
International Electronic Journal of Algebra

Volume 35 (2024) 1-19

DOI: 10.24330/ieja.1404416

PSEUDO-ABSORBING COMULTIPLICATION MODULES OVER

A PULLBACK RING

Shabaddin Ebrahimi Atani, Mehdi Khoramdel and Saboura Dolati Pishhesari

Received: 5 February 2022; Accepted: 26 July 2023

Communicated by Meltem Altun Özarslan
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1. Introduction

The idea of representing a complex mathematical object by a simpler one is as

old as mathematics itself. It is particularly useful in classification problems. For

instance, a single linear transformation on a finite dimensional vector space is very

adequately characterized by its reduction to its rational or its Jordan canonical

form. One of the aims of the modern representation theory is to solve classification

problems for subcategories of modules over a unitary ring R. The reader is referred

to [3] and [30, Chapter 1 and 14] for a detailed discussion of classification prob-

lems, their representation types (finite, tame, or wild), and useful computational

reduction procedures. Here we should point out that the classification of all in-

decomposable modules over an arbitrary unitary ring (including finite-dimensional

algebras over an algebraically closed field) is an impossible task. In particular one

is interested in the classification of certain ‘significant” modules rather than in

arbitrary modules; the pure-injective modules seem to form such a class of mod-

ules which arise in practice and where there is hope of some kind of classification.

Pure-injective modules play a central role in the model theory of modules: for

example classification of the complete theories of R-modules reduce to classifying

the (complete theories of) pure-injectives. Also, for some rings the “small” (finite-

dimensional, finitely generated, . . . ) modules are classified and in many cases
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this classification can be extended to give a classification of the (indecomposable)

pure-injective modules. Indeed, there is sometimes a strong connection between

infinitely generated pure-injective modules and families of finitely generated mod-

ules (see [26,27,28,29]). One of our main concerns in this paper is to introduce a

subclass of pure-injective modules in terms of simple (especially indecomposable)

components.

In this paper all rings are commutative with identity and all modules are unitary.

Let v1 : R1 → R̄ and v2 : R2 → R̄ be homomorphisms of two discrete rank 1

valuation domains Ri onto a common field R̄. Denote the pullback R = {(r1, r2) ∈
R1 ⊕ R2 : v1(r1) = v2(r2)} by (R1

v1−→ R̄
v2←− R2), where R̄ = R1/J(R1) =

R2/J(R2). Then R is a ring under coordinate-wise multiplication. Denote the

kernel of vi, i = 1, 2, by Pi. Then Ker(R → R̄) = P = P1 × P2, R/P ∼= R̄ ∼=
R1/P1

∼= R2/P2, and P1P2 = P2P1 = 0 (so R is not a domain). Furthermore,

for i ̸= j, 0 → Pi → R → Rj → 0 is an exact sequence of R-modules (see [19]).

A typical example of local Dedekind domain pullback is the infinite-dimensional

k-algebra k[x, y : xy = 0](x,y) where k is a field (it is the pullback (k[x](x) →
k ← k[y](y)) of two local Dedekind domains k[x](x), k[y](y) (see [2, Section 6]).

Modules over pullback rings have been studied by several authors (see for instance,

[2,7,8,9,10,11,12,13,14,15,17,19,20,21,24]). Notably, there is an important work of

Levy [21], resulting in the classification of all finitely generated indecomposable

modules over Dedekind-like rings.

The classification of subclasses of pure-injective modules over the pullback of two

DVRs over a common factor field is very interesting and important in the literature.

One point of this paper is that to introduce a subclass of pure-injective modules over

such rings. Indeed, this article includes the classification of those indecomposable

pseudo-absorbing comultiplication modules over k[x, y : xy = 0](x,y) where k is a

field, which have finite-dimensional top.

The concept of 2-absorbing ideal, which is a generalization of prime ideal, was

introduced and studied by Badawi in [4]. Various generalizations of prime ideals

are also studied in [5] and [6]. Recall that a proper ideal I of a ring R is called a

2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I

or bc ∈ I. Recently (see [25]), the concept of 2-absorbing ideal is extended to the

context of 2-absorbing submodule which is a generalization of prime submodule.

Recall from [25] that a proper R-submodule N of a module M is said to be a

2-absorbing submodule of M if whenever a, b ∈ R, m ∈ M and abm ∈ N , then

am ∈ N or bm ∈ N or ab ∈ (N :R M). In [12], the concept of 2-absorbing
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submodule is extended to the context of pseudo-absorbing submodule which is a

generalization of 2-absorbing submodule. A proper submodule N of an R-module

M is called pseudo-absorbing if (N :R M) is a 2-absorbing ideal of R (by [25,

Theorem 2.3], if N is a 2-absorbing submodule of an R-module M , then (N :R M)

is a 2-absorbing ideal of R; so every 2-absorbing submodule is a pseudo-absorbing

submodule).

In the present paper we introduce a new class of R-modules, called pseudo-

absorbing comultiplication modules (the dual notion of pseudo-absorbing multipli-

cation modules), and we study it in details from the classification problem point of

view. We are going to study pullbacks of DV Rs, discrete rank 1 valuation domains.

By DV R we will indicate discrete rank 1 valuation domains, which are exactly

the local Dedekind domains. First, we give a complete description of the pseudo-

absorbing comultiplication modules over a DV R. Let R be a pullback of two DV Rs

over a common factor field. The main purpose of this paper is to give a complete

description of the indecomposable pseudo-absorbing comultiplication R-modules

with finite-dimensional top over R/rad(R) (for any module M we define its top as

M/Rad(R)M). The classification is divided into two stages: the description of all

indecomposable separated pseudo-absorbing comultiplication R-modules and then,

using this list of separated pseudo-absorbing comultiplication modules we show that

non-separated indecomposable pseudo-absorbing comultiplication R-modules with

finite-dimensional top are factor modules of finite direct sums of separated indecom-

posable pseudo-absorbing comultiplication R-modules. Then we use the classifica-

tion of separated indecomposable pseudo-absorbing comultiplication modules from

Section 3, together with results of Levy [20,21] on the possibilities for amalgamat-

ing finitely generated separated modules, to classify the non-separated indecompos-

able pseudo-absorbing comultiplication modules M with finite-dimensional top (see

Theorem 4.9). We will see that the non-separated modules may be represented by

certain amalgamation chains of separated indecomposable pseudo-absorbing comul-

tiplication modules (where infinite length pseudo-absorbing comultiplication mod-

ules can occur only at the ends) and where adjacency corresponds to amalgamation

in the socles of these separated pseudo-absorbing comultiplication modules.

For the sake of completeness, we state some definitions and notations used

throughout. Let R be the pullback ring as mentioned in the beginning of In-

troduction. An R-module S is defined to be separated if there exist Ri-modules Si,

i = 1, 2, such that S is a submodule of S1⊕S2 (the latter is made into an R-module



4 EBRAHIMI, KHORAMDEL AND DOLATI

by setting (r1, r2)(s1, s2) = (r1s1, r2s2)). Equivalently, S is separated if it is a pull-

back of an R1-module and an R2-module and then, using the same notation for

pullbacks of modules as for rings, S = (S/P2S → S/PS ← S/P1S) [19, Corollary

3.3] and S ⊆ (S/P2S)⊕ (S/P1S). Also S is separated if and only if P1S ∩P2S = 0

[19, Lemma 2.9]. Let M be an R-module. A separated representation of M is a

pair (S, φ) where

(i) S is a separated R-module;

(ii) φ is an R-homomorphism of S onto M ;

(iii) for every pair (S′, φ′) satisfying (i) and (ii), and for every R-homomorphism

α of S in S′ such that φ′α = φ, α is 1 − 1. The module K = Ker(φ) is then an

R̄-module, since R̄ = R/P and PK = 0 [19, Proposition 2.3]. An exact sequence

0 → K → S → M → 0 of R-modules with S separated and K an R̄-module is a

separated representation of M if and only if PiS ∩K = 0 for each i and K ⊆ PS

[19, Proposition 2.3]. Every module M has a separated representation, which is

unique up to isomorphism [19, Theorem 2.8].

Definition 1.1. (a) If R is a ring and N is a submodule of an R-module M ,

then the ideal {r ∈ R : rM ⊆ N} is denoted by (N : M). Then (0 : M) is the

annihilator of M . A proper submodule N of a module M over a ring R is said to

be prime submodule if whenever rm ∈ N , for some r ∈ R, m ∈ M , then m ∈ N

or r ∈ (N : M), so (N : M) = P is a prime ideal of R, and N is said to be P -

prime submodule. The set of all prime submodules in an R-module M is denoted

Spec(M) [22,23].

(b) An R-module M is a comultiplication module provided for each submodule

N of M there exists an ideal I of R such that N is the set of elements m in M such

that Im = 0. In this case we can take N = (0 :M ann(N)) [1].

(c) A proper submodule N of an R-module M is called pseudo-absorbing if

(N :R M) is a 2-absorbing ideal of R. The set of all pseudo-absorbing submodules

in an R-module M is denoted by pabSpec(M) [12].

(d) An R-module M is defined to be a pseudo-absorbing multiplication module

if for every pseudo-absorbing submodule N of M , N = IM for some ideal I of R

[12].

(e) A submodule N of an R-module M is called pure submodule if any finite

system of equations over N which is solvable in M is also solvable in N . A sub-

module N of an R-module M is called relatively divisible (or an RD-submodule)

in M if rN = N ∩ rM for all r ∈ R [26,32].
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(f) A module M is pure-injective if it has the injective property relative to all

pure exact sequences [26,32].

Remark 1.2. (a) Let R be a Dedekind domain, M an R-module and N a sub-

module of M . Then N is pure in M if and only if IN = N ∩ IM for each ideal I of

R. Moreover, N is pure in M if and only if N is an RD-submodule of M [26,32].

(b) Let N be an R-submodule of M . It is clear that N is an RD-submodule of

M if and only if for all m ∈M and r ∈ R, rm ∈ N implies that rm = rn for some

n ∈ N . Furthermore, if M is torsion-free, then N is an RD-submodule if and only

if for all m ∈ M and for all non-zero r ∈ R, rm ∈ N implies that m ∈ N . In this

case, N is an RD-submodule if and only if N is a prime submodule.

2. Pseudo-absorbing comultiplication modules

In this section, we give a complete description of the pseudo-absorbing comulti-

plication modules over a DV R. We begin with the key definition of this paper.

Definition 2.1. Let R be a commutative ring. An R-module M is defined to be a

pseudo-absorbing comultiplication module if for every pseudo-absorbing submodule

N of M , N = (0 :M I) for some ideal I of R.

One can easily show that if M is a pseudo-absorbing comultiplication module,

then N = (0 :M ann(N)) for every pseudo-absorbing submodule N of M .

Lemma 2.2. Assume that R is a commutative ring and let K ⊆ N be submodules

of an R-module M . Then N is a pseudo-absorbing submodule of M if and only if

N/K is a pseudo-absorbing submodule of M/K.

Proof. This follows from the fact that (N :R M) = (N/K :R M/K). □

Proposition 2.3. (i) Let M be a pseudo-absorbing comultiplication module over

a commutative ring R. Then every direct summand of M is a pseudo-absorbing

comultiplication R-submodule.

(ii) Let M be an R-module, N an R-submodule of M and I an ideal of R such

that I ⊆ (0 :R M). Then M is pseudo-absorbing comultiplication as an R-module

if and only if M is pseudo-absorbing comultiplication as an R/I-module.

Proof. (i) LetK be a direct summand ofM . ThenM = K⊕N for some submodule

N of M . It suffices to show that M/N is a pseudo-absorbing comultiplication R-

module. Let L/N be a pseudo-absorbing submodule of M/N . Then by Lemma

2.2, L is a pseudo-absorbing submodule of M , so L = (0 :M J) for some ideal J
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of R. We show that L/N = (0 :M/N J). Let y + N ∈ L/N . Then Jy = 0 gives

J(y + N) = 0; so y + N ∈ (0 :M/N J). For the reverse inclusion, assume that

z + N ∈ (0 :M/N J). Then Jz ⊆ N ∩ JM = JN ⊆ JL = 0; hence z ∈ L, and we

have equality.

(ii) It is easy to see that N is a pseudo-absorbing R-submodule of M if and only

if N is pseudo-absorbing submodule of M as an R/I-module. Now the assertion

follows the fact that (0 :M J) = (0 :M (I + J)/I) for every ideal J of R. □

Remark 2.4. (a) Let R be a DV R with unique maximal ideal P = Rp.

(i) Since (P :R R) = P , P is a pseudo-absorbing submodule of the R-module

R. Now (0 :R ann(P )) = (0 :R 0) = R ̸= P gives R is not a pseudo-absorbing

comultiplication R-module.

(ii) Each R/Pn (n ≥ 1) is a pseudo-absorbing comultiplication R-module since

it is a comultiplication R-module.

(iii) Every non-zero proper submodule L of E = E(R/P ) = Q(R)/P , the in-

jective hull of R/P , is of the form L = An = (0 :E Pn) (n ≥ 1), L = An = Ran

and PAn+1 = An. Since E is divisible, (An : E) = 0; hence each An is a pseudo-

absorbing submodule (n ≥ 1). Thus E is a pseudo-absorbing comultiplication

R-module.

(iv) Let Q(R) be the field of fractions of R and consider N = R as a non-zero

proper R-submodule of Q(R). Since (N :R Q(R)) = 0, N is a pseudo-absorbing

submodule of Q(R). Now (0 :Q(R) (0 :R N)) = (0 :Q(R) 0) = Q(R) ̸= N gives Q(R)

is not a pseudo-absorbing comultiplication R-module.

(v) For a ring R, it is known that R ̸= 0 if and only if Spec(R) ̸= ∅. By [11,

Theorem 3.2], SpecE(R/P ) = ∅. Thus for a module M it is not always true that

if M ̸= 0, then Spec(M) ̸= ∅. Now we study pabSpec(M), where M is a pseudo-

absorbing comultiplication R-module. We claim that pabSpec(M) ̸= ∅. Assume

to the contrary, pabSpec(M) = ∅. Since Spec(M) ⊆ pabSpec(M) = ∅, it follows

from [22, Lemma 1.3, Proposition 1.4] that M is a torsion divisible R-module

with PM = M and M is not finitely generated. By an argument like that in [8,

Proposition 2.7 Case 2], M ∼= E(R/P ) which is a contradiction by (a) (iii).

(b) Let R and R′ be any commutative rings, g : R→ R′ a surjective homomor-

phism and M an R′-module.

(i) It is easy to see that N is a pseudo-absorbing R-submodule of M if and only

if it is a pseudo-absorbing R′-submodule of M .

(ii) If M is a pseudo-absorbing comultiplication R′-module, then we will show

that M is a pseudo-absorbing comultiplication R-module. Assume that M is a
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pseudo-absorbing comultiplication R′-module and let N be a pseudo-absorbing R-

submodule of M . Then by (i), N = (0 :M J), where J = (0 :R′ N); so I = g−1(J)

is an ideal of R with g(I) = J . It is enough to show that (0 :M J) = (0 :M I). Let

m ∈ (0 :M J). If r ∈ I, then g(r) ∈ J , so g(r)m = 0. Thus rm = 0 for every r ∈ I;

hence m ∈ (0 :M I). For the reverse inclusion, assume that x ∈ (0 :M I) and s ∈ J .

Then s = g(a) for some a ∈ I. It follows that sx = g(a)x = ax = 0 for every s ∈ J ;

hence x ∈ (0 :M J), and we have equality.

Theorem 2.5. Let M be a pseudo-absorbing comultiplication module over a DV R

with unique maximal ideal P = Rp. Then M is of the form M = N⊕K, where N is

a direct sum of copies of R/Pn (n ≥ 1) and K is a direct sum of copies of E(R/P ).

In particular, every pseudo-absorbing comultiplication R-module is pure-injective.

Proof. By [16, Theorem 8], M possesses a unique largest divisible submodule N ;

M = N ⊕ K, where K has no divisible submodule. As M is pseudo-absorbing

comultiplication, N is too, by Proposition 2.3(i). By [16, Theorem 7] and Remark

2.4, N is a direct sum of copies of E(R/P ). We will prove that K is bounded. If

pRK = pK = K, then it is easy to verify that K is divisible, a contradiction; hence

pK ̸= K. If (0 :R pK) = 0, then PK = pK = (0 :K (0 :R PK)) = (0 :K 0) = K

(because pK is a pseudo-absorbing submodule of K and K is pseudo-absorbing

comultiplication), which is a contradiction. Therefore (0 :R pK) ̸= 0; and ptK = 0

for some integer t. Thus K is bounded. Hence K is a direct sum of cyclic modules,

by [18, Theorem 7.1]. As K is pseudo-absorbing comultiplication, by Remark 2.4,

K is a direct sum of copies of R/Pn (n ≥ 1). Then, in particular, statement follows

from [7, Proposition 1.3]. □

Corollary 2.6. Let M be a pseudo-absorbing comultiplication module over a DV R

with unique maximal ideal P = Rp. Then M is torsion.

Proof. By Theorem 2.5, every pseudo-absorbing comultiplication module over a

DV R is a direct sum of torsion modules. It is easy to verify that a direct sum of

torsion modules over a DV R is torsion. □

Theorem 2.7. Let R be a DV R with unique maximal ideal P = Rp. Then the

indecomposable pseudo-absorbing comultiplication modules over R, up to isomor-

phism, are the following:

(i) R/Pn, n ≥ 1, the indecomposable torsion modules;

(ii) E(R/P ), the injective hull of R/P .
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Proof. By [7, Proposition 1.3], these modules are indecomposable. Being pseudo-

absorbing comultiplication follows from Remark 2.4 (a). It remains to be shown

that there are no more indecomposable pseudo-absorbing comultiplication modules.

Let M be an indecomposable pseudo-absorbing comultiplication module. Then M

is either R/Pn, n ≥ 1, or E(R/P ), by Theorem 2.6. □

3. The separated pseudo-absorbing comultiplication modules

In this section we determine the indecomposable pseudo-absorbing comultiplica-

tion separated R-modules where

R = (R1
v1−→ R̄

v2←− R2) (1)

is the pullback of two DV Rs R1, R2 with maximal ideals P1, P2 generated respec-

tively by p1 ∈ P1 \ P 2
1 , p2 ∈ P2 \ P 2

2 , P denotes P1 ⊕ P2 and R1/P1
∼= R2/P2

∼=
R/P ∼= R̄ is a field (we do not need the a priori assumption of finite-dimensional

top for this classification). Then R is a commutative Noetherian local ring with

unique maximal ideal P . The other prime ideals of R are easily seen to be P1 (that

is P1 ⊕ 0) and P2 (that is 0⊕ P2).

Let a = (r, s) ∈ R with r ̸= 0 and s ̸= 0. Then we can write a = (pn1 , p
m
2 ) for

some positive integers m,n, so ann(a) = 0; hence Ra ∼= R. If a = (0, pm2 ) for some

positive integer m, then ann(a) = P1 ⊕ 0, and so R(0, pm2 ) ∼= R/(P1 ⊕ 0) ∼= R2.

Similarly, R(pn1 , 0)
∼= R/(0 ⊕ P2) ∼= R1. The other ideals I of R are of the form

I = Pn
1 ⊕ Pm

2 = (Pn
1 , P

m
2 ) = (< pn1 >,< pm2 >) for some integers m,n since

I ⊆ P = P1 ⊕ P2 = (P1, P2) = (< p1 >,< p2 >) and p1p2 = 0 = p2p1 (see [7, p.

4054]). We need the following lemma proved in [12, Proposition 3.1].

Lemma 3.1. Let R be a pullback ring as in (1). Then the following hold:

(i) The ideals 0, 0⊕ P2, 0⊕ P 2
2 , P1 ⊕ P2, P1 ⊕ P 2

2 , P1 ⊕ 0, P 2
1 ⊕ 0, P 2

1 ⊕ P 2
2 and

P 2
1 ⊕ P2 of R are 2-absorbing.

(ii) If T is a pseudo-absorbing submodule of a non-zero separated R-module

S = (S1 → S̄ ← S2), then T1 is a pseudo-absorbing submodule of S1 and

T2 is a pseudo-absorbing submodule of S2.

(iii) If T is a pseudo-absorbing submodule of a non-zero separated R-module S,

then (T :R S) = 0 or 0⊕P2 or 0⊕P 2
2 or P1⊕P2 or P1⊕P 2

2 or P1⊕ 0 or

P 2
1 ⊕ 0 or P 2

1 ⊕ P 2
2 or P 2

1 ⊕ P2.

Remark 3.2. Let R be a pullback ring as in (1). Let T be an R-submodule of

a separated module S = (S1
f1−→ S̄

f2←− S2), with projection maps πi : S ↠ Si.

Set T1 = {t1 ∈ S1 : (t1, t2) ∈ T for some t2 ∈ S2} and T2 = {t2 ∈ S2 : (t1, t2) ∈
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T for some t1 ∈ S1}. Then for each i, i = 1, 2, Ti is an Ri-submodule of Si and

T ≤ T1 ⊕ T2. Moreover, we can define a mapping π′
1 = π1|T : T ↠ T1 by sending

(t1, t2) to t1; hence T1
∼= T/(0⊕Ker(f2) ∩ T ) ∼= T/(T ∩ P2S) ∼= (T + P2S)/P2S ⊆

S/P2S. So we may assume that T1 is a submodule of S1. Similarly, we may assume

that T2 is a submodule of S2 (note that Ker(f1) = P1S1 and Ker(f2) = P2S2).

Proposition 3.3. Let R be a pullback ring as in (1).

(i) The class of 2-absorbing ideals of R consists of the following: 0, 0⊕P2, 0⊕
P 2
2 , P1 ⊕ P2, P1 ⊕ P 2

2 , P1 ⊕ 0, P 2
1 ⊕ 0, P 2

1 ⊕ P 2
2 and P 2

1 ⊕ P2.

(ii) Let S = (S1 → S̄ ← S2) be a non-zero separated pseudo-absorbing comul-

tiplication R-module. Then pabSpec(S) ̸= ∅.

Proof. (i) By Lemma 3.1 (i), it remains to be shown that there are no more 2-

absorbing ideals. If I = Pn
1 ⊕ Pm

2 is a non-zero 2-absorbing ideal with m ≥ 3 or

n ≥ 3, say I = P1 ⊕ P 3
2 (resp. I = 0⊕ P 3

2 ), then (p31, p
3
2) ∈ I ⊆ P ((0, p32) ∈ I ⊆ P )

but (p21, p
2
2) /∈ I (resp. (0, p22) /∈ I). Thus Pn

1 ⊕Pm
2 is not a 2-absorbing ideal for all

either m ≥ 3 or n ≥ 3.

(ii) Let π1 be the projection map of R onto R1. By Remark 2.4 (a) (v),

pabSpec(S1) ̸= ∅, so there is a pseudo-absorbing submodule T1 of S1. Then by

Remark 2.4 (b) and Remark 3.2, there exists a submodule T = (T1 → T̄ ← T2) of

S such that T1
∼= (T + (0 ⊕ P2)S)/(0 ⊕ P2)S is a pseudo-absorbing R-submodule

of S1 = S/(0 ⊕ P2)S; hence T + (0 ⊕ P2)S is a 2-absorbing R-submodule of S by

Lemma 2.2. Thus pabSpec(S) ̸= ∅. □

Theorem 3.4. Let S = (S1 → S̄ ← S2) be any non-zero separated module over

a pullback ring as (1). Then S is a pseudo-absorbing comultiplication R-module if

and only if each Si is a pseudo-absorbing comultiplication Ri-module, i = 1, 2.

Proof. Suppose that S is a pseudo-absorbing comultiplication R-module. If S̄ = 0,

then by [7, Lemma 2.7 (i)], S = S1 ⊕ S2; hence Si is a pseudo-absorbing co-

multiplication Ri-module by Proposition 2.3 (i), for each i = 1, 2. So we may

assume that S̄ ̸= 0. In this case, we will show that (0 :R S) ̸= 0. Assume

to the contrary, (0 :R S) = 0. Then it is easy to verify that (0 :R PS) = 0.

Since PS ̸= S and (PS :R S) = P , PS is a pseudo-absorbing submodule of S.

It follows that (0 :R PS) = 0. As S is a pseudo-absorbing comultiplication R-

module, we have PS = (0 :S (0 :R PS)) = S that is a contradiction. Thus

(0 :R S) ̸= 0. Let T1 be a nonzero pseudo-absorbing submodule of S1. Then there

exists a submodule T = (T1 → T̄ ← T2) of S such that T ′ = T + (0 ⊕ P2)S

is a pseudo-absorbing submodule of S (see Proposition 3.3 (b)). An inspection
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will show that (0 :R (0 ⊕ P2)S) = P1 ⊕ 0. Since 0 ̸= (0 :R S) ⊆ (0 :R T ′) and

0 ̸= (0 :R S) ⊆ (0 :R T ), (0 :R T ′) = (0 :R T ) ∩ (0 :R (0 ⊕ P2)S) = Pn
1 ⊕ 0 for

some positive integer n. Then S is a pseudo-absorbing comultiplication module

gives T ′ = (0 :S Pn
1 ⊕ 0). It suffices to show that T1 = (0 :S1

Pn
1 ). Let t ∈ T1.

There exists t2 ∈ T2 such that (t1, t2) ∈ T ⊆ T ′; so (Pn
1 ⊕ 0)(t1, t2) = 0. It then

follows that T1 ⊆ (0 :S1
Pn
1 ). For the reverse inclusion let s1 ∈ (0 :S1

Pn
1 ). Then

there is an element s2 ∈ S2 such that (s1, s2) ∈ S and (Pn
1 ⊕ 0)(s1, s2) = 0; hence

(s1, s2) ∈ T ′. Thus s1 ∈ T1 and we have equality. Therefore S1 is pseudo-absorbing

comultiplication. Similarly, S2 is pseudo-absorbing comultiplication.

Conversely, assume that each Si is a pseudo-absorbing comultiplication Ri-

module and let T be a pseudo-absorbing submodule of S. By Lemma 3.1 (ii),

T1, T2 are pseudo-absorbing submodules of S1, S2, respectively. By assumption,

T1 = (0 :S1
Pn
1 ) and T2 = (0 :S2

Pm
2 ) for some integers n,m. An inspection will

show that T = (0 :S Pn
1 ⊕ Pm

2 ). Thus S is a pseudo-absorbing comultiplication

R-module. □

Lemma 3.5. Let R be a pullback ring as in (1). Then, up to isomorphism, the fol-

lowing separated R-modules are indecomposable pseudo-absorbing comultiplication

modules:

(i) S = (E(R1/P1) → 0 ← 0), where E(R1/P1) is the R1-injective hull of

R1/P1;

(ii) (0→ 0← E(R2/P2)), where E(R2/P2) is the R2-injective hull of R2/P2;

(iii) S = (R1/P
n
1 → R̄← R2/P

m
2 ) for all positive integers n,m.

Proof. By [7, Lemma 2.8], these modules are indecomposable. They are pseudo-

absorbing comultiplication modules by Theorem 2.7 and Theorem 3.4. □

Theorem 3.6. Let R be a pullback ring as in (1), and let S be a non-zero in-

decomposable separated pseudo-absorbing comultiplication R-module. Then S is

isomorphic to one of the modules listed in Lemma 3.5.

Proof. First suppose that S = PS. Then by [7, Lemma 2.7 (i)], S = S1 or S = S2

and so Si is an indecomposable pseudo-absorbing comultiplication Ri-module for

some i and, since PS = S, it is of type (i) or (ii) in the list Lemma 3.5. So we may

assume that S ̸= PS.

By Theorem 3.4, Si is a pseudo-absorbing comultiplication Ri-module, for each

i = 1, 2. Therefore by the structure of pseudo-absorbing comultiplication modules

over DV R (see Theorem 2.5), Si = Mi ⊕ Ni, where Ni is a direct sum of copies

of Ri/P
n
i (n ≥ 1) and Mi is a direct sum of copies of E(Ri/Pi). Then we have
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S = (N1 → S̄ ← N2) ⊕ (M1 → 0 ← 0) ⊕ (0 → 0 ← M2). As S is indecomposable

and S ̸= PS, we find that S = (N1 → S̄ ← N2). We will show S is as in (iii) in

the list of Lemma 3.5. There are positive integers u, v and w such that Pu
1 S1 = 0,

P v
2 S2 = 0 and PwS = 0. Choose s ∈ S1 ∪ S2 with s̄ ̸= 0 and let o(s) denote the

least positive integer k such that P ks = 0 if there is such k and if no such k exists,

then o(s) =∞ and o(s) minimal among such s. Assume s ∈ S2, and so write s = s2

and m = k = o(s2). Now pick s1 ∈ S1 with s̄1 = s̄2 = s̄ and o(s1) = n minimal

(so o(s2) ̸= ∞ and o(s1) ̸= ∞). There exists an s = (s1, s2) such that o(s) = n1,

o(s1) = m2 and o(s2) = k1. Then Risi is pure in Si for i = 1, 2 (see [7, Theorem

2.9]). Therefore, R1s1 ∼= R1/P
m2
1 (resp. R2s2 ∼= R2/P

k1
2 ) is a direct summand of

S1 (resp. S2) since for each i, Risi is pure-injective. Let M̄ be the R̄-subspace of S̄

generated by s̄. Then M̄ ∼= R̄. Let M = (R1s1 = M1 → M̄ ← M2 = R2s2). Then

M is an R-submodule of S which is pseudo-absorbing comultiplication by Lemma

3.5 and is a direct summand of S; this implies that S = M , and S is as in (iii) in

the list of Lemma 3.5 (see [7, Theorem 2.9]). □

Corollary 3.7. Let R be a pullback ring as in (1).

(i) Every separated pseudo-absorbing comultiplication R-module S is of the

form S = M ⊕ N , where M is a direct sum of copies of the modules as

in (i)-(ii), and N is a direct sum of copies of the modules as in (iii) of

Lemma 3.5.

(ii) Every separated pseudo-absorbing comultiplication R-module is pure-injective.

Proof. Apply Theorem 3.6 and [7, Theorem 2.9]. □

4. The non-separated pseudo-absorbing comultiplication modules

We continue to use the notation already established, so R is the pullback ring as

in (1). In this section we find the indecomposable non-separated pseudo-absorbing

comultiplication modules with finite-dimensional top. It turns out that each can

be obtained by amalgamating finitely many separated indecomposable pseudo-

absorbing comultiplication modules. We need the following proposition proved

in [12, Lemma 4.1, Proposition 4.2 and Proposition 4.3].

Proposition 4.1. Let R be a pullback ring as in (1). Assume that M is any non-

zero R-module and let 0 → K
i−→ S

φ−→ M → 0 be a separated representation of

M .

(i) If N is a non-zero submodule of M , then 0→ K → φ−1(N) = T → N → 0

is a separated representation of N .
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(ii) If M is a non-separated R-module, then PnM ̸= 0 and K ⊆ PnS for all

positive integers n.

(iii) If S has a submodule T with (T :R S) = 0 or P1 ⊕ 0 or P 2
1 ⊕ 0 or 0⊕ P2

or 0⊕ P 2
2 , then M is separated.

Proposition 4.2. Let R be a pullback ring as in (1). Then E(R/P ), the injective

hull of R/P , is a non-separated pseudo-absorbing comultiplication R-module.

Proof. For each i = 1, 2, let Ei be the Ri-injective hull of Ri/Pi, regarded as

an R-module (so E1, E2 are the modules listed under (i)-(ii) in Lemma 3.5). Set

An = (0 :E1 Pn
1 ) and Bn = (0 :E1 Pn

2 ) (n ≥ 1). Then by [11, Proposition 3.1], the

non-zero proper R-submodules of E = E(R/P ) are: E1, E2, An, Bm, E1 + Bn,

Am +E2 and An +Bm for all n,m ≥ 1. If L is a non-zero proper submodule of E,

then (L :R E) = 0 since E is divisible. Thus every non-zero proper submodule of

E is a pseudo-absorbing R-submodule by Proposition 3.3 (a). Since the cases E1,

E2, An, Bm are clear, we split the proof into two cases.

Case 1: Suppose that L = An + Bm (m,n ≥ 1); we show that L = (0 :E

Pn
1 ⊕ Pm

2 ). If z ∈ (0 :E Pn
1 ⊕ Pm

2 ), then there exist z1 ∈ E1 and z2 ∈ E2 such

that z = z1 + z2 and (Pn
1 + Pm

2 )(z) = 0; so Pn
1 z = Pm

2 = 0 which implies that

Pn
1 (z1 + z2) = Pn

1 z1 = 0. Similarly, Pm
2 z2 = 0. Thus z ∈ An + Bm; hence

(0 :E Pn
1 ⊕ Pm

2 ) ⊆ An +Bm. The proof of the other inclusion is similar.

Case 2: Suppose that L = An+E2 (n ≥ 1); we show that L = (0 :E Pn
1 ⊕0). If

z ∈ (0 :E Pn
1 ⊕ 0), then there exist z1 ∈ E1 and z2 ∈ E2 such that z = z1 + z2 and

Pn
1 z = 0 which implies that Pn

1 (z1 + z2) = Pn
1 z1 = 0. Thus z ∈ An + E2; hence

(0 :E Pn
1 ⊕ 0) ⊆ An + E2. The other implication is similar. Similarly we argue

when L = E1 + Bm (m ≥ 1). Note that since R/P = E1 ∩ E2 = P1E ∩ P2E, E is

a non-separated R-module (see [7, p. 4054]). □

Let A = F [x, y] be the polynomial ring over a field F in two indeterminates

x, y. Then Ā = A/(x2, y2) is a comultiplication Ā-module. But Ā/Āx̄y is not a

comultiplication Ā-module. This shows that a homomorphic image of a comul-

tiplication module need not be a comultiplication module [31], but we have the

following theorem:

Theorem 4.3. Assume that R is a pullback ring as in (1) and let M be a non-

zero comultiplication non-separated R-module. Let 0 → K → S → M → 0 be a

separated representation of M . If N is a non-zero proper R-submodule of M , then

M/N is a comultiplication R-module.
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Proof. Let L/N be a proper submodule of M/N . Then L is a proper submodule

of M , so L = (0 :M (0 :R L)) with (0 :R L) ̸= 0. Then there exist integers t, s

such that L = (0 :M P t
1 ⊕ P s

2 ). We show that L/N = (0 :M/N (P t
1 ⊕ P s

2 )). Let

x+N ∈ L/N . Then (P t
1⊕P s

2 )x = 0 gives (P t
1⊕P s

2 )(x+N) = 0; so x+N ∈ (0 :M/N

(P t
1 ⊕ P s

2 )). For the reverse inclusion, assume that y + N ∈ (0 :M/N (P t
1 ⊕ P s

2 )).

Then (P t
1⊕P

y
2 )y ⊆ N ⊆ L. We claim that (P t

1⊕P s
2 )y = 0. Assume to the contrary,

0 ̸= (P t
1 ⊕ P s

2 )y ⊆ L. Then (P 2t
1 ⊕ P 2s

2 )y = 0. Let m be the least positive integer

such that Pmy = 0 (so Pm−1y ̸= 0). There exists x ∈ S such that y = φ(x) and

φ(Pmx) = 0; so φ(Pm
1 x) = φ(Pm

2 x) = 0. By [19, Proposition 2.3], φ is one-to-one

on PiS for each i, we find that Pm
2 x = Pm

1 x = 0; hence Pmx = 0. Set U = Pm−1y.

Then 0 → K → φ−1(U) = P s−1x → U → 0 is a separated representation of U by

Proposition 4.1 (i) such that K ⊆ P (P s−1x) = 0 which is a contradiction since M

is non-separated. Thus (Pn
1 ⊕ Pm

2 )y = 0, and so we have equality. □

Corollary 4.4. Assume that R is a pullback ring as in (1) and let M be a non-

zero pseudo-absorbing comultiplication non-separated R-module. Let 0 → K →
S → M → 0 be a separated representation of M . If N is a non-zero R-submodule

of M , then M/N is a pseudo-absorbing comultiplication R-module.

Proof. Let L/N be a pseudo-absorbing submodule of M/N . Then by Lemma

2.2, L is a pseudo-absorbing submodule of M , so L = (0 :M (0 :R L)) with 0 ̸=
(0 :R L) = Pn

1 ⊕ Pm
2 . By an argument like that in Theorem 4.3, we find that

L/N = (0 :M/N (Pn
1 ⊕ Pm

2 )). □

Theorem 4.5. Let R be a pullback ring as in (1) and let M be any non-separated

R-module. Let 0 → K → S → M → 0 be a separated representation of M .

Then S is pseudo-absorbing comultiplication if and only if M is pseudo-absorbing

comultiplication.

Proof. Assume that S is a pseudo-absorbing comultiplication R-module. Then

S/K ∼= M is pseudo-absorbing comultiplication by Corollary 4.4. Conversely, sup-

pose that M is a pseudo-absorbing comultiplication R-module and let T be a non-

zero pseudo-absorbing submodule of S. Since M is non-separated, (T :R S) ∈
{P, P1 ⊕ P 2

2 , P
2
1 ⊕ P2, P

2
1 ⊕ P 2

2 } by Proposition 4.1 (iii) and Lemma 3.1 (iii). If

(T :R S) = P , then K ⊆ PS ⊆ T by Proposition 4.1 (ii). Now by Lemma 2.2,

T/K is a pseudo-absorbing submodule of S/K ∼= M . If (T :R S) = P 2
1 ⊕ P2, then

K ⊆ P 2S ⊆ (P 2
1 ⊕ P2)S ⊆ T which implies that T/K is a pseudo-absorbing sub-

module of S/K. Similarly, we argue when (T :R S) = P1 ⊕ P 2
2 or P 2

1 ⊕ P 2
2 . Since

S/K is pseudo-absorbing comultiplication, we have T/K = (0 :S/K Pn
1 ⊕ Pm

2 )
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for some integers m,n. We show that T = (0 :S Pn
1 ⊕ Pm

2 ). Let s ∈ T . Then

(Pn
1 ⊕ Pm

2 )(s+K) = 0; so (Pn
1 ⊕ 0)s ⊆ (Pn

1 ⊕ Pm
2 )s ⊆ K. Thus (Pn

1 ⊕ Pm
2 )s = 0

since PiS ∩K = 0 by [19, Proposition 2.3]; so s ∈ (0 :S Pn
1 ⊕ Pm

2 ) which implies

that T ⊆ (0 :S Pn
1 ⊕ Pm

2 ). The other implication is clear. □

Corollary 4.6. Assume that R is a pullback ring as in (1) and let 0 → K →
S → M → 0 be a separated representation of a pseudo-absorbing comultiplica-

tion non-separated R-module M with M/PM finite dimensional over R̄. Then

pabSpecR(M) ̸= ∅.

Proof. By Theorem 4.5, S is a pseudo-absorbing comultiplication R-module, so

pabSpecR(S) ̸= ∅ by Proposition 3.3 (b). Thus S has a pseudo-absorbing submod-

ule T . By an argument like that Theorem 4.5, we get K ⊆ T . Now by Lemma 2.2,

T/K is a pseudo-absorbing submodule of S/K ∼= M ; hence pabSpecR(M) ̸= ∅. □

Proposition 4.7. Let R be a pullback ring as in (1), and let M be an indecompos-

able pseudo-absorbing comultiplication non-separated R-module with M/PM finite-

dimensional top over R̄. If 0→ K → S →M → 0 is a separated representation of

M , then S has finite-dimensional top and is pure-injective.

Proof. Since S/PS ∼= M/PM by [7, Proposition 2.6 (i)], we find that S has finite-

dimensional top. Pure-injectivity of S follows from Theorem 4.5 and Corollary

3.7. □

Let R be a pullback ring as in (1) and let M be an indecomposable pseudo-

absorbing comultiplication non-separatedR-module withM/PM finite-dimensional

over R̄. Consider the separated representation 0→ K → S → M → 0. By Propo-

sition 4.7, S is pure-injective. So in the proofs of [7, Lemma 3.1, Proposition 3.2

and Proposition 3.4] (here the pure-injectivity of M implies the pure-injectivity

of S by [7, Proposition 2.6 (ii)]) we can replace the statement “M is an inde-

composable pure-injective non-separated R-module” by ‘M is an indecomposable

pseudo-absorbing comultiplication non-separated R-module”: because the main key

in those results are the pure-injectivity of S, the indecomposability and the non-

separability of M . So we have the following result:

Corollary 4.8. Let R be a pullback ring as in (1) and let M be an indecompos-

able pseudo-absorbing comultiplication non-separated R-module with M/PM finite-

dimensional over R̄, and let 0 → K → S → M → 0 be a separated representation

of M . Then the following hold:
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(i) S is a direct sum of finitely many indecomposable pseudo-absorbing comul-

tiplication modules.

(ii) At most two copies of modules of infinite length can occur among the in-

decomposable summands of S.

Before embarking on the proof of the next result let us explain its idea. Let R be

a pullback ring as in (1). Let M be any R-module and let 0→ K → S → M → 0

be a separated representation of M . We have shown already that if M is indecom-

posable pseudo-absorbing comultiplication with M finite-dimensional top, then S

is a direct sum of just finitely many indecomposable separated pseudo-absorbing

comultiplication modules and these are known by Theorem 3.6. In any separated

representation 0 → K
i−→ S

φ−→ M → 0 the kernel of the map φ to M is an-

nihilated by P , hence is contained in the socle of the separated module S. Thus

M is obtained by amalgamation in the socles of the various direct summands of

S. So the questions are: does this provide any further condition on the possi-

ble direct summands of S? How can these summands be amalgamated in order

to form M? For the case of finitely generated R-modules M these questions are

answered by Levy’s description [20], see also [21, Section 11]. Levy shows that

the indecomposable finitely generated R-modules are of two non-overlapping types

which he calls deleted cycle and block cycle types. It is the modules of deleted

cycle type which are most relevant to us. Such a module is obtained from a direct

summand, S, of indecomposable separated modules by amalgamating the direct

summands of S in pairs to form a chain but leaving the two ends unamalgamated.

Reflecting the fact that the dimension over R̄ of the socle of any finitely generated

indecomposable separated module is ≤ 2 each indecomposable summand of S may

be amalgamated with at most two other indecomposable summands. Consider the

indecomposable separated R-modules S(n,m) = (R1/P
n
1 → R̄ ← R2/P

m
2 ) with

n,m ≥ 2 (it is generated over R by (1 + Pn
1 , 1 + Pm

2 )). Actually, separated in-

decomposable R-modules also include R1/P
n
1 for n ≥ 2, which can be regarded

up to isomorphism as S(n, 1) = (R1/P
n
1 → R̄ ← R2/P2). Similarly, for m ≥ 2,

S(1,m) = (R1/P1 → R̄ ← R2/P
m
2 ) is a separated indecomposable R-module.

Moreover, R1, R2 and R themselves can be viewed as separated indecomposable

R-modules, corresponding to the cases n = ∞ and m = 1, n = 1 and m = ∞,

n = m = ∞. Deleted cycle indecomposable R-modules are introduced as follows:

Let S be a direct sum of finitely many modules S(i) = S(ni,1, ni,2) (with i < s a

non-negative integer). Here ni,j ≥ 2 for every j < s and j = 1, 2, with two possible

exceptions i = 0, j = 1 and i = s − 1 and j = 2, where the values ni,j = 1 or



16 EBRAHIMI, KHORAMDEL AND DOLATI

∞ are allowed. Then amalgamate the direct summands in S by identifying the

P2-part of the socle of S(i) and the P1-part of the socle S(i+1) for every i < s−1.

For instance, given the separated modules S1 = (R1 → R̄ ← R2/P
3
2 ) = Ra with

P 3
2 a = 0 and S2 = (R1/P

7
1 → R̄ ← R2/P

2
2 ) = Ra′ with P 7

1 a
′ = 0 = P 2

2 a
′. Then

one can form the non-separated module (S1⊕S2)/(R(p22a−p61a
′) = Rc+Rc′ where

c = a+R(p22a−p61a′), c′ = a′+R(p22a−p61a′), P 3
2 c = 0 = P 7

1 c
′ = P 2

2 c and P 2
2 c = P 6

1 c
′

which is obtained by identifying the P2-part of the socle of S1 with the P1-part of

the socle of S2. We will use that same description, but with pseudo-absorbing

comultiplication separated modules in place of the finitely generated ones, gives

us the non-zero indecomposable pseudo-absorbing comultiplication non-separated

R-modules. As a consequence, any non-zero indecomposable pseudo-absorbing co-

multiplication separated module with 1-dimensional socle may occur only at one of

the ends of the amalgamation chain (see [7, Proposition 3.4]). It remains to show

that the modules obtained by these amalgamations are, indeed, indecomposable

pseudo-absorbing comultiplication. We do that now and thus complete the clas-

sification of the indecomposable pseudo-absorbing comultiplication non-separated

modules with finite-dimensional top.

Theorem 4.9. Let R = (R1 → R̄← R2) be the pullback of two DV Rs R1, R2 with

common factor field R̄. Then the indecomposable non-separated pseudo-absorbing

comultiplication modules with finite-dimensional top, up to isomorphism, are the

following:

(i) M = E(R/P ), the injective hull of R/P ;

(ii) The indecomposable modules of finite length (apart from R/P which is

separated), that is, M =
∑s

i=1 Rai with

pns
1 as = 0 = pm1

2 a1, p
ni−1
1 ai = p

mi+1−1
2 ai+1(1 ≤ i ≤ s− 1)

mi, ni ≥ 2 except that m1 ≥ 1, ns ≥ 1.

(iii) M = E1 +
∑s

i=1 Rai + E2 with

a0 = pm1−1
2 a1, b0 = pns−1

1 as, p1a0 = 0 = p2b0,

and pni−1
1 ai = p

mi+1−1
2 ai+1 for all 1 ≤ i ≤ s − 1, where E1

∼= E(Ra0) ∼=
E(R1/P1), E2

∼= E(Rb0) ∼= E(R2/P2) and mi, ni ≥ 2 except that m1 ≥ 1,

ns ≥ 1.

(iv) M = E1 +
∑s

i=1 Rai with

pns
1 as = 0, a0 = pm1−1

2 a1, p1a0 = 0,
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and pni−1
1 ai = p

mi+1−1
2 ai+1 for all 1 ≤ i ≤ s − 1, where E1

∼= E(Ra0) ∼=
E(R1/P1), and mi, ni ≥ 2 except that ns ≥ 1,

(v) M =
∑s

i=1 Rai + E2 with

pms
2 as = 0, b0 = pn1−1

1 a1, p2b0 = 0,

and pmi−1
2 ai = p

ni+1−1
1 ai+1 for all 1 ≤ i ≤ s − 1, where E2

∼= E(Rb0) ∼=
E(R2/P2), and mi, ni ≥ 2 except that ms ≥ 1.

Proof. Let M be an indecomposable non-separated pseudo-absorbing comultipli-

cation R-module with finite-dimensional top and let 0 → K
i−→ S

φ−→ M → 0 be

a separated representation of M . By Corollary 4.8 (ii), S is a direct sum of finitely

many indecomposable pseudo-absorbing comultiplication separated modules. We

know already that every indecomposable pseudo-absorbing comultiplication non-

separated module has one of these forms so it remains to show that the modules

obtained by these amalgamation are, indeed, indecomposable pseudo-absorbing co-

multiplication modules. (i) follows from Proposition 4.2. Since a quotient of any

pseudo-absorbing comultiplication R-module is pseudo-absorbing comultiplication

by Corollary 4.4, they are pseudo-absorbing comultiplication. The indecomposabil-

ity follows from [20, 1.9] and [7, Theorem 3.5]. □

Remark 4.10. (i) Let R be the pullback ring as described in Theorem 4.9. Then

by [7, Theorem 3.5] and Theorem 4.9, every indecomposable pseudo-absorbing co-

multiplication R-module with finite-dimensional top is pure-injective.

(ii) This paper includes the classification of indecomposable pseudo-absorbing

comultiplication modules with finite-dimensional top over k-algebra k[x, y : xy =

0](x,y).
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