NORMALITY OF REES ALGEBRAS OF GENERALIZED MIXED PRODUCT IDEALS

Monica La Barbiera and Roya Moghimipor
Received: 18 August 2023; Revised: 27 October 2023; Accepted: 30 October 2023
Communicated by Sait Halıcıoğlu

Abstract

Let K be a field and $K\left[x_{1}, x_{2}\right]$ the polynomial ring in two variables over K with each x_{i} of degree 1 . Let L be the generalized mixed product ideal induced by a monomial ideal $I \subset K\left[x_{1}, x_{2}\right]$, where the ideals substituting the monomials in I are squarefree Veronese ideals. In this paper, we study the integral closure of L, and the normality of $\mathcal{R}(L)$, the Rees algebra of L. Furthermore, we give a geometric description of the integral closure of $\mathcal{R}(L)$.

Mathematics Subject Classification (2020): 13B22, 13A30, 13F55
Keywords: Integral closure, normality, Rees algebra, generalized mixed product ideal

1. Introduction

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring over a field K in the variables x_{1}, \ldots, x_{n}, and let $I \subset S$ be a monomial ideal with $I \neq S$ whose minimal set of generators is $G(I)=\left\{\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{m}}\right\}$. We consider the polynomial ring T over K in the variables $x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}, \ldots, x_{n 1}, \ldots, x_{n m_{n}}$. Notice that $T=$ $T_{1} \otimes_{K} T_{2} \otimes_{K} \cdots \otimes_{K} T_{n}$, where $T_{j}=K\left[x_{j 1}, x_{j 2}, \ldots, x_{j m_{j}}\right]$ for $j=1, \ldots, n$.

Restuccia and Villarreal [10] introduced the class of squarefree monomial ideals of mixed products and they gave a complete classification of normal mixed product ideals, as well as applications in graph theory.

Mixed product ideals are of the form

$$
\left(I_{q} J_{w}+I_{p} J_{s}\right) K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right],
$$

where for integers a and b, the ideal I_{a} (resp. J_{b}) is the ideal generated by all squarefree monomials of degree a in the polynomial ring $K\left[x_{11}, \ldots, x_{1 m_{1}}\right]$ (resp. of degree b in the polynomial ring $K\left[x_{21}, \ldots, x_{2 m_{2}}\right]$) and where $0<p<q \leq m_{1}$, $0<w<s \leq m_{2}$. Thus, the ideal $L=\left(I_{q} J_{w}+I_{p} J_{s}\right) K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]$

[^0]is obtained from the monomial ideal $I=\left(x_{1}^{q} x_{2}^{w}, x_{1}^{p} x_{2}^{s}\right)$ by replacing x_{1}^{q} by I_{q}, x_{1}^{p} by I_{p}, x_{2}^{w} by J_{w} and x_{2}^{s} by J_{s}.

In the present paper, we consider generalized mixed product ideals which were introduced by Herzog and Yassemi [4] and which also include the so-called expansions of monomial ideals. A great deal of knowledge on the generalized mixed product ideal is accumulated in several papers $[6,7,8,9]$.

The main objective of this paper is to study the normality of some algebras associated to generalized mixed product ideals. In our case, the normality of a generalized mixed product ideal L is equivalent to the normality of the Rees algebra $\mathcal{R}(L)=\bigoplus_{k=0}^{\infty} L^{k} t^{k}$. The integral closure $\overline{\mathcal{R}(L)}$ of the Rees algebra in its field of fractions is called normalization of L. It is well-known ([11]) that this graded algebra has the powers of the ideal \bar{L} as components of the integral closure:

$$
\overline{\mathcal{R}(L)}=T \oplus \bar{L} t \oplus \cdots \oplus \overline{L^{k}} t^{k} \oplus \cdots,
$$

where $\overline{L^{k}}$ is the integral closure of L^{k}.
The present paper is organized as follows. In Section 2 the combinatorics of the integral closure of generalized mixed product ideals is studied. In [7], the author studied how the generalized mixed product ideal commutes with the integral closure of a monomial ideal and proved that I is normal if and only if L is normal, provided the ideals substituting the monomials in I are all powers of the maximal ideals.

The squarefree Veronese ideal of S of degree d is the ideal of S which is generated by all squarefree monomials of S of degree d. This class of ideals is a special class of polymatroidal ideals, introduced in [13].

Our main result (Theorem 2.7) says that, if $I \subset K\left[x_{1}, x_{2}\right]$ is a Veronese type ideal and the ideals who substitute the generators of I are squarefree Veronese ideals, then L is normal.

Furthermore, let $L=\left(f_{1}, \ldots, f_{r}\right)$. The monomial subring spanned by $\left\{f_{1}, \ldots, f_{r}\right\}$ is the K-subalgebra $K[L]=K\left[f_{1}, \ldots, f_{r}\right]$. The integral closure of $K[L]$ in its field of fractions is called normalization of $K[L]$. If L is generated in the same degree and its Rees algebra is normal, then we obtain the normality of $K[L]$ ([12]).

In Section 3, the normality of $K[L]$ and $\mathcal{R}(L)$ is studied. Moreover, we give a geometric description of $\overline{\mathcal{R}(L)}$, see Proposition 3.3.

In Section 4, we focus on the Rees algebra of the edge ideal of a finite simple graph. The definition of expansion operator is motivated by constructions in various combinatorial contexts. Let G be a finite simple graph with vertex set $V(G)=$ $\left\{x_{1}, \ldots, x_{n}\right\}$ and edge set $E(G)$, and let $I(G)$ be its edge ideals in S.

All graphs in this paper are simple finite undirected. We fix a vertex x_{j} of G. Thus, a new graph G^{\prime} is defined by duplicating x_{j}, that is, $V\left(G^{\prime}\right)=V(G) \cup\left\{x_{j^{\prime}}\right\}$ and

$$
E\left(G^{\prime}\right)=E(G) \cup\left\{\left\{x_{i}, x_{j^{\prime}}\right\}:\left\{x_{i}, x_{j}\right\} \in E(G)\right\}
$$

where $x_{j^{\prime}}$ is new vertex. Therefore, $I\left(G^{\prime}\right)=I(G)+\left(x_{i} x_{j^{\prime}}:\left\{x_{i}, x_{j}\right\} \in E(G)\right)$. This duplication can be iterated. The graph which is obtained from G by m_{j} duplications of x_{j} is denoted by $G^{\left(m_{1}, \ldots, m_{n}\right)}$. Then edge ideal of $G^{\left(m_{1}, \ldots, m_{n}\right)}$ can be described as follows: let P_{j} be the monomial prime ideal $\left(x_{j 1}, \ldots, x_{j m_{j}}\right) \subseteq T$. Hence,

$$
I\left(G^{\left(m_{1}, \ldots, m_{n}\right)}\right)=\sum_{\left\{x_{i}, x_{j}\right\} \in E(G)} P_{i} P_{j} .
$$

Let $\mathcal{R}(I(G))=\bigoplus_{k=0}^{\infty} I(G)^{k} t^{k}$ be the Rees algebra of the edge ideal $I(G)$. In Theorem 4.3 it is shown that the Rees algebra $\mathcal{R}(I(G))$ is normal if and only if $\mathcal{R}\left(I\left(G^{\left(m_{1}, \ldots, m_{n}\right)}\right)\right)$ is normal. The subring

$$
K[G]=K\left[x_{i} x_{j} \mid\left\{x_{i}, x_{j}\right\} \quad \text { is an edge of } G\right] \subset S
$$

is called the edge subring of G. In Proposition 4.4, we prove that $K\left[G^{\left(m_{1}, \ldots, m_{n}\right)}\right]$ is normal if G is bipartite. We also give a formula to compute the dimension of $K\left[G^{\left(m_{1}, \ldots, m_{n}\right)}\right]$, see Theorem 4.5.

2. Integral closure and normality of generalized mixed product ideals

Fix an integer $n>0$ and set $[n]=\{1,2, \ldots, n\}$. Let \mathbb{R}_{+}^{n} denote the set of those vectors $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{n}$ with each $u_{i} \geq 0$. Hence, in particular $\mathbf{u}(\{i\})$, or simply $\mathbf{u}(i)$, is the i th component u_{i} of \mathbf{u}.

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring over a field K in the variables x_{1}, \ldots, x_{n}, and let $I \subset S$ be a monomial ideal with $I \neq S$ whose minimal set of generators is $G(I)=\left\{\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{m}}\right\}$. Here $\mathbf{x}^{\mathbf{a}}=x_{1}^{\mathbf{a}(1)} x_{2}^{\mathbf{a}(2)} \cdots x_{n}^{\mathbf{a}(n)}$ for $\mathbf{a}=$ $(\mathbf{a}(1), \ldots, \mathbf{a}(n)) \in \mathbb{N}^{n}$. For a subset $D \subseteq S$, we define the exponent set of D by $E(D):=\left\{\mathbf{d}: \mathbf{x}^{\mathbf{d}} \in D\right\} \subseteq \mathbb{N}^{n}$.

Next we consider the polynomial ring T over K in the variables

$$
x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}, \ldots, x_{n 1}, \ldots, x_{n m_{n}}
$$

In [4], the authors introduced the generalized mixed product ideals. For $i=1, \ldots, n$ and $j=1, \ldots, m$ let $L_{i, \mathbf{a}_{j}(i)}$ be a monomial ideal in the variables $x_{i 1}, x_{i 2}, \ldots, x_{i m_{i}}$ such that

$$
\begin{equation*}
L_{i, \mathbf{a}_{j}(i)} \subset L_{i, \mathbf{a}_{k}(i)} \quad \text { whenever } \quad \mathbf{a}_{j}(i) \geq \mathbf{a}_{k}(i) \tag{1}
\end{equation*}
$$

Given these ideals we define for $j=1, \ldots, m$ the monomial ideals

$$
\begin{equation*}
L_{j}=\prod_{i=1}^{n} L_{i, \mathbf{a}_{j}(i)} \subset T \tag{2}
\end{equation*}
$$

and set $L=\sum_{j=1}^{m} L_{j}$. The ideal L is called a generalized mixed product ideal induced by I.

Example 2.1. Let $L=L_{1, q} L_{2, r}+L_{1, s} L_{2, t}$ be the generalized mixed product ideal induced by a monomial ideal $I=\left(x_{1}^{q} x_{2}^{r}, x_{1}^{s} x_{2}^{t}\right)$, where for integers a and b, the ideal $L_{1, a}$ (resp. $L_{2, b}$) is the ideal generated by all squarefree monomials of degree a in the polynomial ring $K\left[x_{11}, \ldots, x_{1 m_{1}}\right]$ (resp. of degree b in the polynomial ring $K\left[x_{21}, \ldots, x_{2 m_{2}}\right]$), and where $0<s<q \leq m_{1}, 0<r<t \leq m_{2}$. Ideals of this type are called squarefree Veronese ideals.

Now we want to study the combinatorial structure of the integral closure of generalized mixed product ideals. Let I be a monomial ideal of S. The set of all elements that are integral over I is called the integral closure of I, and is denoted by \bar{I}. If $I=\bar{I}$, then I is called integrally closed. In addition, the integral closure of a monomial ideal is again a monomial ideal. In [12], it is given the following description for the integral closure of I :

$$
\bar{I}=\left(f \mid f \quad \text { is a monomial in } \mathrm{S} \text { and } f^{k} \in I^{k}, \text { for some } \quad k \geq 1\right) .
$$

If all the powers I^{k} are integrally closed, hence I is called a normal ideal.
Let $\mathbf{u} \in \mathbb{Q}_{+}^{n}$, where \mathbb{Q}_{+}is the set of nonnegative rational numbers. We define the upper right corner or ceiling of \mathbf{u} as the vector $\lceil\mathbf{u}\rceil$ whose entries are given by $\lceil\mathbf{u}\rceil_{i}$, where

$$
\lceil\mathbf{u}\rceil_{i}=\left\{\begin{array}{ccc}
\mathbf{u}_{i} & \text { if } & \mathbf{u}_{i} \in \mathbb{N} \\
\left\lfloor\mathbf{u}_{i}\right\rfloor+1 & \text { if } & \mathbf{u}_{i} \notin \mathbb{N}
\end{array}\right.
$$

and where $\left\lfloor\mathbf{u}_{i}\right\rfloor$ stands for the integer part of \mathbf{u}_{i}. Accordingly, we can define the ceiling of any vector in \mathbb{R}^{n} or the ceiling of any real number. Let $\operatorname{conv}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right)$ be the convex hull (over the rationals), that is,

$$
\operatorname{conv}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right)=\left\{\sum_{i=1}^{q} \lambda_{i} \mathbf{v}_{i} \mid \sum_{i=1}^{q} \lambda_{i}=1, \lambda_{i} \in \mathbb{Q}_{+}\right\}
$$

is the set of all convex combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{q}$. For more information refer to [5, Definition 1.4.3, Propositon 1.4.6, and Definition 1.4.7]. For a monomial ideal $I \subset S$ with $G(I)=\left\{\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{m}}\right\}$, we set $L\left(I ;\left\{L_{i j}\right\}\right)=\sum_{j=1}^{m} \prod_{i=1}^{n} L_{i, \mathbf{a}_{j}(i)}$. Notice that a generalized mixed product ideal depends not only on I but also on the family $L_{i j}$.

In the following, we prove that L is integrally closed if $I \subset K\left[x_{1}, x_{2}\right]$ is a Veronese type ideal and the ideals who substitute the generators of I are squarefree Veronese ideals.

Theorem 2.2. Let

$$
L=\sum_{1 \leq q_{l} \leq m_{l}, \sum_{l=1}^{2} q_{l}=h} L_{1, q_{1}} L_{2, q_{2}} \subset K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]
$$

be the generalized mixed product ideal, where the ideals $L_{1, q_{1}}$ in $K\left[x_{11}, x_{12}, \ldots, x_{1 m_{1}}\right]$ and the ideals $L_{2, q_{2}}$ in $K\left[x_{21}, x_{22}, \ldots, x_{2 m_{2}}\right]$ are squarefree Veronese ideals of degree q_{1} and q_{2}, respectively. Then L is integrally closed.

Proof. Let

$$
L=\sum_{1 \leq q_{l} \leq m_{l}, \sum_{l=1}^{2} q_{l}=h} L_{1, q_{1}} L_{2, q_{2}},
$$

where the ideals
$L_{1, q_{1}}$ in $K\left[x_{11}, x_{12}, \ldots, x_{1 m_{1}}\right]$ and the ideals $L_{2, q_{2}}$ in $K\left[x_{21}, x_{22}, \ldots, x_{2 m_{2}}\right]$ are squarefree Veronese ideals of degree q_{1} and q_{2}, respectively.

We set $\mathbf{c}_{i}=\left(c_{i 1}, \ldots, c_{i m_{1}}\right) \in \mathbb{N}^{m_{1}}, \mathbf{d}_{i}=\left(d_{i 1}, \ldots, d_{i m_{2}}\right) \in \mathbb{N}^{m_{2}}$, and

$$
\left(\mathbf{c}_{i}, \mathbf{d}_{i}\right)=\left(c_{i 1}, \ldots, c_{i m_{1}}, d_{i 1}, \ldots, d_{i m_{2}}\right) \in \mathbb{N}^{m_{1}+m_{2}}
$$

Let $\mathbf{X}_{1}^{\mathbf{c}_{1}} \mathbf{X}_{2}^{\mathbf{d}_{1}}, \ldots, \mathbf{X}_{1}^{\mathbf{c}_{r}} \mathbf{X}_{2}^{\mathbf{d}_{r}}$ be the generators of L, where $\mathbf{X}_{1}^{\mathbf{c}_{i}} \mathbf{X}_{2}^{\mathbf{d}_{i}}$ stands for

$$
x_{11}^{c_{i 1}} \cdots x_{1 m_{1}}^{c_{i m_{1}}} x_{21}^{d_{i 1}} \cdots x_{2 m_{2}}^{d_{i m_{2}}}
$$

with $\sum_{j=1}^{m_{1}} c_{i j}+\sum_{j=1}^{m_{2}} d_{i j}=h, 0 \leq c_{i j} \leq 1,0 \leq d_{i j} \leq 1$ for $i=1, \ldots, r$, and $h \geq 2$. Then [13, Proposition 12.1.4] implies that

$$
\bar{L}=\left(\left\{\mathbf{X}_{1}^{\lceil\mathbf{p}\rceil} \mathbf{X}_{2}^{\lceil\mathbf{q}\rceil} \mid(\mathbf{p}, \mathbf{q}) \in \operatorname{conv}\left(\left(\mathbf{c}_{1}, \mathbf{d}_{1}\right), \ldots,\left(\mathbf{c}_{r}, \mathbf{d}_{r}\right)\right)\right\}\right)
$$

where

$$
\operatorname{conv}\left(\left(\mathbf{c}_{1}, \mathbf{d}_{1}\right), \ldots,\left(\mathbf{c}_{r}, \mathbf{d}_{r}\right)\right)=\left\{\sum_{i=1}^{r} \lambda_{i}\left(\mathbf{c}_{i}, \mathbf{d}_{i}\right) \mid \sum_{i=1}^{r} \lambda_{i}=1, \lambda_{i} \in \mathbb{Q}_{+}\right\}
$$

This is a geometric description of the integral closure of L. Let $f=\mathbf{X}_{1}^{\lceil\mathbf{p}\rceil} \mathbf{X}_{2}^{\lceil\mathbf{q}\rceil}$ be a generator of \bar{L}. Therefore,

$$
(\mathbf{p}, \mathbf{q})=\left(\sum_{i=1}^{r} \lambda_{i} c_{i 1}, \ldots, \sum_{i=1}^{r} \lambda_{i} c_{i m_{1}}, \sum_{i=1}^{r} \lambda_{i} d_{i 1}, \ldots, \sum_{i=1}^{r} \lambda_{i} d_{i m_{2}}\right) \in \mathbb{Q}_{+}^{m_{1}+m_{2}}
$$

If $\lambda_{i} \in \mathbb{N}$, then $\lambda_{i}=1$ and $\lambda_{j}=0$ for all $j \neq i$. Thus, $\mathbf{X}_{1}^{\lceil\mathbf{p}\rceil} \mathbf{X}_{2}^{\lceil\mathbf{q}\rceil}=\mathbf{X}_{1}^{\mathbf{c}_{i}} \mathbf{X}_{2}^{\mathbf{d}_{i}}$ for some i with $1 \leq i \leq r$. If $\lambda_{i} \in \mathbb{Q}_{+} \backslash \mathbb{N}$ with $\sum_{i=1}^{r} \lambda_{i}=1$, then we have a monomial $\mathbf{X}_{1}^{\lceil\mathbf{p}\rceil} \mathbf{X}_{2}^{\lceil\mathbf{q}\rceil}$ with $\lceil\mathbf{p}\rceil \geq \mathbf{c}_{i}$ with respect to the order on $\mathbb{Q}_{+}^{m_{1}}$ and $\lceil\mathbf{q}\rceil \geq \mathbf{d}_{i}$ with
respect to the order on $\mathbb{Q}_{+}^{m_{2}}$, where $\mathbf{p}_{i} \geq c_{i j}$ and $\mathbf{q}_{i} \geq d_{i j}$. Hence, the monomial $\mathbf{X}_{1}^{\lceil\mathbf{p}\rceil} \mathbf{X}_{2}^{\lceil\mathbf{q}\rceil}$ is divided by $\mathbf{X}_{1}^{\mathbf{c}_{i}} \mathbf{X}_{2}^{\mathbf{d}_{i}}$ for some $1 \leq i \leq r$. Thus, \bar{L} is generated by $\mathbf{X}_{1}^{\mathbf{c}_{i}} \mathbf{X}_{2}^{\mathbf{d}_{i}}$ for all $1 \leq i \leq r$ and by $\mathbf{X}_{1}^{\lceil\mathbf{p}\rceil} \mathbf{X}_{2}^{\lceil\mathbf{q}\rceil}$ with $\lceil\mathbf{p}\rceil \geq \mathbf{c}_{i}$ and $\lceil\mathbf{q}\rceil \geq \mathbf{d}_{i}$. Therefore,

$$
G(\bar{L})=\left\{\mathbf{X}_{1}^{\mathbf{c}_{1}} \mathbf{X}_{2}^{\mathbf{d}_{1}}, \ldots, \mathbf{X}_{1}^{\mathbf{c}_{r}} \mathbf{X}_{2}^{\mathbf{d}_{r}}\right\}
$$

and hence $\bar{L}=L$.
Example 2.3. Let $L=L_{1,1} L_{2,2}+L_{1,2} L_{2,1} \subset K\left[x_{11}, x_{12}, x_{21}, x_{22}\right]$ be a generalized mixed product ideal, where $L_{1,1}=\left(x_{11}, x_{12}\right), L_{1,2}=\left(x_{11} x_{12}\right)$, $L_{2,1}=\left(x_{21}, x_{22}\right)$ and $L_{2,2}=\left(x_{21} x_{22}\right)$. Therefore, Theorem 2.2 implies that

$$
\bar{L}=\left(\left\{\mathbf{X}_{1}^{\lceil\mathbf{p}\rceil} \mathbf{X}_{2}^{\lceil\mathbf{q}\rceil} \mid(\mathbf{p}, \mathbf{q}) \in \operatorname{conv}\left(\left(\mathbf{c}_{1}, \mathbf{d}_{1}\right),\left(\mathbf{c}_{2}, \mathbf{d}_{2}\right),\left(\mathbf{c}_{3}, \mathbf{d}_{3}\right),\left(\mathbf{c}_{4}, \mathbf{d}_{4}\right)\right\}\right)\right.
$$

where $\left(\mathbf{c}_{1}, \mathbf{d}_{1}\right)=(1,0,1,0) \in \mathbb{Z}_{+}^{4},\left(\mathbf{c}_{2}, \mathbf{d}_{2}\right)=(1,0,0,1) \in \mathbb{Z}_{+}^{4},\left(\mathbf{c}_{3}, \mathbf{d}_{3}\right)=(0,1,1,0) \in$ \mathbb{Z}_{+}^{4} and $\left(\mathbf{c}_{4}, \mathbf{d}_{4}\right)=(0,1,0,1) \in \mathbb{Z}_{+}^{4}$. It follows that

$$
L=\bar{L}=\left(x_{11} x_{21}, x_{11} x_{22}, x_{12} x_{21}, x_{12} x_{22}\right) .
$$

The support of a monomial $f=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$, denoted by $\operatorname{supp}(f)$, is a subset of the set of variables given by

$$
\operatorname{supp}(f)=\left\{x_{i} \mid a_{i}>0\right\}
$$

For $\mathbf{a}=(\mathbf{a}(1), \ldots, \mathbf{a}(n)) \in \mathbb{Z}_{+}^{n}$, we set

$$
G L(\mathbf{a})=\left\{\mathbf{b} \in \mathbb{Z}_{+}^{m_{1}+\cdots+m_{n}} \mid \mathbf{X}^{\mathbf{b}} \in G\left(L\left(\mathbf{x}^{\mathbf{a}} ;\left\{L_{i j}\right\}\right)\right)\right\} .
$$

In addition, for all $\mathbf{a} \in E(G(I))$, we define $\mathbf{X}^{G L(\mathbf{a})}$ for the set of monomials

$$
\left\{\mathbf{X}^{\mathbf{b}} \mid \mathbf{b} \in G L(\mathbf{a})\right\},
$$

where $E(G(I))$ denotes the exponent set of $G(I)$. Thus, $L\left(I ;\left\{L_{i j}\right\}\right)$ is a monomial ideal of T generated by the monomials $\mathbf{X}^{\mathbf{b}}=\prod_{i=1}^{n} x_{i 1}^{b_{i 1}} \cdots x_{i m_{i}}^{b_{i m_{i}}}$, where

$$
\mathbf{b}=\left(b_{11}, \ldots, b_{1 m_{1}}, b_{21}, \ldots, b_{2 m_{2}}, \ldots, b_{n 1}, \ldots, b_{n m_{n}}\right) \in G L(\mathbf{a})
$$

for all $\mathbf{a} \in E(G(I))$.
Remark 2.4. (a) Let

$$
L\left(I ;\left\{L_{i j}\right\}\right)=\sum_{j=1}^{m} \prod_{i=1}^{n} L_{i, \mathbf{a}_{j}(i)} \subset T=K\left[x_{11}, \ldots, x_{1 m_{1}}, \ldots, x_{n 1}, \ldots, x_{n m_{n}}\right]
$$

be a generalized mixed product ideal, induced by the monomial ideal I with $G(I)=$ $\left\{\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{m}}\right\}$, where the ideals $L_{i, \mathbf{a}_{j}(i)} \subset T_{i}=K\left[x_{i 1}, x_{i 2}, \ldots, x_{i m_{i}}\right]$ are squarefree Veronese ideals of degree $\mathbf{a}_{j}(i)$. Let $A=T\left[x_{i v}^{-1}\right]$ be the Laurent polynomial ring for
some $x_{i v}$. We denote by $L_{i, \mathbf{a}_{j}(i)}^{\prime}$ the ideal of $T_{i}^{\prime}=K\left[x_{i 1}, \ldots, \widehat{x_{i v}}, \ldots, x_{i m_{i}}\right]$ generated by all the squarefree monomials of T_{i}^{\prime} of degree $\mathbf{a}_{j}(i)-1$. Hence, $L_{i, \mathbf{a}_{j}(i)} A=$ $L_{i, \mathbf{a}_{j}(i)}^{\prime} A$. In fact one has $L_{i, \mathbf{a}_{j}(i)} \subset L_{i, \mathbf{a}_{j}(i)}^{\prime}$, hence $L_{i, \mathbf{a}_{j}(i)} A \subset L_{i, \mathbf{a}_{j}(i)}^{\prime} A$. On the other hand consider a monomial f in $L_{i, \mathbf{a}_{j}(i)}^{\prime}$, then $x_{i v} f \in L_{i, \mathbf{a}_{j}(i)}$ and $f \in L_{i, \mathbf{a}_{j}(i)} A$. Therefore, $L_{i, \mathbf{a}_{j}(i)}^{\prime} A \subset L_{i, \mathbf{a}_{j}(i)} A$.
(b) If a variable $x_{i v}$ is not in a prime ideal $\wp \subset T$, then the localization of $L_{i, \mathbf{a}_{j}(i)}$ at \wp is the same as the localization of $L_{i, \mathbf{a}_{j}(i)}^{\prime}$ at \wp.

In [7], the author studied the normality of L, where the ideals substituting the monomials in I are all powers of the maximal ideals.

Theorem 2.5. [7, Theorem 3.3] Let $L\left(I ;\left\{L_{i j}\right\}\right)=\sum_{j=1}^{m} \prod_{i=1}^{n} L_{i, \mathbf{a}_{j}(i)} \subset T$ be a generalized mixed product ideal, induced by the monomial ideal I with $G(I)=$ $\left\{\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{m}}\right\}$, where the ideals $L_{i, \mathbf{a}_{j}(i)} \subset K\left[x_{i 1}, x_{i 2}, \ldots, x_{i m_{i}}\right]$ are Veronese ideals of degree $\mathbf{a}_{j}(i)$. Then I is normal if and only if $L\left(I ;\left\{L_{i j}\right\}\right)$ is normal.

Next we study the normality of L, provided the ideals substituting the monomials in I are squarefree Veronese. We set

$$
L^{\prime}=\sum_{1 \leq q_{l} \leq m_{l}, \sum_{l=1}^{2} q_{l}=h} L_{1, q_{1}}^{\prime} L_{2, q_{2}}
$$

where the ideals $L_{1, q_{1}}$ in $K\left[x_{11}, x_{12}, \ldots, x_{1 m_{1}}\right]$ and the ideals $L_{2, q_{2}}$ in $K\left[x_{21}, x_{22}, \ldots, x_{2 m_{2}}\right]$ are squarefree Veronese ideals of degree q_{1} and q_{2}, respectively. Therefore, L^{\prime} is a monomial ideal of the ring $K\left[x_{11}, \ldots, \widehat{x_{1 v}}, \ldots, x_{1 m_{1}}, x_{21} \ldots, x_{2 m_{2}}\right]$ generated by all the squarefree monomials

$$
x_{11}^{a_{11}^{\prime}} \cdots x_{1 v-1}^{a_{1 v-1}^{\prime}} x_{1 v+1}^{a_{1 v+1}^{\prime}} \cdots x_{1 m_{1}}^{a_{1 m_{1}}^{\prime}} x_{21}^{a_{21}} \cdots x_{2 m_{2}}^{a_{2 m_{2}}}
$$

of degree $h-1$. Similar considerations hold for

$$
L^{\prime \prime}=\sum_{1 \leq q_{l} \leq m_{l}, \sum_{l=1}^{2} q_{l}=h} L_{1, q_{1}} L_{2, q_{2}}^{\prime \prime} \subset K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21} \ldots, \widehat{x_{2 v^{\prime}}}, \ldots, x_{2 m_{2}}\right] .
$$

Face ideals were introduced in [13, Definition 6.1.2]. A face ideal is an ideal \wp of T generated by a subset of the set of variables.

Lemma 2.6. Let $L=\sum_{1 \leq q_{l} \leq m_{l}, \sum_{l=1}^{2} q_{l}=h} L_{1, q_{1}} L_{2, q_{2}} \subset K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]$, where the ideals $L_{1, q_{1}}$ in $K\left[x_{11}, x_{12}, \ldots, x_{1 m_{1}}\right]$, the ideals $L_{2, q_{2}}$ in $K\left[x_{21}, x_{22}, \ldots, x_{2 m_{2}}\right]$ are squarefree Veronese ideals of degree q_{1} and q_{2}, respectively.

Furthermore, let $\wp \subset K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]$ be a face ideal such that $x_{1 v} \notin \wp$ for some v (resp. $x_{2 v^{\prime}} \notin \wp$ for some v^{\prime}). Then

$$
L K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]_{\wp}=L^{\prime} K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]_{\wp}
$$

(resp. $L K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]_{\wp}=L^{\prime \prime} K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]_{\wp}$).
Proof. For simplicity of notation we assume that $v=1$. Take a monomial

$$
f=x_{12}^{a_{12}^{\prime}} \cdots x_{1 m_{1}}^{a_{1 m_{1}}^{\prime}} x_{21}^{a_{21}} \cdots x_{2 m_{2}}^{a_{2 m_{2}}}
$$

of L^{\prime} of degree $h-1$. As $a_{12}^{\prime}+\cdots+a_{1 m_{1}}^{\prime}+a_{21}+\cdots+a_{2 m_{2}}=h-1$ and $a_{1 t}^{\prime} \leq 1$ for all $t \geq 2$, we have $x_{11} f \in L$ and $f \in L K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]_{\wp}$. Therefore,

$$
L^{\prime} K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]_{\wp} \subseteq L K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]_{\wp} .
$$

Conversely, take a squarefree monomial g of L of degree h. By Remark 2.4, we have $g \in L^{\prime} K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]_{\wp}$. It follows that

$$
L K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]_{\wp} \subseteq L^{\prime} K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]_{\wp},
$$

as desired.
We now come to the main result of the present paper.

Theorem 2.7. Let

$$
L=\sum_{1 \leq q_{l} \leq m_{l}, \sum_{l=1}^{2} q_{l}=h} L_{1, q_{1}} L_{2, q_{2}}
$$

be the generalized mixed product ideal, where the ideals $L_{1, q_{1}}$ in $K\left[x_{11}, x_{12}, \ldots, x_{1 m_{1}}\right]$ and the ideals $L_{2, q_{2}}$ in $K\left[x_{21}, x_{22}, \ldots, x_{2 m_{2}}\right]$ are squarefree Veronese ideals of degree q_{1} and q_{2}, respectively. Then L is normal.

Proof. Let L be the generalized mixed product ideal induced by a Veronese type ideal I generated by the monomials $x_{1}^{q_{1}} x_{2}^{q_{2}}$ with $1 \leq q_{l} \leq m_{l}$ and $\sum_{l=1}^{2} q_{l}=h$. By induction on h we show that L is normal. If $h=2$, then [10, Theorem 2.9] implies that $L=L_{1,1} L_{2,1}$ is normal.

Assume that $h>2$ and the result holds for the generalized mixed product ideal of degree less than h. Take any prime $\wp \neq \mathfrak{n}$ and pick $x_{1 v} \notin \wp$, where \mathfrak{n} is the maximal ideal $\mathfrak{n}=\left(x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right)$. By Lemma 2.6 we obtain

$$
L K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]_{\wp}=L^{\prime} K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]_{\wp} .
$$

Thus, by the induction hypothesis, we conclude that L^{\prime} is normal. According to [3, Proposition 4.2], we obtain $L^{\prime} K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]_{\wp}$ is normal. Therefore,

$$
L K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]_{\wp}
$$

is normal for any prime ideal $\wp \neq \mathfrak{n}$.

Now we proceed by contradiction assuming $\overline{L^{k}} \cap\left(L^{k}: \mathfrak{n}\right) \neq L^{k}$ for some $k \geq 1$. This means we can choose a monomial f in $\overline{L^{k}} \backslash L^{k}$ such that $x_{1 v} f \in L^{k}$ for all v. Hence, there are monomials f_{1}, \ldots, f_{k} of degree h in L and satisfying the equality:

$$
x_{11} f=g f_{1} \cdots f_{k}
$$

where g is a monomial with $\operatorname{deg}(g)>0$, because $f \in \overline{L^{k}}$. Notice that $x_{11} \notin$ $\operatorname{supp}(g)$ because $f \notin L^{k}$. Hence, we may assume that $x_{11} \in \operatorname{supp}\left(f_{1}\right)$ and $g=$ $x_{12}^{c_{i 2}} x_{13}^{c_{i 3}} \cdots x_{1 q^{\prime}}^{c_{i q^{\prime}}} x_{21}^{d_{s 1}} \cdots x_{2 v}^{d_{s v}}$ and $c_{i t}, d_{s z}>0$. Observe that $x_{1 t}$ divides f_{1} for all $2 \leq t \leq q^{\prime}$. Otherwise, we can write

$$
f=\left(\left(f_{1} x_{1 t}\right) / x_{11}\right) f_{2} \cdots f_{k}\left(g / x_{1 t}\right)
$$

to derive $f \in L^{k}$, a contradiction. We distinguish two cases:
Case (I): $x_{1 t}$ does not divide f_{w} for some $2 \leq t \leq q^{\prime}$ and $2 \leq w \leq k$. Then for each $x_{1 v} \in \operatorname{supp}\left(f_{w}\right)$ with $v \neq t$, we have $x_{1 v}$ divides f_{1}. Otherwise, if $x_{1 v}$ does not divide f_{1}, then we have the equality

$$
f=\left(\left(x_{1 v} f_{1}\right) / x_{11}\right) f_{2} \cdots f_{w-1}\left(\left(x_{1 t} f_{w}\right) / x_{1 v}\right) f_{w+1} \cdots f_{k}\left(g / x_{1 t}\right)
$$

where $\left(x_{1 v} f_{1}\right) / x_{11} \in L$ and $\left(x_{1 t} f_{w}\right) / x_{1 v} \in L$. Therefore, $f \in L^{k}$, a contradiction. Hence, since we have already seen that also $x_{1 t}$ divides f_{1}, we obtain $x_{1 t}$ divides f_{w}, which is a contradiction.

Case (II): $x_{1 t}$ divides f_{w} for all $2 \leq t \leq q^{\prime}$ and $2 \leq w \leq k$. Since $x_{1 t}$ divides f_{1}, it follows that $\operatorname{deg}_{x_{12}}(f) \geq k+1$, where $\operatorname{deg}_{x_{12}}(f)$ denotes the degree of f in the variable x_{12}. Recall that $x_{12} f \in L^{k}$, which by degree considerations readily implies $f \in L^{k}$, a contradiction.

Altogether we see that in both cases the equality $\overline{L^{k}} \cap\left(L^{k}: \mathfrak{n}\right) \neq L^{k}$ leads to a contradiction. Therefore, [13, Proposition 12.2.1] implies that L is normal, as desired.

Example 2.8. Let $L=L_{1,1} L_{2,3}+L_{1,2} L_{2,2}+L_{1,3} L_{2,1} \subset K\left[x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}\right]$ be the generalized mixed product ideal induced by a monomial ideal

$$
I=\left(x_{1} x_{2}^{3}, x_{1}^{2} x_{2}^{2}, x_{1}^{3} x_{2}\right)
$$

where for integers a and b, the ideal $L_{1, a}\left(\right.$ resp. $\left.L_{2, b}\right)$ is the ideal generated by all squarefree monomials of degree a in the polynomial ring $K\left[x_{11}, x_{12}, x_{13}\right]$ (resp. of
degree b in the polynomial ring $\left.K\left[x_{21}, x_{22}, x_{23}\right]\right)$. Therefore,

$$
\begin{aligned}
L= & \left(x_{11} x_{21} x_{22} x_{23}, x_{12} x_{21} x_{22} x_{23}, x_{13} x_{21} x_{22} x_{23}, x_{11} x_{12} x_{21} x_{22}, x_{11} x_{12} x_{21} x_{23},\right. \\
& x_{11} x_{12} x_{22} x_{23}, x_{11} x_{13} x_{21} x_{22}, x_{11} x_{13} x_{21} x_{23}, x_{11} x_{13} x_{22} x_{23}, x_{12} x_{13} x_{21} x_{22}, \\
& \left.x_{12} x_{13} x_{21} x_{23}, x_{12} x_{13} x_{22} x_{23}, x_{11} x_{12} x_{13} x_{21}, x_{11} x_{12} x_{13} x_{22}, x_{11} x_{12} x_{13} x_{23}\right) .
\end{aligned}
$$

Hence, Theorem 2.7 implies that $\overline{L^{k}}=L^{k}$ for all $k \geq 1$.

3. Normalization of generalized mixed product ideals

In this section, we want to study the normality of Rees algebras of generalized mixed product ideals. Let I be a graded ideal of $S=K\left[x_{1}, \ldots, x_{n}\right]$ generated by homogeneous polynomials f_{1}, \ldots, f_{r} with $\operatorname{deg} f_{1}=\operatorname{deg} f_{2}=\cdots=\operatorname{deg} f_{r}$. Let t be a variable over S. The graded subalgebra

$$
\mathcal{R}(I):=\bigoplus_{k=0}^{\infty} I^{k} t^{k}=S\left[f_{1} t, \ldots, f_{r} t\right]
$$

of $S[t]$ is called the Rees algebra of I.
The integral closure $\overline{\mathcal{R}(I)}$ of the Rees algebra in its field of fractions is called normalization of I. It is well-known ([11]) that is the graded algebra:

$$
\overline{\mathcal{R}(I)}=S \oplus \bar{I} t \oplus \cdots \oplus \overline{I^{k}} t^{k} \oplus \cdots,
$$

where $\overline{I^{k}}$ is the integral closure of I^{k}. The ring $\mathcal{R}(I)$ is said to be normal if $\mathcal{R}(I)$ is equal to its integral closure. Therefore, $\mathcal{R}(I)$ is normal if and only if I is normal.

Proposition 3.1. Let L be the generalized mixed product ideal induced by a monomial ideal I with $G(I)=\left\{\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{m}}\right\}$, where the ideals $L_{i, \mathbf{a}_{j}(i)}$ are Veronese ideals of degree $\mathbf{a}_{j}(i)$. Then I is normal if and only if $\mathcal{R}(L)$ is normal.

Proof. Let $L\left(I ;\left\{L_{i j}\right\}\right)=\left(f_{1}, \ldots, f_{r}\right)$, and let $\mathcal{R}\left(L\left(I ;\left\{L_{i j}\right\}\right)\right)$ be the subring of $T[t]$ given by $T\left[f_{1} t, \ldots, f_{r} t\right]$, where t is a new variable. Notice that

$$
\mathcal{R}\left(L\left(I ;\left\{L_{i j}\right\}\right)\right)=T \oplus L t \oplus \cdots \oplus L^{k} t^{k} \oplus \cdots \subset T[t]
$$

is a graded algebra. By [13, Theorem 4.3.17] the normality of an ideal $L\left(I ;\left\{L_{i j}\right\}\right)$ of the polynomial ring T is equivalent to the normality of its Rees algebra. Therefore, using [13, Theorem 4.3.17] and Theorem 2.5, the assertion follows.

Now we consider the case that all $L_{i j}$ are squarefree Veronese ideals.
Proposition 3.2. Let $L=\sum_{1 \leq q_{l} \leq m_{l}, \sum_{l=1}^{2} q_{l}=h} L_{1, q_{1}} L_{2, q_{2}}$ be the generalized mixed product ideal, where the ideals $L_{1, q_{1}}$ in $K\left[x_{11}, x_{12}, \ldots, x_{1 m_{1}}\right]$ and the ideals $L_{2, q_{2}}$ in
$K\left[x_{21}, x_{22}, \ldots, x_{2 m_{2}}\right]$ are squarefree Veronese ideals of degree q_{1} and q_{2}, respectively. Then $\mathcal{R}(L)$ is normal.

Proof. The assertion follows by Theorem 2.7 and [13, Theorem 4.3.17].
Next we study the combinatorics of the normalization of generalized mixed product ideals. Let $\mathcal{V}=\left\{v_{1}, \ldots, v_{q}\right\}$ be a set of vectors in $\mathbb{N}^{n} \backslash\{0\}$. The integral closure or normalization of the affine semigroup

$$
\mathbb{N} \mathcal{V}:=\mathbb{N} v_{1}+\cdots+\mathbb{N} v_{q} \subset \mathbb{N}^{n}
$$

is defined as $\overline{\mathbb{N} \mathcal{V}}:=\mathbb{Z} \mathcal{V} \cap \mathbb{R}_{+} \mathcal{V}$, where $\mathbb{Z V}$ is the subgroup of \mathbb{Z}^{n} generated by \mathcal{V}. The semigroup $\mathbb{N V}$ is called normal or integrally closed if $\overline{\mathbb{N} \mathcal{V}}=\mathbb{N} \mathcal{V}$.

Let I be a monomial ideal of S minimally generated by the set

$$
G(I)=\left\{\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{m}}\right\}
$$

The Rees cone of I is the rational polyhedral cone on \mathbb{R}^{n+1}, denoted by $\mathbb{R}_{+} E(G(I))^{\prime}$ or $\mathbb{R}_{+}(I)$, generated by

$$
E(G(I))^{\prime}:=\left\{e_{1}, \ldots, e_{n},\left(\mathbf{a}_{1}, 1\right), \ldots,\left(\mathbf{a}_{m}, 1\right)\right\} \subset \mathbb{R}^{n+1}
$$

where e_{i} is the i th unit vector.
Now let L be the generalized mixed product ideal induced by a monomial ideal I. More precisely let $G(L)=\left\{\mathbf{X}^{\mathbf{b}_{1}}, \ldots, \mathbf{X}^{\mathbf{b}_{r}}\right\}$ and $E(G(L))$ be the set of exponent vectors of the generators of L. As usual we use $\mathbf{X}^{\mathbf{u}}$ as an abbreviation for

$$
\mathbf{X}^{\mathbf{u}}=\prod_{i=1}^{n} x_{i 1}^{u_{i 1}} \cdots x_{i m_{i}}^{u_{i m_{i}}}
$$

where $\mathbf{u}=\left(u_{11}, \ldots, u_{1 m_{1}}, u_{21}, \ldots, u_{2 m_{2}}, \ldots, u_{n 1}, \ldots, u_{n m_{n}}\right)$ is in $\mathbb{Z}_{+}^{m_{1}+\cdots+m_{n}}$. We set

$$
E(G(L))^{\prime}=\left\{e_{1}, \ldots, e_{m_{1}+\cdots+m_{n}},\left(\mathbf{b}_{1}, 1\right), \ldots,\left(\mathbf{b}_{r}, 1\right)\right\}
$$

where e_{i} is the i th unit vector of $\mathbb{R}^{m_{1}+\cdots+m_{n}+1}$. On the other hand according to [11, Theorem 7.2.28] one has

$$
\mathcal{R}(L)=K\left[\left\{\mathbf{X}^{\mathbf{u}} t^{z} \mid(\mathbf{u}, z) \in \mathbb{N} E(G(L))^{\prime}\right\}\right],
$$

where $\mathbb{N} E(G(L))^{\prime}$ is the subsemigroup of $\mathbb{N}^{m_{1}+\cdots+m_{n}+1}$ generated by $E(G(L))^{\prime}$, consisting of the linear combinations of $E(G(L))^{\prime}$ with non-negative integer coefficients, and the integral closure of $\mathcal{R}(L)$ in its field of fractions can be expressed as

$$
\overline{\mathcal{R}(L)}=K\left[\left\{\mathbf{X}^{\mathbf{u}} t^{z} \mid(\mathbf{u}, z) \in \mathbb{Z}^{m_{1}+\cdots+m_{n}+1} \cap \mathbb{R}_{+} E(G(L))^{\prime}\right\}\right],
$$

where $\mathbb{R}_{+} E(G(L))^{\prime} \subseteq \mathbb{R}^{m_{1}+\cdots+m_{n}+1}$ consists of the linear combinations of $E(G(L))^{\prime}$ with real coefficients. Therefore, $\mathcal{R}(L)$ is normal if and only if any of the following equivalent conditions hold:
(1) $\mathbb{N} E(G(L))^{\prime}=\mathbb{Z}^{m_{1}+\cdots+m_{n}+1} \cap \mathbb{R}_{+} E(G(L))^{\prime}$;
(2) $L^{k}=\overline{L^{k}}$ for all $k \geq 1$.

In the following, we give a description of the normalization of $\overline{\mathcal{R}(L)}$.
Proposition 3.3. Let

$$
L=\sum_{1 \leq q_{l} \leq m_{l}, \sum_{l=1}^{2} q_{l}=h} L_{1, q_{1}} L_{2, q_{2}},
$$

where the ideals $L_{1, q_{1}}$ in $K\left[x_{11}, x_{12}, \ldots, x_{1 m_{1}}\right]$, the ideals $L_{2, q_{2}}$ in $K\left[x_{21}, x_{22}, \ldots, x_{2 m_{2}}\right]$ are squarefree Veronese ideals of degree q_{1} and q_{2}, respectively. Then

$$
\overline{\mathcal{R}(L)}=K\left[\left\{\mathbf{X}_{1}^{\mathbf{c}} \mathbf{X}_{2}^{\mathbf{d}} t^{q} \mid \mathbf{c} \in \mathbb{N} E\left(G\left(L_{1, q_{1}}\right)\right), \mathbf{d} \in \mathbb{N} E\left(G\left(L_{2, q_{2}}\right)\right), q \in \mathbb{N}\right\}\right]
$$

where $E\left(G\left(L_{1, q_{1}}\right)\right)$ (resp. $E\left(G\left(L_{2, q_{2}}\right)\right)$) is the set of the exponent vectors of the monomials of $L_{1, q_{1}}$ (resp. $L_{2, q_{2}}$) in the variables $x_{11}, \ldots, x_{1 m_{1}}\left(\right.$ resp. $\left.x_{21}, \ldots, x_{2 m_{2}}\right)$.

Proof. According to Proposition 3.2 one has $\mathcal{R}(L)$ is normal. Hence, $\overline{\mathcal{R}(L)}=$ $\mathcal{R}(L)$. We show that $\mathcal{R}(L)=K\left[\left\{\mathbf{X}_{1}^{\mathbf{c}} \mathbf{X}_{2}^{\mathrm{d}} t^{q} \mid \mathbf{c} \in \mathbb{N} E\left(G\left(L_{1, q_{1}}\right)\right), \mathbf{d} \in \mathbb{N} E\left(G\left(L_{2, q_{2}}\right)\right), q \in\right.\right.$ $\mathbb{N}\}$].

We assume that $\mathfrak{B}=K\left[\left\{\mathbf{X}_{1}^{\mathbf{c}} \mathbf{X}_{2}^{\mathbf{d}} t^{q} \mid \mathbf{c} \in \mathbb{N} E\left(G\left(L_{1, q_{1}}\right)\right), \mathbf{d} \in \mathbb{N} E\left(G\left(L_{2, q_{2}}\right)\right), q \in\right.\right.$ $\mathbb{N}\}]$, where $E\left(G\left(L_{1, q_{1}}\right)\right)=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ (resp. $\left.E\left(G\left(L_{2, q_{2}}\right)\right)=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{s}\right\}\right)$ is the set of the exponent vectors of the monomials of $L_{1, q_{1}}$ (resp. $L_{2, q_{2}}$) in the variables $x_{11}, \ldots, x_{1 m_{1}}\left(\right.$ resp. $x_{21}, \ldots, x_{2 m_{2}}$).

By hypotheses $\mathbf{c}=\sum_{i=1}^{r} \alpha_{i} \mathbf{u}_{i}$ with $\alpha_{i} \in \mathbb{N}, \mathbf{u}_{i} \in E\left(G\left(L_{1, q_{1}}\right)\right), \mathbf{d}=\sum_{i=1}^{s} \beta_{i} \mathbf{v}_{i}$ with $\beta_{i} \in \mathbb{N}, \mathbf{v}_{i} \in E\left(G\left(L_{2, q_{2}}\right)\right), q \in \mathbb{N}$. Then $\mathbf{X}_{1}^{\mathbf{c}}=\mathbf{X}_{1}^{\mathbf{u}_{i}}$ for all $1 \leq i \leq r$, and $\mathbf{X}_{1}^{\mathbf{c}}=f \mathbf{X}_{1}^{\mathbf{u}_{i}}$, where f is a monomial in the variables $x_{11}, \ldots, x_{1 m_{1}}$, and $\mathbf{X}_{2}^{\mathbf{d}}=\mathbf{X}_{2}^{\mathbf{v}_{i}}$ for all $1 \leq i \leq s$, and $\mathbf{X}_{2}^{\mathbf{d}}=w \mathbf{X}_{2}^{\mathbf{v}_{i}}$, where w is a monomial in the variables $x_{21}, \ldots, x_{2 m_{2}}$. Hence, the monomials $\mathbf{X}_{1}^{\mathbf{c}} \mathbf{X}_{2}^{\mathbf{d}} t^{q}$ of minimal degree are the generators of $\mathcal{R}(L)$, as desired.

Suppose that $L\left(I ;\left\{L_{i j}\right\}\right)=\left(f_{1}, \ldots, f_{r}\right)$. The monomial subring spanned by $\left\{f_{1}, \ldots, f_{r}\right\}$ is the K-subalgebra $K\left[L\left(I ;\left\{L_{i j}\right\}\right)\right]=K\left[f_{1}, \ldots, f_{r}\right]$.

The integral closure of $K\left[L\left(I ;\left\{L_{i j}\right\}\right)\right]$ in its field of fractions is called normalization of $K\left[L\left(I ;\left\{L_{i j}\right\}\right)\right]$. In addition, we denote $\overline{K\left[L\left(I ;\left\{L_{i j}\right\}\right)\right]}$ for the integral closure of $K\left[L\left(I ;\left\{L_{i j}\right\}\right)\right]$. The toric ring $K\left[L\left(I ;\left\{L_{i j}\right\}\right)\right]$ is said to be normal if

$$
\overline{K\left[L\left(I ;\left\{L_{i j}\right\}\right)\right]}=K\left[L\left(I ;\left\{L_{i j}\right\}\right)\right] .
$$

Proposition 3.4. Let $L=\sum_{1 \leq q_{l} \leq m_{l}, \sum_{l=1}^{2} q_{l}=h} L_{1, q_{1}} L_{2, q_{2}}$, where for integers q_{1} and q_{2}, the ideal $L_{1, q_{1}}$ (resp. $L_{2, q_{2}}$) is the ideal generated by all squarefree monomials of degree q_{1} in the polynomial ring $K\left[x_{11}, \ldots, x_{1 m_{1}}\right]$ (resp. of degree q_{2} in the polynomial ring $\left.K\left[x_{21}, \ldots, x_{2 m_{2}}\right]\right)$. Then $K[L]$ is normal.

Proof. Suppose that $L=\left(f_{1}, \ldots, f_{r}\right)$ be the generalized mixed product ideal induced by a monomial ideal I. Assume further that $q_{1}+q_{2}=h$. The monomial subring $K\left[f_{1}, \ldots, f_{r}\right]$ is a graded subring of $K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]$ with grading

$$
K\left[f_{1}, \ldots, f_{r}\right]_{k}=K\left[f_{1}, \ldots, f_{r}\right] \cap K\left[x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}\right]_{k}
$$

Since L is generated in the same degree h, by Proposition 3.2 together with [12, Proposition 7.4.1], we have $K[L]$ is normal.

Proposition 3.5. Let L be the generalized mixed product ideal induced by a monomial ideal I with $G(I)=\left\{\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{m}}\right\}$, where the ideals $L_{i, \mathbf{a}_{j}(i)}$ are Veronese ideals of degree $\mathbf{a}_{j}(i)$. Assume that I is generated in the same degree d. Then $K[L]$ is normal if I is normal.

Proof. Suppose that

$$
\mathbb{F} 0 \rightarrow F_{p} \rightarrow F_{p-1} \rightarrow \cdots \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{0} \rightarrow S / I \rightarrow 0
$$

be the \mathbb{Z}^{n}-graded minimal free S-resolution of S / I.
We assume that $F_{i}=\bigoplus_{j=1}^{\beta_{i}} S\left(-\mathbf{a}_{i j}\right)$ with $\mathbf{a}_{i j} \in \mathbb{N}^{n}$ for $i=1, \ldots, n$. Thus, $F_{i}=$ $\bigoplus_{j=1}^{\beta_{i}} S f_{i j}$ where $f_{i j}$ is a basis element of the free S-module F_{i} of \mathbb{Z}^{n}-degree $\mathbf{a}_{i j}$. Let ∂ denote the chain map of \mathbb{F}. Then

$$
\partial\left(f_{i j}\right)=\sum_{k} \lambda_{k j}^{(i)} \mathbf{x}^{\mathbf{a}_{i j}-\mathbf{a}_{i-1, k}} f_{i-1, k}
$$

Here $\lambda_{k j}^{(i)}=0$ if $\mathbf{a}_{i j}=\mathbf{a}_{i-1, k}$ or $\mathbf{a}_{i j}-\mathbf{a}_{i-1, k} \notin \mathbb{N}^{n}$. The matrices $\left(\lambda_{k j}^{(i)}\right)_{\substack{k=1, \ldots, \beta_{i-1} \\ j=1, \ldots, \beta_{i}}}$ are scalar matrices of the resolution \mathbb{F}. Now we choose for each of the generators $\mathbf{x}^{\mathbf{a}_{j}}$ of I a monomial ideal L_{j} in T (not necessary of the form (2)). The multi-graded free resolution \mathbb{F} of I are used to construct an acyclic complex \mathbb{F}^{*} of direct sums of ideals. We set $F_{0}^{*}=T$ and $F_{i}^{*}=\bigoplus_{j=1}^{\beta_{i}} L_{i j}$ where the monomial ideals $L_{i j}$ are inductively defined as follows: we assume that $L_{1 j}=L_{j}$ for all j. Suppose that $L_{i-1, j}$ is already defined for all j. For a given number j with $1 \leq j \leq \beta_{i}$, let $k_{1}, k_{2}, \ldots, k_{r}$ be the numbers for which $\lambda_{k_{t} j}^{(i)} \neq 0$. In addition, we set $L_{i j}=\bigcap_{t=1}^{r} L_{i-1, k_{t}}$. The
chain map ∂^{*} of \mathbb{F}^{*} is given by

$$
\partial^{*} \bigoplus_{j=1}^{\beta_{i}} L_{i j} \longrightarrow \bigoplus_{j=1}^{\beta_{i-1}} L_{i-1, j}, \quad u \mapsto \lambda^{(i)} u
$$

where

$$
u=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{\beta_{i}}
\end{array}\right) \quad \text { with } \quad u_{j} \in L_{i j}
$$

Hence, $\partial^{*}\left(\bigoplus_{j=1}^{\beta_{i}} L_{i j}\right) \subset \bigoplus_{j=1}^{\beta_{i-1}} L_{i-1, j}$. Let $v \in \bigoplus_{j=1}^{\beta_{i}} L_{i j}$ be a column vector. Suppose that $v_{\ell}=0$ for $\ell \neq j$. Thus,

$$
\partial^{*}(v)=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{\beta_{i-1}}
\end{array}\right)
$$

where $u_{k}=\lambda_{k j}^{(i)} v_{j}$ for $k=1, \ldots, \beta_{i-1}$.
Next we show that L is generated in degree d if and only if I is generated in degree d. By [4, Lemma 2.4], $\partial^{*}\left(F_{2}^{*}\right) \subset \mathfrak{n} F_{1}^{*}$ where \mathfrak{n} is the graded maximal ideal of T. This then implies $\bigoplus_{j} L_{j} / \mathfrak{n} L_{j} \cong L / \mathfrak{n} L$. Our assumptions on the ideals $L_{i, \mathbf{a}_{j(i)}}$ imply that L_{j} is minimally generated in degree $\left|\mathbf{a}_{j}\right|$. Hence, it follows that L has generators exactly in the same degrees as I. Proposition 3.1 with [12, Proposition 7.4.1] guarantees that $K[L]$ is normal. Thus, the desired conclusion follows.

4. Rees algebra of an edge ideal

The main goal of this section is to study monomial subrings associated to graphs. Let G be a finite simple graph with vertex set $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}$ and edge set $E(G)$, and let $I(G)$ be its edge ideals in $S=K\left[x_{1}, \ldots, x_{n}\right]$. As usual we denote the Rees algebra of $I(G)$ by $\mathcal{R}(I(G))$.

In [2] Bayati and Herzog introduced the expansion functor in the category of finitely generated multigraded S-module. We assume that $S^{\left(m_{1}, \ldots, m_{n}\right)}$ be the polynomial ring over a field K in the variables

$$
x_{11}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 m_{2}}, \ldots, x_{n 1}, \ldots, x_{n m_{n}} .
$$

Let $I \subset S$ be a monomial ideal minimally generated by $\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{m}}$, the expansion of I with respect to the n-tuple $\left(m_{1}, \ldots, m_{n}\right)$, is defined by $I^{\left(m_{1}, \ldots, m_{n}\right)}=$
$\sum_{j=1}^{m} \prod_{i=1}^{n} P_{i}^{\mathbf{a}_{j}(i)} \subset S^{\left(m_{1}, \ldots, m_{n}\right)}$ where P_{i} is the monomial prime ideal $\left(x_{i 1}, \ldots, x_{i m_{i}}\right) \subseteq$ $S^{\left(m_{1}, \ldots, m_{n}\right)}$ and $\mathbf{a}_{j}(i)$ is the i-th component of the vector \mathbf{a}_{j}.

Theorem 4.1. [1, Theorem 2.1] Let I be a monomial ideal of a polynomial ring $S=K\left[x_{1}, \ldots, x_{n}\right]$. Then I is normal if and only if $I^{\left(m_{1}, \ldots, m_{n}\right)}$ is normal, where $I^{\left(m_{1}, \ldots, m_{n}\right)}$ denotes the expansion of I.

For the n-tuple $\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n}$, with positive integer entries, the expansion of the graph G is denoted by $G^{\left(m_{1}, \ldots, m_{n}\right)}$. We consider the monomial prime ideal $P_{j}=\left(x_{j 1}, \ldots, x_{j m_{j}}\right)$ in $S^{\left(m_{1}, \ldots, m_{n}\right)}$. Hence,

$$
I\left(G^{\left(m_{1}, \ldots, m_{n}\right)}\right)=\sum_{\left\{x_{i}, x_{j}\right\} \in E(G)} P_{i} P_{j} .
$$

It follows from [2, Lemma 1.1] that

$$
I\left(G^{\left(m_{1}, \ldots, m_{n}\right)}\right)=\sum_{\left\{x_{i}, x_{j}\right\} \in E(G)} x_{i}^{\left(m_{1}, \ldots, m_{n}\right)} x_{j}^{\left(m_{1}, \ldots, m_{n}\right)}=I(G)^{\left(m_{1}, \ldots, m_{n}\right)}
$$

Example 4.2. Let G be a graph on the vertex set $V(G)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and edge set $E(G)=\left\{\left\{x_{1}, x_{3}\right\},\left\{x_{1}, x_{4}\right\},\left\{x_{2}, x_{3}\right\},\left\{x_{2}, x_{4}\right\}\right\}$. We consider the polynomial ring T over K in the variables $x_{11}, x_{21}, x_{22}, x_{31}, x_{41}, x_{42}$, and the order 4-tuple $(1,2,1,2)$. Hence, $G^{(1,2,1,2)}$ is a graph with vertex set $V\left(G^{(1,2,1,2)}\right)=$ $\left\{x_{11}, x_{21}, x_{22}, x_{31}, x_{41}, x_{42}\right\}$ and edge set

$$
\begin{aligned}
E\left(G^{(1,2,1,2)}\right)= & \left\{\left\{x_{11}, x_{31}\right\},\left\{x_{11}, x_{41}\right\},\left\{x_{11}, x_{42}\right\},\left\{x_{21}, x_{31}\right\},\left\{x_{22}, x_{31}\right\},\left\{x_{21}, x_{41}\right\},\right. \\
& \left.\left\{x_{21}, x_{42}\right\},\left\{x_{22}, x_{41}\right\},\left\{x_{22}, x_{42}\right\}\right\} .
\end{aligned}
$$

Then we have $P_{1}=\left(x_{11}\right), P_{2}=\left(x_{21}, x_{22}\right), P_{3}=\left(x_{31}\right)$ and $P_{4}=\left(x_{41}, x_{42}\right)$. Therefore,

$$
\begin{aligned}
I\left(G^{(1,2,1,2)}\right) & =P_{1} P_{3}+P_{1} P_{4}+P_{2} P_{3}+P_{2} P_{4} \\
& =\left(x_{11} x_{31}, x_{11} x_{41}, x_{11} x_{42}, x_{21} x_{31}, x_{22} x_{31}, x_{21} x_{41}, x_{21} x_{42}, x_{22} x_{41}, x_{22} x_{42}\right)
\end{aligned}
$$

The ideal $I\left(G^{(1,2,1,2)}\right) \subset T$ is obtained from $I(G)$ by expansion with respect to the 4 -tuple ($1,2,1,2$) with positive integer entries.

Theorem 4.3. Let G be a graph on the vertex set $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}$. Fix an order n-tuple $\left(m_{1}, \ldots, m_{n}\right)$ of positive integers. Then the Rees algebra $\mathcal{R}(I(G))$ is normal if and only if $\mathcal{R}\left(I\left(G^{\left(m_{1}, \ldots, m_{n}\right)}\right)\right)$ is normal.

Proof. We assume that $\mathcal{R}(I(G))=K\left[\left\{x_{1}, \ldots, x_{n}, t f_{i} \mid 1 \leq i \leq r\right\}\right]$ be the Rees algebra of $I(G)=\left(f_{1}, \ldots, f_{r}\right)$, where f_{1}, \ldots, f_{r} are the monomials corresponding to the edges of G. Let k be a positive integer. If $\mathcal{R}(I(G))$ is normal, then by [13,

Theorem 4.3.17] we obtain $I(G)$ is normal. Hence, $I(G)^{k}=\overline{I(G)^{k}}$. It is known [9, Lemma 2.2] that $I\left(G^{\left(m_{1}, \ldots, m_{n}\right)}\right)^{k}$ is the expansion of $I(G)^{k}$ with respect to the n-tuple $\left(m_{1}, \ldots, m_{n}\right)$. Hence, [7, Lemma 2.3] together with [9, Lemma 2.2] now yields

$$
I\left(G^{\left(m_{1}, \ldots, m_{n}\right)}\right)^{k}=\overline{I\left(G^{\left(m_{1}, \ldots, m_{n}\right)}\right)^{k}} .
$$

Therefore, [13, Theorem 4.3.17] yields $\mathcal{R}\left(I\left(G^{\left(m_{1}, \ldots, m_{n}\right)}\right)^{k}\right)$ is normal. Necessity follows in a similar way and the proof is complete.

The edge subring of the graph G, denoted by $K[G]$, is the K-subalgebra of S given by:

$$
K[G]=K\left[\left\{x_{i} x_{j} \mid x_{i} \quad \text { is adjacent to } \quad x_{j}\right\}\right] \subset S
$$

To obtain a presentation of the edge subring of G note that $K[G]$ is a standard K-algebra with the normalized grading $K[G]_{i}=K[G] \cap S_{2 i}$.

Let I be a monomial ideal of S and P_{1}, \ldots, P_{r} the minimal primes of I. Given an integer $k \geq 1$, the k th symbolic power of I is defined to be the ideal $I^{(k)}=$ $Q_{1} \cap \cdots \cap Q_{r}$, where Q_{i} is the primary component of I^{k} corresponding to P_{i}. The reader can find more information in [13, Definition 4.3.22].

Proposition 4.4. Let G be a connected bipartite graph. Fix an order n-tuple $\left(m_{1}, \ldots, m_{n}\right)$ of positive integers. Then $K\left[G^{\left(m_{1}, \ldots, m_{n}\right)}\right]$ is normal.

Proof. Let G be a connected bipartite graph and let $I(G)$ be its edge ideal. Let k be a positive integer. Thus, [13, Corollary 13.3.6] yields $I(G)^{(k)}=I(G)^{k}$. According to [9, Theorem 2.3] we have $I\left(G^{\left(m_{1}, \ldots, m_{n}\right)}\right)^{k}$ is the expansion of $I(G)^{k}$ with respect to the n-tuple $\left(m_{1}, \ldots, m_{n}\right)$ and $I\left(G^{\left(m_{1}, \ldots, m_{n}\right)}\right)^{k}=\left(I(G)^{k}\right)^{\left(m_{1}, \ldots, m_{n}\right)}$. Then [2, Corollary 1.5] implies that $I\left(G^{\left(m_{1}, \ldots, m_{n}\right)}\right)^{(k)}=I\left(G^{\left(m_{1}, \ldots, m_{n}\right)}\right)^{k}$. Now the result follows from [13, Corollary 13.3.6] and [13, Corollary 10.5.6].

Now we give a formula to compute the dimension of $K\left[G^{\left(m_{1}, \ldots, m_{n}\right)}\right]$.
Theorem 4.5. If G is a connected graph with n vertices and $K[G]$ is its edge subring, then

$$
\operatorname{dim}\left(K\left[G^{\left(m_{1}, \ldots, m_{n}\right)}\right]\right)=\left\{\begin{array}{cc}
m_{1}+\cdots+m_{n} & \text { if } G \text { is not bipartite, and } \\
m_{1}+\cdots+m_{n}-1 & \text { otherwise } .
\end{array}\right.
$$

Proof. We assume that G is a connected graph with r edges and n vertices. Let $I(G)$ be minimally generated by monomials f_{1}, \ldots, f_{r}. Then there is a spanning tree T of G so that $I(T)=\left(f_{1}, \ldots, f_{n-1}\right)([14])$. Hence,

$$
\operatorname{dim}(K[G]) \geq n-1
$$

If G is bipartite, then by [13, Corollary 10.1.21] one has that $\operatorname{dim}(K[G])=n-1$. Fix an order n-tuple (m_{1}, \ldots, m_{n}) of positive integers. Let k be a positive integer. Thus, [2, Corollary 1.5] yields $I\left(G^{\left(m_{1}, \ldots, m_{n}\right)}\right)^{(k)}$ is the expansion of $I(G)^{(k)}$ with respect to the n-tuple $\left(m_{1}, \ldots, m_{n}\right)$. Therefore, by [13, Corollary 13.3.6] together with [9, Theorem 2.3] we conclude that

$$
I\left(G^{\left(m_{1}, \ldots, m_{n}\right)}\right)^{(k)}=I\left(G^{\left(m_{1}, \ldots, m_{n}\right)}\right)^{k}
$$

By [13, Corollary 10.1.21] we have

$$
\operatorname{dim}\left(K\left[G^{\left(m_{1}, \ldots, m_{n}\right)}\right]\right)=m_{1}+\cdots+m_{n}-1
$$

If G is not bipartite, thus by [13, Corollary 10.1.21] we obtain $\operatorname{dim}(K[G])=n$. Then [13, Corollary 13.3.6] implies that $I(G)^{(k)} \neq I(G)^{k}$. From [9, Lemma 2.2], and [2, Corollary 1.5], together with [13, Corollary 13.3.6] we have

$$
I\left(G^{\left(m_{1}, \ldots, m_{n}\right)}\right)^{(k)} \neq I\left(G^{\left(m_{1}, \ldots, m_{n}\right)}\right)^{k}
$$

It follows from [13, Corollary 10.1.21] that

$$
\operatorname{dim}\left(K\left[G^{\left(m_{1}, \ldots, m_{n}\right)}\right]\right)=m_{1}+\cdots+m_{n}
$$

Acknowledgement. The authors would like to thank the referee for the valuable suggestions and comments.

References

[1] I. Al-Ayyoub, M. Nasernejad and L. G. Roberts, Normality of cover ideals of graphs and normality under some operations, Results Math., 74(4) (2019), 140 (26 pp).
[2] S. Bayati and J. Herzog, Expansions of monomial ideals and multigraded modules, Rocky Mountain J. Math., 44(6) (2014), 1781-1804.
[3] C. A. Escobar, R. H. Villarreal and Y. Yoshino, Torsion freeness and normality of blowup rings and monomial ideals, Commutative Algebra, Lect. Notes Pure Appl. Math., 244 (2006), 69-84.
[4] J. Herzog, R. Moghimipor and S. Yassemi, Generalized mixed product ideals, Arch. Math. (Basel), 103(1) (2014), 39-51.
[5] C. Huneke and I. Swanson, Integral Closure of Ideals, Rings and Modules, London Mathematical Society, Lecture Note Series, 336, Cambridge University Press, Cambridge, 2006.
[6] R. Moghimipor, Algebraic and homological properties of generalized mixed product ideals, Arch. Math. (Basel), 114 (2020), 147-157.
[7] R. Moghimipor, On the normality of generalized mixed product ideals, Arch. Math. (Basel), 115(2) (2020), 147-157.
[8] R. Moghimipor, On the Cohen-Macaulayness of bracket powers of generalized mixed product ideals, Acta Math. Vietnam., 47(3) (2022), 709-718.
[9] R. Moghimipor and A. Tehranian, Linear resolutions of powers of generalized mixed product ideals, Iran. J. Math. Sci. Inform., 14(1) (2019), 127-134.
[10] G. Restuccia and R. H. Villarreal, On the normality of monomial ideals of mixed products, Comm. Algebra, 29(8) (2001), 3571-3580.
[11] W. V. Vasconcelos, Computational Methods in Commutative Algebra and Algebraic Geometry, Algorithms Comput. Math., Springer-Verlag, 1998.
[12] R. H. Villarreal, Monomial Algebras, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 238, 2001.
[13] R. H. Villarreal, Monomial Algebras, Second Edition, Chapman \& Hall/CRC Monographs and Research Notes in Mathematics, 2015.
[14] D. B. West, Introduction to Graph Theory, Second Edition, Pearson, 2017.

Monica La Barbiera

Department of Electrical, Electronic and Computer Engineering
University of Catania
Viale A. Doria 6, I-95125 Catania, Italy
e-mail: monica.labarbiera@unict.it

Roya Moghimipor (Corresponding Author)
Department of Mathematics, Safadasht Branch
Islamic Azad University
Tehran, Iran
e-mail: roya_moghimipour@yahoo.com

[^0]: The research that led to the present paper was partially supported by a grant of the group GNSAGA of INdAM, Italy.

