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Abstract. In this paper, we prove that the family of binomials xa1
1 · · ·x

am
m −

yb11 · · · y
bn
n with gcd(a1, . . . , am, b1, . . . , bn) = 1 is irreducible by identifying the

connection between the irreducibility of a binomial in C[x1, . . . , xm, y1, . . . , yn]

and C(x2, . . . , xm, y1, . . . , yn)[x1]. Then we show that the necessary and suffi-

cient conditions for the irreducibility of this family of binomials is equivalent

to the existence of a unimodular matrix Ui with integer entries such that

(a1, . . . , am, b1, . . . , bn)T = Uiei for i ∈ {1, . . . ,m + n}, where ei is the stan-

dard basis vector.

Mathematics Subject Classification (2020): 12D05

Keywords: Multivariate polynomial, irreducibility, unimodular matrix

1. Introduction

A polynomial with coefficients in a given field F is said to be irreducible if it

cannot be factored into non-unit polynomials over F. Polynomial factorization

expresses a polynomial with coefficients in F as the product of irreducible factors

with coefficients in F. Polynomial rings F[x1, . . . , xn] over a field F are unique

factorization domains, that is, every element in F[x1, . . . , xn] can be factored as a

product of irreducible polynomials. Moreover, this decomposition is unique up to

multiplication of the factors by invertible constants over the specific given field F.

Polynomial factorization plays a significant role in many problems, in particu-

lar, it is a critical step for simplification and solving polynomial equations. There

are two types of factorization of polynomials – the conventional polynomial factor-

ization which utilizes symbolic methods to get exact factors of a polynomial, and

the approximate polynomial factorization that applies numerical methods to get

approximate factors of a polynomial.

Polynomial factorization has been studied for a long time. Many works have

been devoted to the study of the approximate polynomial factorization. In the

past few decades, dramatic progress has been made on approximate polynomial

factorization, and many high efficient algorithms have been proposed [1,3,4,5,6,10,
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11,13,14,15,16]. The numerical computation is famous for its high efficiency, but

it only gives approximate results. Sometimes, an irreducible polynomial may be

identified as a reducible polynomial. This unpleasant phenomenon occurs because

when the scalars in the inputs to a symbolic computation are given as flotation

point numbers, thus numerical errors and noises are introduced to the computation,

and the desired properties of the problem formulations are lost. To address this

issue, for multivariate polynomials with complex coefficients that contain numerical

noise, new algorithms are proposed to improve the design, implementation and

experimental evaluation [12,17]. With these new developments, it is still noted by

researchers [17] that “Polynomial factorization in conventional sense is an ill-posed

problem due to its discontinuity with respect to coefficient perturbations, making

it a challenge for numerical computation using empirical data”.

It is important to correctly identify irreducible polynomials. This is particular

important in both algebra and geometry. Algebraically, an irreducible polynomial

is identified as a prime ideal with good properties. Geometrically, an irreducible

multivariate polynomial corresponds to an irreducible hypersurface, while an re-

ducible multivariate polynomial corresponds to a union of irreducible hypersurface

in the multi-dimensional space. For example, one common theme in [2] and [8]

is to determine the implicit equations for surfaces given as a family of monomial

parametrization in projective 3-space. In both papers, the authors devote a sig-

nificant amount of work to establish the irreducibility of the polynomial obtained

by eliminating the parameters. Therefore, to study the algebraic and geometric

properties of a polynomial, it is important to know the irreducibility of this poly-

nomial. However, sometimes, it is a daunting task to determine the irreducibility

of an arbitrary polynomial.

The goal of this paper is two fold:

1. to study the irreducibility of the family of binomials xa1
1 · · ·xam

m −y
b1
1 · · · ybnn

with gcd(a1, . . . , am, b1, . . . , bn) = 1;

2. to provide an equivalence condition of irreducibility in terms of the multi-

plication of a unimodular matrix and a standard basis vector.

The irreducibility of this family of binomials is confirmed in [8, Corollary 3.4],

where the authors prove this by studying the relationship between the prime ideals

in polynomial ring and the prime ideals in the Laurent polynomial ring through

the corresponding sublattices. In this paper, we focus on an elementary purely

algebraic method to prove this irreducibility. The approach in this paper is to

utilize the fundamental result that: if A is a unique factorization domain with
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quotient field K and f a primitive polynomial of positive degree in A[X], then f is

irreducible in A[X] if and only if f is irreducible in K[X].

This approach is investigated in [2] for the case of the polynomial ring in four

variables. To shed a light on this method, we begin in Section 2 by summa-

rizing the strategies used in [2] and outline the key components of their proof.

Then, we generalize their result to binomials in the polynomial ring with arbitrary

variables (Theorem 2.3). Finally, we formulate our original results in Theorem

2.4 and Corollary 2.5, where we show that the irreducibility condition is equiv-

alent to the existence of a unimodular matrix Ui with integer entries such that

(a1, . . . , am, b1, . . . , bn)T = Uiei for i ∈ {1, . . . ,m + n} where ei is the standard

basis vector. We conclude the paper by an illustrative example to flush out the

new results.

2. Irreducibility

In this section, we consider the polynomial ring C[x,y] = C[x1, . . . , xm, y1, . . . , yn]

with arbitrary variables. First, we prove the irreducibility of the family of binomials

xa−yb = xa1
1 · · ·xam

m − y
b1
1 · · · ybnn with gcd(a,b) = gcd(a1, . . . , am, b1, . . . , bn) = 1.

Then we provide an equivalent condition in terms of the multiplication of a uni-

modular matrix and a standard basis vector.

The approach used to investigate the irreducibility of a binomial over the ring

C[x,y] is to analyze its irreducibility over the quotient field using the following

well-known result:

Theorem 2.1. ([9, Lemma 6.13, Page 163]) Let A be a unique factorization domain

with quotient field K and f a primitive polynomial of positive degree in A[X]. Then

f is irreducible in A[X] if and only if f is irreducible in K[X].

Theorem 2.1 is widely used to determine if a polynomial is irreducible. In [2],

the authors apply Theorem 2.1 to prove a family of binomials in four variable is

irreducible. We state their result and outline their proof below, for details of the

proof please see [2].

Theorem 2.2. ([2, Theorem 4.1]) If f = xayb − zcwd is a polynomial with pos-

itive integer exponents a, b, c, d, and gcd(a, b, c, d) = 1, then f is irreducible in

C[x, y, z, w].

Proof. The key ingredient of the proof by [2] is to show that f is irreducible over

C(y, z, w)[x]. First, the authors show the following two lemmas:
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Lemma A: For any divisor k of a with k > 1, k

√
zcwd

yb
/∈ C(y, z, w).

Lemma B: Let K be a field that contains a primitive n-th root of unity (so in

particular charK - n). Let γ ∈ K be an element such that d
√
γ /∈ K for any divisor

d of n with d > 1. Then Xn − γ is irreducible in K[X].

Setting γ =
zcwd

yb
, as a consequence of Lemma A, Lemma B, and Theorem

2.1, the authors conclude that xayb − zcwd is irreducible over the polynomial ring

C[x, y, z, w]. �

Taking advantage of Theorem 2.1 and Lemma B established in [2], we generalize

Theorem 2.2 to binomials in the polynomial ring with arbitrary variables as below.

Theorem 2.3. In the polynomial ring C[x,y] = C[x1, . . . , xm, y1, . . . , yn], if

a1, . . . , am, b1, . . . , bn ∈ Z>0, and gcd(a,b) = gcd(a1, . . . , am, b1, . . . , bn) = 1,

then the family of binomials xa − yb = xa1
1 · · ·xam

m − yb11 · · · ybnn is irreducible.

Proof. The strategy used in [2] can be applied to prove this generalized result.

Replacing Lemma A in the proof of Theorem 2.2 by the following:

Claim A*: For any divisor k of a1 with k > 1,

k

√
yb

x̂â
=

k

√
yb11 · · · ybnn
xa2
2 · · ·x

am
m

/∈ C(x2, . . . , xm, y1, . . . , yn) = C(x̂,y).

Then, setting γ =
yb

x̂â
∈ C(x̂,y), as a consequence of Claim A*, Lemma B, and

Theorem 2.1, we conclude that the family of binomials xa − yb with gcd(a,b) = 1

is irreducible.

The proof of Claim A* can be directly modified from the proof of Lemma A

in [2]. For the convenience of the reader, we include the detailed proof for Claim

A* below. The proof of Lemma B remains the same since it is independent of the

number of variables, and we refer the reader to [2] for a detailed proof.

Proof of Claim A*: Suppose
k

√
yb

x̂â
=
P

Q
∈ C(x̂,y) where P,Q ∈ C[x̂,y], and

gcd(P,Q) = 1, then

x̂âP k = ybQk. (1)

Since gcd(a,b) = 1, we have that k cannot divide all of a2, . . . , am, b1, . . . , bm.

Suppose k - ai for some i ∈ {2, . . . ,m}, then Equation (1) shows that xi|Q. Let

Q = xei Q̄ with xi prime to Q̄, then Equation (1) becomes

x̂âP k = ybxeki Q̄
k. (2)
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Equation (2) implies that ek ≥ ai, but ek = ai is impossible since k - ai, hence

ek > ai. Therefore we obtain the following equation by cancelling xai
i

xa2
2 · · · a

ai−1

i−1 x
ai+1

i+1 · · ·x
am
m P k = ybx

a′i
i Q̄

k, a′i ≥ 1. (3)

Equation (3) yields that xi|P , which is a contradiction, since gcd(P,Q) = 1. There-

fore k|ai for all i ∈ {2, . . . ,m}.
Suppose k - bj for some j ∈ {1, . . . , n}, then Equation (1) implies that yj |P ; that

is, P = ye
′

j P̄ with yj prime to P̄ . Therefore, Equation (1) becomes

x̂âye
′k

j P̄ k = ybQd. (4)

Equation (4) yields that e′k ≥ c. Since k - bj , we must have e′k > bj . Cancelling

y
bj
j , we have

x̂ây
b′j
j P̄

k = yb11 · · · y
bj−1

j−1 y
bj+1

j+1 · · · y
bn
n Qk, b′j ≥ 1. (5)

Equation (5) shows that yj |Q, which again is a contradiction, since gcd(P,Q) = 1.

Therefore k|bj for all j ∈ {1, . . . , n}.

This says that if
k

√
yb

x̂â
=
P

Q
∈ C(x̂,y), then gcd(a,b) 6= 1, contradicting our

condition. Therefore, our assumption is false and we complete the proof of our

claim. �

Now, we shall provide an equivalent condition of irreducibility in terms of the

multiplication of a unimodular matrix and a standard basis vector. We include an

illustrative example to flush out the new results.

Theorem 2.4. Let v = (a,b)T = (a1, . . . , am, b1, . . . , bn)T , and w = (1, 0, . . . , 0)T .

Then the family of binomials xa − yb = xa1
1 · · ·xam

m − yb11 · · · ybnn ∈ C[x,y] is irre-

ducible if and only if there exists a unimodular matrix U (i.e., a square matrix with

integer entries and determinant ±1) with integer entries such that w = Uv (or

v = U−1w).

Proof. (⇒) Suppose xa − yb ∈ C[x,y] is irreducible, we will construct a unimod-

ular matrix U such that w = Uv.

First, by Theorem 2.3, gcd(v) = gcd(a,b) = gcd(a1, . . . , am, b1, . . . , bn) = 1,

hence there exists a vector u1 = (α1, . . . , αm, β1, . . . , βn) ∈ Zm+n such that u1 ·v =∑m
i=1 αiai +

∑n
i=1 βibi = 1.

Second, by Hilbert Syzygy Theorem [7], there exist m+n−1 linearly independent

vectors u2, . . . ,um+n in Zm+n such that ui ·v = 0, and v is the outer product of the

vectors u2, . . . ,um+n, that is, the j-th coordinate of the vector v is the determinant
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of the (m + n − 1) × (m + n − 1) submatrix of


u2

...

um+n

 by deleting j-th column

with alternating signs. Note that these m+ n− 1 linearly independent vectors can

be selected from the Koszul syzygies of v, and the outer product of the vectors

u2, . . . ,um+n is denoted by {u2, . . . ,um+n}o.

Finally, let U =


u1

u2

...

um+n

, where the rows of U are the row vectors u1, . . . ,um+n.

It is easy to observe that U is an (m + n) × (m + n) matrix with integer entries,

and det(U) = 1 since by expanding the first row

det(U) = det


u1

u2

...

um+n

 = u1 · {u2, . . . ,um+n}o = u1 · v = 1.

Therefore, by definition, U is a unimodular matrix, and w = Uv.

(⇐) Suppose there exists a unimodular matrix U with integer entries such that

w = Uv, we will prove xa − yb ∈ C[x,y] is irreducible.

To see this, note that since U is a unimodular matrix, U−1 exists and has only

integer entries. Hence, v = U−1w, that is, v the first column of the matrix U−1.

Since det(U) = ±1, gcd(v) = gcd(a,b) = gcd(a1, . . . , am, b1, . . . , bn) = 1. There-

fore, by Theorem 2.3, xa − yb ∈ C[x,y] is irreducible. �

The following result is a direct consequence of Theorem 2.4.

Corollary 2.5. xa − yb ∈ C[x,y] is irreducible if and only if there exists a uni-

modular matrix Uj with integer entries such that ej = Ujv (or v = U−1j ej) for

j ∈ {1, . . . ,m+ n}, where ej is the standard basis vector.

Proof. We observe that the case j = 1 is exactly Theorem 2.4, and the unimodular

matrix U1 is the matrix U constructed in the proof of Theorem 2.4. For j ∈
{2, . . . ,m+ n}, the unimodular matrix Uj can be obtained by exchanging the first

row and the j-th row of the matrix U1, and det(Uj) = −1. �

We will use the following example to illustrate Theorem 2.3 and Corollary 2.5.
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Example 2.6. Consider binomial x121 x
5
2 − y21y152 . This binomial is irreducible in

C[x1, x2, y1, y2] by Theorem 2.3, since gcd(v) = gcd(12, 5, 2, 15) = 1. Let

u1 = (−2, 2, 0, 1), where u1 · v = (−2, 2, 0, 1) · (12, 5, 2, 15) = −24 + 10 + 15 = 1.

Select three linearly independent Koszul syzygies u2,u3,u4 of v as below:

u2 = (1, 0,−6, 0), u3 = (0, 3, 0,−1), u4 = (0, 2,−5, 0).

Note that v = {u2,u3,u4}o, since

{u2,u3,u4}o =


1 0 −6 0

0 3 0 −1
0 2 −5 0


o

=

det


0 −6 0

3 0 −1
2 −5 0

 , − det


1 −6 0

0 0 −1
0 −5 0

 , det


1 0 0

0 3 −1
0 2 0

 ,− det


1 0 −6
0 3 0

0 2 −5




=
[
12 5 2 15

]T
= v.

Set U1 =
[
u1 u2 u3 u4

]T
, then det(U1) = 1, and

e1 =


−2 2 0 1

1 0 −6 0

0 3 0 −1
0 2 −5 0



12

5

2

15

 = U1v; v = U−1
1 e1 =


12 25 12 −30
5 10 5 −12
2 4 2 −5
15 30 14 −36



1

0

0

0

 =


12

5

2

15

 .

Similarly,

v = Uiei, i = 2, 3, 4, where U2 =


u2

u1

u3

u4

 , U3 =


u3

u2

u1

u4

 , U4 =


u4

u2

u3

u1

 .
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