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1. Introduction

Throughout this paper, R will denote a commutative ring with identity and Z
will denote the ring of integers.

Let Z(R) be the set of all zero divisors of R. A proper ideal P of R is said to be

an r-ideal if whenever ab ∈ P and a ∈ R \Z(R) for some a, b ∈ R, then b ∈ P [11].

Let M be an R-module. The set of all zero divisors of R on M is ZR(M) = {r ∈
R | rm = 0 for some nonzero m ∈M}.

The authors of [10] extend the concept of r-ideals to r-modules and they investi-

gate some properties of this class of modules. A proper submodule N of M is said

to be an r-submodule if am ∈ N with (0 :M a) = 0 (i.e. a ∈ R \ ZR(M)) implies

that m ∈ N for each a ∈ R and m ∈M [10].

The authors of [2] and [3], recently defined r-Noetherian and r-Artinian modules.

An R-module M is said to be an r-Noetherian module if every r-submodule of M

is finitely generated [2]. They showed that every finitely generated r-Noetherian

R-module satisfies the ascending chain condition on r-submodules [2, Lemma 2.1].

Also, M is said to be an r-Artinian module if the set of r-submodules of M satisfies

the descending chain condition [3].

In Section 2 of this paper, we define co-r-submodules of an R-module M as a

dual notion of r-submodules and obtain some properties of this class of modules.
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In Section 3, we define and investigate the notions of co-r-Noetherian and co-r-

Artinian modules.

2. Co-r-submodules of R-modules

Let M be an R-module. The subset WR(M) of R, the set of all cozero divisors

of R (that is the dual notion of ZR(M)), is defined by {r ∈ R | rM 6= M} [14].

Definition 2.1. We say that a non-zero submodule N of an R-module M is a

co-r-submodule of M if for a ∈ R and submodule K of M , whenever aN ⊆ K

and a ∈ R \ WR(M), then N ⊆ K. This can be regarded as a dual notion of

r-submodules.

Example 2.2. Let V be a vector space over a field F . Then every non-zero

subspace N of V is a co-r-submodule.

A non-zero submodule S of an R-module M is said to be second if for each

a ∈ R, the homomorphism S
a→ S is either surjective or zero [15].

Remark 2.3. A non-zero submodule N of an R-module M is a co-r-submodule

means that W (N) ⊆W (M). Thus if N is a co-r-submodule of M , then AnnR(N) ⊆
W (M). In particular, if N is a second submodule of M , then N is a co-r-submodule

of M if and only if AnnR(N) ⊆W (M).

An R-module M is said to be a multiplication module (resp. comultiplication

module) if for every submodule N of M there exists an ideal I of R such that

N = IM [7] (resp. N = (0 :M I) [4]).

Theorem 2.4. (a) Let M be a multiplication R-module. Then every non-zero

submodule N of M is a co-r-submodule.

(b) Let M be a comultiplication R-module. Then every proper submodule N of

M is an r-submodule.

Proof. (a) Let aN ⊆ K with aM = M for a ∈ R and a submodule K of M . As

M is a multiplication module, there is an ideal I of R such that N = IM . Thus

we have N = IM = IaM = aIM = aN ⊆ K.

(b) Let am ∈ N with a ∈ R \ ZR(M) for m ∈M . Since M is a comultiplication

R-module, there exists an ideal I of R such that N = (0 :M I). Therefore, m ∈
(N :M a) = (0 :M aI) = ((0 :M a) :M I) = (0 :M I) = N . �

The following example shows that the concepts of r-submodules and co-r-submodules

are different, in general.
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Example 2.5. (a) Every non-zero proper submodule of the Z-module Z is not

an r-submodule but it is a co-r-submodule.

(b) Let p be a prime number. Every non-zero proper submodule of the Z-

module Zp∞ is an r-submodule but it is not a co-r-submodule.

Proposition 2.6. Let M be an R-module. Then we have the following.

(a) M is a co-r-submodule of M .

(b) The sum of an arbitrary non-empty set of co-r-submodules of M is a co-r-

submodule of M .

Proof. (a) This is clear.

(b) Let Ni be a co-r-submodule of M for every i ∈ I. Assume that a
∑

i∈I Ni ⊆
K with aM = M for a ∈ R and submodule K of M . This implies that aNi ⊆ K

for every i ∈ I. As Ni is a co-r-submodule of M , we conclude that Ni ⊆ K for

every i ∈ I. Hence
∑

i∈I Ni ⊆ K, as needed. �

The following example shows that the intersection of two co-r-submodules need

not be a co-r-submodule, in general.

Example 2.7. Consider the Z-module Zn. Then as Zn is a multiplication Z-

module, ūZn and v̄Zn are co-r-submodules by Theorem 2.4 (a). But if gcd(u, v) = 1,

then ūZn ∩ v̄Zn = 0 is not a co-r-submodule of Zn.

If N is a second submodule of an R-module M , then AnnR(N) is a prime ideal

of R by [15]. However, the following example shows that the similar result is not

always correct for a co-r-submodule.

Example 2.8. Consider the Z-module Zn. Then for each positive integer k, k̄Zn

is a co-r-submodule of Zn but AnnZ(k̄Zn) = tZ, where n = (t)(k) is not an r-ideal

of Z.

Proposition 2.9. Let N be a co-r-submodule of an R-module M and S be a non-

empty subset of R with S 6⊆ AnnR(N). Then SN is a co-r-submodule of M . In

particular, SM is always a co-r-submodule if S 6⊆ AnnR(M).

Proof. Let aSN ⊆ K with aM = M for a ∈ R and a submodule K of M . Then

we have asN ⊆ K for every s ∈ S. Thus aN ⊆ (K :M s). Since N is a co-r-

submodule, sN ⊆ K for every s ∈ S and this yields SN ⊆ K, as needed. Now the

rest is clear. �
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Corollary 2.10. Let M be an R-module. If a ∈ R \ AnnR(M), then aM is a

co-r-submodule of M . In particular, if M is the only co-r-submodule of M , then

M is a second R-module.

Proposition 2.11. For a non-zero submodule N of an R-module M the following

are equivalent:

(a) N is a co-r-submodule of M ;

(b) aN = N for each a ∈ R \WR(M);

(c) (N :M a) = N + (0 :M a) for each a ∈ R \WR(M).

Proof. (a) ⇒ (b) Let a ∈ R \WR(M). Then by part (a), aN ⊆ aN implies that

N ⊆ aN . Thus aN = N because the reverse inclusion is clear.

(b)⇒ (a) This is clear.

(b)⇒ (c) For every a ∈ R, the inclusion N + (0 :M a) ⊆ (N :M a) always holds.

Let a ∈ R with aM = M and x ∈ (N :M a). Then ax ∈ N = aN . Thus ax = an

for some n ∈ N . Therefore, x = x − n + n ∈ N + (0 :M a). This implies that

(N :M a) ⊆ N + (0 :M a).

(c) ⇒ (b) Clearly, aN ⊆ N for every a ∈ R. Let a ∈ R \WR(M) and x ∈ N .

Then aM = M implies that x = am for some m ∈ M . Thus m ∈ (N :M a) =

N + (0 :M a). It follows that x = am ∈ aN , as needed. �

A submoduleN of anR-moduleM is said to be copure if (N :M I) = N+(0 :M I)

for every ideal I of R [5]. By Proposition 2.11, every copure submodule is a co-r-

submodule. However, the following example shows that the converse is not true in

general.

Example 2.12. Consider the Z-module Z16. Then 2̄Z16 is a co-r-submodule of

Z16. But one can see that 2̄Z16 is not a copure submodule of Z16.

Lemma 2.13. Let N be a submodule of an R-module M and a ∈ R. Then (N :M

a) = N + (0 :M a) if and only if aN = N ∩ aM .

Proof. This follows from the proof of [5, Theorem 2.l2 (a)]. �

Recall that an R-module M is said to be Hopfian (resp. co-Hopfian) if every

surjective (resp. injective) endomorphism f of M is an isomorphism.

A submodule N of an R-module M is said to be idempotent if N = (N :R M)2M

[6]. M is said to be fully idempotent if every submodule of M is idempotent [6].

A submodule N of an R-module M is said to be coidempotent if N = (0 :M

Ann2R(N)) [6]. Also, an R-module M is said to be fully coidempotent if every

submodule of M is coidempotent [6].
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Remark 2.14. If M is an R-module such that ZR(M) = WR(M), then a proper

non-zero submodule N of M is a co-r-submodule of M if and only if N is an r-

submodule of M by Lemma 2.13, Proposition 2.11, and [10, Proposition 4]. For

example, if M is a Hopfian and co-Hopfian R-module (in particular, M has finite

length or M is a fully idempotent [6, Proposition 2.7] or M is fully coidempotent [6,

Proposition 3.5 and Theorem 3.9]), then ZR(M) = WR(M). It should be note that

every multiplication R-module is Hopfian and every comultiplication R-module is

co-Hopfian.

Recall that a submodule N of an R-module M is small if for any submodule X

of M , X +N = M implies that X = M .

Proposition 2.15. Let N and K be two submodules of an R-module M such that

0 6= N ⊆ K ⊆M . Then we have the following.

(a) If N is a co-r-submodule of M and K/N is a co-r-submodule of M/N , then

K is a co-r-submodule of M .

(b) If N is a small submodule of K and K/N is a co-r-submodule of M/N ,

then K is a co-r-submodule of M .

Proof. (a) Let a ∈ R \WR(M). Then a ∈ R \WR(M/N). Thus by Proposition

2.11, aN = N and a(K/N) = K/N . Hence aN = N and aK +N = K. Therefore,

aK = a(N +K) = aK +N = K as needed.

(b) Let a ∈ R \WR(M). Then a ∈ R \WR(M/N). Thus by Proposition 2.11,

a(K/N) = K/N . It follows that aK + N = K. Therefore, aK = K since N is a

small submodule of K. So K is a co-r-submodule of M . �

Theorem 2.16. Let S1, S2, . . . , Sn be second submodules of an R-module M such

that AnnR(Si) s are not comparable. If
∑n

i=1 Si is a co-r-submodule of M , then Si

is a co-r-submodule of M for each i ∈ {1, 2, . . . , n}.

Proof. Suppose that
∑n

i=1 Si is a co-r-submodule of M . Let aSj ⊆ K with aM =

M for a ∈ R and submodule K of M . Since AnnR(Si) s are not comparable, we

have b ∈
⋂n

i=1,i6=j AnnR(Si)\AnnR(Sj) for some b ∈ R. Then we have ab
∑n

i=1 Si =

abSj ⊆ K and so a
∑n

i=1 Si ⊆ (K :M b). As
∑n

i=1 Si is a co-r-submodule of M , we

have
∑n

i=1 Si ⊆ (K :M b). This implies that Sj = bSj ⊆ K because Sj is a second

submodule of M and b 6∈ Ann(Sj). Hence, Sj is a co-r-submodule of M . �

Definition 2.17. We say that a co-r-submodule N of an R-module M is a minimal

co-r-submodule of M if there does not exist a co-r-submodule T of M such that

T ⊂ N .
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Proposition 2.18. If N is a minimal co-r-submodule of an R-module M , then N

is a second submodule.

Proof. Let aN ⊆ K and N 6⊆ K, we show that a ∈ AnnR(N). Assume that

a 6∈ AnnR(N). Then aN is a co-r-submodule by Proposition 2.9. Since N is a

minimal co-r-submodule, we conclude that aN = N ⊆ K, a contradiction. Thus,

we have a ∈ AnnR(N), as needed. �

Theorem 2.19. Let M be an R-module. Then every non-zero submodule of M is

a co-r-submodule if and only if for every submodule N of M , (N :M a) = N for

each a ∈ R \WR(M).

Proof. Suppose that every non-zero submodule of M is a co-r-submodule. Let N

be a submodule and a ∈ R \WR(M). Assume that N = 0. If (0 :M a) 6= 0, then

(0 :M a) is a co-r-submodule of M . Thus a(0 :M a) = 0 and aM = M implies

that (0 :M a) = 0, which is a contradiction. So, (0 :M a) = 0. Now assume that

N is a non-zero submodule of M . Then 0 6= N ⊆ (N :M a) and so (N :M a)

is a co-r-submodule of M . Since a(N :M a) ⊆ N , we get that (N :M a) = N .

Conversely, suppose that (N :M a) = N for every submodule N of M and every

a ∈ R \ WR(M). Let N be a non-zero submodule of M and a ∈ R \ WR(M).

Then we have (N :M a) = N + (0 :M a), and so by Proposition 2.11, N is a

co-r-submodule of M . �

Let Ri be a commutative ring with identity, Mi be an Ri-module for each i =

1, 2, . . . , n, and n ∈ N. Assume that M = M1 ×M2 × · · · ×Mn and R = R1 ×
R2 × · · · × Rn. Then M is an R-module with componentwise addition and scalar

multiplication. Also, each submodule N of M is of the form N = N1×N2×· · ·×Nn,

where Ni is a submodule of Mi.

Lemma 2.20. Let R = R1 × R2 and M = M1 ×M2, where M1 is an R1-module

and M2 is an R2-module. Suppose that N = N1 ×N2 is a submodule of M . Then

the following are equivalent:

(a) N is a co-r-submodule of M ;

(b) N1 = 0 and N2 is a co-r-submodule of M2 or N1 is a co-r-submodule of M1

and N2 = 0 or N1, N2 are co-r-submodules of M1 and M2, respectively.

Proof. (a)⇒ (b) First note that

WR(N) = WR1×R2
(N1 ×N2) = (WR1

(N1)×R2) ∪ (R1 ×WR2
(N2)).
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Suppose that N is a co-r-submodule of M and assume that N1 = 0. Since N is

a non-zero submodule of M , N2 6= 0. Then R1 ×WR2(N2) = WR(N) ⊆ WR(M)

and so WR2
(N2) ⊆WR2

(M2). This implies that N2 is a co-r-submodule of M2. In

other cases, a similar argument shows that (a) implies (b).

(b)⇒ (a) Assume that N1, N2 are co-r-submodules of M1 and M2, respectively.

Then WR1(N1) ⊆WR1(M1) and WR2(N2) ⊆WR2(M2). This implies that

WR(N) = WR1×R2
(N1 ×N2) = (WR1

(N1)×R2) ∪ (R1 ×WR2
(N2))

⊆ (WR1
(M1)×R2) ∪ (R1 ×WR2

(M2)) = WR(M),

i.e. N is a co-r-submodule of M . In other cases, one can similarly prove that N is

a co-r-submodule of M . �

Theorem 2.21. Suppose that R = R1×R2×· · ·×Rn and M = M1×M2×...×Mn,

where Mi is an Ri-module for n ≥ 1. Let N = N1 ×N2 × · · · ×Nn be a submodule

of M . Then the following are equivalent:

(a) N is a co-r-submodule of M;

(b) Ni = 0 for i ∈ {t1, t2, . . . , tk : k < n} ⊆ {1, 2, 3, . . . , n} and Ni is a co-r-

submodule of Mi for i ∈ {1, 2, ..., n} \ {t1, t2, . . . , tk}.

Proof. To prove the claim, we use induction on n. If n = 1, then (a) and (b) are

equivalent. If n = 2, by Lemma 2.20, (a) and (b) are equal. Assume that n ≥ 3

and the claim is valid when K = M1 ×M2 × · · · ×Mn−1. We prove that the claim

is true when M = K ×Mn. Then by Lemma 2.20 we get the result that N is a

co-r-submodule if and only if N = 0 × Nn for some co-r-submodule Nn of Mn or

N = L×0 for some co-r-submodule L of K or N = L×Nn for some co-r-submodule

L of K and some co-r-submodule Nn of Mn. By induction hypothesis, the result

is valid in three cases. �

Theorem 2.22. For a non-zero submodule N of an R-module M we have the

following.

(a) N is a co-r-submodule of M if and only if whenever I is an ideal of R such

that I ∩ (R \WR(M)) 6= ∅ and K is a submodule of M with IN ⊆ K, then

N ⊆ K.

(b) If AnnR(N) ⊆ WR(M) and N is not a co-r-submodule of M , then there

exist an ideal I of R and a submodule K of M such that I∩(R\WR(M)) 6= ∅,
K ⊂ N , AnnR(N) ⊂ I, and IN ⊆ K.

Proof. (a) Suppose that N is a co-r-submodule, IN ⊆ K for some ideal I of R

with I ∩ (R \ WR(M)) 6= ∅, and submodule K of M . Then there exists a ∈ I
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such that aM = M . Since N is a co-r-submodule, N ⊆ K. For the converse, let

aN ⊆ K, aM = M for a ∈ R, and submodule K of M . We take I = aR. Note

that I ∩ (R \WR(M)) 6= ∅. Then by assumption we have N ⊆ K, and so N is a

co-r-submodule of M .

(b) Since N is not a co-r-submodule of M , there exist a ∈ R and submodule K

of M such that aN ⊆ K with aM = M and N 6⊆ K. We take I = (K :R N). Note

that a ∈ I and a 6∈ AnnR(N) since aM = M . Thus, AnnR(N) ⊂ I. Now we take

K = IN . Since N 6⊆ K, we have K ⊂ N . Hence, we get K ⊂ N , AnnR(N) ⊂ I,

and IN = (IN :M I) ⊆ K. �

Theorem 2.23. Let K1, K2, K be submodules of an R-module M and I be an

ideal of R with I ∩ (R \WR(M)) 6= ∅. Then the following hold.

(a) If K1, K2 are co-r-submodules of M with (K1 :M I) = (K2 :M I), then

K1 = K2.

(b) If (K :M I) is a co-r-submodule, then (K :M I) = K. In particular, K is a

co-r-submodule.

Proof. (a) Since IK1 ⊆ K2 and K1 is a co-r-submodule, we have K1 ⊆ K2 by

Theorem 2.22 (a). Similarly, we have K2 ⊆ K1, and so K1 = K2.

(b) As (K :M I) is a co-r-submodule and I(K :M I) ⊆ K, we have (K :M I) ⊆ K
by Theorem 2.22 (a). Hence, (K :M I) = K since the reverse inclusion is clear. �

A proper submodule N of an R-module M is called an n-submodule if for a ∈ R,

m ∈M , am ∈ N with a 6∈
√
AnnR(M), then m ∈ N [13].

A non-zero submodule N of an R-module M is a co-n-submodule of M if for

a ∈ R and submodule K of M , whenever aN ⊆ K and a 6∈
√
AnnR(M), then

N ⊆ K [8].

Proposition 2.24. Let N be a co-n-submodule of an R-module M . Then N is a

co-r-submodule of M .

Proof. As M is a co-n-submodule of M , N 6= 0. Let aN ⊆ K with aM = M

for a ∈ R and a submodule K of M . If a ∈
√
AnnR(M), then there exists a

positive integer t such that atM = 0 and at−1M 6= 0. Now, aM = M implies that

0 = atM = at−1M , which is a contradiction. Thus a 6∈
√
AnnR(M). Now, as M

is a co-n-submodule of M , we have N ⊆ K as required. �

The following example shows that the converse of Proposition 2.24 is not true in

general.
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Example 2.25. The submodule 3̄Z6 of the Z-module Z6 is a co-r-submodule but

it is not a co-n-submodule.

Let S be a multiplicatively closed subset of R and P be a submodule of an R-

module M with
√

(P :R M)∩S = ∅. Then P is said to be an S-primary submodule

if there exists a fixed s ∈ S and whenever am ∈ P , then either sa ∈
√

(P :R M) or

sm ∈ P for each a ∈ R and m ∈M [9].

Let S be a multiplicatively closed subset of R and N be a submodule of an

R-module M with
√
AnnR(N) ∩ S = ∅. Then N is said to be an S-secondary

submodule if there exists a fixed t ∈ S and whenever aN ⊆ K, then either ta ∈√
AnnR(N) or tN ⊆ K for each a ∈ R and a submodule K of M [9].

Remark 2.26. Let S be a multiplicatively closed subset of R and N be a submod-

ule of a finitely generated R-module M . Then we have the following.

(a) IfM is a multiplicationR-module with
√
AnnR(M)∩S = ∅ and each proper

submodule of M is S-primary, then ZR(M) =
√
AnnR(M) [9, Theorem

4.7]. Thus N is an n-submodule of M if and only if N is an r-submodule

of M .

(b) If M is a comultiplication R-module with
√
AnnR(M) ∩ S = ∅ and each

non-zero submodule of M is S-secondary, then WR(M) =
√
AnnR(M) [9,

Theorem 4.5]. Thus N is a co-n-submodule of M if and only if N is a

co-r-submodule of M .

Lemma 2.27. [9, Lemma 4.2] Let M be an R-module, S a multiplicatively closed

subset of R, and N be a finitely generated submodule of M . If S−1N ⊆ S−1K for

a submodule K of M , then there exists an s ∈ S such that sN ⊆ K. In particular,

if S = R \WR(M) and N is a co-r-submodule of M , then N ⊆ K.

Theorem 2.28. Let N be a finitely generated submodule of a finitely generated

R-module M and S = R \WR(M). Then the following are equivalent:

(a) N is a co-r-submodule of M ;

(b) S−1N is a co-r-submodule of S−1M .

Proof. (a) ⇒ (b) If S−1N = 0, then Lemma 2.27 implies that N = 0, which is

a contradiction. Thus S−1N 6= 0. Now let r/t ∈ S−1R \WS−1R(S−1M). Then

S−1(rM) = (r/t)(S−1M) = S−1M . By using Lemma 2.27, rM = M and so

r ∈ R \ WR(M). Now as N is a co-r-submodule of M , we have rN = N by

Proposition 2.11. This implies that (r/s)(S−1N) = S−1N , as needed.
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(b) ⇒ (a) Let aN ⊆ K for some a ∈ R \WR(M) and a submodule K of M .

Then (a/1)(S−1N) ⊆ S−1K and a/1 ∈ S−1R \WS−1R(S−1M). Thus by part (b),

S−1N ⊆ S−1K. Hence by Lemma 2.27, N ⊆ K. Thus N is a co-r-submodule of

M . �

3. Ascending and descending chain conditions on co-r-submodules

Definition 3.1. We say that an R-module M is a co-r-Noetherian module if the

set of co-r-submodules of M satisfies the ascending chain condition.

Definition 3.2. We say that an R-module M is a co-r-Artinian module if the set

of co-r-submodules of M satisfies the descending chain condition.

Proposition 3.3. (a) If N is a co-r-submodule of a co-r-Noetherian (resp.

co-r-Artinian) R-module M , then M/N is a co-r-Noetherian (resp. co-r-

Artinian) R-module.

(b) Every Noetherian (resp. Artinian) R-module is a co-r-Noetherian (resp.

co-r-Artinian) R-module.

Proof. (a) This follows from Proposition 2.15 (a).

(b) These are clear. �

The following theorem provides characterizations for co-r-Artinian R-modules

when M is a Noetherian R-module.

Theorem 3.4. Let M be a Noetherian R-module and S = R \ WR(M). The

following statements are equivalent:

(a) M is a co-r-Artinian R-module;

(b) S−1M is an Artinian S−1R-module.

Proof. This follows from Lemma 2.27 and Theorem 2.28. �

Let S be a multiplicatively closed subset of R. An R-module M is called S-finite

if sM ⊆ F for some finitely generated submodule F of M and some s ∈ S. The

module M is called S-Noetherian if each submodule of M is S-finite [1].

Definition 3.5. Let S be a multiplicatively closed subset of R. We say that an

R-module M is a strongly S-Noetherian R-module if for any ascending chain of

submodules

N1 ⊆ N2 ⊆ · · · ⊆ Nk ⊆ · · ·

of M , there exist s ∈ S and k ∈ N such that sNn ⊆ Nk for every n ≥ k.
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Let S be a multiplicatively closed subset of R. Clearly, every strongly S-

Noetherian R-module is an S-Noetherian R-module. But Example 3.7 shows that

the converse is not true in general for every multiplicatively closed subset S of R..

Let S be a multiplicatively closed subset of R. An R-module M is said to be an

S-Artinian R-module if for any descending chain of submodules

N1 ⊇ N2 ⊇ · · · ⊇ Nk ⊇ · · ·

of M , there exist s ∈ S and k ∈ N such that sNk ⊆ Nn for every n ≥ k [12].

Proposition 3.6. Let S be a multiplicatively closed subset of R such that S ∩
WR(M) = ∅. Then every strongly S-Noetherian (resp. S-Artinian) R-module is a

co-r-Noetherian (resp. co-r-Artinian) R-module.

Proof. This follows from the fact that for each co-r-submodule N of M and s ∈ S,

we have sN = N by Proposition 2.11. �

The following is an example of a co-r-Noetherian module that is not S-Noetherian

for every multiplicatively closed subset S of R.

Example 3.7. Let p be a prime number. Consider R := Z and M := Zp∞ .

Then M is a co-r-Noetherian R-module by Example 2.5 (b). Also, M is an S-

Noetherian R-module. However, M is not a strongly S-Noetherian R-module for

every multiplicatively closed subset S of R. It sufices to verify that M is not a

strongly S-Noetherian R-module, where S = Z\{0}. Indeed, consider the following

ascending chain of submodules of M

〈1/p+ Z〉 ⊆ 〈1/p2 + Z〉 ⊆ 〈1/p3 + Z〉 ⊆ · · · ⊆ 〈1/pn + Z〉 ⊆ · · · .

If s ∈ S, then s = pmt for some m ∈ N ∪ {0} and t ∈ Z with gcd(t, p) = 1. Now,

we let k ∈ N. Then, s〈1/pm+k+1 + Z〉 6⊆ 〈1/pk + Z〉 and thus M is not a strongly

S-Noetherian R-module.

Lemma 3.8. Let M be a multiplication R-module with WR(M) ⊆ Z(R). If N is

a non-zero submodule of M , then (N :R M) is an r-ideal of R.

Proof. As M is a multiplication R-module, we have N = (N :R M)M . Let

ab ∈ (N :R M) with a 6∈ Z(R) for some a, b ∈ R. Then by assumption, aM = M .

Thus

bN = b(N :R M)M = b(N :R M)aM = ab(N :R M)M = abN ⊆M,

as needed. �
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Theorem 3.9. Let M be a multiplication R-module with WR(M) ⊆ Z(R) and

R satisfy ascending chain condition on r-ideals of R. Then M is a Noetherian

R-module.

Proof. Let N1 ⊆ N2 ⊆ · · · ⊆ Nk ⊆ · · · be an ascending chain of submodules of

M . By Lemma 3.8, for each i, (Ni :R M) is an r-ideal of R. So

(N1 :R M) ⊆ (N2 :R M) ⊆ · · · ⊆ (Nk :R M) ⊆ · · ·

is an ascending chain of r-ideals of R. Since R satisfies ascending chain condition

on r-ideals, there exists t ∈ N such that (Ni :R M) = (Nt :R M) for each i ≥ t.

Therefore, Ni = (Ni :R M)M = (Nt :R M)M = Nt for each i ≥ t. It follows that

M is a Noetherian module. �

Lemma 3.10. Let f : M → Ḿ be an epimorphism of R-modules. If N is a

co-r-submodule of Ḿ and Ker(f) is a co-r-submodule of M , then f−1(N) is a

co-r-submodule M .

Proof. Since Ker(f) is a co-r-submodule of M , we have Ker(f) 6= 0. So f−1(N) 6=
0. Now let a ∈ R \WR(M) and af−1(N) ⊆ K for some submodule K of M . Then

aKer(f) ⊆ K and so by assumption, Ker(f) ⊆ K. Clearly a ∈ R \WR
´(M). Thus

aN = aN ∩ Ḿ = aN ∩ f(M) = f(f−1(aN)) ⊆ f(K) implies that N ⊆ f(K). Thus

f−1(N) ⊆ K +Ker(f) = K, as needed. �

Theorem 3.11. Let 0 −→
ψ

M1 −→
φ

M2 −→ M3 −→ 0 be an exact sequence of

R-modules. Then we have the following.

(a) Assume that WR(M1) ⊆ WR(M2). If M2 is a co-r-Noetherian R-module,

then so is M1.

(b) Suppose that WR(M2) ⊆ WR(M3). If M3 is a co-r-Noetherian R-module

and M1 is a strongly S-Noetherian R-module where S := R\WR(M2), then

M2 is a co-r-Noetherian R-module.

(c) If M2 is a co-r-Noetherian R-module and Ker(φ) is a co-r-submodule of

M2, then M3 is a co-r-Noetherian R-module.

Proof. (a) As WR(M1) ⊆WR(M2), we conclude that ψ(N) is a co-r-submodule of

M2 for every co-r-submodule N of M1. Hence if M2 is a co-r-Noetherian module,

then we can easily get M1 is a co-r-Noetherian module.

(b) Let

N1 ⊆ N2 ⊆ · · · ⊆ Nn ⊆ · · ·

be an ascending chain of co-r-submodules of M2. Since M1 is an S-Noetherian

R-module with S := R \WR(M2), then there exist s ∈ S and k1 ∈ N such that
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sψ−1(Nn) ⊆ ψ−1(Nk1
) for each n ≥ k1. It follows that sNn ∩ ψ(M1) ⊆ Nk1

. On

the other hand, we have the ascending chain

φ(N1) ⊆ φ(N2) ⊆ · · · ⊆ φ(Nn) ⊆ · · ·

of co-r-submodules of M3. As M3 is a co-r-Noetherian module, there exists k2 ∈ N
such that φ(Nk2) = φ(Nn) for each n ≥ k2 This implies that Nk2 + ψ(M1) = Nn +

ψ(M1) for each n ≥ k2. Now put k = max{k1, k2}. Then we have sNn ∩ ψ(M1) ⊆
Nk and Nk + ψ(M1) = Nn + ψ(M1) for each n ≥ k. Now since Nk ⊆ Nn, we have

sNn = s(Nn ∩ (Nn + ψ(M1))) = s(Nn ∩ (Nk + ψ(M1))) =

s((Nn ∩Nk) + (Nn ∩ ψ(M1))) ⊆ Nk + (sNn ∩ ψ(M1)) ⊆ Nk.

Hence Nn ⊆ Nk since Nn is a co-r-submodule of M2. Thus M2 is a co-r-Noetherian

R-module.

(c) This follows from Lemma 3.10. �
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