

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA VOLUME 35 (2024) 168-185 DOI: 10.24330/ieja.1402961

NORMALITY OF REES ALGEBRAS OF GENERALIZED MIXED PRODUCT IDEALS

Monica La Barbiera and Roya Moghimipor

Received: 18 August 2023; Revised: 27 October 2023; Accepted: 30 October 2023 Communicated by Sait Halıcıoğlu

ABSTRACT. Let K be a field and $K[x_1, x_2]$ the polynomial ring in two variables over K with each x_i of degree 1. Let L be the generalized mixed product ideal induced by a monomial ideal $I \subset K[x_1, x_2]$, where the ideals substituting the monomials in I are squarefree Veronese ideals. In this paper, we study the integral closure of L, and the normality of $\mathcal{R}(L)$, the Rees algebra of L. Furthermore, we give a geometric description of the integral closure of $\mathcal{R}(L)$.

Mathematics Subject Classification (2020): 13B22, 13A30, 13F55 Keywords: Integral closure, normality, Rees algebra, generalized mixed product ideal

1. Introduction

Let $S = K[x_1, \ldots, x_n]$ be the polynomial ring over a field K in the variables x_1, \ldots, x_n , and let $I \subset S$ be a monomial ideal with $I \neq S$ whose minimal set of generators is $G(I) = \{\mathbf{x}^{\mathbf{a}_1}, \ldots, \mathbf{x}^{\mathbf{a}_m}\}$. We consider the polynomial ring T over K in the variables $x_{11}, \ldots, x_{1m_1}, x_{21}, \ldots, x_{2m_2}, \ldots, x_{n1}, \ldots, x_{nm_n}$. Notice that $T = T_1 \otimes_K T_2 \otimes_K \cdots \otimes_K T_n$, where $T_j = K[x_{j1}, x_{j2}, \ldots, x_{jm_j}]$ for $j = 1, \ldots, n$.

Restuccia and Villarreal [10] introduced the class of squarefree monomial ideals of mixed products and they gave a complete classification of normal mixed product ideals, as well as applications in graph theory.

Mixed product ideals are of the form

$$(I_q J_w + I_p J_s) K[x_{11}, \dots, x_{1m_1}, x_{21}, \dots, x_{2m_2}],$$

where for integers a and b, the ideal I_a (resp. J_b) is the ideal generated by all squarefree monomials of degree a in the polynomial ring $K[x_{11}, \ldots, x_{1m_1}]$ (resp. of degree b in the polynomial ring $K[x_{21}, \ldots, x_{2m_2}]$) and where 0 , $<math>0 < w < s \le m_2$. Thus, the ideal $L = (I_q J_w + I_p J_s) K[x_{11}, \ldots, x_{1m_1}, x_{21}, \ldots, x_{2m_2}]$

The research that led to the present paper was partially supported by a grant of the group GNSAGA of INdAM, Italy.

is obtained from the monomial ideal $I = (x_1^q x_2^w, x_1^p x_2^s)$ by replacing x_1^q by I_q, x_1^p by I_p, x_2^w by J_w and x_2^s by J_s .

In the present paper, we consider generalized mixed product ideals which were introduced by Herzog and Yassemi [4] and which also include the so-called expansions of monomial ideals. A great deal of knowledge on the generalized mixed product ideal is accumulated in several papers [6,7,8,9].

The main objective of this paper is to study the normality of some algebras associated to generalized mixed product ideals. In our case, the normality of a generalized mixed product ideal L is equivalent to the normality of the Rees algebra $\mathcal{R}(L) = \bigoplus_{k=0}^{\infty} L^k t^k$. The integral closure $\overline{\mathcal{R}(L)}$ of the Rees algebra in its field of fractions is called normalization of L. It is well-known ([11]) that this graded algebra has the powers of the ideal \overline{L} as components of the integral closure:

$$\overline{\mathcal{R}(L)} = T \oplus \overline{L}t \oplus \cdots \oplus \overline{L^k}t^k \oplus \cdots,$$

where $\overline{L^k}$ is the integral closure of L^k .

The present paper is organized as follows. In Section 2 the combinatorics of the integral closure of generalized mixed product ideals is studied. In [7], the author studied how the generalized mixed product ideal commutes with the integral closure of a monomial ideal and proved that I is normal if and only if L is normal, provided the ideals substituting the monomials in I are all powers of the maximal ideals.

The squarefree Veronese ideal of S of degree d is the ideal of S which is generated by all squarefree monomials of S of degree d. This class of ideals is a special class of polymatroidal ideals, introduced in [13].

Our main result (Theorem 2.7) says that, if $I \subset K[x_1, x_2]$ is a Veronese type ideal and the ideals who substitute the generators of I are squarefree Veronese ideals, then L is normal.

Furthermore, let $L = (f_1, \ldots, f_r)$. The monomial subring spanned by $\{f_1, \ldots, f_r\}$ is the K-subalgebra $K[L] = K[f_1, \ldots, f_r]$. The integral closure of K[L] in its field of fractions is called normalization of K[L]. If L is generated in the same degree and its Rees algebra is normal, then we obtain the normality of K[L] ([12]).

In Section 3, the normality of K[L] and $\mathcal{R}(L)$ is studied. Moreover, we give a geometric description of $\overline{\mathcal{R}(L)}$, see Proposition 3.3.

In Section 4, we focus on the Rees algebra of the edge ideal of a finite simple graph. The definition of expansion operator is motivated by constructions in various combinatorial contexts. Let G be a finite simple graph with vertex set $V(G) = \{x_1, \ldots, x_n\}$ and edge set E(G), and let I(G) be its edge ideals in S.

All graphs in this paper are simple finite undirected. We fix a vertex x_j of G. Thus, a new graph G' is defined by duplicating x_j , that is, $V(G') = V(G) \cup \{x_{j'}\}$ and

$$E(G') = E(G) \cup \{\{x_i, x_{j'}\} : \{x_i, x_j\} \in E(G)\}$$

where $x_{j'}$ is new vertex. Therefore, $I(G') = I(G) + (x_i x_{j'} : \{x_i, x_j\} \in E(G))$. This duplication can be iterated. The graph which is obtained from G by m_j duplications of x_j is denoted by $G^{(m_1,\ldots,m_n)}$. Then edge ideal of $G^{(m_1,\ldots,m_n)}$ can be described as follows: let P_j be the monomial prime ideal $(x_{j1},\ldots,x_{jm_j}) \subseteq T$. Hence,

$$I(G^{(m_1,...,m_n)}) = \sum_{\{x_i,x_j\} \in E(G)} P_i P_j.$$

Let $\mathcal{R}(I(G)) = \bigoplus_{k=0}^{\infty} I(G)^k t^k$ be the Rees algebra of the edge ideal I(G). In Theorem 4.3 it is shown that the Rees algebra $\mathcal{R}(I(G))$ is normal if and only if $\mathcal{R}(I(G^{(m_1,\ldots,m_n)}))$ is normal. The subring

$$K[G] = K[x_i x_j \mid \{x_i, x_j\} \text{ is an edge of } G] \subset S$$

is called the edge subring of G. In Proposition 4.4, we prove that $K[G^{(m_1,...,m_n)}]$ is normal if G is bipartite. We also give a formula to compute the dimension of $K[G^{(m_1,...,m_n)}]$, see Theorem 4.5.

2. Integral closure and normality of generalized mixed product ideals

Fix an integer n > 0 and set $[n] = \{1, 2, ..., n\}$. Let \mathbb{R}^n_+ denote the set of those vectors $\mathbf{u} = (u_1, ..., u_n) \in \mathbb{R}^n$ with each $u_i \ge 0$. Hence, in particular $\mathbf{u}(\{i\})$, or simply $\mathbf{u}(i)$, is the *i*th component u_i of \mathbf{u} .

Let $S = K[x_1, \ldots, x_n]$ be the polynomial ring over a field K in the variables x_1, \ldots, x_n , and let $I \subset S$ be a monomial ideal with $I \neq S$ whose minimal set of generators is $G(I) = \{\mathbf{x}^{\mathbf{a}_1}, \ldots, \mathbf{x}^{\mathbf{a}_m}\}$. Here $\mathbf{x}^{\mathbf{a}} = x_1^{\mathbf{a}(1)} x_2^{\mathbf{a}(2)} \cdots x_n^{\mathbf{a}(n)}$ for $\mathbf{a} = (\mathbf{a}(1), \ldots, \mathbf{a}(n)) \in \mathbb{N}^n$. For a subset $D \subseteq S$, we define the *exponent set* of D by $E(D) := \{\mathbf{d} : \mathbf{x}^{\mathbf{d}} \in D\} \subseteq \mathbb{N}^n$.

Next we consider the polynomial ring T over K in the variables

 $x_{11},\ldots,x_{1m_1},x_{21},\ldots,x_{2m_2},\ldots,x_{n1},\ldots,x_{nm_n}.$

In [4], the authors introduced the generalized mixed product ideals. For i = 1, ..., nand j = 1, ..., m let $L_{i,\mathbf{a}_j(i)}$ be a monomial ideal in the variables $x_{i1}, x_{i2}, ..., x_{im_i}$ such that

$$L_{i,\mathbf{a}_{j}(i)} \subset L_{i,\mathbf{a}_{k}(i)}$$
 whenever $\mathbf{a}_{j}(i) \ge \mathbf{a}_{k}(i)$. (1)

Given these ideals we define for $j = 1, \ldots, m$ the monomial ideals

$$L_j = \prod_{i=1}^n L_{i,\mathbf{a}_j(i)} \subset T,$$
(2)

and set $L = \sum_{j=1}^{m} L_j$. The ideal L is called a generalized mixed product ideal induced by I.

Example 2.1. Let $L = L_{1,q}L_{2,r} + L_{1,s}L_{2,t}$ be the generalized mixed product ideal induced by a monomial ideal $I = (x_1^q x_2^r, x_1^s x_2^t)$, where for integers a and b, the ideal $L_{1,a}$ (resp. $L_{2,b}$) is the ideal generated by all squarefree monomials of degree a in the polynomial ring $K[x_{11}, \ldots, x_{1m_1}]$ (resp. of degree b in the polynomial ring $K[x_{21}, \ldots, x_{2m_2}]$), and where $0 < s < q \le m_1$, $0 < r < t \le m_2$. Ideals of this type are called squarefree Veronese ideals.

Now we want to study the combinatorial structure of the integral closure of generalized mixed product ideals. Let I be a monomial ideal of S. The set of all elements that are integral over I is called *the integral closure* of I, and is denoted by \overline{I} . If $I = \overline{I}$, then I is called *integrally closed*. In addition, the integral closure of a monomial ideal is again a monomial ideal. In [12], it is given the following description for the integral closure of I:

$$\overline{I} = (f \mid f \text{ is a monomial in S and } f^k \in I^k, \text{ for some } k \ge 1)$$

If all the powers I^k are integrally closed, hence I is called a *normal ideal*.

Let $\mathbf{u} \in \mathbb{Q}^n_+$, where \mathbb{Q}_+ is the set of nonnegative rational numbers. We define the *upper right corner* or *ceiling* of \mathbf{u} as the vector $\lceil \mathbf{u} \rceil$ whose entries are given by $\lceil \mathbf{u} \rceil_i$, where

$$\lceil \mathbf{u} \rceil_i = \begin{cases} \mathbf{u}_i & \text{if } \mathbf{u}_i \in \mathbb{N} \\ \lfloor \mathbf{u}_i \rfloor + 1 & \text{if } \mathbf{u}_i \notin \mathbb{N} \end{cases}$$

and where $\lfloor \mathbf{u}_i \rfloor$ stands for the integer part of \mathbf{u}_i . Accordingly, we can define the *ceiling* of any vector in \mathbb{R}^n or the *ceiling* of any real number. Let $\operatorname{conv}(\mathbf{v}_1, \ldots, \mathbf{v}_q)$ be the convex hull (over the rationals), that is,

$$\operatorname{conv}(\mathbf{v}_1,\ldots,\mathbf{v}_q) = \left\{ \sum_{i=1}^q \lambda_i \mathbf{v}_i \ \bigg| \ \sum_{i=1}^q \lambda_i = 1, \lambda_i \in \mathbb{Q}_+ \right\}$$

is the set of all *convex combinations* of $\mathbf{v}_1, \ldots, \mathbf{v}_q$. For more information refer to [5, Definition 1.4.3, Propositon 1.4.6, and Definition 1.4.7]. For a monomial ideal $I \subset S$ with $G(I) = {\mathbf{x}^{\mathbf{a}_1}, \ldots, \mathbf{x}^{\mathbf{a}_m}}$, we set $L(I; {L_{ij}}) = \sum_{j=1}^m \prod_{i=1}^n L_{i,\mathbf{a}_j(i)}$. Notice that a generalized mixed product ideal depends not only on I but also on the family L_{ij} .

In the following, we prove that L is integrally closed if $I \subset K[x_1, x_2]$ is a Veronese type ideal and the ideals who substitute the generators of I are squarefree Veronese ideals.

Theorem 2.2. Let

$$L = \sum_{1 \le q_l \le m_l, \sum_{l=1}^2 q_l = h} L_{1,q_1} L_{2,q_2} \subset K[x_{11}, \dots, x_{1m_1}, x_{21}, \dots, x_{2m_2}]$$

be the generalized mixed product ideal, where the ideals L_{1,q_1} in $K[x_{11}, x_{12}, \ldots, x_{1m_1}]$ and the ideals L_{2,q_2} in $K[x_{21}, x_{22}, \ldots, x_{2m_2}]$ are squarefree Veronese ideals of degree q_1 and q_2 , respectively. Then L is integrally closed.

Proof. Let

$$L = \sum_{1 \le q_l \le m_l, \sum_{l=1}^2 q_l = h} L_{1,q_1} L_{2,q_2},$$

where the ideals

 L_{1,q_1} in $K[x_{11}, x_{12}, \ldots, x_{1m_1}]$ and the ideals L_{2,q_2} in $K[x_{21}, x_{22}, \ldots, x_{2m_2}]$ are square-free Veronese ideals of degree q_1 and q_2 , respectively.

We set $\mathbf{c}_i = (c_{i1}, \dots, c_{im_1}) \in \mathbb{N}^{m_1}, \mathbf{d}_i = (d_{i1}, \dots, d_{im_2}) \in \mathbb{N}^{m_2}$, and

$$(\mathbf{c}_i, \mathbf{d}_i) = (c_{i1}, \dots, c_{im_1}, d_{i1}, \dots, d_{im_2}) \in \mathbb{N}^{m_1 + m_2}$$

Let $\mathbf{X}_1^{\mathbf{c}_1} \mathbf{X}_2^{\mathbf{d}_1}, \dots, \mathbf{X}_1^{\mathbf{c}_r} \mathbf{X}_2^{\mathbf{d}_r}$ be the generators of L, where $\mathbf{X}_1^{\mathbf{c}_i} \mathbf{X}_2^{\mathbf{d}_i}$ stands for

$$x_{11}^{c_{i1}} \cdots x_{1m_1}^{c_{im_1}} x_{21}^{d_{i1}} \cdots x_{2m_2}^{d_{im_2}}$$

with $\sum_{j=1}^{m_1} c_{ij} + \sum_{j=1}^{m_2} d_{ij} = h$, $0 \le c_{ij} \le 1$, $0 \le d_{ij} \le 1$ for $i = 1, \ldots, r$, and $h \ge 2$. Then [13, Proposition 12.1.4] implies that

$$\overline{L} = \left(\left\{ \mathbf{X}_1^{\lceil \mathbf{p} \rceil} \mathbf{X}_2^{\lceil \mathbf{q} \rceil} \mid (\mathbf{p}, \mathbf{q}) \in \operatorname{conv}((\mathbf{c}_1, \mathbf{d}_1), \dots, (\mathbf{c}_r, \mathbf{d}_r)) \right\} \right),\$$

where

$$\operatorname{conv}((\mathbf{c}_1, \mathbf{d}_1), \dots, (\mathbf{c}_r, \mathbf{d}_r)) = \left\{ \sum_{i=1}^r \lambda_i(\mathbf{c}_i, \mathbf{d}_i) \mid \sum_{i=1}^r \lambda_i = 1, \lambda_i \in \mathbb{Q}_+ \right\}.$$

This is a geometric description of the integral closure of L. Let $f = \mathbf{X}_1^{\lceil \mathbf{p} \rceil} \mathbf{X}_2^{\lceil \mathbf{q} \rceil}$ be a generator of \overline{L} . Therefore,

$$(\mathbf{p},\mathbf{q}) = \left(\sum_{i=1}^r \lambda_i c_{i1}, \dots, \sum_{i=1}^r \lambda_i c_{im_1}, \sum_{i=1}^r \lambda_i d_{i1}, \dots, \sum_{i=1}^r \lambda_i d_{im_2}\right) \in \mathbb{Q}_+^{m_1+m_2}.$$

If $\lambda_i \in \mathbb{N}$, then $\lambda_i = 1$ and $\lambda_j = 0$ for all $j \neq i$. Thus, $\mathbf{X}_1^{\lceil \mathbf{p} \rceil} \mathbf{X}_2^{\lceil \mathbf{q} \rceil} = \mathbf{X}_1^{\mathbf{c}_i} \mathbf{X}_2^{\mathbf{d}_i}$ for some i with $1 \leq i \leq r$. If $\lambda_i \in \mathbb{Q}_+ \setminus \mathbb{N}$ with $\sum_{i=1}^r \lambda_i = 1$, then we have a monomial $\mathbf{X}_1^{\lceil \mathbf{p} \rceil} \mathbf{X}_2^{\lceil \mathbf{q} \rceil}$ with $\lceil \mathbf{p} \rceil \geq \mathbf{c}_i$ with respect to the order on $\mathbb{Q}_+^{m_1}$ and $\lceil \mathbf{q} \rceil \geq \mathbf{d}_i$ with respect to the order on $\mathbb{Q}_{+}^{m_2}$, where $\mathbf{p}_i \geq c_{ij}$ and $\mathbf{q}_i \geq d_{ij}$. Hence, the monomial $\mathbf{X}_1^{\lceil \mathbf{p} \rceil} \mathbf{X}_2^{\lceil \mathbf{q} \rceil}$ is divided by $\mathbf{X}_1^{\mathbf{c}_i} \mathbf{X}_2^{\mathbf{d}_i}$ for some $1 \leq i \leq r$. Thus, \overline{L} is generated by $\mathbf{X}_1^{\mathbf{c}_i} \mathbf{X}_2^{\mathbf{d}_i}$ for all $1 \leq i \leq r$ and by $\mathbf{X}_1^{\lceil \mathbf{p} \rceil} \mathbf{X}_2^{\lceil \mathbf{q} \rceil}$ with $\lceil \mathbf{p} \rceil \geq \mathbf{c}_i$ and $\lceil \mathbf{q} \rceil \geq \mathbf{d}_i$. Therefore,

$$G(\overline{L}) = \left\{ \mathbf{X}_1^{\mathbf{c}_1} \mathbf{X}_2^{\mathbf{d}_1}, \dots, \mathbf{X}_1^{\mathbf{c}_r} \mathbf{X}_2^{\mathbf{d}_r} \right\},\,$$

and hence $\overline{L} = L$.

Example 2.3. Let $L = L_{1,1}L_{2,2} + L_{1,2}L_{2,1} \subset K[x_{11}, x_{12}, x_{21}, x_{22}]$ be a generalized mixed product ideal, where $L_{1,1} = (x_{11}, x_{12}), L_{1,2} = (x_{11}x_{12}), L_{2,1} = (x_{21}, x_{22})$ and $L_{2,2} = (x_{21}x_{22})$. Therefore, Theorem 2.2 implies that

$$\overline{L} = \left(\left\{ \mathbf{X}_1^{\lceil \mathbf{p} \rceil} \mathbf{X}_2^{\lceil \mathbf{q} \rceil} \middle| (\mathbf{p}, \mathbf{q}) \in \operatorname{conv}((\mathbf{c}_1, \mathbf{d}_1), (\mathbf{c}_2, \mathbf{d}_2), (\mathbf{c}_3, \mathbf{d}_3), (\mathbf{c}_4, \mathbf{d}_4) \right\} \right),$$

where $(\mathbf{c}_1, \mathbf{d}_1) = (1, 0, 1, 0) \in \mathbb{Z}_+^4$, $(\mathbf{c}_2, \mathbf{d}_2) = (1, 0, 0, 1) \in \mathbb{Z}_+^4$, $(\mathbf{c}_3, \mathbf{d}_3) = (0, 1, 1, 0) \in \mathbb{Z}_+^4$ and $(\mathbf{c}_4, \mathbf{d}_4) = (0, 1, 0, 1) \in \mathbb{Z}_+^4$. It follows that

$$L = L = (x_{11}x_{21}, x_{11}x_{22}, x_{12}x_{21}, x_{12}x_{22}).$$

The support of a monomial $f = x_1^{a_1} \cdots x_n^{a_n}$, denoted by $\operatorname{supp}(f)$, is a subset of the set of variables given by

$$supp(f) = \{x_i \mid a_i > 0\}.$$

For $\mathbf{a} = (\mathbf{a}(1), \dots, \mathbf{a}(n)) \in \mathbb{Z}^n_+$, we set

$$GL(\mathbf{a}) = \left\{ \mathbf{b} \in \mathbb{Z}_{+}^{m_1 + \dots + m_n} \mid \mathbf{X}^{\mathbf{b}} \in G(L(\mathbf{x}^{\mathbf{a}}; \{L_{ij}\})) \right\}.$$

In addition, for all $\mathbf{a} \in E(G(I))$, we define $\mathbf{X}^{GL(\mathbf{a})}$ for the set of monomials

$$\left\{ \mathbf{X}^{\mathbf{b}} \mid \mathbf{b} \in GL(\mathbf{a}) \right\},\$$

where E(G(I)) denotes the exponent set of G(I). Thus, $L(I; \{L_{ij}\})$ is a monomial ideal of T generated by the monomials $\mathbf{X}^{\mathbf{b}} = \prod_{i=1}^{n} x_{i1}^{b_{i1}} \cdots x_{im_i}^{b_{im_i}}$, where

$$\mathbf{b} = (b_{11}, \dots, b_{1m_1}, b_{21}, \dots, b_{2m_2}, \dots, b_{n1}, \dots, b_{nm_n}) \in GL(\mathbf{a})$$

for all $\mathbf{a} \in E(G(I))$.

Remark 2.4. (a) Let

$$L(I; \{L_{ij}\}) = \sum_{j=1}^{m} \prod_{i=1}^{n} L_{i,\mathbf{a}_{j}(i)} \subset T = K[x_{11}, \dots, x_{1m_{1}}, \dots, x_{n1}, \dots, x_{nm_{n}}]$$

be a generalized mixed product ideal, induced by the monomial ideal I with $G(I) = {\mathbf{x}^{\mathbf{a}_1}, \ldots, \mathbf{x}^{\mathbf{a}_m}}$, where the ideals $L_{i,\mathbf{a}_j(i)} \subset T_i = K[x_{i1}, x_{i2}, \ldots, x_{im_i}]$ are squarefree Veronese ideals of degree $\mathbf{a}_j(i)$. Let $A = T[x_{iv}^{-1}]$ be the Laurent polynomial ring for some x_{iv} . We denote by $L'_{i,\mathbf{a}_j(i)}$ the ideal of $T'_i = K[x_{i1}, \ldots, \widehat{x_{iv}}, \ldots, x_{im_i}]$ generated by all the squarefree monomials of T'_i of degree $\mathbf{a}_j(i) - 1$. Hence, $L_{i,\mathbf{a}_j(i)}A = L'_{i,\mathbf{a}_j(i)}A$. In fact one has $L_{i,\mathbf{a}_j(i)} \subset L'_{i,\mathbf{a}_j(i)}$, hence $L_{i,\mathbf{a}_j(i)}A \subset L'_{i,\mathbf{a}_j(i)}A$. On the other hand consider a monomial f in $L'_{i,\mathbf{a}_j(i)}$, then $x_{iv}f \in L_{i,\mathbf{a}_j(i)}$ and $f \in L_{i,\mathbf{a}_j(i)}A$. Therefore, $L'_{i,\mathbf{a}_j(i)}A \subset L_{i,\mathbf{a}_j(i)}A$.

(b) If a variable x_{iv} is not in a prime ideal $\wp \subset T$, then the localization of $L_{i,\mathbf{a}_j(i)}$ at \wp is the same as the localization of $L'_{i,\mathbf{a}_j(i)}$ at \wp .

In [7], the author studied the normality of L, where the ideals substituting the monomials in I are all powers of the maximal ideals.

Theorem 2.5. [7, Theorem 3.3] Let $L(I; \{L_{ij}\}) = \sum_{j=1}^{m} \prod_{i=1}^{n} L_{i,\mathbf{a}_{j}(i)} \subset T$ be a generalized mixed product ideal, induced by the monomial ideal I with $G(I) = \{\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{m}}\}$, where the ideals $L_{i,\mathbf{a}_{j}(i)} \subset K[x_{i1}, x_{i2}, \ldots, x_{im_{i}}]$ are Veronese ideals of degree $\mathbf{a}_{j}(i)$. Then I is normal if and only if $L(I; \{L_{ij}\})$ is normal.

Next we study the normality of L, provided the ideals substituting the monomials in I are squarefree Veronese. We set

$$L' = \sum_{1 \le q_l \le m_l, \sum_{l=1}^2 q_l = h} L'_{1,q_1} L_{2,q_2},$$

where the ideals L_{1,q_1} in $K[x_{11}, x_{12}, \ldots, x_{1m_1}]$ and the ideals L_{2,q_2} in $K[x_{21}, x_{22}, \ldots, x_{2m_2}]$ are squarefree Veronese ideals of degree q_1 and q_2 , respectively. Therefore, L' is a monomial ideal of the ring $K[x_{11}, \ldots, \widehat{x_{1v}}, \ldots, x_{1m_1}, x_{21}, \ldots, x_{2m_2}]$ generated by all the squarefree monomials

$$x_{11}^{a'_{11}} \cdots x_{1v-1}^{a'_{1v-1}} x_{1v+1}^{a'_{1v+1}} \cdots x_{1m_1}^{a'_{1m_1}} x_{21}^{a_{21}} \cdots x_{2m_2}^{a_{2m_2}}$$

of degree h - 1. Similar considerations hold for

$$L'' = \sum_{1 \le q_l \le m_l, \sum_{l=1}^2 q_l = h} L_{1,q_1} L''_{2,q_2} \subset K[x_{11}, \dots, x_{1m_1}, x_{21}, \dots, \widehat{x_{2v'}}, \dots, x_{2m_2}].$$

Face ideals were introduced in [13, Definition 6.1.2]. A *face ideal* is an ideal \wp of T generated by a subset of the set of variables.

Lemma 2.6. Let $L = \sum_{1 \le q_l \le m_l, \sum_{l=1}^2 q_l = h} L_{1,q_1} L_{2,q_2} \subset K[x_{11}, \ldots, x_{1m_1}, x_{21}, \ldots, x_{2m_2}]$, where the ideals L_{1,q_1} in $K[x_{11}, x_{12}, \ldots, x_{1m_1}]$, the ideals L_{2,q_2} in $K[x_{21}, x_{22}, \ldots, x_{2m_2}]$ are squarefree Veronese ideals of degree q_1 and q_2 , respectively.

Furthermore, let $\wp \subset K[x_{11}, \ldots, x_{1m_1}, x_{21}, \ldots, x_{2m_2}]$ be a face ideal such that $x_{1v} \notin \wp$ for some v (resp. $x_{2v'} \notin \wp$ for some v'). Then

$$LK[x_{11},\ldots,x_{1m_1},x_{21},\ldots,x_{2m_2}]_{\wp} = L'K[x_{11},\ldots,x_{1m_1},x_{21},\ldots,x_{2m_2}]_{\wp}$$

 $(resp. LK[x_{11},\ldots,x_{1m_1},x_{21},\ldots,x_{2m_2}]_{\wp} = L''K[x_{11},\ldots,x_{1m_1},x_{21},\ldots,x_{2m_2}]_{\wp}).$

Proof. For simplicity of notation we assume that v = 1. Take a monomial

$$f = x_{12}^{a'_{12}} \cdots x_{1m_1}^{a'_{1m_1}} x_{21}^{a_{21}} \cdots x_{2m_2}^{a_{2m_2}}$$

of L' of degree h-1. As $a'_{12} + \cdots + a'_{1m_1} + a_{21} + \cdots + a_{2m_2} = h-1$ and $a'_{1t} \leq 1$ for all $t \geq 2$, we have $x_{11}f \in L$ and $f \in LK[x_{11}, \ldots, x_{1m_1}, x_{21}, \ldots, x_{2m_2}]_{\wp}$. Therefore,

$$L'K[x_{11},\ldots,x_{1m_1},x_{21},\ldots,x_{2m_2}]_{\wp} \subseteq LK[x_{11},\ldots,x_{1m_1},x_{21},\ldots,x_{2m_2}]_{\wp}.$$

Conversely, take a squarefree monomial g of L of degree h. By Remark 2.4, we have $g \in L'K[x_{11}, \ldots, x_{1m_1}, x_{21}, \ldots, x_{2m_2}]_{\wp}$. It follows that

$$LK[x_{11},\ldots,x_{1m_1},x_{21},\ldots,x_{2m_2}]_{\wp} \subseteq L'K[x_{11},\ldots,x_{1m_1},x_{21},\ldots,x_{2m_2}]_{\wp},$$

as desired.

We now come to the main result of the present paper.

Theorem 2.7. Let

$$L = \sum_{1 \le q_l \le m_l, \sum_{l=1}^2 q_l = h} L_{1,q_1} L_{2,q_2}$$

be the generalized mixed product ideal, where the ideals L_{1,q_1} in $K[x_{11}, x_{12}, \ldots, x_{1m_1}]$ and the ideals L_{2,q_2} in $K[x_{21}, x_{22}, \ldots, x_{2m_2}]$ are squarefree Veronese ideals of degree q_1 and q_2 , respectively. Then L is normal.

Proof. Let *L* be the generalized mixed product ideal induced by a Veronese type ideal *I* generated by the monomials $x_1^{q_1}x_2^{q_2}$ with $1 \le q_l \le m_l$ and $\sum_{l=1}^{2} q_l = h$. By induction on *h* we show that *L* is normal. If h = 2, then [10, Theorem 2.9] implies that $L = L_{1,1}L_{2,1}$ is normal.

Assume that h > 2 and the result holds for the generalized mixed product ideal of degree less than h. Take any prime $\wp \neq \mathfrak{n}$ and pick $x_{1v} \notin \wp$, where \mathfrak{n} is the maximal ideal $\mathfrak{n} = (x_{11}, \ldots, x_{1m_1}, x_{21}, \ldots, x_{2m_2})$. By Lemma 2.6 we obtain

 $LK[x_{11},\ldots,x_{1m_1},x_{21},\ldots,x_{2m_2}]_{\wp} = L'K[x_{11},\ldots,x_{1m_1},x_{21},\ldots,x_{2m_2}]_{\wp}.$

Thus, by the induction hypothesis, we conclude that L' is normal. According to [3, Proposition 4.2], we obtain $L'K[x_{11}, \ldots, x_{1m_1}, x_{21}, \ldots, x_{2m_2}]_{\wp}$ is normal. Therefore,

 $LK[x_{11},\ldots,x_{1m_1},x_{21},\ldots,x_{2m_2}]_{\wp}$

is normal for any prime ideal $\wp \neq \mathfrak{n}$.

Now we proceed by contradiction assuming $\overline{L^k} \cap (L^k : \mathfrak{n}) \neq L^k$ for some $k \geq 1$. This means we can choose a monomial f in $\overline{L^k} \setminus L^k$ such that $x_{1v}f \in L^k$ for all v. Hence, there are monomials f_1, \ldots, f_k of degree h in L and satisfying the equality:

$$x_{11}f = gf_1 \cdots f_k,$$

where g is a monomial with deg(g) > 0, because $f \in \overline{L^k}$. Notice that $x_{11} \notin$ supp(g) because $f \notin L^k$. Hence, we may assume that $x_{11} \in$ supp(f_1) and $g = x_{12}^{c_{i2}} x_{13}^{c_{i3}} \cdots x_{1q'}^{d_{s1}} x_{2v}^{d_{s1}} \cdots x_{2v}^{d_{sv}}$ and $c_{it}, d_{sz} > 0$. Observe that x_{1t} divides f_1 for all $2 \leq t \leq q'$. Otherwise, we can write

$$f = ((f_1 x_{1t}) / x_{11}) f_2 \cdots f_k (g / x_{1t})$$

to derive $f \in L^k$, a contradiction. We distinguish two cases:

Case (I): x_{1t} does not divide f_w for some $2 \le t \le q'$ and $2 \le w \le k$. Then for each $x_{1v} \in \text{supp}(f_w)$ with $v \ne t$, we have x_{1v} divides f_1 . Otherwise, if x_{1v} does not divide f_1 , then we have the equality

$$f = ((x_{1v}f_1)/x_{11})f_2\cdots f_{w-1}((x_{1t}f_w)/x_{1v})f_{w+1}\cdots f_k(g/x_{1t}),$$

where $(x_{1v}f_1)/x_{11} \in L$ and $(x_{1t}f_w)/x_{1v} \in L$. Therefore, $f \in L^k$, a contradiction. Hence, since we have already seen that also x_{1t} divides f_1 , we obtain x_{1t} divides f_w , which is a contradiction.

Case (II): x_{1t} divides f_w for all $2 \le t \le q'$ and $2 \le w \le k$. Since x_{1t} divides f_1 , it follows that $\deg_{x_{12}}(f) \ge k + 1$, where $\deg_{x_{12}}(f)$ denotes the degree of f in the variable x_{12} . Recall that $x_{12}f \in L^k$, which by degree considerations readily implies $f \in L^k$, a contradiction.

Altogether we see that in both cases the equality $\overline{L^k} \cap (L^k : \mathfrak{n}) \neq L^k$ leads to a contradiction. Therefore, [13, Proposition 12.2.1] implies that L is normal, as desired.

Example 2.8. Let $L = L_{1,1}L_{2,3} + L_{1,2}L_{2,2} + L_{1,3}L_{2,1} \subset K[x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}]$ be the generalized mixed product ideal induced by a monomial ideal

$$I = (x_1 x_2^3, x_1^2 x_2^2, x_1^3 x_2),$$

where for integers a and b, the ideal $L_{1,a}$ (resp. $L_{2,b}$) is the ideal generated by all squarefree monomials of degree a in the polynomial ring $K[x_{11}, x_{12}, x_{13}]$ (resp. of

degree b in the polynomial ring $K[x_{21}, x_{22}, x_{23}]$). Therefore,

 $L = (x_{11}x_{21}x_{22}x_{23}, x_{12}x_{21}x_{22}x_{23}, x_{13}x_{21}x_{22}x_{23}, x_{11}x_{12}x_{21}x_{22}, x_{11}x_{12}x_{21}x_{23}, x_{11}x_{12}x_{22}x_{23}, x_{11}x_{13}x_{21}x_{22}, x_{11}x_{13}x_{21}x_{23}, x_{11}x_{13}x_{22}x_{23}, x_{12}x_{13}x_{21}x_{22}, x_{11}x_{13}x_{21}x_{23}, x_{11}x_{13}x_{21}x_{23}, x_{12}x_{13}x_{21}x_{22}, x_{11}x_{12}x_{13}x_{21}x_{23}, x_{12}x_{13}x_{21}x_{23}, x_{11}x_{12}x_{13}x_{21}, x_{11}x_{12}x_{13}x_{22}, x_{11}x_{12}x_{13}x_{23}).$

Hence, Theorem 2.7 implies that $\overline{L^k} = L^k$ for all $k \ge 1$.

3. Normalization of generalized mixed product ideals

In this section, we want to study the normality of Rees algebras of generalized mixed product ideals. Let I be a graded ideal of $S = K[x_1, \ldots, x_n]$ generated by homogeneous polynomials f_1, \ldots, f_r with deg $f_1 = \deg f_2 = \cdots = \deg f_r$. Let t be a variable over S. The graded subalgebra

$$\mathcal{R}(I) := \bigoplus_{k=0}^{\infty} I^k t^k = S[f_1 t, \dots, f_r t]$$

of S[t] is called the *Rees algebra* of *I*.

The integral closure $\overline{\mathcal{R}(I)}$ of the Rees algebra in its field of fractions is called *normalization* of *I*. It is well-known ([11]) that is the graded algebra:

$$\overline{\mathcal{R}(I)} = S \oplus \overline{I}t \oplus \cdots \oplus \overline{I^k}t^k \oplus \cdots,$$

where $\overline{I^k}$ is the integral closure of I^k . The ring $\mathcal{R}(I)$ is said to be normal if $\mathcal{R}(I)$ is equal to its integral closure. Therefore, $\mathcal{R}(I)$ is normal if and only if I is normal.

Proposition 3.1. Let *L* be the generalized mixed product ideal induced by a monomial ideal *I* with $G(I) = {\mathbf{x}^{\mathbf{a}_1}, \ldots, \mathbf{x}^{\mathbf{a}_m}}$, where the ideals $L_{i,\mathbf{a}_j(i)}$ are Veronese ideals of degree $\mathbf{a}_j(i)$. Then *I* is normal if and only if $\mathcal{R}(L)$ is normal.

Proof. Let $L(I; \{L_{ij}\}) = (f_1, \ldots, f_r)$, and let $\mathcal{R}(L(I; \{L_{ij}\}))$ be the subring of T[t] given by $T[f_1t, \ldots, f_rt]$, where t is a new variable. Notice that

$$\mathcal{R}(L(I; \{L_{ij}\})) = T \oplus Lt \oplus \cdots \oplus L^k t^k \oplus \cdots \subset T[t]$$

is a graded algebra. By [13, Theorem 4.3.17] the normality of an ideal $L(I; \{L_{ij}\})$ of the polynomial ring T is equivalent to the normality of its Rees algebra. Therefore, using [13, Theorem 4.3.17] and Theorem 2.5, the assertion follows.

Now we consider the case that all L_{ij} are squarefree Veronese ideals.

Proposition 3.2. Let $L = \sum_{1 \le q_l \le m_l, \sum_{l=1}^2 q_l = h} L_{1,q_1} L_{2,q_2}$ be the generalized mixed product ideal, where the ideals L_{1,q_1} in $K[x_{11}, x_{12}, \ldots, x_{1m_1}]$ and the ideals L_{2,q_2} in

 $K[x_{21}, x_{22}, \ldots, x_{2m_2}]$ are squarefree Veronese ideals of degree q_1 and q_2 , respectively. Then $\mathcal{R}(L)$ is normal.

Proof. The assertion follows by Theorem 2.7 and [13, Theorem 4.3.17].

Next we study the combinatorics of the normalization of generalized mixed product ideals. Let $\mathcal{V} = \{v_1, \ldots, v_q\}$ be a set of vectors in $\mathbb{N}^n \setminus \{0\}$. The *integral closure* or *normalization* of the affine semigroup

$$\mathbb{N}\mathcal{V} := \mathbb{N}v_1 + \dots + \mathbb{N}v_q \subset \mathbb{N}^n,$$

is defined as $\overline{\mathbb{NV}} := \mathbb{ZV} \cap \mathbb{R}_+ \mathcal{V}$, where \mathbb{ZV} is the subgroup of \mathbb{Z}^n generated by \mathcal{V} . The semigroup \mathbb{NV} is called *normal* or *integrally closed* if $\overline{\mathbb{NV}} = \mathbb{NV}$.

Let I be a monomial ideal of S minimally generated by the set

$$G(I) = \{\mathbf{x}^{\mathbf{a}_1}, \dots, \mathbf{x}^{\mathbf{a}_m}\}.$$

The *Rees cone* of *I* is the rational polyhedral cone on \mathbb{R}^{n+1} , denoted by $\mathbb{R}_+ E(G(I))'$ or $\mathbb{R}_+(I)$, generated by

$$E(G(I))' := \{e_1, \dots, e_n, (\mathbf{a}_1, 1), \dots, (\mathbf{a}_m, 1)\} \subset \mathbb{R}^{n+1},$$

where e_i is the *i*th unit vector.

Now let *L* be the generalized mixed product ideal induced by a monomial ideal *I*. More precisely let $G(L) = \{ \mathbf{X}^{\mathbf{b}_1}, \ldots, \mathbf{X}^{\mathbf{b}_r} \}$ and E(G(L)) be the set of exponent vectors of the generators of *L*. As usual we use $\mathbf{X}^{\mathbf{u}}$ as an abbreviation for

$$\mathbf{X}^{\mathbf{u}} = \prod_{i=1}^{n} x_{i1}^{u_{i1}} \cdots x_{im_i}^{u_{im_i}},$$

where $\mathbf{u} = (u_{11}, \dots, u_{1m_1}, u_{21}, \dots, u_{2m_2}, \dots, u_{n1}, \dots, u_{nm_n})$ is in $\mathbb{Z}_+^{m_1 + \dots + m_n}$. We set

$$E(G(L))' = \{e_1, \dots, e_{m_1 + \dots + m_n}, (\mathbf{b}_1, 1), \dots, (\mathbf{b}_r, 1)\},\$$

where e_i is the *i*th unit vector of $\mathbb{R}^{m_1+\cdots+m_n+1}$. On the other hand according to [11, Theorem 7.2.28] one has

$$\mathcal{R}(L) = K[\{\mathbf{X}^{\mathbf{u}}t^{z} \mid (\mathbf{u}, z) \in \mathbb{N}E(G(L))'\}],$$

where $\mathbb{N}E(G(L))'$ is the subsemigroup of $\mathbb{N}^{m_1+\cdots+m_n+1}$ generated by E(G(L))', consisting of the linear combinations of E(G(L))' with non-negative integer coefficients, and the integral closure of $\mathcal{R}(L)$ in its field of fractions can be expressed as

$$\overline{\mathcal{R}(L)} = K[\{\mathbf{X}^{\mathbf{u}}t^z \mid (\mathbf{u}, z) \in \mathbb{Z}^{m_1 + \dots + m_n + 1} \cap \mathbb{R}_+ E(G(L))'\}],\$$

where $\mathbb{R}_+ E(G(L))' \subseteq \mathbb{R}^{m_1 + \dots + m_n + 1}$ consists of the linear combinations of E(G(L))'with real coefficients. Therefore, $\mathcal{R}(L)$ is normal if and only if any of the following equivalent conditions hold:

- (1) $\mathbb{N}E(G(L))' = \mathbb{Z}^{m_1 + \dots + m_n + 1} \cap \mathbb{R}_+ E(G(L))';$
- (2) $L^k = \overline{L^k}$ for all $k \ge 1$.

In the following, we give a description of the normalization of $\overline{\mathcal{R}(L)}$.

Proposition 3.3. Let

$$L = \sum_{1 \le q_l \le m_l, \sum_{l=1}^2 q_l = h} L_{1,q_1} L_{2,q_2},$$

where the ideals L_{1,q_1} in $K[x_{11}, x_{12}, \ldots, x_{1m_1}]$, the ideals L_{2,q_2} in $K[x_{21}, x_{22}, \ldots, x_{2m_2}]$ are squarefree Veronese ideals of degree q_1 and q_2 , respectively. Then

$$\overline{\mathcal{R}(L)} = K[\{\mathbf{X}_1^{\mathbf{c}}\mathbf{X}_2^{\mathbf{d}}t^q \mid \mathbf{c} \in \mathbb{N}E(G(L_{1,q_1})), \mathbf{d} \in \mathbb{N}E(G(L_{2,q_2})), q \in \mathbb{N}\}],$$

where $E(G(L_{1,q_1}))$ (resp. $E(G(L_{2,q_2}))$) is the set of the exponent vectors of the monomials of L_{1,q_1} (resp. L_{2,q_2}) in the variables x_{11}, \ldots, x_{1m_1} (resp. x_{21}, \ldots, x_{2m_2}).

Proof. According to Proposition 3.2 one has $\mathcal{R}(L)$ is normal. Hence, $\overline{\mathcal{R}(L)} = \mathcal{R}(L)$. We show that $\mathcal{R}(L) = K[\{\mathbf{X}_1^{\mathbf{c}}\mathbf{X}_2^{\mathbf{d}}t^q \mid \mathbf{c} \in \mathbb{N}E(G(L_{1,q_1})), \mathbf{d} \in \mathbb{N}E(G(L_{2,q_2})), q \in \mathbb{N}\}].$

We assume that $\mathfrak{B} = K[\{\mathbf{X}_1^{\mathbf{c}}\mathbf{X}_2^{\mathbf{d}}t^q \mid \mathbf{c} \in \mathbb{N}E(G(L_{1,q_1})), \mathbf{d} \in \mathbb{N}E(G(L_{2,q_2})), q \in \mathbb{N}\}]$, where $E(G(L_{1,q_1})) = \{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$ (resp. $E(G(L_{2,q_2})) = \{\mathbf{v}_1, \ldots, \mathbf{v}_s\}$) is the set of the exponent vectors of the monomials of L_{1,q_1} (resp. L_{2,q_2}) in the variables x_{11}, \ldots, x_{1m_1} (resp. x_{21}, \ldots, x_{2m_2}).

By hypotheses $\mathbf{c} = \sum_{i=1}^{r} \alpha_i \mathbf{u}_i$ with $\alpha_i \in \mathbb{N}$, $\mathbf{u}_i \in E(G(L_{1,q_1}))$, $\mathbf{d} = \sum_{i=1}^{s} \beta_i \mathbf{v}_i$ with $\beta_i \in \mathbb{N}$, $\mathbf{v}_i \in E(G(L_{2,q_2}))$, $q \in \mathbb{N}$. Then $\mathbf{X}_1^{\mathbf{c}} = \mathbf{X}_1^{\mathbf{u}_i}$ for all $1 \leq i \leq r$, and $\mathbf{X}_1^{\mathbf{c}} = f\mathbf{X}_1^{\mathbf{u}_i}$, where f is a monomial in the variables x_{11}, \ldots, x_{1m_1} , and $\mathbf{X}_2^{\mathbf{d}} = \mathbf{X}_2^{\mathbf{v}_i}$ for all $1 \leq i \leq s$, and $\mathbf{X}_2^{\mathbf{d}} = w\mathbf{X}_2^{\mathbf{v}_i}$, where w is a monomial in the variables x_{21}, \ldots, x_{2m_2} . Hence, the monomials $\mathbf{X}_1^{\mathbf{c}}\mathbf{X}_2^{\mathbf{d}}t^q$ of minimal degree are the generators of $\mathcal{R}(L)$, as desired. \Box

Suppose that $L(I; \{L_{ij}\}) = (f_1, \ldots, f_r)$. The monomial subring spanned by $\{f_1, \ldots, f_r\}$ is the K-subalgebra $K[L(I; \{L_{ij}\})] = K[f_1, \ldots, f_r]$.

The integral closure of $K[L(I; \{L_{ij}\})]$ in its field of fractions is called *normalization* of $K[L(I; \{L_{ij}\})]$. In addition, we denote $\overline{K[L(I; \{L_{ij}\})]}$ for the integral closure of $K[L(I; \{L_{ij}\})]$. The toric ring $K[L(I; \{L_{ij}\})]$ is said to be normal if

$$K[L(I; \{L_{ij}\})] = K[L(I; \{L_{ij}\})].$$

Proposition 3.4. Let $L = \sum_{1 \leq q_l \leq m_l, \sum_{l=1}^{2} q_l = h} L_{1,q_1} L_{2,q_2}$, where for integers q_1 and q_2 , the ideal L_{1,q_1} (resp. L_{2,q_2}) is the ideal generated by all squarefree monomials of degree q_1 in the polynomial ring $K[x_{11}, \ldots, x_{1m_1}]$ (resp. of degree q_2 in the polynomial ring $K[x_{21}, \ldots, x_{2m_2}]$). Then K[L] is normal.

Proof. Suppose that $L = (f_1, \ldots, f_r)$ be the generalized mixed product ideal induced by a monomial ideal I. Assume further that $q_1 + q_2 = h$. The monomial subring $K[f_1, \ldots, f_r]$ is a graded subring of $K[x_{11}, \ldots, x_{1m_1}, x_{21}, \ldots, x_{2m_2}]$ with grading

$$K[f_1, \dots, f_r]_k = K[f_1, \dots, f_r] \cap K[x_{11}, \dots, x_{1m_1}, x_{21}, \dots, x_{2m_2}]_k.$$

Since L is generated in the same degree h, by Proposition 3.2 together with [12, Proposition 7.4.1], we have K[L] is normal.

Proposition 3.5. Let *L* be the generalized mixed product ideal induced by a monomial ideal *I* with $G(I) = \{\mathbf{x}^{\mathbf{a}_1}, \ldots, \mathbf{x}^{\mathbf{a}_m}\}$, where the ideals $L_{i,\mathbf{a}_j(i)}$ are Veronese ideals of degree $\mathbf{a}_j(i)$. Assume that *I* is generated in the same degree *d*. Then K[L] is normal if *I* is normal.

Proof. Suppose that

$$\mathbb{F} \ 0 \to F_p \to F_{p-1} \to \dots \to F_2 \to F_1 \to F_0 \to S/I \to 0$$

be the \mathbb{Z}^n -graded minimal free S-resolution of S/I.

We assume that $F_i = \bigoplus_{j=1}^{\beta_i} S(-\mathbf{a}_{ij})$ with $\mathbf{a}_{ij} \in \mathbb{N}^n$ for $i = 1, \ldots, n$. Thus, $F_i = \bigoplus_{j=1}^{\beta_i} Sf_{ij}$ where f_{ij} is a basis element of the free S-module F_i of \mathbb{Z}^n -degree \mathbf{a}_{ij} . Let ∂ denote the chain map of \mathbb{F} . Then

$$\partial(f_{ij}) = \sum_{k} \lambda_{kj}^{(i)} \mathbf{x}^{\mathbf{a}_{ij} - \mathbf{a}_{i-1,k}} f_{i-1,k}.$$

Here $\lambda_{kj}^{(i)} = 0$ if $\mathbf{a}_{ij} = \mathbf{a}_{i-1,k}$ or $\mathbf{a}_{ij} - \mathbf{a}_{i-1,k} \notin \mathbb{N}^n$. The matrices $(\lambda_{kj}^{(i)})_{\substack{k=1,\ldots,\beta_i \ j=1,\ldots,\beta_i}}$ are scalar matrices of the resolution \mathbb{F} . Now we choose for each of the generators $\mathbf{x}^{\mathbf{a}_j}$ of I a monomial ideal L_j in T (not necessary of the form (2)). The multi-graded free resolution \mathbb{F} of I are used to construct an acyclic complex \mathbb{F}^* of direct sums of ideals. We set $F_0^* = T$ and $F_i^* = \bigoplus_{j=1}^{\beta_i} L_{ij}$ where the monomial ideals L_{ij} are inductively defined as follows: we assume that $L_{1j} = L_j$ for all j. Suppose that $L_{i-1,j}$ is already defined for all j. For a given number j with $1 \leq j \leq \beta_i$, let k_1, k_2, \ldots, k_r be the numbers for which $\lambda_{k_tj}^{(i)} \neq 0$. In addition, we set $L_{ij} = \bigcap_{t=1}^r L_{i-1,k_t}$. The

chain map ∂^* of \mathbb{F}^* is given by

$$\partial^* \bigoplus_{j=1}^{\beta_i} L_{ij} \longrightarrow \bigoplus_{j=1}^{\beta_{i-1}} L_{i-1,j}, \quad u \mapsto \lambda^{(i)} u,$$

where

$$u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_{\beta_i} \end{pmatrix} \quad \text{with} \quad u_j \in L_{ij}.$$

Hence, $\partial^* (\bigoplus_{j=1}^{\beta_i} L_{ij}) \subset \bigoplus_{j=1}^{\beta_{i-1}} L_{i-1,j}$. Let $v \in \bigoplus_{j=1}^{\beta_i} L_{ij}$ be a column vector. Suppose that $v_{\ell} = 0$ for $\ell \neq j$. Thus,

$$\partial^*(v) = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_{\beta_{i-1}} \end{pmatrix},$$

where $u_k = \lambda_{kj}^{(i)} v_j$ for $k = 1, \dots, \beta_{i-1}$.

Next we show that L is generated in degree d if and only if I is generated in degree d. By [4, Lemma 2.4], $\partial^*(F_2^*) \subset \mathfrak{n}F_1^*$ where \mathfrak{n} is the graded maximal ideal of T. This then implies $\bigoplus_j L_j/\mathfrak{n}L_j \cong L/\mathfrak{n}L$. Our assumptions on the ideals $L_{i,\mathbf{a}_{j(i)}}$ imply that L_j is minimally generated in degree $|\mathbf{a}_j|$. Hence, it follows that L has generators exactly in the same degrees as I. Proposition 3.1 with [12, Proposition 7.4.1] guarantees that K[L] is normal. Thus, the desired conclusion follows.

4. Rees algebra of an edge ideal

The main goal of this section is to study monomial subrings associated to graphs. Let G be a finite simple graph with vertex set $V(G) = \{x_1, \ldots, x_n\}$ and edge set E(G), and let I(G) be its edge ideals in $S = K[x_1, \ldots, x_n]$. As usual we denote the Rees algebra of I(G) by $\mathcal{R}(I(G))$.

In [2] Bayati and Herzog introduced the expansion functor in the category of finitely generated multigraded S-module. We assume that $S^{(m_1,...,m_n)}$ be the polynomial ring over a field K in the variables

$$x_{11},\ldots,x_{1m_1},x_{21},\ldots,x_{2m_2},\ldots,x_{n1},\ldots,x_{nm_n}.$$

Let $I \subset S$ be a monomial ideal minimally generated by $\mathbf{x}^{\mathbf{a}_1}, \ldots, \mathbf{x}^{\mathbf{a}_m}$, the *expansion* of I with respect to the *n*-tuple (m_1, \ldots, m_n) , is defined by $I^{(m_1, \ldots, m_n)} =$

 $\sum_{j=1}^{m} \prod_{i=1}^{n} P_{i}^{\mathbf{a}_{j}(i)} \subset S^{(m_{1},\ldots,m_{n})} \text{ where } P_{i} \text{ is the monomial prime ideal } (x_{i1},\ldots,x_{im_{i}}) \subseteq S^{(m_{1},\ldots,m_{n})} \text{ and } \mathbf{a}_{j}(i) \text{ is the } i\text{-th component of the vector } \mathbf{a}_{j}.$

Theorem 4.1. [1, Theorem 2.1] Let I be a monomial ideal of a polynomial ring $S = K[x_1, \ldots, x_n]$. Then I is normal if and only if $I^{(m_1, \ldots, m_n)}$ is normal, where $I^{(m_1, \ldots, m_n)}$ denotes the expansion of I.

For the *n*-tuple $(m_1, \ldots, m_n) \in \mathbb{N}^n$, with positive integer entries, the *expansion* of the graph G is denoted by $G^{(m_1, \ldots, m_n)}$. We consider the monomial prime ideal $P_j = (x_{j1}, \ldots, x_{jm_j})$ in $S^{(m_1, \ldots, m_n)}$. Hence,

$$I(G^{(m_1,...,m_n)}) = \sum_{\{x_i,x_j\} \in E(G)} P_i P_j.$$

It follows from [2, Lemma 1.1] that

$$I(G^{(m_1,\dots,m_n)}) = \sum_{\{x_i,x_j\}\in E(G)} x_i^{(m_1,\dots,m_n)} x_j^{(m_1,\dots,m_n)} = I(G)^{(m_1,\dots,m_n)}.$$

Example 4.2. Let G be a graph on the vertex set $V(G) = \{x_1, x_2, x_3, x_4\}$ and edge set $E(G) = \{\{x_1, x_3\}, \{x_1, x_4\}, \{x_2, x_3\}, \{x_2, x_4\}\}$. We consider the polynomial ring T over K in the variables $x_{11}, x_{21}, x_{22}, x_{31}, x_{41}, x_{42}$, and the order 4-tuple (1, 2, 1, 2). Hence, $G^{(1,2,1,2)}$ is a graph with vertex set $V(G^{(1,2,1,2)}) = \{x_{11}, x_{21}, x_{22}, x_{31}, x_{41}, x_{42}\}$ and edge set

$$E\left(G^{(1,2,1,2)}\right) = \{\{x_{11}, x_{31}\}, \{x_{11}, x_{41}\}, \{x_{11}, x_{42}\}, \{x_{21}, x_{31}\}, \{x_{22}, x_{31}\}, \{x_{21}, x_{41}\}, \{x_{21}, x_{42}\}, \{x_{22}, x_{41}\}, \{x_{22}, x_{42}\}\}.$$

Then we have $P_1 = (x_{11})$, $P_2 = (x_{21}, x_{22})$, $P_3 = (x_{31})$ and $P_4 = (x_{41}, x_{42})$. Therefore,

$$I(G^{(1,2,1,2)}) = P_1P_3 + P_1P_4 + P_2P_3 + P_2P_4$$

= $(x_{11}x_{31}, x_{11}x_{41}, x_{11}x_{42}, x_{21}x_{31}, x_{22}x_{31}, x_{21}x_{41}, x_{21}x_{42}, x_{22}x_{41}, x_{22}x_{42}).$

The ideal $I(G^{(1,2,1,2)}) \subset T$ is obtained from I(G) by expansion with respect to the 4-tuple (1,2,1,2) with positive integer entries.

Theorem 4.3. Let G be a graph on the vertex set $V(G) = \{x_1, \ldots, x_n\}$. Fix an order n-tuple (m_1, \ldots, m_n) of positive integers. Then the Rees algebra $\mathcal{R}(I(G))$ is normal if and only if $\mathcal{R}(I(G^{(m_1,\ldots,m_n)}))$ is normal.

Proof. We assume that $\mathcal{R}(I(G)) = K[\{x_1, \ldots, x_n, tf_i \mid 1 \leq i \leq r\}]$ be the Rees algebra of $I(G) = (f_1, \ldots, f_r)$, where f_1, \ldots, f_r are the monomials corresponding to the edges of G. Let k be a positive integer. If $\mathcal{R}(I(G))$ is normal, then by [13,

Theorem 4.3.17] we obtain I(G) is normal. Hence, $I(G)^k = \overline{I(G)^k}$. It is known [9, Lemma 2.2] that $I(G^{(m_1,\ldots,m_n)})^k$ is the expansion of $I(G)^k$ with respect to the *n*-tuple (m_1,\ldots,m_n) . Hence, [7, Lemma 2.3] together with [9, Lemma 2.2] now yields

$$I(G^{(m_1,...,m_n)})^k = \overline{I(G^{(m_1,...,m_n)})^k}.$$

Therefore, [13, Theorem 4.3.17] yields $\mathcal{R}(I(G^{(m_1,\ldots,m_n)})^k)$ is normal. Necessity follows in a similar way and the proof is complete.

The *edge subring* of the graph G, denoted by K[G], is the K-subalgebra of S given by:

$$K[G] = K[\{x_i x_j \mid x_i \text{ is adjacent to } x_j\}] \subset S$$

To obtain a presentation of the edge subring of G note that K[G] is a standard K-algebra with the normalized grading $K[G]_i = K[G] \cap S_{2i}$.

Let *I* be a monomial ideal of *S* and P_1, \ldots, P_r the minimal primes of *I*. Given an integer $k \geq 1$, the *k*th symbolic power of *I* is defined to be the ideal $I^{(k)} = Q_1 \cap \cdots \cap Q_r$, where Q_i is the primary component of I^k corresponding to P_i . The reader can find more information in [13, Definition 4.3.22].

Proposition 4.4. Let G be a connected bipartite graph. Fix an order n-tuple (m_1, \ldots, m_n) of positive integers. Then $K[G^{(m_1, \ldots, m_n)}]$ is normal.

Proof. Let G be a connected bipartite graph and let I(G) be its edge ideal. Let k be a positive integer. Thus, [13, Corollary 13.3.6] yields $I(G)^{(k)} = I(G)^k$. According to [9, Theorem 2.3] we have $I(G^{(m_1,...,m_n)})^k$ is the expansion of $I(G)^k$ with respect to the n-tuple $(m_1,...,m_n)$ and $I(G^{(m_1,...,m_n)})^k = (I(G)^k)^{(m_1,...,m_n)}$. Then [2, Corollary 1.5] implies that $I(G^{(m_1,...,m_n)})^{(k)} = I(G^{(m_1,...,m_n)})^k$. Now the result follows from [13, Corollary 13.3.6] and [13, Corollary 10.5.6].

Now we give a formula to compute the dimension of $K[G^{(m_1,\ldots,m_n)}]$.

Theorem 4.5. If G is a connected graph with n vertices and K[G] is its edge subring, then

$$\dim(K[G^{(m_1,\ldots,m_n)}]) = \begin{cases} m_1 + \cdots + m_n & \text{if } G \text{ is not bipartite, and} \\ m_1 + \cdots + m_n - 1 & \text{otherwise.} \end{cases}$$

Proof. We assume that G is a connected graph with r edges and n vertices. Let I(G) be minimally generated by monomials f_1, \ldots, f_r . Then there is a spanning tree T of G so that $I(T) = (f_1, \ldots, f_{n-1})$ ([14]). Hence,

$$\dim(K[G]) \ge n-1$$

If G is bipartite, then by [13, Corollary 10.1.21] one has that $\dim(K[G]) = n - 1$. Fix an order *n*-tuple (m_1, \ldots, m_n) of positive integers. Let k be a positive integer. Thus, [2, Corollary 1.5] yields $I(G^{(m_1,\ldots,m_n)})^{(k)}$ is the expansion of $I(G)^{(k)}$ with respect to the *n*-tuple (m_1, \ldots, m_n) . Therefore, by [13, Corollary 13.3.6] together with [9, Theorem 2.3] we conclude that

$$I(G^{(m_1,\dots,m_n)})^{(k)} = I(G^{(m_1,\dots,m_n)})^k.$$

By [13, Corollary 10.1.21] we have

$$\dim(K[G^{(m_1,\dots,m_n)}]) = m_1 + \dots + m_n - 1.$$

If G is not bipartite, thus by [13, Corollary 10.1.21] we obtain dim(K[G]) = n. Then [13, Corollary 13.3.6] implies that $I(G)^{(k)} \neq I(G)^k$. From [9, Lemma 2.2], and [2, Corollary 1.5], together with [13, Corollary 13.3.6] we have

$$I(G^{(m_1,\dots,m_n)})^{(k)} \neq I(G^{(m_1,\dots,m_n)})^k.$$

It follows from [13, Corollary 10.1.21] that

$$\dim(K[G^{(m_1,...,m_n)}]) = m_1 + \dots + m_n.$$

Acknowledgement. The authors would like to thank the referee for the valuable suggestions and comments.

References

- I. Al-Ayyoub, M. Nasernejad and L. G. Roberts, Normality of cover ideals of graphs and normality under some operations, Results Math., 74(4) (2019), 140 (26 pp).
- [2] S. Bayati and J. Herzog, Expansions of monomial ideals and multigraded modules, Rocky Mountain J. Math., 44(6) (2014), 1781-1804.
- [3] C. A. Escobar, R. H. Villarreal and Y. Yoshino, *Torsion freeness and normality of blowup rings and monomial ideals*, Commutative Algebra, Lect. Notes Pure Appl. Math., 244 (2006), 69-84.
- [4] J. Herzog, R. Moghimipor and S. Yassemi, Generalized mixed product ideals, Arch. Math. (Basel), 103(1) (2014), 39-51.
- [5] C. Huneke and I. Swanson, Integral Closure of Ideals, Rings and Modules, London Mathematical Society, Lecture Note Series, 336, Cambridge University Press, Cambridge, 2006.
- [6] R. Moghimipor, Algebraic and homological properties of generalized mixed product ideals, Arch. Math. (Basel), 114 (2020), 147-157.

NORMALITY OF REES ALGEBRAS OF GENERALIZED MIXED PRODUCT IDEALS 185

- [7] R. Moghimipor, On the normality of generalized mixed product ideals, Arch. Math. (Basel), 115(2) (2020), 147-157.
- [8] R. Moghimipor, On the Cohen-Macaulayness of bracket powers of generalized mixed product ideals, Acta Math. Vietnam., 47(3) (2022), 709-718.
- [9] R. Moghimipor and A. Tehranian, *Linear resolutions of powers of generalized mixed product ideals*, Iran. J. Math. Sci. Inform., 14(1) (2019), 127-134.
- [10] G. Restuccia and R. H. Villarreal, On the normality of monomial ideals of mixed products, Comm. Algebra, 29(8) (2001), 3571-3580.
- [11] W. V. Vasconcelos, Computational Methods in Commutative Algebra and Algebraic Geometry, Algorithms Comput. Math., Springer-Verlag, 1998.
- [12] R. H. Villarreal, Monomial Algebras, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 238, 2001.
- [13] R. H. Villarreal, Monomial Algebras, Second Edition, Chapman & Hall/CRC Monographs and Research Notes in Mathematics, 2015.
- [14] D. B. West, Introduction to Graph Theory, Second Edition, Pearson, 2017.

Monica La Barbiera

Department of Electrical, Electronic and Computer Engineering University of Catania Viale A. Doria 6, I-95125 Catania, Italy e-mail: monica.labarbiera@unict.it

Roya Moghimipor (Corresponding Author)

Department of Mathematics, Safadasht Branch Islamic Azad University Tehran, Iran e-mail: roya_moghimipour@yahoo.com