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Abstract. Let K be a field and K[x1, x2] the polynomial ring in two vari-

ables over K with each xi of degree 1. Let L be the generalized mixed product

ideal induced by a monomial ideal I ⊂ K[x1, x2], where the ideals substitut-

ing the monomials in I are squarefree Veronese ideals. In this paper, we study

the integral closure of L, and the normality of R(L), the Rees algebra of L.

Furthermore, we give a geometric description of the integral closure of R(L).
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1. Introduction

Let S = K[x1, . . . , xn] be the polynomial ring over a field K in the variables

x1, . . . , xn, and let I ⊂ S be a monomial ideal with I ̸= S whose minimal set of

generators is G(I) = {xa1 , . . . ,xam}. We consider the polynomial ring T over K

in the variables x11, . . . , x1m1 , x21, . . . , x2m2 , . . . , xn1, . . . , xnmn . Notice that T =

T1 ⊗K T2 ⊗K · · · ⊗K Tn, where Tj = K[xj1, xj2, . . . , xjmj
] for j = 1, . . . , n.

Restuccia and Villarreal [10] introduced the class of squarefree monomial ideals

of mixed products and they gave a complete classification of normal mixed product

ideals, as well as applications in graph theory.

Mixed product ideals are of the form

(IqJw + IpJs)K[x11, . . . , x1m1
, x21, . . . , x2m2

],

where for integers a and b, the ideal Ia (resp. Jb) is the ideal generated by all

squarefree monomials of degree a in the polynomial ring K[x11, . . . , x1m1
] (resp.

of degree b in the polynomial ring K[x21, . . . , x2m2
]) and where 0 < p < q ≤ m1,

0 < w < s ≤ m2. Thus, the ideal L = (IqJw + IpJs)K[x11, . . . , x1m1 , x21, . . . , x2m2 ]
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is obtained from the monomial ideal I = (xq
1x

w
2 , x

p
1x

s
2) by replacing xq

1 by Iq, x
p
1 by

Ip, x
w
2 by Jw and xs

2 by Js.

In the present paper, we consider generalized mixed product ideals which were

introduced by Herzog and Yassemi [4] and which also include the so-called expan-

sions of monomial ideals. A great deal of knowledge on the generalized mixed

product ideal is accumulated in several papers [6,7,8,9].

The main objective of this paper is to study the normality of some algebras

associated to generalized mixed product ideals. In our case, the normality of a

generalized mixed product ideal L is equivalent to the normality of the Rees algebra

R(L) =
⊕∞

k=0 L
ktk. The integral closure R(L) of the Rees algebra in its field of

fractions is called normalization of L. It is well-known ([11]) that this graded

algebra has the powers of the ideal L as components of the integral closure:

R(L) = T ⊕ Lt⊕ · · · ⊕ Lktk ⊕ · · · ,

where Lk is the integral closure of Lk.

The present paper is organized as follows. In Section 2 the combinatorics of the

integral closure of generalized mixed product ideals is studied. In [7], the author

studied how the generalized mixed product ideal commutes with the integral closure

of a monomial ideal and proved that I is normal if and only if L is normal, provided

the ideals substituting the monomials in I are all powers of the maximal ideals.

The squarefree Veronese ideal of S of degree d is the ideal of S which is generated

by all squarefree monomials of S of degree d. This class of ideals is a special class

of polymatroidal ideals, introduced in [13].

Our main result (Theorem 2.7) says that, if I ⊂ K[x1, x2] is a Veronese type ideal

and the ideals who substitute the generators of I are squarefree Veronese ideals,

then L is normal.

Furthermore, let L = (f1, . . . , fr). The monomial subring spanned by {f1, . . . , fr}
is the K-subalgebra K[L] = K[f1, . . . , fr]. The integral closure of K[L] in its field

of fractions is called normalization of K[L]. If L is generated in the same degree

and its Rees algebra is normal, then we obtain the normality of K[L] ([12]).

In Section 3, the normality of K[L] and R(L) is studied. Moreover, we give a

geometric description of R(L), see Proposition 3.3.

In Section 4, we focus on the Rees algebra of the edge ideal of a finite simple

graph. The definition of expansion operator is motivated by constructions in various

combinatorial contexts. Let G be a finite simple graph with vertex set V (G) =

{x1, . . . , xn} and edge set E(G), and let I(G) be its edge ideals in S.
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All graphs in this paper are simple finite undirected. We fix a vertex xj of G.

Thus, a new graph G′ is defined by duplicating xj , that is, V (G′) = V (G) ∪ {xj′}
and

E(G′) = E(G) ∪ {{xi, xj′} : {xi, xj} ∈ E(G)}

where xj′ is new vertex. Therefore, I(G′) = I(G) + (xixj′ : {xi, xj} ∈ E(G)). This

duplication can be iterated. The graph which is obtained from G bymj duplications

of xj is denoted by G(m1,...,mn). Then edge ideal of G(m1,...,mn) can be described

as follows: let Pj be the monomial prime ideal (xj1, . . . , xjmj
) ⊆ T . Hence,

I(G(m1,...,mn)) =
∑

{xi,xj}∈E(G)

PiPj .

Let R(I(G)) =
⊕∞

k=0 I(G)ktk be the Rees algebra of the edge ideal I(G). In

Theorem 4.3 it is shown that the Rees algebra R(I(G)) is normal if and only if

R(I(G(m1,...,mn))) is normal. The subring

K[G] = K[xixj | {xi, xj} is an edge of G] ⊂ S

is called the edge subring of G. In Proposition 4.4, we prove that K[G(m1,...,mn)]

is normal if G is bipartite. We also give a formula to compute the dimension of

K[G(m1,...,mn)], see Theorem 4.5.

2. Integral closure and normality of generalized mixed product ideals

Fix an integer n > 0 and set [n] = {1, 2, . . . , n}. Let Rn
+ denote the set of those

vectors u = (u1, . . . , un) ∈ Rn with each ui ≥ 0. Hence, in particular u({i}), or
simply u(i), is the ith component ui of u.

Let S = K[x1, . . . , xn] be the polynomial ring over a field K in the variables

x1, . . . , xn, and let I ⊂ S be a monomial ideal with I ̸= S whose minimal set

of generators is G(I) = {xa1 , . . . ,xam}. Here xa = x
a(1)
1 x

a(2)
2 · · ·xa(n)

n for a =

(a(1), . . . ,a(n)) ∈ Nn. For a subset D ⊆ S, we define the exponent set of D by

E(D) := {d : xd ∈ D} ⊆ Nn.

Next we consider the polynomial ring T over K in the variables

x11, . . . , x1m1
, x21, . . . , x2m2

, . . . , xn1, . . . , xnmn
.

In [4], the authors introduced the generalized mixed product ideals. For i = 1, . . . , n

and j = 1, . . . ,m let Li,aj(i) be a monomial ideal in the variables xi1, xi2, . . . , ximi

such that

Li,aj(i) ⊂ Li,ak(i) whenever aj(i) ≥ ak(i). (1)
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Given these ideals we define for j = 1, . . . ,m the monomial ideals

Lj =

n∏
i=1

Li,aj(i) ⊂ T, (2)

and set L =
∑m

j=1 Lj . The ideal L is called a generalized mixed product ideal

induced by I.

Example 2.1. Let L = L1,qL2,r +L1,sL2,t be the generalized mixed product ideal

induced by a monomial ideal I = (xq
1x

r
2, x

s
1x

t
2), where for integers a and b, the

ideal L1,a (resp. L2,b) is the ideal generated by all squarefree monomials of degree

a in the polynomial ring K[x11, . . . , x1m1
] (resp. of degree b in the polynomial ring

K[x21, . . . , x2m2 ]), and where 0 < s < q ≤ m1, 0 < r < t ≤ m2. Ideals of this type

are called squarefree Veronese ideals.

Now we want to study the combinatorial structure of the integral closure of

generalized mixed product ideals. Let I be a monomial ideal of S. The set of all

elements that are integral over I is called the integral closure of I, and is denoted

by I. If I = I, then I is called integrally closed. In addition, the integral closure

of a monomial ideal is again a monomial ideal. In [12], it is given the following

description for the integral closure of I:

I = (f | f is a monomial in S and fk ∈ Ik, for some k ≥ 1).

If all the powers Ik are integrally closed, hence I is called a normal ideal.

Let u ∈ Qn
+, where Q+ is the set of nonnegative rational numbers. We define

the upper right corner or ceiling of u as the vector ⌈u⌉ whose entries are given by

⌈u⌉i, where

⌈u⌉i =

{
ui if ui ∈ N

⌊ui⌋+ 1 if ui /∈ N
and where ⌊ui⌋ stands for the integer part of ui. Accordingly, we can define the

ceiling of any vector in Rn or the ceiling of any real number. Let conv(v1, . . . ,vq)

be the convex hull (over the rationals), that is,

conv(v1, . . . ,vq) =

{
q∑

i=1

λivi

∣∣∣∣ q∑
i=1

λi = 1, λi ∈ Q+

}
is the set of all convex combinations of v1, . . . ,vq. For more information refer to

[5, Definition 1.4.3, Propositon 1.4.6, and Definition 1.4.7]. For a monomial ideal

I ⊂ S with G(I) = {xa1 , . . . ,xam}, we set L(I; {Lij}) =
∑m

j=1

∏n
i=1 Li,aj(i). Notice

that a generalized mixed product ideal depends not only on I but also on the family

Lij .
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In the following, we prove that L is integrally closed if I ⊂ K[x1, x2] is a Veronese

type ideal and the ideals who substitute the generators of I are squarefree Veronese

ideals.

Theorem 2.2. Let

L =
∑

1≤ql≤ml,
∑2

l=1 ql=h

L1,q1L2,q2 ⊂ K[x11, . . . , x1m1
, x21, . . . , x2m2

]

be the generalized mixed product ideal, where the ideals L1,q1 in K[x11, x12, . . . , x1m1
]

and the ideals L2,q2 in K[x21, x22, . . . , x2m2
] are squarefree Veronese ideals of degree

q1 and q2, respectively. Then L is integrally closed.

Proof. Let

L =
∑

1≤ql≤ml,
∑2

l=1 ql=h

L1,q1L2,q2 ,

where the ideals

L1,q1 inK[x11, x12, . . . , x1m1
] and the ideals L2,q2 inK[x21, x22, . . . , x2m2

] are square-

free Veronese ideals of degree q1 and q2, respectively.

We set ci = (ci1, . . . , cim1) ∈ Nm1 , di = (di1, . . . , dim2) ∈ Nm2 , and

(ci,di) = (ci1, . . . , cim1
, di1, . . . , dim2

) ∈ Nm1+m2 .

Let Xc1
1 Xd1

2 , . . . ,Xcr
1 Xdr

2 be the generators of L, where Xci
1 Xdi

2 stands for

xci1
11 · · ·xcim1

1m1
xdi1
21 · · ·xdim2

2m2

with
∑m1

j=1 cij +
∑m2

j=1 dij = h, 0 ≤ cij ≤ 1, 0 ≤ dij ≤ 1 for i = 1, . . . , r, and h ≥ 2.

Then [13, Proposition 12.1.4] implies that

L =
({

X
⌈p⌉
1 X

⌈q⌉
2 | (p,q) ∈ conv((c1,d1), . . . , (cr,dr))

})
,

where

conv((c1,d1), . . . , (cr,dr)) =

{
r∑

i=1

λi(ci,di)

∣∣∣∣ r∑
i=1

λi = 1, λi ∈ Q+

}
.

This is a geometric description of the integral closure of L. Let f = X
⌈p⌉
1 X

⌈q⌉
2 be

a generator of L. Therefore,

(p,q) =

(
r∑

i=1

λici1, . . . ,

r∑
i=1

λicim1
,

r∑
i=1

λidi1, . . . ,

r∑
i=1

λidim2

)
∈ Qm1+m2

+ .

If λi ∈ N, then λi = 1 and λj = 0 for all j ̸= i. Thus, X
⌈p⌉
1 X

⌈q⌉
2 = Xci

1 Xdi
2 for

some i with 1 ≤ i ≤ r. If λi ∈ Q+ \N with
∑r

i=1 λi = 1, then we have a monomial

X
⌈p⌉
1 X

⌈q⌉
2 with ⌈p⌉ ≥ ci with respect to the order on Qm1

+ and ⌈q⌉ ≥ di with
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respect to the order on Qm2
+ , where pi ≥ cij and qi ≥ dij . Hence, the monomial

X
⌈p⌉
1 X

⌈q⌉
2 is divided by Xci

1 Xdi
2 for some 1 ≤ i ≤ r. Thus, L is generated by

Xci
1 Xdi

2 for all 1 ≤ i ≤ r and by X
⌈p⌉
1 X

⌈q⌉
2 with ⌈p⌉ ≥ ci and ⌈q⌉ ≥ di. Therefore,

G(L) =
{
Xc1

1 Xd1
2 , . . . ,Xcr

1 Xdr
2

}
,

and hence L = L. □

Example 2.3. Let L = L1,1L2,2+L1,2L2,1 ⊂ K[x11, x12, x21, x22] be a generalized

mixed product ideal, where L1,1 = (x11, x12), L1,2 = (x11x12), L2,1 = (x21, x22)

and L2,2 = (x21x22). Therefore, Theorem 2.2 implies that

L =

({
X

⌈p⌉
1 X

⌈q⌉
2

∣∣∣∣ (p,q) ∈ conv((c1,d1), (c2,d2), (c3,d3), (c4,d4)

})
,

where (c1,d1) = (1, 0, 1, 0) ∈ Z4
+, (c2,d2) = (1, 0, 0, 1) ∈ Z4

+, (c3,d3) = (0, 1, 1, 0) ∈
Z4
+ and (c4,d4) = (0, 1, 0, 1) ∈ Z4

+. It follows that

L = L = (x11x21, x11x22, x12x21, x12x22).

The support of a monomial f = xa1
1 · · ·xan

n , denoted by supp(f), is a subset of

the set of variables given by

supp(f) = {xi | ai > 0}.

For a = (a(1), . . . ,a(n)) ∈ Zn
+, we set

GL(a) =
{
b ∈ Zm1+···+mn

+ | Xb ∈ G(L(xa; {Lij}))
}
.

In addition, for all a ∈ E(G(I)), we define XGL(a) for the set of monomials{
Xb | b ∈ GL(a)

}
,

where E(G(I)) denotes the exponent set of G(I). Thus, L(I; {Lij}) is a monomial

ideal of T generated by the monomials Xb =
∏n

i=1 x
bi1
i1 · · ·xbimi

imi
, where

b = (b11, . . . , b1m1
, b21, . . . , b2m2

, . . . , bn1, . . . , bnmn
) ∈ GL(a)

for all a ∈ E(G(I)).

Remark 2.4. (a) Let

L(I; {Lij}) =
m∑
j=1

n∏
i=1

Li,aj(i) ⊂ T = K[x11, . . . , x1m1 , . . . , xn1, . . . , xnmn ]

be a generalized mixed product ideal, induced by the monomial ideal I with G(I) =

{xa1 , . . . ,xam}, where the ideals Li,aj(i) ⊂ Ti = K[xi1, xi2, . . . , ximi
] are squarefree

Veronese ideals of degree aj(i). Let A = T [x−1
iv ] be the Laurent polynomial ring for
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some xiv. We denote by L′
i,aj(i)

the ideal of T ′
i = K[xi1, . . . , x̂iv, . . . , ximi

] generated

by all the squarefree monomials of T ′
i of degree aj(i) − 1. Hence, Li,aj(i)A =

L′
i,aj(i)

A. In fact one has Li,aj(i) ⊂ L′
i,aj(i)

, hence Li,aj(i)A ⊂ L′
i,aj(i)

A. On the

other hand consider a monomial f in L′
i,aj(i)

, then xivf ∈ Li,aj(i) and f ∈ Li,aj(i)A.

Therefore, L′
i,aj(i)

A ⊂ Li,aj(i)A.

(b) If a variable xiv is not in a prime ideal ℘ ⊂ T , then the localization of Li,aj(i)

at ℘ is the same as the localization of L′
i,aj(i)

at ℘.

In [7], the author studied the normality of L, where the ideals substituting the

monomials in I are all powers of the maximal ideals.

Theorem 2.5. [7, Theorem 3.3] Let L(I; {Lij}) =
∑m

j=1

∏n
i=1 Li,aj(i) ⊂ T be

a generalized mixed product ideal, induced by the monomial ideal I with G(I) =

{xa1 , . . . ,xam}, where the ideals Li,aj(i) ⊂ K[xi1, xi2, . . . , ximi
] are Veronese ideals

of degree aj(i). Then I is normal if and only if L(I; {Lij}) is normal.

Next we study the normality of L, provided the ideals substituting the monomials

in I are squarefree Veronese. We set

L′ =
∑

1≤ql≤ml,
∑2

l=1 ql=h

L′
1,q1L2,q2 ,

where the ideals L1,q1 in K[x11, x12, . . . , x1m1
] and the ideals L2,q2 in

K[x21, x22, . . . , x2m2
] are squarefree Veronese ideals of degree q1 and q2, respectively.

Therefore, L′ is a monomial ideal of the ring K[x11, . . . , x̂1v, . . . , x1m1
, x21 . . . , x2m2

]

generated by all the squarefree monomials

x
a′
11

11 · · ·xa′
1v−1

1v−1 x
a′
1v+1

1v+1 · · ·x
a′
1m1

1m1
xa21
21 · · ·xa2m2

2m2

of degree h− 1. Similar considerations hold for

L′′ =
∑

1≤ql≤ml,
∑2

l=1 ql=h

L1,q1L
′′
2,q2 ⊂ K[x11, . . . , x1m1 , x21 . . . , x̂2v′ , . . . , x2m2

].

Face ideals were introduced in [13, Definition 6.1.2]. A face ideal is an ideal ℘ of

T generated by a subset of the set of variables.

Lemma 2.6. Let L =
∑

1≤ql≤ml,
∑2

l=1 ql=h L1,q1L2,q2 ⊂ K[x11, . . . , x1m1 , x21, . . . , x2m2 ],

where the ideals L1,q1 in K[x11, x12, . . . , x1m1
], the ideals L2,q2 in K[x21, x22, . . . , x2m2

]

are squarefree Veronese ideals of degree q1 and q2, respectively.

Furthermore, let ℘ ⊂ K[x11, . . . , x1m1 , x21, . . . , x2m2 ] be a face ideal such that

x1v /∈ ℘ for some v (resp. x2v′ /∈ ℘ for some v′). Then

LK[x11, . . . , x1m1
, x21, . . . , x2m2

]℘ = L′K[x11, . . . , x1m1
, x21, . . . , x2m2

]℘
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(resp. LK[x11, . . . , x1m1
, x21, . . . , x2m2

]℘ = L′′K[x11, . . . , x1m1
, x21, . . . , x2m2

]℘).

Proof. For simplicity of notation we assume that v = 1. Take a monomial

f = x
a′
12

12 · · ·x
a′
1m1

1m1
xa21
21 · · ·xa2m2

2m2

of L′ of degree h− 1. As a′12+ · · ·+ a′1m1
+ a21+ · · ·+ a2m2 = h− 1 and a′1t ≤ 1 for

all t ≥ 2, we have x11f ∈ L and f ∈ LK[x11, . . . , x1m1 , x21, . . . , x2m2 ]℘. Therefore,

L′K[x11, . . . , x1m1 , x21, . . . , x2m2 ]℘ ⊆ LK[x11, . . . , x1m1 , x21, . . . , x2m2 ]℘.

Conversely, take a squarefree monomial g of L of degree h. By Remark 2.4, we have

g ∈ L′K[x11, . . . , x1m1 , x21, . . . , x2m2 ]℘. It follows that

LK[x11, . . . , x1m1 , x21, . . . , x2m2 ]℘ ⊆ L′K[x11, . . . , x1m1 , x21, . . . , x2m2 ]℘,

as desired. □

We now come to the main result of the present paper.

Theorem 2.7. Let

L =
∑

1≤ql≤ml,
∑2

l=1 ql=h

L1,q1L2,q2

be the generalized mixed product ideal, where the ideals L1,q1 in K[x11, x12, . . . , x1m1
]

and the ideals L2,q2 in K[x21, x22, . . . , x2m2
] are squarefree Veronese ideals of degree

q1 and q2, respectively. Then L is normal.

Proof. Let L be the generalized mixed product ideal induced by a Veronese type

ideal I generated by the monomials xq1
1 xq2

2 with 1 ≤ ql ≤ ml and
∑2

l=1 ql = h. By

induction on h we show that L is normal. If h = 2, then [10, Theorem 2.9] implies

that L = L1,1L2,1 is normal.

Assume that h > 2 and the result holds for the generalized mixed product ideal

of degree less than h. Take any prime ℘ ̸= n and pick x1v /∈ ℘, where n is the

maximal ideal n = (x11, . . . , x1m1 , x21, . . . , x2m2). By Lemma 2.6 we obtain

LK[x11, . . . , x1m1 , x21, . . . , x2m2 ]℘ = L′K[x11, . . . , x1m1 , x21, . . . , x2m2 ]℘.

Thus, by the induction hypothesis, we conclude that L′ is normal. According to [3,

Proposition 4.2], we obtain L′K[x11, . . . , x1m1 , x21, . . . , x2m2 ]℘ is normal. There-

fore,

LK[x11, . . . , x1m1 , x21, . . . , x2m2 ]℘

is normal for any prime ideal ℘ ̸= n.
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Now we proceed by contradiction assuming Lk ∩ (Lk : n) ̸= Lk for some k ≥ 1.

This means we can choose a monomial f in Lk \ Lk such that x1vf ∈ Lk for all v.

Hence, there are monomials f1, . . . , fk of degree h in L and satisfying the equality:

x11f = gf1 · · · fk,

where g is a monomial with deg(g) > 0, because f ∈ Lk. Notice that x11 /∈
supp(g) because f /∈ Lk. Hence, we may assume that x11 ∈ supp(f1) and g =

xci2
12 x

ci3
13 · · ·xciq′

1q′ x
ds1
21 · · ·xdsv

2v and cit, dsz > 0. Observe that x1t divides f1 for all

2 ≤ t ≤ q′. Otherwise, we can write

f = ((f1x1t)/x11)f2 · · · fk(g/x1t)

to derive f ∈ Lk, a contradiction. We distinguish two cases:

Case (I): x1t does not divide fw for some 2 ≤ t ≤ q′ and 2 ≤ w ≤ k. Then for

each x1v ∈ supp(fw) with v ̸= t, we have x1v divides f1. Otherwise, if x1v does not

divide f1, then we have the equality

f = ((x1vf1)/x11)f2 · · · fw−1((x1tfw)/x1v)fw+1 · · · fk(g/x1t),

where (x1vf1)/x11 ∈ L and (x1tfw)/x1v ∈ L. Therefore, f ∈ Lk, a contradiction.

Hence, since we have already seen that also x1t divides f1, we obtain x1t divides

fw, which is a contradiction.

Case (II): x1t divides fw for all 2 ≤ t ≤ q′ and 2 ≤ w ≤ k. Since x1t divides f1,

it follows that degx12
(f) ≥ k + 1, where degx12

(f) denotes the degree of f in the

variable x12. Recall that x12f ∈ Lk, which by degree considerations readily implies

f ∈ Lk, a contradiction.

Altogether we see that in both cases the equality Lk ∩ (Lk : n) ̸= Lk leads to

a contradiction. Therefore, [13, Proposition 12.2.1] implies that L is normal, as

desired. □

Example 2.8. Let L = L1,1L2,3+L1,2L2,2+L1,3L2,1 ⊂ K[x11, x12, x13, x21, x22, x23]

be the generalized mixed product ideal induced by a monomial ideal

I = (x1x
3
2, x

2
1x

2
2, x

3
1x2),

where for integers a and b, the ideal L1,a (resp. L2,b) is the ideal generated by all

squarefree monomials of degree a in the polynomial ring K[x11, x12, x13] (resp. of
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degree b in the polynomial ring K[x21, x22, x23]). Therefore,

L = (x11x21x22x23, x12x21x22x23, x13x21x22x23, x11x12x21x22, x11x12x21x23,

x11x12x22x23, x11x13x21x22, x11x13x21x23, x11x13x22x23, x12x13x21x22,

x12x13x21x23, x12x13x22x23, x11x12x13x21, x11x12x13x22, x11x12x13x23).

Hence, Theorem 2.7 implies that Lk = Lk for all k ≥ 1.

3. Normalization of generalized mixed product ideals

In this section, we want to study the normality of Rees algebras of generalized

mixed product ideals. Let I be a graded ideal of S = K[x1, . . . , xn] generated by

homogeneous polynomials f1, . . . , fr with deg f1 = deg f2 = · · · = deg fr. Let t be

a variable over S. The graded subalgebra

R(I) :=

∞⊕
k=0

Iktk = S[f1t, . . . , frt]

of S[t] is called the Rees algebra of I.

The integral closure R(I) of the Rees algebra in its field of fractions is called

normalization of I. It is well-known ([11]) that is the graded algebra:

R(I) = S ⊕ It⊕ · · · ⊕ Iktk ⊕ · · · ,

where Ik is the integral closure of Ik. The ring R(I) is said to be normal if R(I) is

equal to its integral closure. Therefore, R(I) is normal if and only if I is normal.

Proposition 3.1. Let L be the generalized mixed product ideal induced by a mono-

mial ideal I with G(I) = {xa1 , . . . ,xam}, where the ideals Li,aj(i) are Veronese

ideals of degree aj(i). Then I is normal if and only if R(L) is normal.

Proof. Let L(I; {Lij}) = (f1, . . . , fr), and let R(L(I; {Lij})) be the subring of T [t]

given by T [f1t, . . . , frt], where t is a new variable. Notice that

R(L(I; {Lij})) = T ⊕ Lt⊕ · · · ⊕ Lktk ⊕ · · · ⊂ T [t]

is a graded algebra. By [13, Theorem 4.3.17] the normality of an ideal L(I; {Lij}) of
the polynomial ring T is equivalent to the normality of its Rees algebra. Therefore,

using [13, Theorem 4.3.17] and Theorem 2.5, the assertion follows. □

Now we consider the case that all Lij are squarefree Veronese ideals.

Proposition 3.2. Let L =
∑

1≤ql≤ml,
∑2

l=1 ql=h L1,q1L2,q2 be the generalized mixed

product ideal, where the ideals L1,q1 in K[x11, x12, . . . , x1m1 ] and the ideals L2,q2 in
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K[x21, x22, . . . , x2m2
] are squarefree Veronese ideals of degree q1 and q2, respectively.

Then R(L) is normal.

Proof. The assertion follows by Theorem 2.7 and [13, Theorem 4.3.17]. □

Next we study the combinatorics of the normalization of generalized mixed prod-

uct ideals. Let V = {v1, . . . , vq} be a set of vectors in Nn\{0}. The integral closure

or normalization of the affine semigroup

NV := Nv1 + · · ·+ Nvq ⊂ Nn,

is defined as NV := ZV ∩ R+V, where ZV is the subgroup of Zn generated by V.
The semigroup NV is called normal or integrally closed if NV = NV.

Let I be a monomial ideal of S minimally generated by the set

G(I) = {xa1 , . . . ,xam}.

The Rees cone of I is the rational polyhedral cone on Rn+1, denoted by R+E(G(I))′

or R+(I), generated by

E(G(I))′ := {e1, . . . , en, (a1, 1), . . . , (am, 1)} ⊂ Rn+1,

where ei is the ith unit vector.

Now let L be the generalized mixed product ideal induced by a monomial ideal

I. More precisely let G(L) =
{
Xb1 , . . . ,Xbr

}
and E(G(L)) be the set of exponent

vectors of the generators of L. As usual we use Xu as an abbreviation for

Xu =

n∏
i=1

xui1
i1 · · ·xuimi

imi
,

where u = (u11, . . . , u1m1 , u21, . . . , u2m2 , . . . , un1, . . . , unmn) is in Zm1+···+mn
+ . We

set

E(G(L))′ = {e1, . . . , em1+···+mn
, (b1, 1), . . . , (br, 1)},

where ei is the ith unit vector of Rm1+···+mn+1. On the other hand according to

[11, Theorem 7.2.28] one has

R(L) = K[{Xutz | (u, z) ∈ NE(G(L))′}],

where NE(G(L))′ is the subsemigroup of Nm1+···+mn+1 generated by E(G(L))′,

consisting of the linear combinations of E(G(L))′ with non-negative integer coef-

ficients, and the integral closure of R(L) in its field of fractions can be expressed

as

R(L) = K[{Xutz | (u, z) ∈ Zm1+···+mn+1 ∩ R+E(G(L))′}],
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where R+E(G(L))′ ⊆ Rm1+···+mn+1 consists of the linear combinations of E(G(L))′

with real coefficients. Therefore, R(L) is normal if and only if any of the following

equivalent conditions hold:

(1) NE(G(L))′ = Zm1+···+mn+1 ∩ R+E(G(L))′;

(2) Lk = Lk for all k ≥ 1.

In the following, we give a description of the normalization of R(L).

Proposition 3.3. Let

L =
∑

1≤ql≤ml,
∑2

l=1 ql=h

L1,q1L2,q2 ,

where the ideals L1,q1 in K[x11, x12, . . . , x1m1
], the ideals L2,q2 in K[x21, x22, . . . , x2m2

]

are squarefree Veronese ideals of degree q1 and q2, respectively. Then

R(L) = K[{Xc
1X

d
2 t

q | c ∈ NE(G(L1,q1)),d ∈ NE(G(L2,q2)), q ∈ N}],

where E(G(L1,q1)) (resp. E(G(L2,q2))) is the set of the exponent vectors of the

monomials of L1,q1 (resp. L2,q2) in the variables x11, . . . , x1m1 (resp. x21, . . . , x2m2).

Proof. According to Proposition 3.2 one has R(L) is normal. Hence, R(L) =

R(L). We show thatR(L) = K[{Xc
1X

d
2 t

q | c ∈ NE(G(L1,q1)),d ∈ NE(G(L2,q2)), q ∈
N}].

We assume that B = K[{Xc
1X

d
2 t

q | c ∈ NE(G(L1,q1)),d ∈ NE(G(L2,q2)), q ∈
N}], where E(G(L1,q1)) = {u1, . . . ,ur} (resp. E(G(L2,q2)) = {v1, . . . ,vs}) is the

set of the exponent vectors of the monomials of L1,q1 (resp. L2,q2) in the variables

x11, . . . , x1m1
(resp. x21, . . . , x2m2

).

By hypotheses c =
∑r

i=1 αiui with αi ∈ N, ui ∈ E(G(L1,q1)), d =
∑s

i=1 βivi

with βi ∈ N, vi ∈ E(G(L2,q2)), q ∈ N. Then Xc
1 = Xui

1 for all 1 ≤ i ≤ r, and

Xc
1 = fXui

1 , where f is a monomial in the variables x11, . . . , x1m1 , and Xd
2 = Xvi

2

for all 1 ≤ i ≤ s, and Xd
2 = wXvi

2 , where w is a monomial in the variables

x21, . . . , x2m2
. Hence, the monomials Xc

1X
d
2 t

q of minimal degree are the generators

of R(L), as desired. □

Suppose that L(I; {Lij}) = (f1, . . . , fr). The monomial subring spanned by

{f1, . . . , fr} is the K-subalgebra K[L(I; {Lij})] = K[f1, . . . , fr].

The integral closure of K[L(I; {Lij})] in its field of fractions is called normal-

ization of K[L(I; {Lij})]. In addition, we denote K[L(I; {Lij})] for the integral

closure of K[L(I; {Lij})]. The toric ring K[L(I; {Lij})] is said to be normal if

K[L(I; {Lij})] = K[L(I; {Lij})].
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Proposition 3.4. Let L =
∑

1≤ql≤ml,
∑2

l=1 ql=h L1,q1L2,q2 , where for integers q1

and q2, the ideal L1,q1 (resp. L2,q2) is the ideal generated by all squarefree mono-

mials of degree q1 in the polynomial ring K[x11, . . . , x1m1 ] (resp. of degree q2 in the

polynomial ring K[x21, . . . , x2m2
]). Then K[L] is normal.

Proof. Suppose that L = (f1, . . . , fr) be the generalized mixed product ideal in-

duced by a monomial ideal I. Assume further that q1 + q2 = h. The monomial

subring K[f1, . . . , fr] is a graded subring of K[x11, . . . , x1m1 , x21, . . . , x2m2 ] with

grading

K[f1, . . . , fr]k = K[f1, . . . , fr] ∩K[x11, . . . , x1m1 , x21, . . . , x2m2 ]k.

Since L is generated in the same degree h, by Proposition 3.2 together with [12,

Proposition 7.4.1], we have K[L] is normal. □

Proposition 3.5. Let L be the generalized mixed product ideal induced by a mono-

mial ideal I with G(I) = {xa1 , . . . ,xam}, where the ideals Li,aj(i) are Veronese

ideals of degree aj(i). Assume that I is generated in the same degree d. Then K[L]

is normal if I is normal.

Proof. Suppose that

F 0 → Fp → Fp−1 → · · · → F2 → F1 → F0 → S/I → 0

be the Zn-graded minimal free S-resolution of S/I.

We assume that Fi =
⊕βi

j=1 S(−aij) with aij ∈ Nn for i = 1, . . . , n. Thus, Fi =⊕βi

j=1 Sfij where fij is a basis element of the free S-module Fi of Zn-degree aij .

Let ∂ denote the chain map of F. Then

∂(fij) =
∑
k

λ
(i)
kj x

aij−ai−1,kfi−1,k.

Here λ
(i)
kj = 0 if aij = ai−1,k or aij −ai−1,k ̸∈ Nn. The matrices (λ

(i)
kj ) k=1,...,βi−1

j=1,...,βi

are

scalar matrices of the resolution F. Now we choose for each of the generators xaj of

I a monomial ideal Lj in T (not necessary of the form (2)). The multi-graded free

resolution F of I are used to construct an acyclic complex F∗ of direct sums of ideals.

We set F ∗
0 = T and F ∗

i =
⊕βi

j=1 Lij where the monomial ideals Lij are inductively

defined as follows: we assume that L1j = Lj for all j. Suppose that Li−1,j is

already defined for all j. For a given number j with 1 ≤ j ≤ βi, let k1, k2, . . . , kr

be the numbers for which λ
(i)
ktj

̸= 0. In addition, we set Lij =
⋂r

t=1 Li−1,kt . The
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chain map ∂∗ of F∗ is given by

∂∗
βi⊕
j=1

Lij −→
βi−1⊕
j=1

Li−1,j , u 7→ λ(i)u,

where

u =


u1

u2

...

uβi

 with uj ∈ Lij .

Hence, ∂∗(
⊕βi

j=1 Lij) ⊂
⊕βi−1

j=1 Li−1,j . Let v ∈
⊕βi

j=1 Lij be a column vector.

Suppose that vℓ = 0 for ℓ ̸= j. Thus,

∂∗(v) =


u1

u2

...

uβi−1

 ,

where uk = λ
(i)
kj vj for k = 1, . . . , βi−1.

Next we show that L is generated in degree d if and only if I is generated in

degree d. By [4, Lemma 2.4], ∂∗(F ∗
2 ) ⊂ nF ∗

1 where n is the graded maximal ideal

of T . This then implies
⊕

j Lj/nLj
∼= L/nL. Our assumptions on the ideals Li,aj(i)

imply that Lj is minimally generated in degree |aj |. Hence, it follows that L has

generators exactly in the same degrees as I. Proposition 3.1 with [12, Proposition

7.4.1] guarantees that K[L] is normal. Thus, the desired conclusion follows. □

4. Rees algebra of an edge ideal

The main goal of this section is to study monomial subrings associated to graphs.

Let G be a finite simple graph with vertex set V (G) = {x1, . . . , xn} and edge set

E(G), and let I(G) be its edge ideals in S = K[x1, . . . , xn]. As usual we denote the

Rees algebra of I(G) by R(I(G)).

In [2] Bayati and Herzog introduced the expansion functor in the category of

finitely generated multigraded S-module. We assume that S(m1,...,mn) be the poly-

nomial ring over a field K in the variables

x11, . . . , x1m1
, x21, . . . , x2m2

, . . . , xn1, . . . , xnmn
.

Let I ⊂ S be a monomial ideal minimally generated by xa1 , . . . ,xam , the ex-

pansion of I with respect to the n-tuple (m1, . . . ,mn), is defined by I(m1,...,mn) =



182 MONICA LA BARBIERA AND ROYA MOGHIMIPOR

∑m
j=1

∏n
i=1 P

aj(i)
i ⊂ S(m1,...,mn) where Pi is the monomial prime ideal (xi1, . . . , ximi

) ⊆
S(m1,...,mn) and aj(i) is the i-th component of the vector aj .

Theorem 4.1. [1, Theorem 2.1] Let I be a monomial ideal of a polynomial ring

S = K[x1, . . . , xn]. Then I is normal if and only if I(m1,...,mn) is normal, where

I(m1,...,mn) denotes the expansion of I.

For the n-tuple (m1, . . . ,mn) ∈ Nn, with positive integer entries, the expansion

of the graph G is denoted by G(m1,...,mn). We consider the monomial prime ideal

Pj = (xj1, . . . , xjmj
) in S(m1,...,mn). Hence,

I(G(m1,...,mn)) =
∑

{xi,xj}∈E(G)

PiPj .

It follows from [2, Lemma 1.1] that

I(G(m1,...,mn)) =
∑

{xi,xj}∈E(G)

x
(m1,...,mn)
i x

(m1,...,mn)
j = I(G)(m1,...,mn).

Example 4.2. Let G be a graph on the vertex set V (G) = {x1, x2, x3, x4} and

edge set E(G) = {{x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}}. We consider the poly-

nomial ring T over K in the variables x11, x21, x22, x31, x41, x42, and the order

4-tuple (1, 2, 1, 2). Hence, G(1,2,1,2) is a graph with vertex set V
(
G(1,2,1,2)

)
=

{x11, x21, x22, x31, x41, x42} and edge set

E
(
G(1,2,1,2)

)
= {{x11, x31}, {x11, x41}, {x11, x42}, {x21, x31}, {x22, x31}, {x21, x41},

{x21, x42}, {x22, x41}, {x22, x42}}.

Then we have P1 = (x11), P2 = (x21, x22), P3 = (x31) and P4 = (x41, x42). There-

fore,

I(G(1,2,1,2)) = P1P3 + P1P4 + P2P3 + P2P4

= (x11x31, x11x41, x11x42, x21x31, x22x31, x21x41, x21x42, x22x41, x22x42).

The ideal I(G(1,2,1,2)) ⊂ T is obtained from I(G) by expansion with respect to the

4-tuple (1, 2, 1, 2) with positive integer entries.

Theorem 4.3. Let G be a graph on the vertex set V (G) = {x1, . . . , xn}. Fix an

order n-tuple (m1, . . . ,mn) of positive integers. Then the Rees algebra R(I(G)) is

normal if and only if R(I(G(m1,...,mn))) is normal.

Proof. We assume that R(I(G)) = K[{x1, . . . , xn, tfi | 1 ≤ i ≤ r}] be the Rees

algebra of I(G) = (f1, . . . , fr), where f1, . . . , fr are the monomials corresponding

to the edges of G. Let k be a positive integer. If R(I(G)) is normal, then by [13,
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Theorem 4.3.17] we obtain I(G) is normal. Hence, I(G)k = I(G)k. It is known

[9, Lemma 2.2] that I(G(m1,...,mn))k is the expansion of I(G)k with respect to the

n-tuple (m1, . . . ,mn). Hence, [7, Lemma 2.3] together with [9, Lemma 2.2] now

yields

I(G(m1,...,mn))k = I(G(m1,...,mn))k.

Therefore, [13, Theorem 4.3.17] yields R(I(G(m1,...,mn))k) is normal. Necessity

follows in a similar way and the proof is complete. □

The edge subring of the graph G, denoted by K[G], is the K-subalgebra of S

given by:

K[G] = K[{xixj | xi is adjacent to xj}] ⊂ S.

To obtain a presentation of the edge subring of G note that K[G] is a standard

K-algebra with the normalized grading K[G]i = K[G] ∩ S2i.

Let I be a monomial ideal of S and P1, . . . , Pr the minimal primes of I. Given

an integer k ≥ 1, the kth symbolic power of I is defined to be the ideal I(k) =

Q1 ∩ · · · ∩Qr, where Qi is the primary component of Ik corresponding to Pi. The

reader can find more information in [13, Definition 4.3.22].

Proposition 4.4. Let G be a connected bipartite graph. Fix an order n-tuple

(m1, . . . ,mn) of positive integers. Then K[G(m1,...,mn)] is normal.

Proof. LetG be a connected bipartite graph and let I(G) be its edge ideal. Let k be

a positive integer. Thus, [13, Corollary 13.3.6] yields I(G)(k) = I(G)k. According

to [9, Theorem 2.3] we have I(G(m1,...,mn))k is the expansion of I(G)k with respect

to the n-tuple (m1, . . . ,mn) and I(G(m1,...,mn))k = (I(G)k)(m1,...,mn). Then [2,

Corollary 1.5] implies that I(G(m1,...,mn))(k) = I(G(m1,...,mn))k. Now the result

follows from [13, Corollary 13.3.6] and [13, Corollary 10.5.6]. □

Now we give a formula to compute the dimension of K[G(m1,...,mn)].

Theorem 4.5. If G is a connected graph with n vertices and K[G] is its edge

subring, then

dim(K[G(m1,...,mn)]) =

{
m1 + · · ·+mn if G is not bipartite, and

m1 + · · ·+mn − 1 otherwise.

Proof. We assume that G is a connected graph with r edges and n vertices. Let

I(G) be minimally generated by monomials f1, . . . , fr. Then there is a spanning

tree T of G so that I(T ) = (f1, . . . , fn−1) ([14]). Hence,

dim(K[G]) ≥ n− 1.
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If G is bipartite, then by [13, Corollary 10.1.21] one has that dim(K[G]) = n−1.

Fix an order n-tuple (m1, . . . ,mn) of positive integers. Let k be a positive integer.

Thus, [2, Corollary 1.5] yields I(G(m1,...,mn))(k) is the expansion of I(G)(k) with

respect to the n-tuple (m1, . . . ,mn). Therefore, by [13, Corollary 13.3.6] together

with [9, Theorem 2.3] we conclude that

I(G(m1,...,mn))(k) = I(G(m1,...,mn))k.

By [13, Corollary 10.1.21] we have

dim(K[G(m1,...,mn)]) = m1 + · · ·+mn − 1.

If G is not bipartite, thus by [13, Corollary 10.1.21] we obtain dim(K[G]) = n.

Then [13, Corollary 13.3.6] implies that I(G)(k) ̸= I(G)k. From [9, Lemma 2.2],

and [2, Corollary 1.5], together with [13, Corollary 13.3.6] we have

I(G(m1,...,mn))(k) ̸= I(G(m1,...,mn))k.

It follows from [13, Corollary 10.1.21] that

dim(K[G(m1,...,mn)]) = m1 + · · ·+mn. □
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