (2).

Lemma 2.5. Let R be a prime ring of characteristic not equal to 2 and a_{1}, a_{2}, a_{3}, $a_{4}, a_{5}, a_{6} \in R$ such that

$$
\begin{gather*}
a_{1}\left[x_{1}, x_{2}\right]^{2}+a_{2}\left[x_{1}, x_{2}\right] a_{3}\left[x_{1}, x_{2}\right]+a_{4}\left[x_{1}, x_{2}\right] a_{5}\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] a_{6}\left[x_{1}, x_{2}\right] \tag{15}\\
-a_{4}\left[x_{1}, x_{2}\right]^{2}-\left[x_{1}, x_{2}\right]^{2} a_{3}=0
\end{gather*}
$$

for all $x_{1}, x_{2} \in R$. Then one of the following holds:
(1) $a_{3}, a_{5}, a_{6} \in C$.
(2) $a_{3}, a_{4}, a_{4} a_{5}+a_{6} \in C$.

Proof. We may assume that R does not satisfy standard identity s_{4}. By Lemma $2.4, R$ satisfies the non-trivial generalized polynomial identity

$$
\begin{align*}
h\left(x_{1}, x_{2}\right) & =a_{1}\left[x_{1}, x_{2}\right]^{2}+a_{2}\left[x_{1}, x_{2}\right] a_{3}\left[x_{1}, x_{2}\right]+a_{4}\left[x_{1}, x_{2}\right] a_{5}\left[x_{1}, x_{2}\right] \tag{16}\\
& +\left[x_{1}, x_{2}\right] a_{6}\left[x_{1}, x_{2}\right]-a_{4}\left[x_{1}, x_{2}\right]^{2}-\left[x_{1}, x_{2}\right]^{2} a_{3}
\end{align*}
$$

Since R and U satisfy the same polynomial identity (see Remark 4) therefore equation (16) is also satisfied by U. In case C is infinite, we have $h\left(x_{1}, x_{2}\right)=0$ for all $x_{1}, x_{2} \in U \otimes_{C} \bar{C}$, where \bar{C} is the algebraic closure of C. Since both U and $U \otimes_{C} \bar{C}$ are prime and centrally closed [9], we may replace R by U or $U \otimes_{C} \bar{C}$ according to C is finite or infinite. Then R is centrally closed over C and $h\left(x_{1}, x_{2}\right)=0$ for all $x_{1}, x_{2} \in R$. By Martindale's theorem, [18], R is then a primitive ring with non-zero socle $\operatorname{soc}(R)$ and with C as its associated division ring. Then, by Jacobson's theorem [12, p.75], R is isomorphic to a dense ring of linear transformations of a vector space V over C.
Assume first that V is finite-dimensional over C. Then the density of R on V implies $R \cong M_{k}(C)$, the ring of all $k \times k$ matrices over C. Since R does not satisfy s_{4}, we have $k \geq 3$. Thus $M_{k}(C)$ satisfies the following polynomial identity:

$$
\begin{gather*}
a_{1}\left[x_{1}, x_{2}\right]^{2}+a_{2}\left[x_{1}, x_{2}\right] a_{3}\left[x_{1}, x_{2}\right]+a_{4}\left[x_{1}, x_{2}\right] a_{5}\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] a_{6}\left[x_{1}, x_{2}\right] \tag{17}\\
-a_{4}\left[x_{1}, x_{2}\right]^{2}-\left[x_{1}, x_{2}\right]^{2} a_{3}=0
\end{gather*}
$$

Now suppose that $\operatorname{dim}_{C} V$ is infinite. Suppose that $a_{3}, a_{4}, a_{5}, a_{6}, a_{4} a_{5}+a_{6} \notin C$. By Martindale's theorem [18], there exists a non-zero idempotent $e^{2}=e \in R$ such that $e R e \cong M_{n}(C)$ with $n=\operatorname{dim}_{C} V e$. Since $a_{3}, a_{4}, a_{5}, a_{6}, a_{4} a_{5}+a_{6} \notin C$, there exist $h_{1}, h_{3}, h_{2}, h_{4}, h_{5} \in \operatorname{soc}(R)$ such that $\left[a_{3}, h_{1}\right] \neq 0,\left[a_{4}, h_{3}\right] \neq 0,\left[a_{5}, h_{2}\right] \neq 0$, $\left[a_{6}, h_{4}\right] \neq 0$ and $\left[a_{4} a_{5}+a_{6}, h_{5}\right] \neq 0$. By Litoff's theorem [10], there exists a nontrivial idempotent $e \in \operatorname{soc}(R)$ such that $a_{3} h_{1}, h_{1} a_{3}, a_{2} h_{3}, h_{3} a_{2}, a_{5} h_{2}, h_{2} a_{5} \in e R e$. Since we have

$$
\begin{gather*}
e\left(a_{1}\left[e x_{1} e, e x_{2} e\right]^{2}+a_{2}\left[e x_{1} e, e x_{2} e\right] a_{3}\left[e x_{1} e, e x_{2} e\right]+a_{4}\left[e x_{1} e, e x_{2} e\right] a_{5}\left[e x_{1} e, e x_{2} e\right]\right. \tag{18}\\
\left.+\left[e x_{1} e, e x_{2} e\right] a_{6}\left[e x_{1} e, e x_{2} e\right]-a_{4}\left[e x_{1} e, e x_{2} e\right]^{2}-\left[e x_{1} e, e x_{2} e\right]^{2} a_{3}\right) e=0
\end{gather*}
$$

Thus the subring $e R e$ satisfies the following equation

$$
\begin{gather*}
e a_{1} e\left[x_{1}, x_{2}\right]^{2}+e a_{2} e\left[x_{1}, x_{2}\right] e a_{3} e\left[x_{1}, x_{2}\right]+e a_{4} e\left[x_{1}, x_{2}\right] e a_{5} e\left[x_{1}, x_{2}\right] \tag{19}\\
+\left[x_{1}, x_{2}\right] e a_{6} e\left[x_{1}, x_{2}\right]-e a_{4} e\left[x_{1}, x_{2}\right]^{2}-\left[x_{1}, x_{2}\right]^{2} e a_{3} e=0 .
\end{gather*}
$$

Then by Lemma 2.2, we have either $e a_{3} e, e a_{5} e, e a_{6} e \in C$ or $e a_{3} e, e a_{4} e, e\left(a_{4} a_{5}+\right.$ $\left.a_{6}\right) e \in C$. If $e a_{3} e \in C$ then $a_{3} h_{1}=\left(e a_{3} e\right) h_{1}=h_{1}\left(e a_{3} e\right)=h_{1} a_{3}$, which contradict the fact that $a_{3} \in C$. Therefore we must have $a_{3} \in C$. Thus in the case when $e a_{3} e$,
$e a_{5} e, e a_{6} e \in C$ we get $a_{3}, a_{5}, a_{6} \in C$ and when $e a_{3} e, e a_{4} e, e\left(a_{4} a_{5}+a_{6}\right) e \in C$ then we get $a_{3}, a_{4}, a_{4} a_{5}+a_{6} \in C$.

Proof of Proposition 2.1: We assume that R does not satisfy s_{4}. Since F, G are generalized inner derivations, there exist $a, b, c, d \in U$ such that $F(x)=a x+x b$ and $G(x)=c x+x d$ for all $x \in R$. From the hypothesis U satisfies the following generalized identity

$$
\begin{gather*}
a c\left[x_{1}, x_{2}\right]^{2}+a\left[x_{1}, x_{2}\right] d\left[x_{1}, x_{2}\right]+c\left[x_{1}, x_{2}\right] b\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] d b\left[x_{1}, x_{2}\right] \tag{20}\\
-c\left[x_{1}, x_{2}\right]^{2}-\left[x_{1}, x_{2}\right]^{2} d=0
\end{gather*}
$$

for all $x_{1}, x_{2} \in R$. From Lemma 2.5, either $d, b, d b \in C$ or $d, c, c b+d b \in C$.
Case 1: If $d, d b, b \in C$ then equation (20) reduces to following

$$
\begin{equation*}
((a+b)(c+d)-d-c)\left[x_{1}, x_{2}\right]^{2}=0 \tag{21}
\end{equation*}
$$

which implies $(a+b)(c+d)=(c+d)$. Thus in this case we get $F(x)=(a+b) x$, $G(x)=(c+d) x$ for all $x \in R$ with $(a+b)(c+d)=(c+d)$, which is our conclusion (2).

Case 2: Again if $c, d, c b+d b \in C$ then equation (20) reduces to following

$$
\begin{equation*}
((a+b)(c+d)-d-c)\left[x_{1}, x_{2}\right]^{2}=0 \tag{22}
\end{equation*}
$$

which implies $(a+b)(c+d)=(c+d)$. If $c+d=0$ then $G(x)=(c+d) x=0$ for all $x \in R$, which is our conclusion (1). If $(c+d) \neq 0$ then we get $F(x)=(a+b) x$, $G(x)=(c+d) x$ for all $x \in R$ with $(a+b)(c+d)=(c+d)$, which is our conclusion (2).

3. Proof of Theorem 1.2

We may assume that R does not satisfy s_{4}. If $G=0$, then we are done. Suppose that $G \neq 0$. In view of [17], we may assume that, for some $a, b \in U$, there exist derivations d and g on U such that $G(x)=a x+d(x)$ and $F(x)=b x+g(x)$, for all $x \in R$. Now since L is not central and $\operatorname{char}(R) \neq 2$, there exists a non-zero ideal I of R such that $0 \neq[I, R] \subseteq L$ ([11, p.45], [8, Lemma 2 and Proposition 1], [15, Theorem 4]). Therefore we have $F(G(u)) u-G\left(u^{2}\right)=0$, for all $u \in[I, I]$. Since R and I satisfy the same generalized differential identities, we also have $F(G(u)) u-G\left(u^{2}\right)=0$ for all $u \in[R, R]$. Then by the hypothesis, we have

$$
\begin{gather*}
\left(b \left(a\left[x_{1}, x_{2}\right]+d\left(\left[x_{1}, x_{2}\right]\right)+g\left(a\left[x_{1}, x_{2}\right]+d\left(\left[x_{1}, x_{2}\right]\right)\right)\left[x_{1}, x_{2}\right]\right.\right. \tag{23}\\
=\left(a\left[x_{1}, x_{2}\right]^{2}+d\left(\left[x_{1}, x_{2}\right]^{2}\right)\right)
\end{gather*}
$$

If d and g both are inner derivations then the result follows from Proposition 2.1. So assume that both d and g are not inner derivations. Now we have the following cases.
CASE 1: Let d be an inner derivation and g be an outer derivation. Then for some $q \in U, d(x)=[q, x]$ for all $x \in R$, then from equation (23), we have

$$
\begin{gather*}
b\left(a\left[x_{1}, x_{2}\right]+\left[q,\left[x_{1}, x_{2}\right]\right]\right)\left[x_{1}, x_{2}\right]+g\left(a\left[x_{1}, x_{2}\right]+\left[q,\left[x_{1}, x_{2}\right]\right]\right)\left[x_{1}, x_{2}\right] \tag{24}\\
=\left(a\left[x_{1}, x_{2}\right]^{2}+\left[q,\left[x_{1}, x_{2}\right]^{2}\right]\right) .
\end{gather*}
$$

That is

$$
\begin{gather*}
b\left(a\left[x_{1}, x_{2}\right]+\left[q,\left[x_{1}, x_{2}\right]\right]\right)\left[x_{1}, x_{2}\right]+\left(g(a+q)\left[x_{1}, x_{2}\right]\right. \tag{25}\\
\left.+(a+q)\left(\left[g\left(x_{1}\right), x_{2}\right]+\left[x_{1}, g\left(x_{2}\right)\right]\left[x_{1}, x_{2}\right]\right)\right)\left[x_{1}, x_{2}\right] \\
-\left(\left(\left[g\left(x_{1}\right), x_{2}\right]+\left[x_{1}, g\left(x_{2}\right)\right]\right) q+\left[x_{1}, x_{2}\right] g(q)\right)\left[x_{1}, x_{2}\right] \\
\quad=\left(a\left[x_{1}, x_{2}\right]^{2}+\left[q,\left[x_{1}, x_{2}\right]^{2}\right]\right) .
\end{gather*}
$$

Since g is an outer derivation on R, by Kharchenko's theorem (see Remark 6) in equation (25), we obtain

$$
\begin{gather*}
b\left(a\left[x_{1}, x_{2}\right]+\left[q,\left[x_{1}, x_{2}\right]\right]\right)\left[x_{1}, x_{2}\right]+\left(g(a+q)\left[x_{1}, x_{2}\right]\right. \tag{26}\\
\left.+(a+q)\left(\left[y_{1}, x_{2}\right]+\left[x_{1}, y_{2}\right]\right)\right)\left[x_{1}, x_{2}\right] \\
-\left(\left(\left[y_{1}, x_{2}\right]+\left[x_{1}, y_{2}\right]\right) q+\left[x_{1}, x_{2}\right] g(q)\right)\left[x_{1}, x_{2}\right] \\
=\left(a\left[x_{1}, x_{2}\right]^{2}+\left[q,\left[x_{1}, x_{2}\right]^{2}\right]\right)
\end{gather*}
$$

for all $x_{1}, x_{2}, y_{1}, y_{2} \in R$. In particular R satisfies

$$
\begin{equation*}
(a+q)\left(\left[y_{1}, x_{2}\right]+\left[x_{1}, y_{2}\right]\right)\left[x_{1}, x_{2}\right]-\left(\left(\left[y_{1}, x_{2}\right]+\left[x_{1}, y_{2}\right]\right) q\right)\left[x_{1}, x_{2}\right] \tag{27}
\end{equation*}
$$

It follows from Posner's theorem [20] that there exist a suitable field K and a positive integer t such that R and $M_{t}(K)$ satisfy the same polynomial identities i.e. $M_{t}(K)$ also satisfies equation (27). Since R does not satisfies s_{4} therefore we must have $t \geq 3$. Choosing $x_{1}=y_{1}=e_{i j}, x_{2}=e_{j i}$ and $y_{2}=0$ in equation (27), we get

$$
e_{i j} q e_{i j}=q_{i j} e_{i j}=0
$$

i.e. $q_{i j}=0$. Thus q is a diagonal matrix. By standard argument we can show that $q \in C$. Hence equation (27) reduces to

$$
a\left(\left[y_{1}, x_{2}\right]+\left[x_{1}, y_{2}\right]\right)\left[x_{1}, x_{2}\right]=0 .
$$

In particular, we have $2 a\left[x_{1}, x_{2}\right]^{2}=0$, which implies $a=0$. Thus we have $G(x)=0$, which is a contradiction.

CASE 2: Let g be an inner derivation and d be an outer derivation. Then for some $p \in U, g(x)=[p, x]$, for all $x \in R$. Then from equation (23), we have

$$
\begin{gather*}
b\left(a\left[x_{1}, x_{2}\right]+d\left(\left[x_{1}, x_{2}\right]\right)\right)\left[x_{1}, x_{2}\right]+\left[p, a\left[x_{1}, x_{2}\right]+d\left(\left[x_{1}, x_{2}\right]\right)\right]\left[x_{1}, x_{2}\right] \tag{28}\\
=\left(a\left[x_{1}, x_{2}\right]^{2}+d\left(\left[x_{1}, x_{2}\right]^{2}\right)\right)
\end{gather*}
$$

We can rewrite equation (28) as

$$
\begin{gather*}
b\left(a\left[x_{1}, x_{2}\right]+\left[d\left(x_{1}\right), x_{2}\right]+\left[x_{1}, d\left(x_{2}\right)\right]\right)\left[x_{1}, x_{2}\right] \tag{29}\\
+\left[p, a\left[x_{1}, x_{2}\right]+\left(\left[d\left(x_{1}\right), x_{2}\right]+\left[x_{1}, d\left(x_{2}\right)\right]\right)\right]\left[x_{1}, x_{2}\right] \\
=\left(a\left[x_{1}, x_{2}\right]^{2}+\left(\left[d\left(x_{1}\right), x_{2}\right]+\left[x_{1}, d\left(x_{2}\right)\right]\right)\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right]\left(\left[d\left(x_{1}\right), x_{2}\right]+\left[x_{1}, d\left(x_{2}\right)\right]\right)\right)
\end{gather*}
$$

Since d is an outer derivation on R, by Kharchenko's theorem (Remark 6) in equation (29), we get

$$
\begin{gather*}
b\left(a\left[x_{1}, x_{2}\right]+\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\left[x_{1}, x_{2}\right] \tag{30}\\
+\left[p, a\left[x_{1}, x_{2}\right]+\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\right]\left[x_{1}, x_{2}\right] \\
=\left(a\left[x_{1}, x_{2}\right]^{2}+\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right]\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\right)
\end{gather*}
$$

for all $x_{1}, x_{2}, z_{1}, z_{2} \in R$. In particular, if we choose $z_{1}=z_{2}=0$ then R satisfies the following blended component

$$
\begin{align*}
& b\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\left[x_{1}, x_{2}\right]+\left[p,\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\right]\left[x_{1}, x_{2}\right] \tag{31}\\
& =\left(\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right]\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\right)
\end{align*}
$$

Then by Posner's theorem there exist a suitable field K and positive integer t such that $M_{t}(K)$ and R satisfy equation (31). Since R does not satisfy s_{4}, we may assume that $t \geq 3$. Now if we choose $z_{1}=x_{1}=e_{i j}, x_{2}=e_{j j}$ and $z_{2}=0$ in equation (31) then we get

$$
-e_{i j} p e_{i j}=-p_{i j} e_{i j}=0
$$

i.e. $p_{i j}=0$ which implies p is a diagonal matrix. By standard arguments one can show that p is a central element. Thus equation (31) reduces to

$$
\begin{gather*}
b\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\left[x_{1}, x_{2}\right] \tag{32}\\
=\left(\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right]\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\right)
\end{gather*}
$$

Now for $i \neq j$, choosing $x_{1}=e_{i j}, x_{2}=e_{j i}, z_{1}=0$ and $z_{2}=e_{j h}$, we reach to the following contradiction

$$
0=e_{i h}
$$

Case 3: Now suppose that none of d and g is an inner derivation, then following two subcases arises.
Subcase 1: Assume both d and g are C-independent modulo inner derivations of R. Then from Kharchenko's theorem on d in equation (23), R satisfies the following identity

$$
\begin{align*}
& \left(b\left(a\left[x_{1}, x_{2}\right]+\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)+g\left(a\left[x_{1}, x_{2}\right]+\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\right)\left[x_{1}, x_{2}\right] \tag{33}\\
& \quad=\left(a\left[x_{1}, x_{2}\right]^{2}+\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right]\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\right)
\end{align*}
$$

In particular for $z_{1}=z_{2}=0$, we obtain

$$
\begin{align*}
& \left(b\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)+g\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\right)\left[x_{1}, x_{2}\right] \tag{34}\\
= & \left(\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right]\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\right) .
\end{align*}
$$

That is

$$
\begin{gather*}
\left(b\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)+\left(\left[g\left(z_{1}\right), x_{2}\right]+\left[z_{1}, g\left(x_{2}\right)\right]+\left[g\left(x_{1}\right), z_{2}\right]+\left[x_{1}, g\left(z_{2}\right)\right]\right)\right)\left[x_{1}, x_{2}\right] \tag{35}\\
=\left(\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right]\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\right)
\end{gather*}
$$

Again from Kharchenko's theorem on g in equation (35), R satisfies

$$
\begin{gather*}
\left(b\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)+\left(\left[y_{1}, x_{2}\right]+\left[z_{1}, w_{2}\right]+\left[w_{1}, z_{2}\right]+\left[x_{1}, y_{2}\right]\right)\right)\left[x_{1}, x_{2}\right] \tag{36}\\
=\left(\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right]\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\right)
\end{gather*}
$$

In particular, for $y_{1}=y_{2}=0, R$ satisfies the blended component $\left(\left[y_{1}, x_{2}\right]+\right.$ $\left.\left[x_{1}, y_{2}\right]\right)\left[x_{1}, x_{2}\right]=0$. Then by Posner's theorem there exist a positive integer $t \geq 3$ and a suitable field K such that $M_{t}(K)$ satisfies $\left(\left[y_{1}, x_{2}\right]+\left[x_{1}, y_{2}\right]\right)\left[x_{1}, x_{2}\right]=0$. In particular, for $i \neq j$ if we choose $y_{1}=x_{1}=e_{i j}, x_{2}=e_{j i}$ and $y_{2}=0$, we get

$$
\left(\left[e_{i j}, e_{j i}\right]+\left[e_{i j}, 0\right]\right)\left[e_{i j}, e_{j i}\right]=0
$$

i.e. $e_{i i}+e_{j j}=0$, a contradiction.

Subcase 2: Suppose that both d and g are linearly C-dependent modulo inner derivations. Then there exist $\gamma, \delta \in C$ such that $\gamma d+\delta g=\left[p_{1}, x\right]$ for some $p_{1} \in U$. Now if $\gamma=0$ then g will be an inner derivation, which is a contradiction. Similarly, if $\delta=0$ then d will be an inner derivation, which is again a contradiction. Thus both δ, γ are non-zero which gives $g=\alpha d(x)+\left[q_{1}, x\right]$, where $0 \neq \alpha_{1}=-\delta^{-1} \gamma$ and $q_{1}=\delta^{-1} p_{1}$. Then from equation (23), R satisfies

$$
\begin{gather*}
b\left(a\left[x_{1}, x_{2}\right]+\left[d\left(x_{1}\right), x_{2}\right]+\left[x_{1}, d\left(x_{2}\right)\right]\right)\left[x_{1}, x_{2}\right]+\alpha_{1}\left(d(a)\left[x_{1}, x_{2}\right]\right. \tag{37}\\
+a\left[d\left(x_{1}\right), x_{2}\right]+a\left[x_{1}, d\left(x_{2}\right)\right]+\left[d^{2}\left(x_{1}\right), x_{2}\right]+2\left[d\left(x_{1}\right), d\left(x_{2}\right)\right] \\
\left.+\left[x_{1}, d^{2}\left(x_{2}\right)\right]\right)\left[x_{1}, x_{2}\right]+\left[q_{1}, a\left[x_{1}, x_{2}\right]+\left[d\left(x_{1}\right), x_{2}\right]+\left[x_{1}, d\left(x_{2}\right)\right]\right]\left[x_{1}, x_{2}\right]
\end{gather*}
$$

$$
=\left(a\left[x_{1}, x_{2}\right]^{2}+\left(\left[d\left(x_{1}\right), x_{2}\right]+\left[x_{1}, d\left(x_{2}\right)\right]\right)\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right]\left(\left[d\left(x_{1}\right), x_{2}\right]+\left[x_{1}, d\left(x_{2}\right)\right]\right)\right) .
$$

From Kharchenko's theorem in equation (37), R satisfies the following identity

$$
\begin{gather*}
b\left(a\left[x_{1}, x_{2}\right]+\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\left[x_{1}, x_{2}\right]+\alpha_{1}\left(d(a)\left[x_{1}, x_{2}\right]\right. \tag{38}\\
+a\left[z_{1}, x_{2}\right]+a\left[x_{1}, z_{2}\right]+\left[w_{1}, x_{2}\right]+2\left[z_{1}, z_{2}\right] \\
\left.\left.+\left[x_{1}, w_{2}\right)\right]\right)\left[x_{1}, x_{2}\right]+\left[q_{1}, a\left[x_{1}, x_{2}\right]+\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right]\left[x_{1}, x_{2}\right] \\
=\left(a\left[x_{1}, x_{2}\right]^{2}+\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right]\left(\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\right) .
\end{gather*}
$$

In particular for $w_{1}=0, R$ satisfies the following blended component

$$
\alpha_{1}\left[w_{1}, x_{2}\right]\left[x_{1}, x_{2}\right]=0
$$

Again by Posner's theorem there exist a suitable field K and a fixed integer $t \geq 3$ such that $M_{t}(K)$ satisfies $\alpha_{1}\left[w_{1}, x_{2}\right]\left[x_{1}, x_{2}\right]=0$. In particular, for $w_{1}=x_{1}=e_{i j}$, and $x_{2}=e_{j i}$, we get

$$
\alpha_{1}\left[e_{i j}, e_{j i}\right]\left[e_{i j}, e_{j i}\right]=e_{i i}+e_{j j}=0
$$

which is a contradiction.

Acknowledgement. The authors are highly thankful to the referee(s) for valuable suggestions and comments. This research was supported through a university fellowship by the Dr. B. R. Ambedkar University, Delhi, India.

References

[1] N. Argaç, L. Carini and V. De Filippis, An Engel condition with generalized derivations on Lie ideals, Taiwanese J. Math., 12(2) (2008), 419-433.
[2] K. I. Beidar, Rings with generalized identities III, Vestnik Moskov. Univ. Ser. I Mat. Mekh, 4 (1978), 66-73.
[3] K. I. Beidar, W. S. Martindale and A. V. Mikhalev, Rings with Generalized Identities, CRC Press, 1995.
[4] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra, 156(2) (1993), 385-394.
[5] C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103(3) (1988), 723-728.
[6] V. De Filippis and O. M. Di Vincenzo, Vanishing derivations and centralizers of generalized derivations on multilinear polynomials, Comm. Algebra, 40(6) (2012), 1918-1932.
[7] B. Dhara, Annihilator condition on power values of derivations, Indian J. Pure Appl. Math., 42 (2011), 357-369.
[8] O. M. Di Vincenzo, On the n-th centralizer of a Lie ideal, Boll. Un. Mat. Ital. A (7), 3 (1989), 77-85.
[9] T. Erickson, W. S. Martindale and J. Osborn, Prime nonassociative algebras, Pacific J. Math., 60(1) (1975), 49-63.
[10] C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hungar., 14 (1963), 369-371.
[11] I. N. Herstein, Topics in Ring Theory, University of Chicago Press, Chicago, 1969.
[12] N. Jacobson, Structure of Rings, American Mathematical Society Colloquium Publications, 1956.
[13] V. K. Kharchenko, Differential identities of prime rings, Algebra i Logika, 17(2) (1978), 155-168.
[14] C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc., 118(3) (1993), 731-734.
[15] C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math., 42 (1972), 117-136.
[16] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 20(1) (1992), 27-38.
[17] T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 27(8) (1999), 4057-4073.
[18] W. S. Martindale, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
[19] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.
[20] E. C. Posner, Prime rings satisfying a polynomial identity, Proc. Amer. Math. Soc., 11 (1960), 180-183.
[21] S. K. Tiwari, Identities with generalized derivations in prime rings, Rend. Circ. Mat. Palermo (2), 71 (2022), 207-223.

```
Ashutosh Pandey (Corresponding Author) and Balchand Prajapati
School of Liberal Studies
Dr. B.R. Ambedkar University
110006 Delhi, India
e-mails: ashutoshpandey064@gmail.com (A. Pandey)
    balchand@aud.ac.in (B.Prajapati)
```

