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ABSTRACT. Let K be a field and K[z1,x2] the polynomial ring in two vari-
ables over K with each z; of degree 1. Let L be the generalized mixed product
ideal induced by a monomial ideal I C K|[z1,z2], where the ideals substitut-
ing the monomials in I are squarefree Veronese ideals. In this paper, we study
the integral closure of L, and the normality of R(L), the Rees algebra of L.

Furthermore, we give a geometric description of the integral closure of R(L).
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1. Introduction

Let S = K|[x1,...,z,] be the polynomial ring over a field K in the variables
Z1,...,Tn, and let I C S be a monomial ideal with I # S whose minimal set of

Am

generators is G(I) = {x®1,...,x?*m}. We consider the polynomial ring 7" over K
in the variables 211,...,%1my,T215 - T2mys -« Tnls -« - s Tnm,- Notice that T =
T @k Ty K - @ Ty, where T = K[xj1,%j2,...,Tjm;] for j=1,...,n.

Restuccia and Villarreal [10] introduced the class of squarefree monomial ideals
of mixed products and they gave a complete classification of normal mixed product
ideals, as well as applications in graph theory.

Mixed product ideals are of the form
(Iwa + Isz)K[fElla ey Llmy s L215 - - - 71'2m2]7

where for integers a and b, the ideal I, (resp. Ji) is the ideal generated by all
squarefree monomials of degree a in the polynomial ring K[z11,...,Z1m,] (resp.
of degree b in the polynomial ring K[xa1,...,Zam,]) and where 0 < p < ¢ < my,
0 < w < s <mgy. Thus, the ideal L = (I3 Jy + IpJs) K11, . - - s T1my s T215 -« - T2my)
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is obtained from the monomial ideal I = (z{z¥,27x3) by replacing z{ by I,, 2} by
I,, 3 by J, and x5 by J,.

In the present paper, we consider generalized mixed product ideals which were
introduced by Herzog and Yassemi [4] and which also include the so-called expan-
sions of monomial ideals. A great deal of knowledge on the generalized mixed
product ideal is accumulated in several papers [6,7,8,9].

The main objective of this paper is to study the normality of some algebras
associated to generalized mixed product ideals. In our case, the normality of a
generalized mixed product ideal L is equivalent to the normality of the Rees algebra
R(L) = @52, LFt*. The integral closure R(L) of the Rees algebra in its field of
fractions is called normalization of L. It is well-known ([11]) that this graded

algebra has the powers of the ideal L as components of the integral closure:

RIL)=ToLt® - LM @,

where L¥ is the integral closure of L*.

The present paper is organized as follows. In Section 2 the combinatorics of the
integral closure of generalized mixed product ideals is studied. In [7], the author
studied how the generalized mixed product ideal commutes with the integral closure
of a monomial ideal and proved that I is normal if and only if L is normal, provided
the ideals substituting the monomials in I are all powers of the maximal ideals.

The squarefree Veronese ideal of S of degree d is the ideal of S which is generated
by all squarefree monomials of .S of degree d. This class of ideals is a special class
of polymatroidal ideals, introduced in [13].

Our main result (Theorem 2.7) says that, if I C K[z1, z2] is a Veronese type ideal
and the ideals who substitute the generators of I are squarefree Veronese ideals,
then L is normal.

Furthermore, let L = (f1,..., f+). The monomial subring spanned by { f1,..., fr}
is the K-subalgebra K[L] = K|[fi,..., f;]. The integral closure of K[L] in its field
of fractions is called normalization of K[L]. If L is generated in the same degree
and its Rees algebra is normal, then we obtain the normality of K[L] ([12]).

In Section 3, the normality of K[L] and R(L) is studied. Moreover, we give a
geometric description of W, see Proposition 3.3.

In Section 4, we focus on the Rees algebra of the edge ideal of a finite simple
graph. The definition of expansion operator is motivated by constructions in various
combinatorial contexts. Let G be a finite simple graph with vertex set V(G) =
{z1,...,2,} and edge set E(G), and let I(G) be its edge ideals in S.
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All graphs in this paper are simple finite undirected. We fix a vertex z; of G.
Thus, a new graph G’ is defined by duplicating x;, that is, V(G’') = V(G) U {z; }
and

E(G") = E(G) U {{zi,z} : {ai, x5} € E(G)}

where z; is new vertex. Therefore, I(G') = I(G) + (z;xj : {x;,x;} € E(G)). This
duplication can be iterated. The graph which is obtained from G by m; duplications
of x; is denoted by G(mmn) - Then edge ideal of G(™1™n) can be described

as follows: let P; be the monomial prime ideal (x1,...,2jm,;) € T. Hence,

I(G(ml,...,mn)) — Z PZP]
{zi,z;}€E(G)
Let R(I(G)) = @i, I(G)*t* be the Rees algebra of the edge ideal I(G). In
Theorem 4.3 it is shown that the Rees algebra R(I(G)) is normal if and only if
R(I(G(m1-mn))) is normal. The subring

K|G] = K[z;z; | {z;,z;} isanedgeof G] C S

is called the edge subring of G. In Proposition 4.4, we prove that K[G(ml"“’m")]
is normal if G is bipartite. We also give a formula to compute the dimension of
K[G(m1mn)] see Theorem 4.5.

2. Integral closure and normality of generalized mixed product ideals

Fix an integer n > 0 and set [n] = {1,2,...,n}. Let R’ denote the set of those
vectors u = (uq,...,u,) € R™ with each uw; > 0. Hence, in particular u({s}), or
simply u(i), is the ith component w; of u.

Let S = K|[x1,...,z,] be the polynomial ring over a field K in the variables
Z1,...,Tn, and let I C S be a monomial ideal with I # S whose minimal set

a(l)a@) . jat) o g o

of generators is G(I) = {x®,...,x®*"}. Here x® = z T
(a(1),...,a(n)) € N™. For a subset D C S, we define the exponent set of D by
E(D):={d:x%e D} CN".

Next we consider the polynomial ring T over K in the variables

T11y- - ,.Ilml,l'gl, e ,$2m2, ey Tl ,.’Enmn.
In [4], the authors introduced the generalized mixed product ideals. Fori =1,...,n
and j =1,...,m let L;a,;) be a monomial ideal in the variables ;1, T2, ..., Tim,

such that

Lia; i) C Liay iy whenever a;(i) > a(i). (1)
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Given these ideals we define for 7 = 1,...,m the monomial ideals
Li =[] Liayo T, (2)
i=1

and set L = Z;”:l L;. The ideal L is called a generalized mized product ideal
induced by I.

Example 2.1. Let L = Ly ¢Lo, + L1 sL>; be the generalized mixed product ideal
induced by a monomial ideal I = (z{x5,z5x%), where for integers a and b, the
ideal Ly, (resp. Lay) is the ideal generated by all squarefree monomials of degree
a in the polynomial ring K[z11,...,Z1m,] (resp. of degree b in the polynomial ring
Klxo1,...,Tam,]), and where 0 < s < ¢ < my, 0 < r <t < mgy. Ideals of this type

are called squarefree Veronese ideals.

Now we want to study the combinatorial structure of the integral closure of
generalized mixed product ideals. Let I be a monomial ideal of S. The set of all
elements that are integral over I is called the integral closure of I, and is denoted
by I. If I = I, then I is called integrally closed. In addition, the integral closure
of a monomial ideal is again a monomial ideal. In [12], it is given the following

description for the integral closure of I:
T=(f|f isamonomialin$Sand f*e I* for some k>1).

If all the powers I* are integrally closed, hence I is called a normal ideal.

Let u € Q7, where Q4 is the set of nonnegative rational numbers. We define
the upper right corner or ceiling of u as the vector [u] whose entries are given by
[u];, where

u; if w;eN

Mi:{ lui|+1 if uw ¢N
and where |u;] stands for the integer part of u;. Accordingly, we can define the
ceiling of any vector in R™ or the ceiling of any real number. Let conv(vy,...,v,)

be the convex hull (over the rationals), that is,

q q
COHV(V17~~~;Vq){Z)\iV1' Z)\Zl,)\ZGQ+}
i=1 i=1

is the set of all convex combinations of vi,...,v4. For more information refer to
[5, Definition 1.4.3, Propositon 1.4.6, and Definition 1.4.7]. For a monomial ideal
I C SwithG(I) = {x*,...,x*}, weset L(I;{Li;}) = 3.7 [[;= Li.a, - Notice
that a generalized mixed product ideal depends not only on I but also on the family
Lij~
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In the following, we prove that L is integrally closed if I C K[z1, 23] is a Veronese
type ideal and the ideals who substitute the generators of I are squarefree Veronese

ideals.

Theorem 2.2. Let

L= E Ll,qlLQ,qQ CK[xllw"71'1m17x21a-"ax2m2]
1<q<my, 302, ai=h
be the generalized mized product ideal, where the ideals L1 4, in K[z11,Z12, .. ., T1m,]
and the ideals Lo 4, in K[221, 229, ..., ZTam,] are squarefree Veronese ideals of degree

q1 and qo, respectively. Then L is integrally closed.

Proof. Let
L= > Ly Logs
1<q<my, 37 ai=h
where the ideals
Ly 4 in K[z11, %12, - - ., T1m, | and the ideals Lo 4, in K[xo1, T22, . . . , Tam, ] are square-
free Veronese ideals of degree ¢; and gs, respectively.
We set ¢; = (¢i1,. -+ Cimy) € N™ d; = (dix, ..., dim,) € N™2) and

(ci,di) = (Cit, -+ -+ Cimy s dits - - -, dim,) € N2,

Let X§' X', ..., XS X$" be the generators of L, where X' X5 stands for

ci1 Cimy . di1 dimy
L1 " Timy Lo1 ° " Lom,

Withzglcij—i-zyfldij:h,Ogcij§1,0§dij§1fori:17...,r, and h > 2.

Then [13, Proposition 12.1.4] implies that

L= ({xPP1x | (p,q) € convi(er, ), ... (er ) })

where

COHV((Cl,dl), ceey (Cr,dr)) = {Z )\i(ci)di) Z)\Z =1\ € Q+} .
=1 =1

This is a geometric description of the integral closure of L. Let f = thﬂ ng] be

a generator of L. Therefore,

(p7 q) = (Z )\icil, ceey Z Aiciml s Z Aidilv ceey Z Aidim2> c QTI‘sz.
=1 =1 =1 =1

If A\; € N, then \; = 1 and \; = 0 for all j # i. Thus, X[P'X[ = X¢ X' for
some ¢ with 1 <4 <. If \; € Q4 \N with >7_, A\; = 1, then we have a monomial
X{pw ng] with [p] > c; with respect to the order on Q"' and [q]| > d; with
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respect to the order on Q'"?, where p; > ¢;; and q; > d;;. Hence, the monomial
Xw ng] is divided by X$'X$ for some 1 < i < r. Thus, L is generated by
X?Xg" for all 1 <7 <7 and by Xlhﬂ ng] with [p] > ¢; and [q] > d;. Therefore,

G(I) = {X*;lxga...,x‘;rxgr},
and hence L = L. O

Example 2.3. Let L = L171L272 +L172L271 C K[l’ll,Ilg,le,Igg} be a generalized
mixed pI‘OdUCt ideal, Where L171 = (1'11,.%12), L172 = (.’Elll'lg), L271 = ($21,.’E22)

and Lo o = (221222). Therefore, Theorem 2.2 implies that
I = ({X{p] thﬂ

where (c1,d;) = (1,0,1,0) € Z4, (c2,d2) = (1,0,0,1) € Z%, (c3,d3) = (0,1,1,0) €
Z4 and (cq,ds) = (0,1,0,1) € Z4. Tt follows that

(p, q) S COIlV((Cl7 dl), (CQ, dg), (Cg, Clg)7 (C4, d4)}) s

L =L = (z11221, T11%22, T12T21, T12T22).

The support of a monomial f = x7* -z, denoted by supp(f), is a subset of

the set of variables given by
supp(f) = {zi | a; > 0}.
For a = (a(l),...,a(n)) € Z}, we set
GL(a) = {bezZTt" ™ | XP € G(L(x*{Li;}))} -
In addition, for all a € E(G(I)), we define X&(®) for the set of monomials
{X*|beGL(a)},

where E(G(I)) denotes the exponent set of G(I). Thus, L(I;{L;;}) is a monomial

ideal of T' generated by the monomials XP = T, x?il e xz-)i'm? where

b= (b11;-~-ab1m17b21a---7b2m27-~-7bn17~--;bnmn) S GL(a)

for all a € E(G(I)).

Remark 2.4. (a) Let

I {LU} ZHLi’aj(i) cT = K[xll,...,xlml,... ,l‘nh...,lﬂnmn}

j=1i=1
be a generalized mixed product ideal, induced by the monomial ideal I with G(I) =
{x®, ..., x* }, where the ideals L; o,y C T; = K[%i1, %2, . . ., Tim,] are squarefree

Veronese ideals of degree a;(i). Let A = T[z;,!] be the Laurent polynomial ring for
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some z;,. We denote by L;aj(i) the ideal of T} = K[x;1, ..., Tip, - - - , Tim, | generated
by all the squarefree monomials of T; of degree a;(i) — 1. Hence, Ljq,i)A =
L;aj(i)A. In fact one has L; ;) C L;,a_,»(z‘)v hence L; o)A C L;,aj(z‘)A‘ On the
other hand consider a monomial f in L;’aj(i), then @iy f € Lja;() and f € L; o, (5) A
Therefore, Lg)aj(i)A C Lia;)A-

(b) If a variable x;, is not in a prime ideal p C T', then the localization of L; a, ()

at p is the same as the localization of L;,aj(i) at p.

In [7], the author studied the normality of L, where the ideals substituting the

monomials in I are all powers of the maximal ideals.

Theorem 2.5. [7, Theorem 3.3] Let L(I;{L;;}) = Z;ﬂzl ITimi Lia,iy € T be
a generalized mized product ideal, induced by the monomial ideal T with G(I) =
{x®1, ..., x* }, where the ideals L q, () C K[%i1,Ti2,...,Tim,| are Veronese ideals

of degree a;j(i). Then I is normal if and only if L(I;{L;;}) is normal.

Next we study the normality of L, provided the ideals substituting the monomials

in I are squarefree Veronese. We set

’_ } : ’
L' = Ll,qlL27QZ7
1<q<mi, Y7, ai=h

where the ideals Ly, in Kz11,%12,...,%1m,] and the ideals Lo, in
Klxo1, %22, . .., Tam,| are squarefree Veronese ideals of degree ¢; and ¢, respectively.
Therefore, L’ is a monomial ideal of the ring K[x11, ..., T10,- - T1my, T21 - - - s T2mo )

generated by all the squarefree monomials

! !’ ’
ayy A1p—1, P1vt1 Amy asy A2my
L1 Trp—1 Lrv+1 " " Timy L21 " Loam,

of degree h — 1. Similar considerations hold for

" " —
L' = E Ll,q1 2,42 CK[(I}ll,...,xlml,xgl...,IQU/,...,J?sz].
1<q<mi, Y7, ai=h

Face ideals were introduced in [13, Definition 6.1.2]. A face ideal is an ideal g of

T generated by a subset of the set of variables.

Lemma 2.6. Let L = Zlﬁngmz,Z?zl a=h Ll,qlLQ,qg C K[.Tll, e Ty s T2y e - - ,.’I,‘Qm2],
where the ideals Ly 4, in K[T11, %12, .., T1m, ], the ideals La 4, in K[To1,T22, . . ., Tam,)
are squarefree Veronese ideals of degree q1 and gz, respectively.

Furthermore, let o C K[Z11,...,T1my, %21, -, Tam,] be a face ideal such that

X1y & p for some v (resp. xay & @ for some v'). Then

li
LK[xlla sy Timy, L215 - - - ,$2m2]p =1L K[xlla sy Timy, 215 - - ameQ]p
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(resp. LK[ﬂfn, vy TImy, L215 - - - ax2m2]go = L”K[In, sy Tlmyy L21y - - - 7m2m2]ga)-

Proof. For simplicity of notation we assume that v = 1. Take a monomial

_ 012 a/lml azy A2mg
f=m3"my ol - gy,

of L' of degree h —1. As ajy +---+a},,, +as1 +---+azm, =h—1and a}, <1 for
all t > 2, we have z11f € L and f € LK[z11,...,%1m,, %21, ..., L2m,]p. Therefore,

/
L'K[z11,. ., T1my, 215 - s Tamy o © LK [Z11, .- Timy, T215 - -+, T2ms]p-

Conversely, take a squarefree monomial g of L of degree h. By Remark 2.4, we have

g€ LK[z11,...,Z1m,, %21, .- ., Tam, |- It follows that
LK[xlla oo 3x1m1ax217 oo 7x2m2]p g L/K[:Ellv cee 7$1m13"£21, ey $2m2]pa
as desired. O

We now come to the main result of the present paper.

Theorem 2.7. Let

L= Z Ly,g, Lg,
1<q<my, 37, qi=h
be the generalized mized product ideal, where the ideals L1 4, in K[T11, %12, -, T1m, ]
and the ideals Lo 4, in K[To1,T22, .. ., Tam,] are squarefree Veronese ideals of degree

q1 and qo, respectively. Then L is normal.

Proof. Let L be the generalized mixed product ideal induced by a Veronese type
ideal I generated by the monomials z%' zd* with 1 < ¢, < m; and 212:1 q = h. By
induction on h we show that L is normal. If h = 2, then [10, Theorem 2.9] implies
that L = L 1L3; is normal.

Assume that h > 2 and the result holds for the generalized mixed product ideal
of degree less than h. Take any prime p # n and pick z1, ¢ @, where n is the

maximal ideal n = (211,...,Z1m,, T21,- -, T2m,). By Lemma 2.6 we obtain
/
LK[Z11,. .y Timy, X215 - - Tama o = L'K[T11, .0, Z1imy, T215 - -+, T2ms]p-

Thus, by the induction hypothesis, we conclude that L’ is normal. According to [3,
Proposition 4.2], we obtain L'K[z11,...,%1m,,%21,-..,L2m,]e 15 normal. There-

fore,
LK[x11,. .. T1my, T21s - - Tams |

is normal for any prime ideal p # n.
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Now we proceed by contradiction assuming L¥ N (L* : n) # L* for some k > 1.
This means we can choose a monomial f in L \ L* such that z, f € L* for all v.

Hence, there are monomials fi, ..., fi of degree h in L and satisfying the equality:

ruf=gf1 - fr

where ¢ is a monomial with deg(g) > 0, because f € LF. Notice that z;; ¢
supp(g) because f ¢ LF. Hence, we may assume that z;; € supp(f;) and g =
Ci2 .Ci3 Ciq' | ds1 ds

LIS XYY Xy Tt - wg and ¢, ds; > 0. Observe that xq, divides fy for all

2 <t < ¢'. Otherwise, we can write

[ = ((fizwe)/z11)fa - fr(g/z1e)

to derive f € L*, a contradiction. We distinguish two cases:
Case (I): x1; does not divide f,, for some 2 <t < ¢’ and 2 < w < k. Then for
each x1, € supp(f,) with v # t, we have zy, divides f;. Otherwise, if 21, does not

divide f1, then we have the equality

f= ((xlvf1)/$11)f2 ce fwfl((xltfw)/xlv)warl s fk(g/lﬂlt),

where (21, f1)/x11 € L and (214 f,)/71, € L. Therefore, f € L*, a contradiction.
Hence, since we have already seen that also x1; divides fi, we obtain x1; divides
fw, which is a contradiction.

Case (IT): x4 divides f,, for all 2 <t < ¢ and 2 < w < k. Since z; divides fi,
it follows that deg, ,(f) > k + 1, where deg, (f) denotes the degree of f in the
variable z15. Recall that x5 f € L, which by degree considerations readily implies
f € L*, a contradiction.

Altogether we see that in both cases the equality Ik n (LF : n) # LF leads to
a contradiction. Therefore, [13, Proposition 12.2.1] implies that L is normal, as

desired. 0

Example 2.8. Let L = Ly 1Ly 3+Ly2Loo+L1 3021 C K211, %12, %13, T21, T22, T23]

be the generalized mixed product ideal induced by a monomial ideal
I = (23, 2303, 232s),

where for integers a and b, the ideal Ly , (resp. Lo) is the ideal generated by all

squarefree monomials of degree a in the polynomial ring K[x11, %12, x13] (resp. of
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degree b in the polynomial ring K[z21, 22, 23]). Therefore,

L = (I11I21$22$237 T12X21L22X23, L13L21L22L23, L11L12L21L22, L11L12L21L23,
L11212222723, L11L13L21L22, L11L13L21L23, L11L13L22L23, L12L13L21L22,
L12L13221723, L12L13L22X23, L11L12L132L21, L11L12TL13L22, I11$12$13IQ3)-

Hence, Theorem 2.7 implies that LF =L* for all k> 1.

3. Normalization of generalized mixed product ideals

In this section, we want to study the normality of Rees algebras of generalized
mixed product ideals. Let I be a graded ideal of S = KJx1,...,z,] generated by
homogeneous polynomials f1,..., f,. with deg fi = deg fo = --- =deg f,. Let t be

a variable over S. The graded subalgebra
R(I) =P I** = S[fit,..., fit]
k=0

of S[t] is called the Rees algebra of I.
The integral closure R(I) of the Rees algebra in its field of fractions is called

normalization of I. Tt is well-known ([11]) that is the graded algebra:
R(NH=Saolte -aoltae- .,
where I* is the integral closure of I*. The ring R(I) is said to be normal if R(I) is

equal to its integral closure. Therefore, R(I) is normal if and only if I is normal.

Proposition 3.1. Let L be the generalized mized product ideal induced by a mono-
mial ideal I with G(I) = {x*,...,x*"}, where the ideals L;q, ) are Veronese

ideals of degree a;(i). Then I is normal if and only if R(L) is normal.

Proof. Let L(I;{Li;}) = (f1,..., fr), and let R(L(I;{L;;})) be the subring of T'[t]
given by T'[fit,..., f.t], where t is a new variable. Notice that

RILI{Ly}) =To Lt oL e .- C Tl

is a graded algebra. By [13, Theorem 4.3.17] the normality of an ideal L(I;{L;;}) of
the polynomial ring T is equivalent to the normality of its Rees algebra. Therefore,

using [13, Theorem 4.3.17] and Theorem 2.5, the assertion follows. O
Now we consider the case that all L;; are squarefree Veronese ideals.

Proposition 3.2. Let L = Zl<qz<mz,2?ﬂ a=h L1,g1L2,g, be the generalized mized

product ideal, where the ideals L 4, in K[x11,%12,...,T1m,] and the ideals Lo g, in
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Klxo1, %22, ..., Tam,| are squarefree Veronese ideals of degree q1 and qa, respectively.
Then R(L) is normal.

Proof. The assertion follows by Theorem 2.7 and [13, Theorem 4.3.17]. O

Next we study the combinatorics of the normalization of generalized mixed prod-
uct ideals. Let V = {v1,...,v4} be a set of vectors in N"\{0}. The integral closure

or normalization of the affine semigroup
NV :=Nv; +---+ Ny, C N",

is defined as NV := ZV N RV, where ZV is the subgroup of Z" generated by V.
The semigroup NV is called normal or integrally closed if NV = NV.

Let I be a monomial ideal of S minimally generated by the set
G(I) = {x*,...,x%"}.

The Rees cone of I is the rational polyhedral cone on R"*1, denoted by R E(G(I))’
or Ry (I), generated by

E(GD) = {e1,...,en, (a1, 1),..., (am, 1)} c R*™H

where e; is the ¢th unit vector.
Now let L be the generalized mixed product ideal induced by a monomial ideal
I. More precisely let G(L) = {XP1,...,XPr} and E(G(L)) be the set of exponent

vectors of the generators of L. As usual we use X" as an abbreviation for
n
u _ Wil | Wimy
X" = Hmil Lim; s
i=1

where U = (W11, ..., Ulmys U215+« « s Uiy - -« s Unds - - - s Upm,, ) 18 i ZH T We
set

E(GWL) ={e1,-semytim,(b1,1),..., (b, 1)},
where e; is the ith unit vector of R™1++m»+1 On the other hand according to

[11, Theorem 7.2.28] one has
R(L) = K[{X"* | (u,2) € NE(G(L))'}],

where NE(G(L))" is the subsemigroup of N™i+-+ma+l generated by E(G(L)),
consisting of the linear combinations of F(G(L))" with non-negative integer coef-
ficients, and the integral closure of R(L) in its field of fractions can be expressed

as

R(L) = K[{X"t* | (u,2) € Z™ ™ H N RLE(G(L)) '},
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where R, E(G (L)) C R™1++matl congists of the linear combinations of E(G(L))’
with real coefficients. Therefore, R(L) is normal if and only if any of the following
equivalent conditions hold:

(1) NE(G(L)) = Zm++m+1 0 R, B(G(L))':

(2) L* = LF for all k > 1.

In the following, we give a description of the normalization of R(L).

Proposition 3.3. Let

L= Z L1,g L2,gss

1<q<mi, 37 ai=h
where the ideals Ly 4, in K[x11,Z12, - .., T1m, ], the ideals Lo 4, in K[To1, Ta2, . - ., Tom,]

are squarefree Veronese ideals of degree q1 and qs=, respectively. Then
R(L) = K[{X?thq | cc NE(G(Ll,th))vd € NE(G(LQ,QZ))vq € N}],

where E(G(L1,4,)) (resp. E(G(La,g,))) is the set of the exponent vectors of the
monomials of L1 4, (resp. Lo 4, ) in the variables x11, ..., T1m, (T€Sp. a1, ..., Tam,)-

Proof. According to Proposition 3.2 one has R(L) is normal. Hence, R(L) =
R(L). We show that R(L) = K[{X$X$t? | c € NE(G(L1,4,)),d € NE(G(La,y,)),q €
N}

We assume that B = K[{X$X$t? | ¢ € NE(G(L1,4,)),d € NE(G(La,)),q €
N}], where E(G(L1,4,)) = {u1,...,u.} (vesp. E(G(Layg,)) = {v1,...,Vs}) is the
set of the exponent vectors of the monomials of Ly 4, (resp. L 4,) in the variables
11y -y T1my (TESD. T1, ..., Tom, ).

By hypotheses ¢ = >_/_, a;u; with a; € N, u; € E(G(L1,g,)), d = >0_, Bivi
with 8; € N, v; € E(G(La,,)), ¢ € N. Then X§ = X7" for all 1 <4 < r, and
X¢ = fX}“, where f is a monomial in the variables x11,...,T1,,, and X$ = X5
for all 1 < i < s, and X¢ = wXy’, where w is a monomial in the variables
To1,...,Tom,. Hence, the monomials X$X$t? of minimal degree are the generators
of R(L), as desired. O

Suppose that L(I;{L;;}) = (fi,...,fr). The monomial subring spanned by
{fi,-.., [} is the K-subalgebra K[L(I;{L;;})] = K[f1,.-., f+].

The integral closure of K[L(I;{L;;})] in its field of fractions is called normai-
ization of K[L(I;{L;;})]. In addition, we denote K[L(I;{L;;})] for the integral
closure of K[L(I;{L;;})]. The toric ring K[L(I;{L;;})] is said to be normal if

K[L(I;{Lij})] = K[L(I; {Lij })]-
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Proposition 3.4. Let L = >,

and qo, the ideal Ly 4, (Tesp. L g,) is the ideal generated by all squarefree mono-

<mi,>2  q=h D101 L2,go, where for integers g

mials of degree q1 in the polynomial ring K[x11,...,Z1m,] (resp. of degree qa in the

polynomial ring K[xa1,...,Tam,]). Then K[L] is normal.

Proof. Suppose that L = (f1,..., f.) be the generalized mixed product ideal in-
duced by a monomial ideal I. Assume further that ¢; + ¢o = h. The monomial
subring K|[f1,..., fr] is a graded subring of K[z11,...,%1m,T21,-- -, T2m,]| With

grading

K(fi,....frlk =K[fi,- ., [r] N K11, oo, T iy T215 -+ 5 T2y | k-

Since L is generated in the same degree h, by Proposition 3.2 together with [12
Proposition 7.4.1], we have K[L] is normal. a

Proposition 3.5. Let L be the generalized mized product ideal induced by a mono-
mial ideal I with G(I) = {x*,...,x*}, where the ideals L4,y are Veronese
ideals of degree a;(i). Assume that I is generated in the same degree d. Then K[L]

is normal if I is normal.
Proof. Suppose that
FO—=F,—=Fp 14— = F—=F —=F—=S/1-0

be the Z™-graded minimal free S-resolution of S/I.

We assume that F; = @le S(—a;;) with a;; € N* for ¢ = 1,...,n. Thus, F; =
EBJ’H;I Sfi; where f;; is a basis element of the free S-module F; of Z"-degree a;;.
Let 0 denote the chain map of F. Then

fzy Z/\(z Big —8i- 1kfz 1,k-

Scalar matrlces of the resolutlon F. Now we choose for each of the generators X% of
I a monomial ideal L; in T' (not necessary of the form (2)). The multi-graded free
resolution F of I are used to construct an acyclic complex F* of direct sums of ideals.
We set Ff =1 and F} = @le L;; where the monomial ideals L;; are inductively
defined as follows: we assume that Li; = Lj; for all j. Suppose that L;_;; is
already defined for all j. For a given number j with 1 < j < G;, let ki, ks, ...,k
be the numbers for which )\ ; # 0. In addition, we set L;; = M=y Li—1,%,- The
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chain map 0* of F* is given by

Bi Bi—1
o* @Lij — @ Li—l,j, U = /\(Z)u,
j=1 j=1

where

U = : with u; € Lyj.

Up;
Hence, 8*(@;8;1 Li;) C @?;’11 Li_q,. Let v € @f;l L;; be a column vector.
Suppose that v, = 0 for £ # j. Thus,

Uy
u2
9" (v) = . :
uﬁifl
where uy = /\,(:}vj fork=1,...,06;_1.

Next we show that L is generated in degree d if and only if I is generated in
degree d. By [4, Lemma 2.4], 0*(F5) C nF; where n is the graded maximal ideal
of T. This then implies @, L;/nL; = L/nL. Our assumptions on the ideals L; a,
imply that L; is minimally generated in degree |a;|. Hence, it follows that L has
generators exactly in the same degrees as I. Proposition 3.1 with [12, Proposition

7.4.1] guarantees that K[L] is normal. Thus, the desired conclusion follows. O

4. Rees algebra of an edge ideal

The main goal of this section is to study monomial subrings associated to graphs.
Let G be a finite simple graph with vertex set V(G) = {z1,...,z,} and edge set
E(G), and let I(G) be its edge ideals in S = K[z1,...,z,]. As usual we denote the
Rees algebra of I(G) by R(I(G)).

In [2] Bayati and Herzog introduced the expansion functor in the category of
finitely generated multigraded S-module. We assume that S("1>+"n) be the poly-

nomial ring over a field K in the variables

L1ly+ -3y T1my s L21y -+ 3 L2mgy -+ Lnly -y Tnm, -

Let I C S be a monomial ideal minimally generated by x®!,...,x?" the ez-

pansion of I with respect to the n-tuple (my,...,m;), is defined by I(masemn) —
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Z;n:l T, Piaj(i) c §(mimn) where P; is the monomial prime ideal (1, . . ., Tim,) C

S(mas-mn) and a;(i) is the i-th component of the vector a;.

Theorem 4.1. [1, Theorem 2.1] Let I be a monomial ideal of a polynomial ring
S = K[zy,...,x,]. Then I is normal if and only if I ™n) s normal, where

I(ma-mn) denotes the expansion of 1.

For the n-tuple (mq,...,m,) € N* with positive integer entries, the expansion
of the graph G is denoted by G(™1-™n) We consider the monomial prime ideal
Pj = (zj1,...,%jm;) in S(mi,-mn) - Hence,

I(Gmarmn)y — Z P,P;.
{zi,2;}€E(G)
It follows from [2, Lemma 1.1] that
I(G(ml,...,mn)) _ Z ‘/Egml,.u,mn)x;ml7~~.,mn) _ I(G)(ml,...,mn).

{zi,z;}€E(G)
Example 4.2. Let G be a graph on the vertex set V(G) = {x1,22,23,24} and
edge set E(G) = {{x1,23},{z1, 24}, {m2, 23}, {22, 24}}. We consider the poly-
nomial ring 7" over K in the variables x11, 221,222,231, %41, 42, and the order

4-tuple (1,2,1,2). Hence, G212 is a graph with vertex set V (G121:2) =

9 3 )

{Z11, %21, 22, T31, Ta1, a2} and edge set

E (G(1’2’1’2)) = {{$117$31}, {3311,3341}, {$11,1‘42}, {$21,$31}, {332273731}, {I217$41},
{9821, 1542}, {$22, 3541}, {xzz, 3?42}}-
Then we have Py = (211), P> = (221, %22), Ps = (x31) and Py = (241, 242). There-
fore,
I(GY>12)) = P\Py+ PiPy+ PyPs+ PPy
= (T11%31, T11741, T11T42, T21T31, T22T31, T21T41, T21T42, T22T41, T22T42)-

The ideal I(G1212)) C T is obtained from I(G) by expansion with respect to the
4-tuple (1,2, 1,2) with positive integer entries.

Theorem 4.3. Let G be a graph on the vertex set V(G) = {z1,...,z,}. Fiz an
order n-tuple (my,...,my,) of positive integers. Then the Rees algebra R(I(G)) is
normal if and only if R(I(GU™™n))) is normal.

Proof. We assume that R(I(G)) = K[{z1,...,Zn,tfi | 1 < i < r}] be the Rees
algebra of I(G) = (f1,..., fr), where f1,..., f, are the monomials corresponding
to the edges of G. Let k be a positive integer. If R(I(G)) is normal, then by [13,
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Theorem 4.3.17] we obtain I(G) is normal. Hence, I(G)* = I(G)*. It is known
9, Lemma 2.2] that I(G(™1mn))F is the expansion of I(G)* with respect to the
n-tuple (mq,...,my,). Hence, [7, Lemma 2.3] together with [9, Lemma 2.2] now
yields

LG im0 ) = TGl ).

Therefore, [13, Theorem 4.3.17] yields R(I(G(™1+~mn))k) is normal. Necessity

follows in a similar way and the proof is complete. O

The edge subring of the graph G, denoted by K[G], is the K-subalgebra of S

given by:
K|G) = K[{z;z; | z; is adjacent to x;}] C S.

To obtain a presentation of the edge subring of G note that K[G] is a standard
K-algebra with the normalized grading K[G]; = K[G] N Sa;.

Let I be a monomial ideal of S and Py, ..., P, the minimal primes of I. Given
an integer k > 1, the kth symbolic power of I is defined to be the ideal %) =
Q1 N---NQ,, where Q; is the primary component of I* corresponding to P;. The

reader can find more information in [13, Definition 4.3.22].

Proposition 4.4. Let G be a connected bipartite graph. Fiz an order n-tuple

(ma,...,my,) of positive integers. Then K[G™mn)] js normal.

Proof. Let G be a connected bipartite graph and let I(G) be its edge ideal. Let k be
a positive integer. Thus, [13, Corollary 13.3.6] yields I(G)*) = I(G)*. According
to [9, Theorem 2.3] we have I(G(™1»mn))k is the expansion of I(G)* with respect
to the n-tuple (my,...,m,) and I(G(m1mn))e = (I(G)*)m1mn) - Then [2,
Corollary 1.5] implies that I(G(-mn))(k) = [(G(masmn))k Now the result
follows from [13, Corollary 13.3.6] and [13, Corollary 10.5.6]. O

Now we give a formula to compute the dimension of K[G(™1:mn)],

Theorem 4.5. If G is a connected graph with n vertices and K[G] is its edge

subring, then
my+ -+ mg, if G is not bipartite, and
mi+---+my —1 otherwise.

dim(K[G (M Wm:{

Proof. We assume that G is a connected graph with r edges and n vertices. Let
I(G@) be minimally generated by monomials fi,..., f.. Then there is a spanning
tree T of G so that I(T) = (f1,..., fa—1) ([14]). Hence,

dim(K[G]) > n — 1.
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If G is bipartite, then by [13, Corollary 10.1.21] one has that dim(K[G]) = n—1.
Fix an order n-tuple (myq,...,m,) of positive integers. Let k be a positive integer.
Thus, [2, Corollary 1.5] yields I(G(™t~mn))(k) is the expansion of I(G)*) with
respect to the n-tuple (mq,...,my). Therefore, by [13, Corollary 13.3.6] together
with [9, Theorem 2.3] we conclude that

I(G(7n1"”’mn))(k) _ I(G(ml”m”))k
By [13, Corollary 10.1.21] we have
dim(K[Gmm)]) = my 4 - +m, — 1.

If G is not bipartite, thus by [13, Corollary 10.1.21] we obtain dim(K[G]) = n.
Then [13, Corollary 13.3.6] implies that I(G)*) # I(G)*. From [9, Lemma 2.2],
and [2, Corollary 1.5], together with [13, Corollary 13.3.6] we have

I(G(ml""’m"))(k) #I(G(ml"“’m"))k.
It follows from [13, Corollary 10.1.21] that

dim(K[G(ml’“"m")]) =mi+--+my. 0
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