THE DUAL NOTION OF r-SUBMODULES OF MODULES

Faranak Farshadifar
Received: 5 May 2022; Accepted: 18 February 2023
Communicated by A. Çiğdem Özcan

Abstract

Let R be a commutative ring with identity and let M be an R module. A proper submodule N of M is said to be an r-submodule if $a m \in N$ with $\left(0:_{M} a\right)=0$ implies that $m \in N$ for each $a \in R$ and $m \in M$. The purpose of this paper is to introduce and investigate the dual notion of r-submodules of M.

Mathematics Subject Classification (2020): 13C13, 13C99 Keywords: r-submodule, co- r-submodule, co- r-Noetherian module, co-r-Artinian module

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers.

Let $Z(R)$ be the set of all zero divisors of R. A proper ideal P of R is said to be an r-ideal if whenever $a b \in P$ and $a \in R \backslash Z(R)$ for some $a, b \in R$, then $b \in P$ [11].

Let M be an R-module. The set of all zero divisors of R on M is $Z_{R}(M)=\{r \in$ $R \mid r m=0$ for some nonzero $m \in M\}$.

The authors of [10] extend the concept of r-ideals to r-modules and they investigate some properties of this class of modules. A proper submodule N of M is said to be an r-submodule if $a m \in N$ with $\left(0:_{M} a\right)=0$ (i.e. $\left.a \in R \backslash Z_{R}(M)\right)$ implies that $m \in N$ for each $a \in R$ and $m \in M$ [10].

The authors of [2] and [3], recently defined r-Noetherian and r-Artinian modules. An R-module M is said to be an r-Noetherian module if every r-submodule of M is finitely generated [2]. They showed that every finitely generated r-Noetherian R-module satisfies the ascending chain condition on r-submodules [2, Lemma 2.1]. Also, M is said to be an r-Artinian module if the set of r-submodules of M satisfies the descending chain condition [3].

In Section 2 of this paper, we define co-r-submodules of an R-module M as a dual notion of r-submodules and obtain some properties of this class of modules.

This research was supported with a grant from Farhangian University.

In Section 3, we define and investigate the notions of co-r-Noetherian and co-rArtinian modules.

2. $C o-r$-submodules of R-modules

Let M be an R-module. The subset $W_{R}(M)$ of R, the set of all cozero divisors of R (that is the dual notion of $Z_{R}(M)$), is defined by $\{r \in R \mid r M \neq M\}[14]$.

Definition 2.1. We say that a non-zero submodule N of an R-module M is a co-r-submodule of M if for $a \in R$ and submodule K of M, whenever $a N \subseteq K$ and $a \in R \backslash W_{R}(M)$, then $N \subseteq K$. This can be regarded as a dual notion of r-submodules.

Example 2.2. Let V be a vector space over a field F. Then every non-zero subspace N of V is a co- r-submodule.

A non-zero submodule S of an R-module M is said to be second if for each $a \in R$, the homomorphism $S \xrightarrow{a} S$ is either surjective or zero [15].

Remark 2.3. A non-zero submodule N of an R-module M is a co- r-submodule means that $W(N) \subseteq W(M)$. Thus if N is a co- r-submodule of M, then $A n n_{R}(N) \subseteq$ $W(M)$. In particular, if N is a second submodule of M, then N is a co-r-submodule of M if and only if $A n n_{R}(N) \subseteq W(M)$.

An R-module M is said to be a multiplication module (resp. comultiplication module) if for every submodule N of M there exists an ideal I of R such that $N=I M[7]\left(\right.$ resp. $\left.N=\left(0:_{M} I\right)[4]\right)$.

Theorem 2.4. (a) Let M be a multiplication R-module. Then every non-zero

 submodule N of M is a co-r-submodule.(b) Let M be a comultiplication R-module. Then every proper submodule N of M is an r-submodule.

Proof. (a) Let $a N \subseteq K$ with $a M=M$ for $a \in R$ and a submodule K of M. As M is a multiplication module, there is an ideal I of R such that $N=I M$. Thus we have $N=I M=I a M=a I M=a N \subseteq K$.
(b) Let $a m \in N$ with $a \in R \backslash Z_{R}(M)$ for $m \in M$. Since M is a comultiplication R-module, there exists an ideal I of R such that $N=\left(0:_{M} I\right)$. Therefore, $m \in$ $\left(N:_{M} a\right)=\left(0:_{M} a I\right)=\left(\left(0:_{M} a\right):_{M} I\right)=\left(0:_{M} I\right)=N$.

The following example shows that the concepts of r-submodules and co-r-submodules are different, in general.

Example 2.5. (a) Every non-zero proper submodule of the \mathbb{Z}-module \mathbb{Z} is not an r-submodule but it is a co-r-submodule.
(b) Let p be a prime number. Every non-zero proper submodule of the \mathbb{Z} module $\mathbb{Z}_{p^{\infty}}$ is an r-submodule but it is not a co- r-submodule.

Proposition 2.6. Let M be an R-module. Then we have the following.
(a) M is a co-r-submodule of M.
(b) The sum of an arbitrary non-empty set of co-r-submodules of M is a co-rsubmodule of M.

Proof. (a) This is clear.
(b) Let N_{i} be a co-r-submodule of M for every $i \in I$. Assume that $a \sum_{i \in I} N_{i} \subseteq$ K with $a M=M$ for $a \in R$ and submodule K of M. This implies that $a N_{i} \subseteq K$ for every $i \in I$. As N_{i} is a co- r-submodule of M, we conclude that $N_{i} \subseteq K$ for every $i \in I$. Hence $\sum_{i \in I} N_{i} \subseteq K$, as needed.

The following example shows that the intersection of two co-r-submodules need not be a co-r-submodule, in general.

Example 2.7. Consider the \mathbb{Z}-module \mathbb{Z}_{n}. Then as \mathbb{Z}_{n} is a multiplication \mathbb{Z} module, $\bar{u} \mathbb{Z}_{n}$ and $\bar{v} \mathbb{Z}_{n}$ are co-r-submodules by Theorem 2.4 (a). But if $\operatorname{gcd}(u, v)=1$, then $\bar{u} \mathbb{Z}_{n} \cap \bar{v} \mathbb{Z}_{n}=0$ is not a co- r-submodule of \mathbb{Z}_{n}.

If N is a second submodule of an R-module M, then $A n n_{R}(N)$ is a prime ideal of R by [15]. However, the following example shows that the similar result is not always correct for a co-r-submodule.

Example 2.8. Consider the \mathbb{Z}-module \mathbb{Z}_{n}. Then for each positive integer $k, \bar{k} \mathbb{Z}_{n}$ is a co-r-submodule of \mathbb{Z}_{n} but $A n n_{\mathbb{Z}}\left(\bar{k} \mathbb{Z}_{n}\right)=t \mathbb{Z}$, where $n=(t)(k)$ is not an r-ideal of \mathbb{Z}.

Proposition 2.9. Let N be a co-r-submodule of an R-module M and S be a nonempty subset of R with $S \nsubseteq A n n_{R}(N)$. Then $S N$ is a co-r-submodule of M. In particular, $S M$ is always a co-r-submodule if $S \nsubseteq \operatorname{Ann}_{R}(M)$.

Proof. Let $a S N \subseteq K$ with $a M=M$ for $a \in R$ and a submodule K of M. Then we have $a s N \subseteq K$ for every $s \in S$. Thus $a N \subseteq\left(K:_{M} s\right)$. Since N is a co-rsubmodule, $s N \subseteq K$ for every $s \in S$ and this yields $S N \subseteq K$, as needed. Now the rest is clear.

Corollary 2.10. Let M be an R-module. If $a \in R \backslash A n n_{R}(M)$, then $a M$ is a co-r-submodule of M. In particular, if M is the only co-r-submodule of M, then M is a second R-module.

Proposition 2.11. For a non-zero submodule N of an R-module M the following are equivalent:
(a) N is a co-r-submodule of M;
(b) $a N=N$ for each $a \in R \backslash W_{R}(M)$;
(c) $\left(N:_{M} a\right)=N+\left(0:_{M} a\right)$ for each $a \in R \backslash W_{R}(M)$.

Proof. $(a) \Rightarrow(b)$ Let $a \in R \backslash W_{R}(M)$. Then by part (a), $a N \subseteq a N$ implies that $N \subseteq a N$. Thus $a N=N$ because the reverse inclusion is clear.
$(b) \Rightarrow(a)$ This is clear.
$(b) \Rightarrow(c)$ For every $a \in R$, the inclusion $N+\left(0:_{M} a\right) \subseteq\left(N:_{M} a\right)$ always holds. Let $a \in R$ with $a M=M$ and $x \in\left(N:_{M} a\right)$. Then $a x \in N=a N$. Thus $a x=a n$ for some $n \in N$. Therefore, $x=x-n+n \in N+\left(0:_{M} a\right)$. This implies that $\left(N:_{M} a\right) \subseteq N+\left(0:_{M} a\right)$.
$(c) \Rightarrow(b)$ Clearly, $a N \subseteq N$ for every $a \in R$. Let $a \in R \backslash W_{R}(M)$ and $x \in N$. Then $a M=M$ implies that $x=a m$ for some $m \in M$. Thus $m \in\left(N:_{M} a\right)=$ $N+\left(0:_{M} a\right)$. It follows that $x=a m \in a N$, as needed.

A submodule N of an R-module M is said to be copure if $\left(N:_{M} I\right)=N+\left(0:_{M} I\right)$ for every ideal I of $R[5]$. By Proposition 2.11, every copure submodule is a co- r submodule. However, the following example shows that the converse is not true in general.

Example 2.12. Consider the \mathbb{Z}-module \mathbb{Z}_{16}. Then $\overline{2} \mathbb{Z}_{16}$ is a co- r-submodule of \mathbb{Z}_{16}. But one can see that $\overline{2} \mathbb{Z}_{16}$ is not a copure submodule of \mathbb{Z}_{16}.

Lemma 2.13. Let N be a submodule of an R-module M and $a \in R$. Then $\left(N:_{M}\right.$ $a)=N+\left(0:_{M} a\right)$ if and only if $a N=N \cap a M$.

Proof. This follows from the proof of [5, Theorem 2.12 (a)].
Recall that an R-module M is said to be Hopfian (resp. co-Hopfian) if every surjective (resp. injective) endomorphism f of M is an isomorphism.

A submodule N of an R-module M is said to be idempotent if $N=\left(N:_{R} M\right)^{2} M$ [6]. M is said to be fully idempotent if every submodule of M is idempotent [6].

A submodule N of an R-module M is said to be coidempotent if $N=\left(0:_{M}\right.$ $\left.A n n_{R}^{2}(N)\right)$ [6]. Also, an R-module M is said to be fully coidempotent if every submodule of M is coidempotent [6].

Remark 2.14. If M is an R-module such that $Z_{R}(M)=W_{R}(M)$, then a proper non-zero submodule N of M is a co-r-submodule of M if and only if N is an r submodule of M by Lemma 2.13, Proposition 2.11, and [10, Proposition 4]. For example, if M is a Hopfian and co-Hopfian R-module (in particular, M has finite length or M is a fully idempotent [6, Proposition 2.7] or M is fully coidempotent [6, Proposition 3.5 and Theorem 3.9]), then $Z_{R}(M)=W_{R}(M)$. It should be note that every multiplication R-module is Hopfian and every comultiplication R-module is co-Hopfian.

Recall that a submodule N of an R-module M is small if for any submodule X of $M, X+N=M$ implies that $X=M$.

Proposition 2.15. Let N and K be two submodules of an R-module M such that $0 \neq N \subseteq K \subseteq M$. Then we have the following
(a) If N is a co-r-submodule of M and K / N is a co-r-submodule of M / N, then K is a co-r-submodule of M.
(b) If N is a small submodule of K and K / N is a co-r-submodule of M / N, then K is a co-r-submodule of M.

Proof. (a) Let $a \in R \backslash W_{R}(M)$. Then $a \in R \backslash W_{R}(M / N)$. Thus by Proposition 2.11, $a N=N$ and $a(K / N)=K / N$. Hence $a N=N$ and $a K+N=K$. Therefore, $a K=a(N+K)=a K+N=K$ as needed.
(b) Let $a \in R \backslash W_{R}(M)$. Then $a \in R \backslash W_{R}(M / N)$. Thus by Proposition 2.11, $a(K / N)=K / N$. It follows that $a K+N=K$. Therefore, $a K=K$ since N is a small submodule of K. So K is a co-r-submodule of M.

Theorem 2.16. Let $S_{1}, S_{2}, \ldots, S_{n}$ be second submodules of an R-module M such that $\operatorname{Ann}_{R}\left(S_{i}\right)$ s are not comparable. If $\sum_{i=1}^{n} S_{i}$ is a co-r-submodule of M, then S_{i} is a co-r-submodule of M for each $i \in\{1,2, \ldots, n\}$.

Proof. Suppose that $\sum_{i=1}^{n} S_{i}$ is a co-r-submodule of M. Let $a S_{j} \subseteq K$ with $a M=$ M for $a \in R$ and submodule K of M. Since $A n n_{R}\left(S_{i}\right)$ s are not comparable, we have $b \in \bigcap_{i=1, i \neq j}^{n} A n n_{R}\left(S_{i}\right) \backslash A n n_{R}\left(S_{j}\right)$ for some $b \in R$. Then we have $a b \sum_{i=1}^{n} S_{i}=$ $a b S_{j} \subseteq K$ and so $a \sum_{i=1}^{n} S_{i} \subseteq\left(K:_{M} b\right)$. As $\sum_{i=1}^{n} S_{i}$ is a co- r-submodule of M, we have $\sum_{i=1}^{n} S_{i} \subseteq\left(K:_{M} b\right)$. This implies that $S_{j}=b S_{j} \subseteq K$ because S_{j} is a second submodule of M and $b \notin \operatorname{Ann} n_{(} S_{j}$. Hence, S_{j} is a co-r-submodule of M.

Definition 2.17. We say that a co-r-submodule N of an R-module M is a minimal co-r-submodule of M if there does not exist a co-r-submodule T of M such that $T \subset N$.

Proposition 2.18. If N is a minimal co-r-submodule of an R-module M, then N is a second submodule.

Proof. Let $a N \subseteq K$ and $N \nsubseteq K$, we show that $a \in \operatorname{Ann}_{R}(N)$. Assume that $a \notin A n n_{R}(N)$. Then $a N$ is a co-r-submodule by Proposition 2.9. Since N is a minimal co-r-submodule, we conclude that $a N=N \subseteq K$, a contradiction. Thus, we have $a \in \operatorname{Ann}_{R}(N)$, as needed.

Theorem 2.19. Let M be an R-module. Then every non-zero submodule of M is a co-r-submodule if and only if for every submodule N of $M,\left(N:_{M} a\right)=N$ for each $a \in R \backslash W_{R}(M)$.

Proof. Suppose that every non-zero submodule of M is a co- r-submodule. Let N be a submodule and $a \in R \backslash W_{R}(M)$. Assume that $N=0$. If $\left(0:_{M} a\right) \neq 0$, then $\left(0:_{M} a\right)$ is a co-r-submodule of M. Thus $a\left(0:_{M} a\right)=0$ and $a M=M$ implies that $\left(0:_{M} a\right)=0$, which is a contradiction. So, $\left(0:_{M} a\right)=0$. Now assume that N is a non-zero submodule of M. Then $0 \neq N \subseteq\left(N:_{M} a\right)$ and so $\left(N:_{M} a\right)$ is a co-r-submodule of M. Since $a\left(N:_{M} a\right) \subseteq N$, we get that $\left(N:_{M} a\right)=N$. Conversely, suppose that $\left(N:_{M} a\right)=N$ for every submodule N of M and every $a \in R \backslash W_{R}(M)$. Let N be a non-zero submodule of M and $a \in R \backslash W_{R}(M)$. Then we have $\left(N:_{M} a\right)=N+\left(0:_{M} a\right)$, and so by Proposition 2.11, N is a co-r-submodule of M.

Let R_{i} be a commutative ring with identity, M_{i} be an R_{i}-module for each $i=$ $1,2, \ldots, n$, and $n \in \mathbb{N}$. Assume that $M=M_{1} \times M_{2} \times \cdots \times M_{n}$ and $R=R_{1} \times$ $R_{2} \times \cdots \times R_{n}$. Then M is an R-module with componentwise addition and scalar multiplication. Also, each submodule N of M is of the form $N=N_{1} \times N_{2} \times \cdots \times N_{n}$, where N_{i} is a submodule of M_{i}.

Lemma 2.20. Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$, where M_{1} is an R_{1}-module and M_{2} is an R_{2}-module. Suppose that $N=N_{1} \times N_{2}$ is a submodule of M. Then the following are equivalent:
(a) N is a co-r-submodule of M;
(b) $N_{1}=0$ and N_{2} is a co-r-submodule of M_{2} or N_{1} is a co-r-submodule of M_{1} and $N_{2}=0$ or N_{1}, N_{2} are co-r-submodules of M_{1} and M_{2}, respectively.

Proof. $(a) \Rightarrow(b)$ First note that

$$
W_{R}(N)=W_{R_{1} \times R_{2}}\left(N_{1} \times N_{2}\right)=\left(W_{R_{1}}\left(N_{1}\right) \times R_{2}\right) \cup\left(R_{1} \times W_{R_{2}}\left(N_{2}\right)\right)
$$

Suppose that N is a co- r-submodule of M and assume that $N_{1}=0$. Since N is a non-zero submodule of $M, N_{2} \neq 0$. Then $R_{1} \times W_{R_{2}}\left(N_{2}\right)=W_{R}(N) \subseteq W_{R}(M)$ and so $W_{R_{2}}\left(N_{2}\right) \subseteq W_{R_{2}}\left(M_{2}\right)$. This implies that N_{2} is a co-r-submodule of M_{2}. In other cases, a similar argument shows that (a) implies (b).
$(b) \Rightarrow(a)$ Assume that N_{1}, N_{2} are co-r-submodules of M_{1} and M_{2}, respectively. Then $W_{R_{1}}\left(N_{1}\right) \subseteq W_{R_{1}}\left(M_{1}\right)$ and $W_{R_{2}}\left(N_{2}\right) \subseteq W_{R_{2}}\left(M_{2}\right)$. This implies that

$$
\begin{aligned}
W_{R}(N) & =W_{R_{1} \times R_{2}}\left(N_{1} \times N_{2}\right)=\left(W_{R_{1}}\left(N_{1}\right) \times R_{2}\right) \cup\left(R_{1} \times W_{R_{2}}\left(N_{2}\right)\right) \\
& \subseteq\left(W_{R_{1}}\left(M_{1}\right) \times R_{2}\right) \cup\left(R_{1} \times W_{R_{2}}\left(M_{2}\right)\right)=W_{R}(M)
\end{aligned}
$$

i.e. N is a co-r-submodule of M. In other cases, one can similarly prove that N is a co-r-submodule of M.

Theorem 2.21. Suppose that $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ and $M=M_{1} \times M_{2} \times \ldots \times M_{n}$, where M_{i} is an R_{i}-module for $n \geq 1$. Let $N=N_{1} \times N_{2} \times \cdots \times N_{n}$ be a submodule of M. Then the following are equivalent:
(a) N is a co-r-submodule of M;
(b) $N_{i}=0$ for $i \in\left\{t_{1}, t_{2}, \ldots, t_{k}: k<n\right\} \subseteq\{1,2,3, \ldots, n\}$ and N_{i} is a co-rsubmodule of M_{i} for $i \in\{1,2, \ldots, n\} \backslash\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$.

Proof. To prove the claim, we use induction on n. If $n=1$, then (a) and (b) are equivalent. If $n=2$, by Lemma 2.20, (a) and (b) are equal. Assume that $n \geq 3$ and the claim is valid when $K=M_{1} \times M_{2} \times \cdots \times M_{n-1}$. We prove that the claim is true when $M=K \times M_{n}$. Then by Lemma 2.20 we get the result that N is a co-r-submodule if and only if $N=0 \times N_{n}$ for some co-r-submodule N_{n} of M_{n} or $N=L \times 0$ for some co-r-submodule L of K or $N=L \times N_{n}$ for some co-r-submodule L of K and some co-r-submodule N_{n} of M_{n}. By induction hypothesis, the result is valid in three cases.

Theorem 2.22. For a non-zero submodule N of an R-module M we have the following.
(a) N is a co-r-submodule of M if and only if whenever I is an ideal of R such that $I \cap\left(R \backslash W_{R}(M)\right) \neq \emptyset$ and K is a submodule of M with $I N \subseteq K$, then $N \subseteq K$.
(b) If $\operatorname{Ann}_{R}(N) \subseteq W_{R}(M)$ and N is not a co-r-submodule of M, then there exist an ideal I of R and a submodule K of M such that $I \cap\left(R \backslash W_{R}(M)\right) \neq \emptyset$, $K \subset N, A n n_{R}(N) \subset I$, and $I N \subseteq K$.

Proof. (a) Suppose that N is a co- r-submodule, $I N \subseteq K$ for some ideal I of R with $I \cap\left(R \backslash W_{R}(M)\right) \neq \emptyset$, and submodule K of M. Then there exists $a \in I$
such that $a M=M$. Since N is a co-r-submodule, $N \subseteq K$. For the converse, let $a N \subseteq K, a M=M$ for $a \in R$, and submodule K of M. We take $I=a R$. Note that $I \cap\left(R \backslash W_{R}(M)\right) \neq \emptyset$. Then by assumption we have $N \subseteq K$, and so N is a co-r-submodule of M.
(b) Since N is not a co-r-submodule of M, there exist $a \in R$ and submodule K of M such that $a N \subseteq K$ with $a M=M$ and $N \nsubseteq K$. We take $I=\left(K:_{R} N\right)$. Note that $a \in I$ and $a \notin A n n_{R}(N)$ since $a M=M$. Thus, $A n n_{R}(N) \subset I$. Now we take $K=I N$. Since $N \nsubseteq K$, we have $K \subset N$. Hence, we get $K \subset N, A n n_{R}(N) \subset I$, and $I N=\left(I N:_{M} I\right) \subseteq K$.

Theorem 2.23. Let K_{1}, K_{2}, K be submodules of an R-module M and I be an ideal of R with $I \cap\left(R \backslash W_{R}(M)\right) \neq \emptyset$. Then the following hold.
(a) If K_{1}, K_{2} are co-r-submodules of M with $\left(K_{1}:_{M} I\right)=\left(K_{2}:_{M} I\right)$, then $K_{1}=K_{2}$.
(b) If $\left(K:_{M} I\right)$ is a co-r-submodule, then $\left(K:_{M} I\right)=K$. In particular, K is a co-r-submodule.

Proof. (a) Since $I K_{1} \subseteq K_{2}$ and K_{1} is a co- r-submodule, we have $K_{1} \subseteq K_{2}$ by Theorem 2.22 (a). Similarly, we have $K_{2} \subseteq K_{1}$, and so $K_{1}=K_{2}$.
(b) As $\left(K:_{M} I\right)$ is a co-r-submodule and $I\left(K:_{M} I\right) \subseteq K$, we have $\left(K:_{M} I\right) \subseteq K$ by Theorem 2.22 (a). Hence, $\left(K:_{M} I\right)=K$ since the reverse inclusion is clear.

A proper submodule N of an R-module M is called an n-submodule if for $a \in R$, $m \in M, a m \in N$ with $a \notin \sqrt{A n n_{R}(M)}$, then $m \in N[13]$.

A non-zero submodule N of an R-module M is a co-n-submodule of M if for $a \in R$ and submodule K of M, whenever $a N \subseteq K$ and $a \notin \sqrt{A n n_{R}(M)}$, then $N \subseteq K[8]$.

Proposition 2.24. Let N be a co-n-submodule of an R-module M. Then N is a co-r-submodule of M.

Proof. As M is a co- n-submodule of $M, N \neq 0$. Let $a N \subseteq K$ with $a M=M$ for $a \in R$ and a submodule K of M. If $a \in \sqrt{A n n_{R}(M)}$, then there exists a positive integer t such that $a^{t} M=0$ and $a^{t-1} M \neq 0$. Now, $a M=M$ implies that $0=a^{t} M=a^{t-1} M$, which is a contradiction. Thus $a \notin \sqrt{A n n_{R}(M)}$. Now, as M is a co- n-submodule of M, we have $N \subseteq K$ as required.

The following example shows that the converse of Proposition 2.24 is not true in general.

Example 2.25. The submodule $\overline{3} \mathbb{Z}_{6}$ of the \mathbb{Z}-module \mathbb{Z}_{6} is a co- r-submodule but it is not a co-n-submodule.

Let S be a multiplicatively closed subset of R and P be a submodule of an R module M with $\sqrt{\left(P:_{R} M\right)} \cap S=\emptyset$. Then P is said to be an S-primary submodule if there exists a fixed $s \in S$ and whenever $a m \in P$, then either $s a \in \sqrt{\left(P:_{R} M\right)}$ or $s m \in P$ for each $a \in R$ and $m \in M$ [9].

Let S be a multiplicatively closed subset of R and N be a submodule of an R-module M with $\sqrt{A n n_{R}(N)} \cap S=\emptyset$. Then N is said to be an S-secondary submodule if there exists a fixed $t \in S$ and whenever $a N \subseteq K$, then either $t a \in$ $\sqrt{A n n_{R}(N)}$ or $t N \subseteq K$ for each $a \in R$ and a submodule K of M [9].

Remark 2.26. Let S be a multiplicatively closed subset of R and N be a submodule of a finitely generated R-module M. Then we have the following.
(a) If M is a multiplication R-module with $\sqrt{A n n_{R}(M)} \cap S=\emptyset$ and each proper submodule of M is S-primary, then $Z_{R}(M)=\sqrt{A n n_{R}(M)}$ [9, Theorem 4.7]. Thus N is an n-submodule of M if and only if N is an r-submodule of M.
(b) If M is a comultiplication R-module with $\sqrt{A n n_{R}(M)} \cap S=\emptyset$ and each non-zero submodule of M is S-secondary, then $W_{R}(M)=\sqrt{A n n_{R}(M)}[9$, Theorem 4.5]. Thus N is a co-n-submodule of M if and only if N is a co-r-submodule of M.

Lemma 2.27. [9, Lemma 4.2] Let M be an R-module, S a multiplicatively closed subset of R, and N be a finitely generated submodule of M. If $S^{-1} N \subseteq S^{-1} K$ for a submodule K of M, then there exists an $s \in S$ such that $s N \subseteq K$. In particular, if $S=R \backslash W_{R}(M)$ and N is a co-r-submodule of M, then $N \subseteq K$.

Theorem 2.28. Let N be a finitely generated submodule of a finitely generated R-module M and $S=R \backslash W_{R}(M)$. Then the following are equivalent:
(a) N is a co-r-submodule of M;
(b) $S^{-1} N$ is a co-r-submodule of $S^{-1} M$.

Proof. $(a) \Rightarrow(b)$ If $S^{-1} N=0$, then Lemma 2.27 implies that $N=0$, which is a contradiction. Thus $S^{-1} N \neq 0$. Now let $r / t \in S^{-1} R \backslash W_{S^{-1} R}\left(S^{-1} M\right)$. Then $S^{-1}(r M)=(r / t)\left(S^{-1} M\right)=S^{-1} M$. By using Lemma 2.27, $r M=M$ and so $r \in R \backslash W_{R}(M)$. Now as N is a co-r-submodule of M, we have $r N=N$ by Proposition 2.11. This implies that $(r / s)\left(S^{-1} N\right)=S^{-1} N$, as needed.
(b) $\Rightarrow(a)$ Let $a N \subseteq K$ for some $a \in R \backslash W_{R}(M)$ and a submodule K of M. Then $(a / 1)\left(S^{-1} N\right) \subseteq S^{-1} K$ and $a / 1 \in S^{-1} R \backslash W_{S^{-1} R}\left(S^{-1} M\right)$. Thus by part (b), $S^{-1} N \subseteq S^{-1} K$. Hence by Lemma $2.27, N \subseteq K$. Thus N is a co- r-submodule of M.

3. Ascending and descending chain conditions on $c o-r$-submodules

Definition 3.1. We say that an R-module M is a co-r-Noetherian module if the set of co-r-submodules of M satisfies the ascending chain condition.

Definition 3.2. We say that an R-module M is a co-r-Artinian module if the set of co-r-submodules of M satisfies the descending chain condition.

Proposition 3.3. (a) If N is a co-r-submodule of a co-r-Noetherian (resp. co-r-Artinian) R-module M, then M / N is a co-r-Noetherian (resp. co-rArtinian) R-module.
(b) Every Noetherian (resp. Artinian) R-module is a co-r-Noetherian (resp. co-r-Artinian) R-module.

Proof. (a) This follows from Proposition 2.15 (a).
(b) These are clear.

The following theorem provides characterizations for co-r-Artinian R-modules when M is a Noetherian R-module.

Theorem 3.4. Let M be a Noetherian R-module and $S=R \backslash W_{R}(M)$. The following statements are equivalent:
(a) M is a co-r-Artinian R-module;
(b) $S^{-1} M$ is an Artinian $S^{-1} R$-module.

Proof. This follows from Lemma 2.27 and Theorem 2.28.
Let S be a multiplicatively closed subset of R. An R-module M is called S-finite if $s M \subseteq F$ for some finitely generated submodule F of M and some $s \in S$. The module M is called S-Noetherian if each submodule of M is S-finite [1].

Definition 3.5. Let S be a multiplicatively closed subset of R. We say that an R-module M is a strongly S-Noetherian R-module if for any ascending chain of submodules

$$
N_{1} \subseteq N_{2} \subseteq \cdots \subseteq N_{k} \subseteq \cdots
$$

of M, there exist $s \in S$ and $k \in \mathbb{N}$ such that $s N_{n} \subseteq N_{k}$ for every $n \geq k$.

Let S be a multiplicatively closed subset of R. Clearly, every strongly S Noetherian R-module is an S-Noetherian R-module. But Example 3.7 shows that the converse is not true in general for every multiplicatively closed subset S of R..

Let S be a multiplicatively closed subset of R. An R-module M is said to be an S-Artinian R-module if for any descending chain of submodules

$$
N_{1} \supseteq N_{2} \supseteq \cdots \supseteq N_{k} \supseteq \cdots
$$

of M, there exist $s \in S$ and $k \in \mathbb{N}$ such that $s N_{k} \subseteq N_{n}$ for every $n \geq k$ [12].
Proposition 3.6. Let S be a multiplicatively closed subset of R such that $S \cap$ $W_{R}(M)=\emptyset$. Then every strongly S-Noetherian (resp. S-Artinian) R-module is a co-r-Noetherian (resp. co-r-Artinian) R-module.

Proof. This follows from the fact that for each co-r-submodule N of M and $s \in S$, we have $s N=N$ by Proposition 2.11.

The following is an example of a co-r-Noetherian module that is not S-Noetherian for every multiplicatively closed subset S of R.

Example 3.7. Let p be a prime number. Consider $R:=\mathbb{Z}$ and $M:=\mathbb{Z}_{p^{\infty}}$. Then M is a co-r-Noetherian R-module by Example 2.5 (b). Also, M is an S Noetherian R-module. However, M is not a strongly S-Noetherian R-module for every multiplicatively closed subset S of R. It sufices to verify that M is not a strongly S-Noetherian R-module, where $S=\mathbb{Z} \backslash\{0\}$. Indeed, consider the following ascending chain of submodules of M

$$
\langle 1 / p+\mathbb{Z}\rangle \subseteq\left\langle 1 / p^{2}+\mathbb{Z}\right\rangle \subseteq\left\langle 1 / p^{3}+\mathbb{Z}\right\rangle \subseteq \cdots \subseteq\left\langle 1 / p^{n}+\mathbb{Z}\right\rangle \subseteq \cdots
$$

If $s \in S$, then $s=p^{m} t$ for some $m \in \mathbb{N} \cup\{0\}$ and $t \in \mathbb{Z}$ with $\operatorname{gcd}(t, p)=1$. Now, we let $k \in \mathbb{N}$. Then, $s\left\langle 1 / p^{m+k+1}+\mathbb{Z}\right\rangle \nsubseteq\left\langle 1 / p^{k}+\mathbb{Z}\right\rangle$ and thus M is not a strongly S-Noetherian R-module.

Lemma 3.8. Let M be a multiplication R-module with $W_{R}(M) \subseteq Z(R)$. If N is a non-zero submodule of M, then $\left(N:_{R} M\right)$ is an r-ideal of R.

Proof. As M is a multiplication R-module, we have $N=\left(N:_{R} M\right) M$. Let $a b \in\left(N:_{R} M\right)$ with $a \notin Z(R)$ for some $a, b \in R$. Then by assumption, $a M=M$. Thus

$$
b N=b\left(N:_{R} M\right) M=b\left(N:_{R} M\right) a M=a b\left(N:_{R} M\right) M=a b N \subseteq M
$$

as needed.

Theorem 3.9. Let M be a multiplication R-module with $W_{R}(M) \subseteq Z(R)$ and R satisfy ascending chain condition on r-ideals of R. Then M is a Noetherian R-module.

Proof. Let $N_{1} \subseteq N_{2} \subseteq \cdots \subseteq N_{k} \subseteq \cdots$ be an ascending chain of submodules of M. By Lemma 3.8, for each $i,\left(N_{i}:_{R} M\right)$ is an r-ideal of R. So

$$
\left(N_{1}:_{R} M\right) \subseteq\left(N_{2}:_{R} M\right) \subseteq \cdots \subseteq\left(N_{k}:_{R} M\right) \subseteq \cdots
$$

is an ascending chain of r-ideals of R. Since R satisfies ascending chain condition on r-ideals, there exists $t \in \mathbb{N}$ such that $\left(N_{i}:_{R} M\right)=\left(N_{t}:_{R} M\right)$ for each $i \geq t$. Therefore, $N_{i}=\left(N_{i}:_{R} M\right) M=\left(N_{t}:_{R} M\right) M=N_{t}$ for each $i \geq t$. It follows that M is a Noetherian module.

Lemma 3.10. Let $f: M \rightarrow \dot{M}$ be an epimorphism of R-modules. If N is a co-r-submodule of M^{\prime} and $\operatorname{Ker}(f)$ is a co-r-submodule of M, then $f^{-1}(N)$ is a co-r-submodule M.

Proof. Since $\operatorname{Ker}(f)$ is a co-r-submodule of M, we have $\operatorname{Ker}(f) \neq 0$. So $f^{-1}(N) \neq$ 0 . Now let $a \in R \backslash W_{R}(M)$ and $a f^{-1}(N) \subseteq K$ for some submodule K of M. Then $a \operatorname{Ker}(f) \subseteq K$ and so by assumption, $\operatorname{Ker}(f) \subseteq K$. Clearly $a \in R \backslash W_{R}(M)$. Thus $a N=a N \cap \dot{M}=a N \cap f(M)=f\left(f^{-1}(a N)\right) \subseteq f(K)$ implies that $N \subseteq f(K)$. Thus $f^{-1}(N) \subseteq K+K e r(f)=K$, as needed.
Theorem 3.11. Let $0 \longrightarrow M_{1}{ }^{\psi} \longrightarrow M_{2} \xrightarrow{\phi} M_{3} \longrightarrow 0$ be an exact sequence of R-modules. Then we have the following.
(a) Assume that $W_{R}\left(M_{1}\right) \subseteq W_{R}\left(M_{2}\right)$. If M_{2} is a co-r-Noetherian R-module, then so is M_{1}.
(b) Suppose that $W_{R}\left(M_{2}\right) \subseteq W_{R}\left(M_{3}\right)$. If M_{3} is a co-r-Noetherian R-module and M_{1} is a strongly S-Noetherian R-module where $S:=R \backslash W_{R}\left(M_{2}\right)$, then M_{2} is a co-r-Noetherian R-module.
(c) If M_{2} is a co-r-Noetherian R-module and $\operatorname{Ker}(\phi)$ is a co-r-submodule of M_{2}, then M_{3} is a co-r-Noetherian R-module.

Proof. (a) As $W_{R}\left(M_{1}\right) \subseteq W_{R}\left(M_{2}\right)$, we conclude that $\psi(N)$ is a co- r-submodule of M_{2} for every co-r-submodule N of M_{1}. Hence if M_{2} is a co- r-Noetherian module, then we can easily get M_{1} is a co-r-Noetherian module.
(b) Let

$$
N_{1} \subseteq N_{2} \subseteq \cdots \subseteq N_{n} \subseteq \cdots
$$

be an ascending chain of co-r-submodules of M_{2}. Since M_{1} is an S-Noetherian R-module with $S:=R \backslash W_{R}\left(M_{2}\right)$, then there exist $s \in S$ and $k_{1} \in \mathbb{N}$ such that
$s \psi^{-1}\left(N_{n}\right) \subseteq \psi^{-1}\left(N_{k_{1}}\right)$ for each $n \geq k_{1}$. It follows that $s N_{n} \cap \psi\left(M_{1}\right) \subseteq N_{k_{1}}$. On the other hand, we have the ascending chain

$$
\phi\left(N_{1}\right) \subseteq \phi\left(N_{2}\right) \subseteq \cdots \subseteq \phi\left(N_{n}\right) \subseteq \cdots
$$

of co-r-submodules of M_{3}. As M_{3} is a co-r-Noetherian module, there exists $k_{2} \in \mathbb{N}$ such that $\phi\left(N_{k_{2}}\right)=\phi\left(N_{n}\right)$ for each $n \geq k_{2}$ This implies that $N_{k_{2}}+\psi\left(M_{1}\right)=N_{n}+$ $\psi\left(M_{1}\right)$ for each $n \geq k_{2}$. Now put $k=\max \left\{k_{1}, k_{2}\right\}$. Then we have $s N_{n} \cap \psi\left(M_{1}\right) \subseteq$ N_{k} and $N_{k}+\psi\left(M_{1}\right)=N_{n}+\psi\left(M_{1}\right)$ for each $n \geq k$. Now since $N_{k} \subseteq N_{n}$, we have

$$
\begin{gathered}
s N_{n}=s\left(N_{n} \cap\left(N_{n}+\psi\left(M_{1}\right)\right)\right)=s\left(N_{n} \cap\left(N_{k}+\psi\left(M_{1}\right)\right)\right)= \\
s\left(\left(N_{n} \cap N_{k}\right)+\left(N_{n} \cap \psi\left(M_{1}\right)\right)\right) \subseteq N_{k}+\left(s N_{n} \cap \psi\left(M_{1}\right)\right) \subseteq N_{k}
\end{gathered}
$$

Hence $N_{n} \subseteq N_{k}$ since N_{n} is a co- r-submodule of M_{2}. Thus M_{2} is a co- r-Noetherian R-module.
(c) This follows from Lemma 3.10.

Acknowledgement. This research was supported with a grant from Farhangian University. The author would like to thank the referees for their suggestions.

References

[1] D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra, 30(9) (2002), 4407-4416.
[2] A. Anebri, N. Mahdou and Ü. Tekir, Commutative rings and modules that are r-Noetherian, Bull. Korean Math. Soc., 58(5) (2021), 1221-1233.
[3] A. Anebri, N. Mahdou and Ü. Tekir, On modules satisfying the descending chain condition on r-submodules, Comm. Algebra, 50(1) (2022), 383-391.
[4] H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math., 11(4) (2007), 1189-1201.
[5] H. Ansari-Toroghy and F. Farshadifar, Strong comultiplication modules, CMU. J. Nat. Sci., 8(1) (2009), 105-113.
[6] H. Ansari-Toroghy and F. Farshadifar, Fully idempotent and coidempotent modules, Bull. Iranian Math. Soc., 38(4) (2012), 987-1005.
[7] A. Barnard, Multiplication modules, J. Algebra, 71(1) (1981), 174-178.
[8] F. Farshadifar, The dual of the notions n-submodules and j-submodules, Jordan
J. Math. Stat., to appear.
[9] F. Farshadifar, S-secondary submodules of a module, Comm. Algebra, 49(4) (2021), 1394-1404.
[10] S. Koç and Ü. Tekir, r-submodules and sr-submodules, Turkish J. Math., 42(4) (2018), 1863-1876.
[11] R. Mohamadian, r-ideals in commutative rings, Turkish J. Math., 39(5) (2015), 733-749.
[12] E. S. Sevim, Ü. Tekir and S. Koç, S-Artinian rings and finitely S-cogenerated rings, J. Algebra Appl., 19(3) (2020), 2050051 (16 pp).
[13] Ü. Tekir, S. Koc and K. H. Oral, n-ideals of commutative rings, Filomat, 31(10) (2017), 2933-2941.
[14] S. Yassemi, Maximal elements of support and cosupport, May 1997, http://streaming.ictp.it/preprints/P/97/051.pdf.
[15] S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno), 37(4) (2001), 273-278.

Faranak Farshadifar

Department of Mathematics Education
Farhangian University
P.O. Box 14665-889

Tehran, Iran
e-mail: f.farshadifar@cfu.ac.ir

