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Abstract. Let K be a field and S = K[x1, . . . , xn] a standard polynomial

ring over K. In this paper, we give new combinatorial algorithms to compute

the smallest t-spread lexicographic set and the smallest t-spread strongly sta-

ble set containing a given set of t-spread monomials of S. Some technical tools

allowing to compute the cardinality of t-spread strongly stable sets avoiding

their construction are also presented. Such functions are also implemented in

a Macaulay2 package, TSpreadIdeals, to ease the computation of well-known

results about algebraic invariants for t-spread ideals.
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1. Introduction

In this paper, we introduce new combinatorial algorithms to smoothly manage

sets of t-spread monomials, t-spread ideals and some algebraic invariants of such

ideals. The t-spread structures have been introduced by Ene, Herzog and Qureshi

[14] in 2018. Since then some authors have investigated these new classes of ideals

to generalize some known results about graded ideals of a polynomial ring (see

[1,2,5,7,12], et al.). Several questions still remain open. So, our goal is to provide

tools to simplify the future investigations of the researchers.

We also implement a new Macaulay2 [15] package: TSpreadIdeals. Such a

package contains some original results and algorithms introduced in this paper,

and, other ones that have been previously analyzed by the author of this paper and

some other researchers [4,6,8]. The presented algorithms are devoted to manage t-

spread monomials. Some auxiliary routines allow the user to check which t-spread

class a monomial belongs to, or to sieve all the t-spread monomials from a list of

monomials. Furthermore, there is a function giving the possibility to compute the

t-spread shadow of a list of monomials.

By means of such methods, it is possible to construct, in a simple way, suitable t-

spread sets of monomials or t-spread ideals with particular properties. For example,
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given a set of t-spread monomials N , it is possible to obtain the smallest t-strongly

stable set of monomials Bt{N} (Definition 2.1) that contains N . The same opera-

tions can be done for the smallest t-lex set Lt{N} (Definition 2.4). There are also

algorithms that allow you to compute a priori the cardinality of the aforementioned

sets. The theoretical justification of these methods is outlined in this paper.

Some of the functions we have mentioned allow us to provide a computational

support to the characterization of important invariants of t-spread ideals. For

instance, the problem of determining if a given configuration (an r-tuple of pairs of

integers and an r-tuple of integers) represents an admissible configuration for the

extremal Betti numbers of a t-strongly stable ideal (Problem 2.8, see also [2,3,4,6]).

In the case of a positive answer, it is possible to build the smallest t-strongly stable

ideal with the given configuration of extremal Betti numbers. Another supported

feature of the methods described in this paper is related to the generalization of the

Kruskal-Katona’s theorem [8]. The methods allow one to compute the ft-vector of

a t-spread strongly stable ideal. Moreover, it is possible to state whether a sequence

of integers is the ft-vector of a suitable t-spread ideal. In the affirmative case, it is

possible to build the smallest t-lex ideal whose ft-vector coincides with the given

sequence.

From a computational point of view, the great advantage of using combinatorial

methods to solve such problems is that the functions can be optimized for work-

ing faster on t-spread structures. Indeed, the monomials are treated as sequences

of positive integers, and this allowed us to find alternative algorithms to give di-

rectly t-spread monomials from the computation. This means that it is possible

to avoid the classical (unfortunately slow) computation involving all monomials of

the polynomial ring (0-spread) in order to take a quotient and obtain the desired

results.

The paper is structured in three main sections. In Section 2, to keep the paper

almost self contained, we recall some basic notions that will be used throughout the

paper. First, in the Subsection 2.1, the notion of t-spread monomial is introduced

together with some of its useful properties. In the Subsection 2.2, we define partic-

ular subsets of t-spread monomials: t-spread lex and t-spread strongly stable sets.

The Subsection 2.3 is devoted to review some definitions and properties related

to the extremal Betti numbers of a t-spread ideal. In Section 3, we present some

original computational methods to manage special sets of t-spread monomials. The

main procedures presented here are translated in pseudocode. In Subsection 3.1,

we give procedures to construct particular t-lex and t-strongly stable sets of mono-

mials. In Subsection 3.2, some combinatorial tools allowed us to justify counting

methods for the particular sets built in Subsection 3.1. Finally, Section 4 contains

our conclusions and perspectives.
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2. Background and notation

Let S = K[x1, . . . , xn] be the standard polynomial ring in n indeterminates

over a field K. The notions of t-spread monomials and t-spread monomial ideals

have been introduced in [14]. These classes of graded ideals are the objects of our

investigation.

Throughout the paper, given a positive integer r, we set [r] = {1, 2, . . . , r}.

2.1. Basics on t-spread monomial ideals. Let t ≥ 0 be a nonnegative integer,

a monomial xi1xi2 · · ·xid of S with 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n is called t-spread, if

ij+1 − ij ≥ t, for all j ∈ [d − 1]. A t-spread monomial ideal is an ideal generated

by t-spread monomials.

Clearly, every monomial ideal of S is 0-spread and every squarefree monomial ideal

is 1-spread. Hence, for t ≥ 1 every t-spread monomial is squarefree.

The unique minimal set of monomial generators of a monomial ideal I is denoted

by G(I). Therefore, we can define

G(I)d = {u ∈ G(I) : deg(u) = d}.

Let u be a t-spread monomial of S; we denote by supp(u) the set of all index i for

which xi divides u, and by max(u) and min(u) the maximal and the minimal index

i belonging to supp(u), respectively. By convention, we set max(1) = min(1) = 0.

Let us denote by Mn,d,t the set of all t-spread monomials of degree d of the ring

S. If 1+ (d− 1)t ≤ n, then Mn,d,t is nonempty. Furthermore, using the notation in

[8], we denote by [Ij ]t the set of all t-spread monomials of degree j of a monomial

ideal I.

From [14, Theorem 2.3] (see also [8]), the cardinality of Mn,d,t is given by

|Mn,d,t| =
(
n− (d− 1)(t− 1)

d

)
. (1)

Now, for a nonempty subset N of Mn,d,t, we define the t-shadow of N

Shadt(N) = {xiw : w ∈ N and i = 1, . . . , n} ∩Mn,d+1,t. (2)

Throughout the paper, we assume that t > 0 and Mn,d,t is endowed with

the squarefree lexicographic order, >slex [9], i.e., let u = xi1xi2 · · ·xid and v =

xj1xj2 · · ·xjd be two t-spread monomials of degree d, with 1 ≤ i1 < i2 < · · · < id ≤
n and 1 ≤ j1 < j2 < · · · < jd ≤ n, then u >slex v if i1 = j1, . . . , is−1 = js−1 and

is < js, for some 1 ≤ s ≤ d.

By using this monomial order, if N is a nonempty subset of Mn,d,t, then we denote

by maxN (minN) the maximum (minimum) monomial of N with respect to >slex.
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2.2. Special classes of t-spread monomial sets. Now, we recall the definitions

of some interesting classes of t-spread monomial ideals, e.g., t-spread strongly stable

ideals and t-spread lexicographic ideals.

Definition 2.1. A subset N of Mn,d,t is called a t-strongly stable set if taking a

t-spread monomial u ∈ N , for all j ∈ supp(u) and all i, 1 ≤ i < j, such that

xi(u/xj) is a t-spread monomial, then it follows that xi(u/xj) ∈ N .

A t-spread monomial ideal I is t-strongly stable if [Ij ]t is a t-spread strongly

stable set for all j.

To verify the t-strongly stability of a monomial ideal I, it is sufficient to inves-

tigate the set G(I) [14, Lemma 1.2].

Let N = {u1, . . . , ur} ⊂ Mn,d,t be a set of t-spread monomials of S; we denote by

Bt{N} = Bt{u1, . . . , ur} the smallest t-strongly stable set containing N . Moreover,

we denote by Bt(N) the t-strongly stable ideal generated by Bt{N}. If N = {u} is

a singleton, then we write Bt(N) = Bt(u).

Remark 2.2. If u ∈ Mn,d,t is a t-spread monomial of S, then

maxBt{u} = maxMn,d,t = x1x1+tx1+2t · · ·x1+(d−1)t and minBt{u} = u.

Given a t-spread monomial v ∈ Bt{u} ⊂ Mn,d,t, we denote with

Bt[v, u] = {w ∈ Bt{u} : v ≥slex w}

the t-strongly stable segment of initial element v and final element u. Trivially,

Bt[u, u] = {u}. In particular, we have Bt{u} = Bt[maxMn,d,t, u].

A characterization of t-strongly stable ideals can be found in [16]. For this

purpose, Herzog and Hibi have introduced a partial order on Mn,d,t, the Borel

order. Let u = xi1xi2 · · ·xid and v = xj1xj2 · · ·xjd be two t-spread monomials of

degree d, with 1 ≤ i1 < i2 < · · · < id ≤ n and 1 ≤ j1 < j2 < · · · < jd ≤ n, then

v ≥Borel u if js ≤ is, for 1 ≤ s ≤ d.

From [16, Lemma 4.2.5] it follows the following characterization.

Characterization 2.3. A set of monomials N ⊆ Mn,d,t is t-strongly stable if and

only if, for all u ∈ N and all v ∈ Mn,d,t such that v ≥Borel u, we have v ∈ N .

As a particular class of t-strongly stable ideals, we recall the definition of t-spread

lexicographic ideals.

Definition 2.4. A subset N of Mn,d,t is called a t-lex set if, for all t-spread mono-

mials u ∈ N and all monomials v ∈ S such that v ≥slex u, we have v ∈ N . A

t-spread monomial ideal I is t-lex if [Ij ]t is a t-lex set for all j.

If N = {u1, . . . , ur} ⊂ Mn,d,t is a set of t-spread monomials of S, we denote by

Lt{N} = Lt{u1, . . . , ur} = Lt{minN} = {w ∈ Mn,d,t : w ≥slex minN}, i.e., the
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smallest t-lex set containing N . Also, we denote by Lt(N) the t-lex ideal generated

by Lt{N}. As before, if N = {u}, then Lt(N) = Lt(u).

As in the Remark 2.2, we can define the t-lex segment of initial element v and

final element u

Lt[v, u] = {w ∈ Lt{u} : v ≥slex w}.

Also in this case, we have Lt[u, u] = {u} and Lt{u} = Lt[maxMn,d,t, u].

2.3. Some algebraic invariants. Here we recall some definitions to describe

important algebraic invariants of a graded ideal. The package introduced in this

paper will make easy the computation of some of these invariants.

It is well known that every graded ideal I of S has a minimal graded free S-

resolution [13,16],

F• : 0 →
⊕
j∈Z

S(−j)βr,j → · · · →
⊕
j∈Z

S(−j)β1,j →
⊕
j∈Z

S(−j)β0,j → I → 0.

The integer βi,j is a graded Betti number of I, and represents the dimension as a K-

vector space of the j-th graded component of the i-th free module of the resolution.

Each of the numbers βi =
∑

j∈Z βi,j is called the i-th Betti number of I.

A powerful result [14, Corollary 1.12] allows to easily compute the graded Betti

numbers of a t-spread strongly stable ideal:

βi,i+j(I) =
∑

u∈G(I)j

(
max(u)− t(j − 1)− 1

i

)
. (3)

A significant subset of the graded Betti numbers is constituted by the extremal

ones. The latter represent a refinement of very famous algebraic invariants: the

projective dimension and the regularity of Castelnuovo-Mumford [11,17].

Definition 2.5. A graded Betti number βk,k+ℓ(I) ̸= 0 is called extremal if βi,i+j(I) =

0 for all i ≥ k, j ≥ ℓ, (i, j) ̸= (k, ℓ).

We report some useful results, stated in [2], about extremal Betti numbers.

Characterization 2.6. [2, Theorem 1] Let I be a t-spread strongly stable ideal of

S. The following conditions are equivalent:

(a) βk,k+ℓ(I) is extremal;

(b) k+ t(ℓ−1)+1 = max
{
max(u) : u ∈ G(I)ℓ

}
and max(u) < k+ t(j−1)+1,

for all j > ℓ and for all u ∈ G(I)j.

Corollary 2.7. [2, Corollary 2] Let I be a t-spread strongly stable ideal of S and

let βk,k+ℓ(I) be an extremal Betti number of I. Then

βk,k+ℓ(I) =
∣∣∣{u ∈ G(I)ℓ : max(u) = k + t(ℓ− 1) + 1

}∣∣∣.
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Let βk,k+ℓ(I) be an extremal Betti number of I, the pair (k, ℓ) is called a corner

of I. If (k1, ℓ1), . . . , (kr, ℓr), with n − 1 ≥ k1 > k2 > · · · > kr ≥ 1 and 1 ≤ ℓ1 <

ℓ2 < · · · < ℓr, are all the corners of a graded ideal I of S, the set

Corn(I) =
{
(k1, ℓ1), (k2, ℓ2), . . . , (kr, ℓr)

}
is called the corner sequence of I. The r-tuple

a(I) =
(
βk1,k1+ℓ1(I), βk2,k2+ℓ2(I), . . . , βkr,kr+ℓr (I)

)
is called the corner values sequence of I.

The Characterization 2.6 induces a simple algorithmic process to find the corners

of a t-strongly stable ideal I (see [3]). Let I be generated in degrees 1 ≤ ℓ1 < ℓ2 <

· · · < ℓr ≤ n. If we set

mℓj = max{max(u) : u ∈ G(I)ℓj},

for j ∈ [r], then we can consider the following sequence associated to I:

(̂I) = (mℓ1 − t(ℓ1 − 1)− 1, . . . ,mℓr − t(ℓr − 1)− 1) . (4)

From (4), we can construct a suitable subsequence of (̂I) that we call the degree-

sequence of I:

(I) =
(
mℓi1

− t(ℓi1 − 1)− 1, . . . ,mℓiq
− t(ℓiq − 1)− 1

)
, (5)

with ℓ1 ≤ ℓi1 < ℓi2 < · · · < ℓiq = ℓr, and such that βmℓij
−ℓij ,mℓij

(I) is an extremal

Betti number of I, for j ∈ [q]. The integer q ≤ r is the number of the extremal

Betti numbers of the t-stable ideal I.

Some numerical characterizations of the extremal Betti numbers of a t-spread

strongly stable ideal have been given in [4,6]. In particular, the following problem

about the extremal Betti numbers of a t-strongly stable ideal has been solved in [6,

Theorem 4.4].

Problem 2.8. Given three positive integers n, r, t, r positive integers a1, . . . , ar

and r positive pairs of integers (k1, ℓ1), . . . , (kr, ℓr), under which conditions there

exists a t-spread strongly stable ideal I of S = K[x1, . . . , xn] such that

βk1,k1+ℓ1(I) = a1, . . . , βkr,kr+ℓr (I) = ar

are its extremal Betti numbers?

3. Computational aspects

In this section, we present some original algorithms to manage sets of t-spread

monomials belonging to the special classes above defined. The correctness of these

methods is theoretically proved.

First, we show the simple construction of the t-shadow of a t-spread monomial.

Then, we analyze the construction of t-strongly stable and t-lex sets of monomials.
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The procedures to manage t-lex sets are more simpler than the ones used to manage

t-strongly stable sets. Thus, we illustrate some methods about t-lex sets and then

we will generalize them to the larger class of sets.

Moreover, we analyze some methods for counting (avoiding the construction) the

monomials in t-lex and t-strongly stable sets.

Finally, we present some exhaustive examples about the construction and count-

ing of monomials both for t-lex and t-strongly stable sets.

Our approach is purely combinatorial and all the theoretical results are also

translated into pseudocode.

3.1. Construction algorithms. We start this subsection by showing the con-

struction of the t-shadow of a set of t-spread monomials (Definition 2). First, we

can reduce the problem to the simpler one of calculating the t-shadow of a t-spread

monomial. Indeed, Shadt(u1, . . . , ur) =
⋃r

i=1 Shadt(ui). Let u = xi1xi2 · · ·xid ∈
Mn,d,t. We observe that applying the definition to u means working on 0-spread

monomials and then make the intersection with Mn,d+1,t. Our aim is to find a way

to directly obtain t-spread monomials.

Let us consider the support of u: {i1, i2, . . . , id}. Now, we replace each index in

supp(u), iq, with the two values iq − t and iq + t, still preserving the positions. So,

we have the following list (i1 − t, i1 + t, i2 − t, i2 + t, . . . , id − t, id + t). We insert 1

before the first element and n after the last element of the list. Hence, we have

(1, i1 − t, i1 + t, i2 − t, i2 + t, . . . , id − t, id + t, n). (6)

From this procedure, we are sure that the list in (6) has an even number of elements:

2(d+ 1). Let us consider the following sets:

[1, i1 − t], [i1 + t, i2 − t], [i2 + t, i3 − t], . . . , [id−1 + t, id − t], [id + t, n],

where [r, r] = {r}, [q, r] = {q, q + 1, q + 2, . . . , r − 1, r} if q < r and [q, r] = ∅ if

q > r. One can observe that they are d+ 1 sets containing the indexes we need to

obtain the Shadt(u). To clarify the notation, let us define

I = [1, i1 − t]∪ [i1 + t, i2 − t]∪ [i2 + t, i3 − t]∪ · · · ∪ [id−1 + t, id − t]∪ [id + t, n]. (7)

Hence, we can write Shadt(u) = {uxh : h ∈ I}.

Example 3.1. Let S = K[x1, . . . , x16] and u = x2x5x9x14 ∈ M12,4,2. We obtain

the list of sets of indexes as in (7):

[1, 0] = ∅, [4, 3] = ∅, [7, 7] = {7}, [11, 12] = {11, 12}, [16, 16] = {16}.

So, I = {7, 11, 12, 16}, and, in order to get Shadt(u), we just need to multiply u by

{x7, x11, x12, x16}, thus obtaining

Shadt(x2x5x9x14) = {x2x5x7x9x14, x2x5x9x11x14, x2x5x9x12x14, x2x5x9x14x16}.
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The pseudocode in Algorithm 1 is the algorithm for computing the t-shadow of

a t-spread monomial.

Algorithm 1: Computation of the Shadt(u) in Mn,d+1,t

Input: Polynomial ring S, monomial u, positive integer t

Output: list of monomials shad

begin

if isTSpread(u,t) then

n← number of the variables of S;

d← deg(u);

ind← {1};
for q ← 1 to d do

ind← ind ∪ {iq − t, iq + t};
q ← q + 1;

end

ind← ind ∪ {n};
shad← {};
r ← 1;

while r < 2 ∗ (d + 1) do

for q ← ind(r) to ind(r + 1) do

shad← shad ∪ {u ∗ xq};
end

r ← r + 2;

end

else

error expected a t-spread monomial;

end

return shad;

end

Now, we pass to the computation of some particular sets of t-spread monomials:

t-strongly stable and t-lex sets. To make the reasoning as simple as possible, we

will describe the case of the computation of the t-lex set generated by a t-spread

monomial. To do this, we simply show the method to compute the t-lex successor

of a t-spread monomial, if such monomial exists.

The Proposition 3.2 is a rearrangement of the one in [6, Proposition 3.9]. The

proof is adapted in order to make the algorithm construction clearer. The following

result allows to determine the t-lex successor of a t-spread monomial u, i.e., the

greatest t-spread monomial less than u.

Proposition 3.2. Let n, d, t be three positive integers such that 1 + (d − 1)t ≤ n.

Let u = xi1xi2 · · ·xid ∈ Mn,d,t be a t-spread monomial of S.

Search the maximum index q ∈ [d] such that iq + 1 ≤ n− (d− q)t;

(a) if q exists, then the t-lex successor of u is the t-spread monomial

xi1 · · ·xiq−1
xiq+1xiq+1+t · · ·xiq+1+(d−q)t ∈ Mn,d,t;

(b) if q does not exist, then u is the smallest t-spread monomial of Mn,d,t.

Proof. Let us consider the set F = {s ∈ [d] : is + 1 ≤ n− (d− s)t}. If F ̸= ∅,
then it is possible to get the maximum of F , that is, the case (a) holds true. Let
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q = maxF . Hence, we can construct the t-spread monomial

w = xi1 · · ·xiq−1
xiq+1xiq+1+t · · ·xiq+1+(d−q)t.

Indeed, by hypothesis, iq+1 ≤ n−(d−q)t, and then we have that iq+1+(d−q)t ≤ n.

Because of the maximality of q, it is not possible to do the same reasoning starting

from the index iq+1, hence, the monomial w has the smallest indexes that allow

such a construction. Moreover, the calculation iq + (d− s)t− iq − (d− s− 1)t = t,

for s = q, . . . , d, assures that w is a t-spread monomial of degree d. The arguments

made so far imply that w is the greatest monomial less than u in Mn,d,t, with

respect to >slex order, that is, w is the t-lex successor of u.

On the other hand, if F = ∅, then it is not possible to get the maximum of F , that

is, the case (b) holds true. Hence, for all s ∈ [d] we have that is + 1 > n− (d− s)t,

say, is + 1 + (d − s)t > n. This means that we cannot replace any indeterminate

with any other having a larger index. There does not exist a t-spread monomial

smaller than u with respect to >slex. □

Example 3.3. Let S = K[x1, . . . , x13] and let u = x2x6x10x13 ∈ M13,4,3. In such

a case, q = maxF = max{1, 2} = 2. This fact ensures the construction of the t-lex

successor of u: w = x2x7x10x13 ∈ M13,4,3.

On the contrary, taking the monomial v = x4x7x10x13 ∈ M13,4,3, we have that

F = ∅. Indeed, v is the smallest 3-spread monomial of S.

The procedures used in the Proposition 3.2 guarantee the correctness of the

Algorithm 2. We illustrate it using the same notation as in the proposition.

Algorithm 2: Computation of the t-lex successor of u in Mn,d,t

Input: Polynomial ring S, monomial u, positive integer t

Output: monomial w

begin

if isTSpread(u,t) then

m← number of the variables of S;

q ← deg(u);

while iq + 1 > m do

m← m− t;

q ← q − 1;

if q < 0 then

error no monomial;

end

end

w ← xi1
∗ · · · ∗ xiq−1

;

m← m + 1;

while q ≤ deg(u) do

w ← w ∗ xm;

m← m + t;

q ← q + 1;

end

else

error expected a t-spread monomial;

end

return w;

end
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Remark 3.4. The method described in Algorithm 2 can be useful to compute

the initial t-lex segment generated by a monomial u of Mn,d,t ⊂ S. To ob-

tain this result, one has to consider the greatest t-spread monomial of Mn,d,t:

x1x1+tx1+2t · · ·x1+(d−1)t. After which, one can use iteratively the algorithm until

reaching u. So, the monomials built in this way, including u, are all the monomials

belonging to Lt{u}. More generally, as we have already seen, Lt{u1, . . . , ur} =

Lt{ur} when ur is the smallest monomial in the set {ui}, i = 1, . . . , r.

Furthermore, it is possible to compute the t-lex segment identified by two mono-

mials (changing the starting monomial), Lt[v, u]. A particular case is the t-spread

Veronese set, Mn,d,t = Lt[maxMn,d,t,minMn,d,t]. In fact, it is the t-lex segment

whose “extrema” are x1x1+tx1+2t · · ·x1+(d−1)t and xn−(d−1)t · · ·xn−2txn−txn.

Now, what has been done previously suggests, mutatis mutandis, how to ap-

proach the computation of t-strongly stable sets of monomials.

Some comments are in order. Unlike the t-lex case, the construction of the

monomials in a t-strongly stable set depends on both the starting monomial and

the final one. So, it is not possible to have a function with only one parameter

corresponding to the t-lex successor. We believe that the best way is to tackle the

problem in its most general form.

More technically, we have observed in Remark 3.4 that in order to compute

Lt{u}, u ∈ Mn,d,t, we start from maxMn,d,t in order to get u by using the Al-

gorithm 2. The monomial u is used only to determine the end of the iterations.

Indeed, the algorithm only exploits the structure of the monomial for which we

want to find the t-lex successor.

In the computation of the t-strongly stable setB{u}, we also start from maxMn,d,t

(see Remark 3.6) to arrive at u but, in such a case, the structure of the monomial u

has to be continuously taken into account to build all the needed monomials (Char-

acterization 2.3). For this reason, we will start analyzing the t-strongly stable set

identified by two t-spread monomials (the greatest monomial and the smaller one).

More in detail, let S = K[x1, . . . , xn] be a polynomial ring over a field K, and let

N = {u1, . . . , ur} ⊂ Mn,d,t be a set of t-spread monomials of S. We observe that

Bt{N} =
⋃r

i=1 Bt{ui}; hence, we can describe the singleton case Bt{u} ⊂ Mn,d,t

without loss of generality. Moreover, we recall that Bt{u} = Bt[maxMn,d,t, u] =

Bt[x1x1+t · · ·x1+(d−1)t, u]. So, we can face the problem to compute the t-strongly

stable segment Bt[v, u], where v >Borel u, to encompass all cases.

The intuitive way to face this computation is to apply the definition of t-strongly

stability to the monomials and then to select all the t-spread monomials from the

result. The drawback of this method is the slowness and the involvement of a large

number of monomials, most of which will be discarded. Thence, there is a waste
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of time and resources, and this imposes limitations on the initial parameters, for

instance, on the maximum of the supports of the involved monomials.

So, to make the process faster we can work directly with a suitable sequence of

t-spread monomials. This idea is similar to that used for the t-lex successor. In

such a case, we need to find a method sending a t-spread monomial to the next one

that belongs to the same t-strongly stable set. If we consider the lex order >Borel,

from Remark 2.2, we can start our reasoning from the greatest t-spread monomial

of Bt[v, u], v, and reach step by step the smallest one, say u. The effectiveness of

this procedure relies on the possibility of suitably manipulating the indexes of a

t-spread monomial.

Proposition 3.5 and Remark 3.6 solve the problem.

Proposition 3.5. Let n, d, t be three positive integers such that 1 + (d − 1)t ≤ n.

Let v = xj1xj2 · · ·xjd and u = xi1xi2 · · ·xid ∈ Mn,d,t be two t-spread monomials of

S such that v ̸= u and v ≥Borel u.

Let q ∈ [d] be the maximum index such that jq+1 ≤ iq. Then, the t-spread monomial

w = xj1 · · ·xjq−1xjq+1xjq+1+t · · ·xjq+1+(d−q)t ∈ Mn,d,t

belongs to the t-strongly stable segment Bt[v, u], and w is the greatest monomial of

Bt[v, u], with respect to >slex, except v.

Proof. Let F = {s ∈ [d] : js + 1 ≤ is}. From the hypothesis v >Borel u, it is

F ̸= ∅. So, let q = maxF ∈ [d]. Under these conditions, we show that the

monomial w = xj1 · · ·xjq−1
xjq+1xjq+1+t · · ·xjq+1+(d−q)t exists. Indeed, from the

hypotheses and starting from jq + 1 ≤ iq, we have the following inequalities:

jq + 1 + t ≤ iq + t ≤ iq+1,

jq + 1 + 2t ≤ iq + 2t ≤ iq+2,
...

jq + 1 + (d− s)t ≤ iq + (d− s)t ≤ iq+d−s,
...

jq + 1 + (d− q)t ≤ iq + (d− q)t ≤ id.

These results guarantee the existence of w as a t-spread monomial of Mn,d,t.

Furthermore, comparing the indexes of w with those of u, one has that w ≥Borel u.

From the Characterization 2.3, we can deduce that w is a monomial of the t-strongly

stable set generated by u.

From the choice of q, w has the smallest indexes for which such a construction

is possible. Hence, w is the greatest monomial less than v in Bt[v, u], with respect

to the >slex order. The thesis holds true. □
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Remark 3.6. With the same notations of the Proposition 3.5, the monomial w1 =

w is constructed to be less than v and greater than or equal to u.

So, in order to obtain all the monomials of the t-strongly stable segment Bt[v, u],

we can iterate the construction in the Proposition 3.5 by replacing the monomial

w1 with the monomial v since w1 ≥Borel u. Hence, we can apply the proposition

to Bt[w1, u]. Indeed, all the hypotheses of the Proposition 3.5 are satisfied. This

process allows to find a set of t-spread monomials w1, w2, . . . , ws such that wi ≥Borel

u. From the construction of w, it is clear that u will be obtained in this way. In

such a case, when ws = u the proposition can no longer be applied. This is the end

point of the iterations. Indeed, the construction of the monomials wi complies with

the characterization of t-strongly stability. So, Bt[v, u] = {v, w1, w2, . . . , ws = u}.

The following example clarifies the calculation of a t-strongly stable segment

identified by two monomials.

Example 3.7. Let S = K[x1, . . . , x9] and let v = x1x5x7, u = x2x5x8 ∈ M9,3,2.

We want to compute B2[v, u].

Using the methods in Proposition 3.5, we obtain q1 = max{1, 3} = 3 and

w1 = x1x5x8. Applying the algorithm described in Remark 3.6, we can repeat

the procedure considering Bt[w1, u]. Iterating the process, we go through the fol-

lowing steps:

q1 = max{1, 3} = 3 − w1 = x1x5x8,

q2 = max{1} = 1 − w2 = x2x4x6,

q3 = max{2, 3} = 3 − w3 = x2x4x7,

q4 = max{2, 3} = 3 − w4 = x2x4x8,

q5 = max{2} = 2 − w5 = x2x5x7,

q6 = max{3} = 3 − w6 = x2x5x8 = u.

Hence, we obtain the segment:

B2[v, u] = {x1x5x7, x1x5x8, x2x4x6, x2x4x7, x2x4x8, x2x5x7, x2x5x8}.

It is interesting to observe that if we consider v = x1x5x7, u = x2x5x7 ∈ M11,3,2,

we get

B2[v, u] = {x1x5x7, x2x4x6, x2x4x7, x2x5x7}.

Furthermore, if v = x1x5x7, ũ = x2x4x8 ∈ M11,3,2, then the assumptions of the

Proposition 3.5 are not valid. Indeed, v ≱Borel u, i.e., v does not belong to B2{ũ}.
So, B2[v, ũ] = ∅.

The algorithm arising from Proposition 3.5 and Remark 3.6 is described through

the pseudocode in Algorithm 3.
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Algorithm 3: Computation of the t-strongly stable segment Bt[v, u] ⊂
Mn,d,t

Input: Polynomial ring S, monomials v, u, positive integer t

Output: list of monomials l

begin

if isTSpread({v, u},t) and v ≥Borel u then

l← {v};
while w ̸= u do

q ← deg(v);

while iq + 1 > jq do

q ← q − 1;

end

w ← xi1
∗ · · · ∗ xiq−1

;

m← iq + 1;

while q ≤ deg(v) do

w ← w ∗ xm;

m← m + t;

q ← q + 1;

end

l← l ∪ w;

end

else

error expected t-spread monomials belonging to Bt{u};
end

return l;

end

3.2. Counting algorithms. An interesting subject from a combinatorial point of

view is to compute the cardinality of both t-lex and t-strongly stable sets. We will

focus our attention on the sets Lt{u} = Lt[maxMn,d,t, u] ⊂ Mn,d,t and Bt{u} =

Bt[maxMn,d,t, u] ⊂ Mn,d,t. The procedures are similar to those already used in

[3,6], i.e., they work by adding suitable binomial coefficients. Let us recall some

arguments from the aforementioned papers to get the desired results also in this

case.

Lemma 3.8. Let n, q be positive integers such that n ≥ q. Then

(
n

q

)
=

(
n− 1

q − 1

)
+

(
n− 2

q − 1

)
+ · · ·+

(
q − 1

q − 1

)
. (8)

Remark 3.9. Relation (8) is an elementary decomposition of binomial coefficients.

We just recall it since it is used in the sequel.

As can be seen in [4, Remark 3.6], it will be useful to analyze the cardinality of

the set to which the monomials belong to. We start analyzing the set Mn,d,t, and

the following remark clarifies some aspects about the application of the Lemma 3.8.
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Remark 3.10. We recall that |Mn,d,t| =
(
n−(d−1)(t−1)

d

)
. Applying the formula (8),

we obtain the following binomial decomposition:(
n− (d− 1)(t− 1)

d

)
=

n−(d−1)t∑
s=1

(
n− (d− 1)(t− 1)− s

d− 1

)
=

=

(
n− (d− 1)(t− 1)− 1

d− 1

)
+ · · ·+

(
d− 1

d− 1

)
.

(9)

The decomposition in (9) has n−(d−1)t contributions, each representing the num-

ber of t-spread monomials w = xj1xj2 · · ·xjd such that j1 = min(w) = s, for s =

1, . . . , n− (d− 1)t. The last value of s is determined by the fact that maxMn,d,t =

x1x1+t · · ·x1+(d−2)tx1+(d−1)txn and minMn,d,t = xn−(d−1)txn−(d−2)t · · ·xn−2txn−txn,

that is, exceeding the value n− (d− 1)t, starting from 1, for the first index of the

support it is not possible to build a t-spread monomial.

In a similar way, for a fixed index s1 in the sum in (9), we can write the further

following binomial decomposition:(
n− (d− 1)(t− 1)− s1

d− 1

)
=

n−(d−1)t−s1+1∑
s=1

(
n− (d− 1)(t− 1)− s1 − s

d− 2

)
=

(
n− (d− 1)(t− 1)− s1 − 1

d− 2

)
+ · · ·+

(
d− 2

d− 2

)
.

(10)

Analogously, the binomial decomposition in (10) counts the number of monomials

w of Mn,d,t such that j1 = s1, for each s = 1, . . . , n − (d − 1)t − s1 + 1. In

such a case, to analyze the last value of s we can note that the greatest of such

monomials with j1 = s1 is xs1xs1+txs1+2t · · ·xs1+(d−2)txs1+(d−1)t and the smallest

one is xs1xn−(d−2)t · · ·xn−2txn−txn. Comparing the second indexes of the two

monomials, we find that j2 can assume the values from s1 + t to n− (d− 2)t. So,

the index s can assume n− (d−2)t− (s1+ t)+1 values, that is, n− (d−1)t−s1+1.

Let us do the following position s[k] =
∑k

p=1 sp = s1+s2+· · ·+sk. This notation

will make more readable some formulas.

For the sake of clarity, at this step, we observe that fixing an index s2, we have

the possibility to count all the t-spread monomials with j1 = s1 and j2 = s[2]+t−1.

Again, as done in the previous case, we can fix an index s = s2 in (10), and

consider the next binomial decomposition:(
n− (d− 1)(t− 1)− s[2]

d− 2

)
=

n−(d−1)t−s[2]+2∑
s=1

(
n− (d− 1)(t− 1)− s[2] − s

d− 3

)
=

(
n− (d− 1)(t− 1)− s[2] − 1

d− 3

)
+ · · ·+

(
d− 3

d− 3

)
.

(11)

In this case, we are considering the monomials with j1 = s1 and j2 = s[2] + t − 1.

The greatest of these is xs1xs[2]+t−1xs[2]+2t−1 · · ·xs[2]+(d−2)t−1xs[2]+(d−1)t−1 and the
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smallest is xs1xs[2]+t−1xn−(d−3)t · · ·xn−txn. So, the index s of (11) can assume

n − (d − 1)t − s1 − s2 + 2 values. Finally, we note that the binomial coefficient

of the decomposition with s = s3 counts the number of monomials with j1 = s1,

j2 = s[2] + t− 1 and j3 = s[3] + 2t− 2.

The procedure can be iterated for the other remaining indexes s3, s4, . . . , sr, with

similar interpretations. In order to make reading clearer, we show in Table 1 some

correspondences between the summation indexes and the indexes of the monomial.

s1, s2, . . . , sd−2, sd−1 j1, j2, . . . , jd−2, jd−1

1, 1, 1,...,1. . . , 1, 1 1, 1 + t, . . . , 1 + (d− 3)t, 1 + (d− 2)t

1, 1, . . . , 1, 2 1, 1 + t, . . . , 1 + (d− 3)t, 2 + (d− 2)t

1, 1, . . . , 1, 3 1, 1 + t, . . . , 1 + (d− 3)t, 3 + (d− 2)t

.

.

.
.
.
.

1, 1, . . . , 2, 1 1, 1 + t, . . . , 2 + (d− 3)t, 2 + (d− 2)t

1, 1, . . . , 2, 2 1, 1 + t, . . . , 2 + (d− 3)t, 3 + (d− 2)t

1, 1, . . . , 2, 3 1, 1 + t, . . . , 2 + (d− 3)t, 4 + (d− 2)t

.

.

.
.
.
.

1, 2, . . . , 1, 1 1, 2 + t, . . . , 2 + (d− 3)t, 2 + (d− 2)t

1, 2, . . . , 1, 2 1, 2 + t, . . . , 2 + (d− 3)t, 3 + (d− 2)t

1, 2, . . . , 1, 3 1, 2 + t, . . . , 2 + (d− 3)t, 4 + (d− 2)t

.

.

.
.
.
.

1, 2, . . . , 2, 1 1, 2 + t, . . . , 3 + (d− 3)t, 3 + (d− 2)t

1, 2, . . . , 2, 2 1, 2 + t, . . . , 3 + (d− 3)t, 4 + (d− 2)t

1, 2, . . . , 2, 3 1, 2 + t, . . . , 3 + (d− 3)t, 5 + (d− 2)t

.

.

.
.
.
.

1, 3, . . . , 1, 1 1, 3 + t, . . . , 3 + (d− 3)t, 3 + (d− 2)t

1, 3, . . . , 1, 2 1, 3 + t, . . . , 3 + (d− 3)t, 4 + (d− 2)t

1, 3, . . . , 1, 3 1, 3 + t, . . . , 3 + (d− 3)t, 5 + (d− 2)t

.

.

.
.
.
.

3, 2, . . . , 5, 1 3, 4 + t, . . . , 8 + (d− 3)t, 8 + (d− 2)t

3, 2, . . . , 5, 2 3, 4 + t, . . . , 8 + (d− 3)t, 9 + (d− 2)t

3, 2, . . . , 5, 3 3, 4 + t, . . . , 8 + (d− 3)t, 10 + (d− 2)t

.

.

.
.
.
.

Table 1. Some correspondences between (s1, . . . , sd−1) and

(j1, . . . , jd−1).

In general, we have the following correspondence:

(s1, s2, . . . , sk, . . . , sd−1)

↕
(j1, j2, . . . , jk, . . . , jd−1)

q(
s[1], s[2] + t− 1, . . . , s[k] + (k − 1)(t− 1), . . . , s[d−1] + (d− 2)(t− 1)

)
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The considerations included in Remark 3.10 allow to state the Theorem 3.11. The

result could be obtained using the techniques used in the proof of [6, Theorem 3.10],

but we choose a different and more easily generalizable way.

Theorem 3.11. Let n, d, t be positive integers such that 1 + (d − 1)t ≤ n. Let

u = xi1xi2 · · ·xid ∈ Mn,d,t be a t-spread monomial of S. The cardinality of Lt{u}
can be presented as a sum of suitable binomial coefficients.

Proof. Our goal is to compute |Lt{u}|, i.e., the number of all monomials w ∈
Mn,d,t such that w ≥slex u. Let c = |Mn,d,t|, we have |Lt{u}| ≤ c. So, by Re-

mark 3.10, we need to start the process with the following binomial decomposition:

c =

(
n− (d− 1)(t− 1)

d

)
=

n−(d−1)t∑
s=1

(
n− (d− 1)(t− 1)− s

d− 1

)
. (12)

As clarified in the remark, the s-th binomial coefficient,
(
n−(d−1)(t−1)−s

d−1
)
, counts

the number of t-spread monomials w of degree d with min(w) = s. This tool will

allows us to count the desired monomials.

Let w ∈ Mn,d,t such that w = xj1xj2 · · ·xjd and w ≥slex u. We observe that the

monomials such that j1 < i1 are greater than u with respect to >slex, and they are

counted by the sum of the first i1 − 1 binomial coefficients in (12). Furthermore,

if j1 = i1, then we have to analyze successive indexes to verify if the monomial is

greater than u or not. This means having to carry out new binomial decompositions.

Hence, if we consider the first i1 binomial coefficients in (12), then we have improved

the upper bound for the cardinality we want to compute. Thus, |Lt{u}| ≤ c1, where

c1 =

i1∑
s1=1

(
n− (d− 1)(t− 1)− s1

d− 1

)
=

=

i1−1∑
s1=1

(
n− (d− 1)(t− 1)− s1

d− 1

)
+

(
n− (d− 1)(t− 1)− i1

d− 1

)
.

(13)

As already observed, the first i1−1 binomial coefficients in (13) must be entirely

added to compute the sought cardinality. Instead, the i1-th binomial coefficient

must be decomposed to be investigated using the other indexes of u. So, we have:(
n− (d− 1)(t− 1)− i1

d− 1

)
=

n−(d−1)t−i1+1∑
s2=1

(
n− (d− 1)(t− 1)− i1 − s2

d− 2

)

=

(
n− (d− 1)(t− 1)− i1 − 1

d− 2

)
+ · · ·+

(
d− 2

d− 2

)
.

(14)

We notice that the s2-th binomial coefficient of the i1-th decomposition (14)

represents the monomials with j1 = i1 and j2 = i1 + s2 + t− 1 (see Remark 3.10).

Now, we have to select the binomial coefficients needed for computing |Lt{u}|.
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To solve our problem, it is necessary to find a better bound for the value of

j2. With a similar consideration done for j1, all the monomials with j1 = i1 and

j2 < i2 are greater than u. So, we must count entirely the first i2 − i1 − t binomial

coefficients in (14). Indeed, j2 = i1 + s2 + t − 1 < i2 implies s2 < i2 − i1 − t + 1.

When j1 = i1 and j2 = i2, then we need further investigations. Hence, at this step,

we have improved the bound for the cardinality: |Bt{u}| ≤ c2, with

c2 =

i1−1∑
s1=1

(
n− (d− 1)(t− 1)− s1

d− 1

)
+

i2−i1−t∑
s2=1

(
n− (d− 1)(t− 1)− i1 − s2

d− 2

)

+

(
n− (d− 2)(t− 1)− i2

d− 2

)
.

Now, we have to decompose the last binomial coefficient:(
n− (d− 2)(t− 1)− i2

d− 2

)
=

n−(d−2)t−i2+1∑
s3=1

(
n− (d− 2)(t− 1)− i2 − s3

d− 3

)
.

As noted in Remark 3.10, these binomials count the monomials such that j1 = i1,

j2 = i2 and j3 between i2 + t and i3, that is, i3 − i2 − t + 1 binomials. Hence, we

have |Bt{u}| ≤ c3, with

c3 =

i1−1∑
s1=1

(
n− (d− 1)(t− 1)− s1

d− 1

)
+

i2−i1−t∑
s2=1

(
n− (d− 1)(t− 1)− i1 − s2

d− 2

)

+

i3−i2−t∑
s3=1

(
n− (d− 2)(t− 1)− i2 − s3

d− 3

)
+

(
n− (d− 3)(t− 1)− i3

d− 3

)
,

and so on, by iterating this procedure d times, we obtain the value of |Bt{u}|.
In general, as observed in Remark 3.10, we obtain the following bound:

ck =

i1−1∑
s1=1

(
n− (d− 1)(t− 1)− s1

d− 1

)
+

i2−i1−t∑
s2=1

(
n− (d− 1)(t− 1)− i1 − s2

d− 2

)

+ · · ·+
ik−ik−1−t∑

sk=1

(
n− (d− k + 1)(t− 1)− ik−1 − sk

d− k

)

+

(
n− (d− k)(t− 1)− ik

d− k

)
,

for k ∈ [d].

So, for the value k = d we obtain the desired cardinality, i.e., cd = |Lt{u}|,

cd =

i1−1∑
s1=1

(
n− (d− 1)(t− 1)− s1

d− 1

)
+

i2−i1−t∑
s2=1

(
n− (d− 1)(t− 1)− i1 − s2

d− 2

)

+ · · ·+
id−id−1−t∑

sd=1

(
n− (t− 1)− id−1 − sd

0

)
+

(
n− id

0

)
,
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that counts the t-spread monomials w of Mn,d,t greater than or equal to u with

respect to >slex.
The number of the binomial coefficients involved in (3.2) is id − (d− 1)t,

(i1 − 1) + (i2 − i1 − t) + · · ·+ (id − id−1 − t) + 1 = i1 +

d−1∑
p=1

(ip+1 − ip − t) = id − (d− 1)t.□

The next example illustrates the Theorem 3.11, that is, the counting method for

t-lex sets.

Example 3.12. Let S = K[x1, . . . , x11], t = 3 and u = x2x6x10 ∈ M11,3,3. We

want to compute c3 = |Lt{u}|.
As done in Remark 3.10, c = |M11,3,3| =

(
7
3

)
= 35. Hence, we start considering

the following binomial decomposition (Lemma 3.8):

(
7

3

)
=

(
6

2

)
+

(
5

2

)
+

(
4

2

)
+

(
3

2

)
+

(
2

2

)
. (15)

Since i1 = 2, all monomials w ∈ M11,3,3 with min(w) ≤ i1 − 1 = 1 are greater

than u. Hence, for the computation of c3 = |Lt{u}| we must take into account the

sum of the first binomial coefficient in (15), i.e., c1 =
(
6
2

)
= 15. From here on out,

we highlight in bold the binomial coefficients to be added and we underline and

those ones to be decomposed.

Now, we consider the following binomial decomposition:

(
5

2

)
=

(
4

1

)
+

(
3

1

)
+

(
2

1

)
+

(
1

1

)
.

Since i2−i1−t = 1, the number of all monomials with j1 = i1 and j2 < i2 is
(
4
1

)
= 4.

Hence, adding the binomials found up to this point we have got c2 = 15 + 4 = 19

monomials. The next binomial decomposition we must consider is:

(
3

1

)
=

(
2

0

)
+

(
1

0

)
+

(
0

0

)
.
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Since i3 − i2 − t = 1, we must take into account
(
2
0

)
= 1 monomial with j1 = i1,

j2 = i2 and j3 < i3. So, we obtain 19+1 = 20 monomials of M11,3,3 greater than u,

and, adding the last binomial coefficient related to u, we have c3 = |L3{x2x6x10}| =
20 + 1 = 21.

The following scheme summarizes the process of counting the monomials of

L3{x2x6x10}:

(
7
3

)
=

(
6
2

)
+
(
5
2

)
+
(
4
2

)
+

(
3
2

)
+
(
2
2

)
→ 15 (16)(

5
2

)
=

(
4
1

)
+
(
3
1

)
+

(
2
1

)
+

(
1
1

)
→ 4(

3
1

)
=

(
2
0

)
+
(
1
0

)
+

(
0
0

)
→ 2

(17)

The number of binomial coefficients involved in the counting is id − (d − 1)t =

10− 6 = 4, and all the monomials of L3{x2x6x10} are:

x1x4x7, x1x4x8, x1x4x9, x1x4x10, x1x4x11,

x1x5x8, x1x5x9, x1x5x10, x1x5x11,

x1x6x9, x1x6x10, x1x6x11,

x1x7x10, x1x7x11,

x1x8x11,

→ 15

x2x5x8, x2x5x9, x2x5x10, x2x5x11, → 4

x2x6x9, → 1

x2x6x10. → 1

The Algorithm 4 shows how to compute the cardinality of the initial t-lex seg-

ment generated by a monomial. The validity of the procedure is granted by the

Theorem 3.11.
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Algorithm 4: Computation of the cardinality Lt{u} ⊂ Mn,d,t

Input: Polynomial ring S, monomial u, positive integer t

Output: positive integer c

begin

if isTSpread(u,t) then

n← number of indeterminates of S;

d← deg(u);

decomp← {};
for i← 1 to n− (d− 1) ∗ t do

decomp← decomp ∪
{
{n− (d− 1) ∗ (t− 1)− i, d− 1}

}
;

end

c← 0;

sub← 0;

for q ← 0 to d− 1 do

s← 0;

if q > 0 then

sub← iq−1 + t;

end

while s < iq − sub do

c← c+ binomial of decomp(s);

s← s + 1;

end

tmp← {};
for i← 0 to decomp(s)(1)− decomp(s)(2) do

tmp← tmp ∪
{
{decomp(s)(1)− i− 1, decomp(s)(2)− 1}

}
;

end

decomp← tmp;

end

else

error expected a t-spread monomial;

end

return c + 1;

end

Now, we pass to analyze the t-strongly stable set of monomials generated by a

monomial. From Remark 3.6, we have Bt{u} = Bt[x1x1+tx1+2t · · ·x1+(d−1)t, u].

To compute |Bt{u}| we have to count all the monomials of Mn,d,t built by the

Algorithm 3. Moreover, Proposition 3.5 gives some tools to identify the desired

monomials by conditions on their supports.

The following result shows an algorithmic method to find the cardinality of the

set Bt{u} ⊂ Mn,d,t. The problem is more complicated than the one solved in

Theorem 3.11. Nevertheless, we will use the same approach.

Theorem 3.13. Let n, d, t be positive integers such that 1 + (d − 1)t ≤ n. Let

u = xi1xi2 · · ·xid ∈ Mn,d,t be a t-spread monomial of S. The cardinality of Bt{u}
is the sum of suitable binomial coefficients.

Proof. The inclusion Bt{u} ⊂ Mn,d,t can be improved by noting that for each

monomial w of Bt{u} we have max(w) ≤ max(u). Hence, the t-strongly stable set

remains unchanged if we consider Bt{u} ⊂ Mn,d,t, where n = max(u). So, we only

have to count the monomials ofMn,d,t that satisfy the conditions in Proposition 3.5.

If c = |Mn,d,t|, then we can write |Bt{u}| ≤ c.
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Let w = xj1xj2 · · ·xjd be a monomial of Bt{u}. In such a case, each index in

supp(w) is bounded by the corresponding index in supp(u), i.e., js ≤ is for s ∈ [d]

(see Characterization 2.3). To count all the monomials of Bt{u}, we can properly

exploit some binomial decompositions iteratively.

Let us start by considering the binomial decomposition of c = |Mn,d,t| induced
by the Lemma 3.8

c =

(
n− (d− 1)(t− 1)

d

)
=

n−(d−1)t∑
s=1

(
n− (d− 1)(t− 1)− s

d− 1

)
. (18)

The meaning of such a decomposition has been analyzed in the Remark 3.10. We

recall that the pivotal idea of the remark is to associate the index j1 to a binomial

coefficient of the decomposition (18), based on the value it assumes.

In particular, we have to pay attention only to the first i1 binomial coefficients

of (18). Indeed, from j1 ≤ i1, we have that the first indeterminate of w can assume

all values between 1 and j1, i.e., j1 ∈ [i1]. So, we will restrict our investigation to

the following coefficients:

c1 =

i1∑
s1=1

(
n− (d− 1)(t− 1)− s1

d− 1

)

=

(
n− (d− 1)(t− 1)− 1

d− 1

)
+ · · ·+

(
n− (d− 1)(t− 1)− i1

d− 1

)
.

(19)

More in detail, the s1-th contribution represents the number of the monomials with

j1 = s1.

Now, we have to observe that the binomial coefficients in (19) must not be

fully added to compute |Bt{u}|. Indeed, for each of them we will consider further

decompositions that will be related to the value of j2. Hence, this summation

provides a bound for the target cardinality: |Bt{u}| ≤ c1. So, we need to improve

this bound until reaching the exact value.

As far as the investigation of the second index of w, j2, is concerned, we must

consider further binomial decompositions for each of the addends in (19) (see Re-

mark 3.10). We can observe that, unlike the t-lex case analyzed in the Theorem 3.11,

we need to decompose in parallel several binomial coefficients continuing recursively
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until a final condition is reached:(
n− (d− 1)(t− 1)− 1

d− 1

)
=

n−(d−1)t∑
s2=1

(
n− (d− 1)(t− 1)− 1− s2

d− 2

)
=

=

(
n− (d− 1)(t− 1)− 2

d− 2

)
+ · · ·+

(
d− 2

d− 2

)
; (20)

· · ·(
n− (d− 1)(t− 1)− s1

d− 1

)
=

n−(d−1)t−s1+1∑
s2=1

(
n− (d− 1)(t− 1)− s1 − s2

d− 2

)
=

=

(
n− (d− 1)(t− 1)− s1 − 1

d− 2

)
+ · · ·+

(
d− 2

d− 2

)
; (21)

· · ·(
n− (d− 1)(t− 1)− i1

d− 1

)
=

n−(d−1)t−i1+1∑
s2=1

(
n− (d− 1)(t− 1)− i1 − s2

d− 2

)
=

=

(
n− (d− 1)(t− 1)− i1 − 1

d− 2

)
+ · · ·+

(
d− 2

d− 2

)
. (22)

To be more clear, we recall that the s2-th binomial coefficient of the s1-th decom-

position represents the number of the monomials with j1 = s1 and j2 = s[2]+ t− 1.

Now, let us move on to discuss about the number of binomial coefficients, related

to the index s2, in order to compute |Bt{u}|.
First, we consider the decomposition of the binomial coefficients in (20). They

represent all the monomials whose index j1 = 1, and the addenda of this sum are

related to the index j2. This index can assume the values between 1 + t and i2,

that is, we only have to consider the first i2 − (1 + t) + 1 binomial coefficients.

Analogously, from the decomposition of the binomial for counting monomials with

j1 = 2, we can state that j2 can assume the values between 2 + t and i2, that is,

i2 − (1 + t) values.

In general, as we can see in (21), from the decomposition of the s1-th component,

j2 assumes values between s1 + t and i2, that is, i2 − (s1 + t) + 1 values.

With this in mind, we can improve the bound for the cardinality: |Bt{u}| ≤ c2,

with

c2 =

i1∑
s1=1

i2−(s1+t)+1∑
s2=1

(
n− (d− 1)(t− 1)− s[2]

d− 2

)
=

=

i2−(1+t)+1∑
s2=1

(
n− (d− 1)(t− 1)− 1− s2

d− 2

)
+ · · ·

+

i2−(i1+t)+1∑
s2=1

(
n− (d− 1)(t− 1)− i1 − s2

d− 2

)
,
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that can be written as

c2 =

(
n− (d− 1)(t− 1)− 2

d− 2

)
+ · · ·+

(
n− (d− 2)(t− 1)− i2

d− 2

)
+ · · ·

+

(
n− (d− 1)(t− 1)− i1 − 1

d− 2

)
+ · · ·+

(
n− (d− 2)(t− 1)− i2

d− 2

)
.

(23)

Now, we must consider further decompositions. So, from the first binomial

coefficient of the first row of (23), for j1 = 1 and j2 = 1 + t, the index j3 of w can

assume the values from 1 + 2t to i3, that is, we have i3 − 2t binomial coefficients.

From the last coefficient of the first row of (23), for j1 = 1 and j2 = i2, the index

j3 can take the values from i2 + t and i3, so, i3 − i2 − t + 1 binomial coefficients.

From the first binomial of the second row, for j1 = i1 and j2 = i1 + t, the index j3

can assume the values from i1+2t and i3, then i3− i1− 2t+1 coefficients. Finally,

from the last binomial of the second row, for j1 = i1 and j2 = i2, j3 can take the

values from i2 + t and i3, so, i3 − i2 − t binomials. More in general, attempting to

write a closed formula, if we fix the indexes j1 = s1 and j2 = s[2] + t − 1 for the

monomials w ∈ Bt{u}, then j3 can assume the values between s[2] + 2t− 1 and i3,

that is, i3 − s[2] − 2t+ 2 values. And so on, for the successive decompositions. By

iterating this procedure we obtain better and better bounds for |Bt{u}| until we
reach its exact value.

In general, as also observed in Remark 3.10, the index jk of w may assume at

most the values from s[k−1] + (k − 1)t − k + 2 = s[k−1] + (k − 1)(t − 1) + 1 to ik,

hence, we must take ik − s[k−1]− (k− 1)(t− 1) binomial coefficients, whereupon we

can write

ck =

i1∑
s1=1

i2−s1−t+1∑
s2=1

· · ·
ik−s[k−1]−(k−1)(t−1)∑

sk=1

(
n− (d− 1)(t− 1)− s[k]

d− k

)
,

for k = 1, . . . , d− 1.

Finally, for the value k = d− 1, we obtain the desired cardinality, i.e.,

cd−1 =

i1∑
s1=1

i2−s1−t+1∑
s2=1

· · ·
id−1−s[d−2]−(d−2)(t−1)∑

sd−1=1

(n− (d− 1)(t− 1)− s[d−1]

1

)
. (24)

Indeed, the formula (24) counts the t-spread monomials w of Mn,d,t whose indexes

respect the conditions of the Borel order in relation to the monomial u, js ≥ is for

s ∈ [d]. □

The following remark goes into detail on the number of the suitable binomial

coefficients mentioned in Theorem 3.13.

Remark 3.14. Under the same hypotheses and notation of Theorem 3.13, we can

state that the cardinality |Bt{u}| is a sum of

Cd−1
(
id−1 − (d− 2)t, id−2 − (d− 3)t, . . . , i2 − t, i1

)
(25)
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suitable binomial coefficients, where the operators Cq, q ≥ 1, are defined as follows.

Let a1, a2, . . . , aq be q positive integers such that ar ≥ ar+1 for r ∈ [q − 1], then

Cq(a1, a2, . . . , aq) =


a1 if q = 1;
aq−1∑
r=0

Cq−1(a1 − r, . . . , aq−1 − r) if q > 1.

As far as the formula (25) is concerned, in general, the argument with index k is

exactly ik−s[k−1]−(k−1)(t−1), i.e., the maximum number of binomial coefficients

we have considered in (24). Then, to compute the argument indexed with k we can

set sp = 1, for p ∈ [k − 1], and we obtain

ik − k + 1− (k − 1)(t− 1) = ik − (k − 1)t.

These positions allow to easily calculate a priori the number of binomial coefficients

involved in the formula (24), using only the support of the given monomial u. For

example, the calculation of C3(6, 4, 2) is the following:

C3(6, 4, 2) = C2(6, 4) + C2(5, 3) =

= C1(6) + C1(5) + C1(4) + C1(3) + C1(5) + C1(4) + C1(3) = 30.

The following two examples illustrate the procedure to compute the cardinality

of Bt{u} (see Theorem 3.13).

Example 3.15. Let S = K[x1, . . . , x13], t = 1 and u = xi1xi2xi3xi4 = x2x5x8x11 ∈
S. We want to compute the cardinality of Bt{u}. The greatest monomial of S, with

respect to >slex, is x1x2x3x4, whence we need to compute c3 = |B1[x1x2x3x4, u]| =
|B1{u}|.

As observed, we can limit our investigation to monomials with n = max(u) = 11,

that is, to monomials belonging to Mn,d,t. The number of all squarefree monomials

of S of degree 4 is c = |M11,4,1| =
(
11
4

)
= 330.

Let us consider the following binomial decomposition (Lemma 3.8):(
11

4

)
=

(
10

3

)
+

(
9

3

)
+

(
8

3

)
+

(
7

3

)
+

(
6

3

)
+

(
5

3

)
+

(
4

3

)
+

(
3

3

)
. (26)

To count all the monomials w = xj1xj2xj3xj4 ∈ B1{u}, we can observe that we

need to count all monomials where the first index is less than or equal to 2, the

second one is less than or equal to 5 and so on, i.e., j1 ≤ 2, j2 ≤ 5, j3 ≤ 8 and

j4 ≤ 11.

Looking at the first index of u, i1 = 2, we must consider the first two binomial

coefficients in (26), i.e., c1 =
(
10
3

)
+
(
9
3

)
. Albeit this sum represents a bound for the

cardinality, some of the monomials counted by these coefficients do not belong to

B1{u}. The solution is to iterate the decomposition, by Lemma 3.8, on each of the
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chosen binomial coefficients. Hence, we have:(
10

3

)
=

(
9

2

)
+

(
8

2

)
+

(
7

2

)
+

(
6

2

)
+

(
5

2

)
+

(
4

2

)
+

(
3

2

)
+

(
2

2

)
,(

9

3

)
=

(
8

2

)
+

(
7

2

)
+

(
6

2

)
+

(
5

2

)
+

(
4

2

)
+

(
3

2

)
+

(
2

2

)
.

(27)

Now, we can repeat the previous procedure considering the second index of u,

i2 = 5. From (27)1, considering the meaning of the coefficients, we must take the

first i2 − (1 + t) + 1 = 4 binomials coefficients:
(
9
2

)
+

(
8
2

)
+

(
7
2

)
+
(
6
2

)
.

From (27)2, we must take the first 5 − (2 + 1) + 1 = 3 binomials coefficients:(
8
2

)
+

(
7
2

)
+

(
6
2

)
. The sum of all the underlined binomial coefficients in (27) is the

bound c2.

Furthermore, we must consider the third index of u, i3 = 8. From the first

selection of coefficients in (27)1, we compute further decompositions from which

to take a decreasing number of binomial coefficients at each step, starting from

i3 − 2− 2t+ 2 = 8− 2 = 6 (indeed, the maximum value is when s1 = s2 = 1). So,

we obtain:(
9

2

)
=

(
8

1

)
+

(
7

1

)
+

(
6

1

)
+

(
5

1

)
+

(
4

1

)
+

(
3

1

)
+

(
2

1

)
+

(
1

1

)
,(

8

2

)
=

(
7

1

)
+

(
6

1

)
+

(
5

1

)
+

(
4

1

)
+

(
3

1

)
+

(
2

1

)
+

(
1

1

)
,(

7

2

)
=

(
6

1

)
+

(
5

1

)
+

(
4

1

)
+

(
3

1

)
+

(
2

1

)
+

(
1

1

)
,(

6

2

)
=

(
5

1

)
+

(
4

1

)
+

(
3

1

)
+

(
2

1

)
+

(
1

1

)
.

(28)

For this path, the procedure can no longer be iterated, in fact these coefficients

count all the monomials w with j1 = 1, j2 ≤ 5, j3 ≤ 8 and j4 ≤ 11. All the

highlighted binomial coefficients in (28) give a contribute to c3. So, we have the

following partial value:

(8 + 7 + 6 + 5 + 4 + 3) + (7 + 6 + 5 + 4 + 3) + (6 + 5 + 4 + 3) + (5 + 4 + 3) = 88.

Now, we need to consider the second selections of binomials taken from (27)2.

In such a case, we can repeat exactly the previous reasoning, getting:(
8

2

)
=

(
7

1

)
+

(
6

1

)
+

(
5

1

)
+

(
4

1

)
+

(
3

1

)
+

(
2

1

)
+

(
1

1

)
,(

7

2

)
=

(
6

1

)
+

(
5

1

)
+

(
4

1

)
+

(
3

1

)
+

(
2

1

)
+

(
1

1

)
,(

6

2

)
=

(
5

1

)
+

(
4

1

)
+

(
3

1

)
+

(
2

1

)
+

(
1

1

)
.

(29)
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Therefore, the number of monomials of B1{u} with j1 = 2 is

(7 + 6 + 5 + 4 + 3) + (6 + 5 + 4 + 3) + (5 + 4 + 3) = 55.

Finally, we have all the information to compute the cardinality of the 1-strongly

stable set generated by u: c3 = |B1{u}| = 88 + 55 = 143.

The following scheme summarizes the reasoning made up to now for counting

the monomials of B1{x2x5x8x11}:(
11
4

)
=
(
10
3

)
+
(
9
3

)
+
(
8
3

)
+
(
7
3

)
+
(
6
3

)
+

(
5
3

)
+

(
4
3

)
+

(
3
3

)
(
10
3

)
=

(
9
2

)
+
(
8
2

)
+
(
7
2

)
+
(
6
2

)
+
(
5
2

)
+

(
4
2

)
+

(
3
2

)
+

(
2
2

)
(
9
2

)
=

(
8
1

)
+
(
7
1

)
+

(
6
1

)
+

(
5
1

)
+
(
4
1

)
+

(
3
1

)
+
(
2
1

)
+
(
1
1

)
→ 33(

8
2

)
=

(
7
1

)
+

(
6
1

)
+

(
5
1

)
+

(
4
1

)
+
(
3
1

)
+

(
2
1

)
+

(
1
1

)
→ 25(

7
2

)
=

(
6
1

)
+

(
5
1

)
+
(
4
1

)
+

(
3
1

)
+
(
2
1

)
+

(
1
1

)
→ 18(

6
2

)
=

(
5
1

)
+

(
4
1

)
+
(
3
1

)
+

(
2
1

)
+

(
1
1

)
→ 12(

9
3

)
=

(
8
2

)
+
(
7
2

)
+
(
6
2

)
+
(
5
2

)
+

(
4
2

)
+

(
3
2

)
+

(
2
2

)
(
8
2

)
=

(
7
1

)
+

(
6
1

)
+

(
5
1

)
+

(
4
1

)
+
(
3
1

)
+

(
2
1

)
+

(
1
1

)
→ 25(

7
2

)
=

(
6
1

)
+

(
5
1

)
+
(
4
1

)
+

(
3
1

)
+
(
2
1

)
+

(
1
1

)
→ 18(

6
2

)
=

(
5
1

)
+

(
4
1

)
+
(
3
1

)
+

(
2
1

)
+

(
1
1

)
→ 12

We can note that the binomial coefficients in bold are precisely those described by

the Formula (24). Moreover, their number is C3(6, 4, 2) where the arguments are

the maximum values of the indexes j1, j2 and j3 taken in reverse order. In the

Remark 3.14 we have seen that C3(6, 4, 2) = 30.

In order to point out the methodologies to compute the cardinality of t-strongly

stable sets, we will consider the same monomial of Example 3.15 but in a 2-spread

contest.

Example 3.16. Let S = K[x1, . . . , x13], t = 2 and u = xi1xi2xi3xi4 = x2x5x8x11.

We want to compute c3 = |B2[x1x3x5x7, u]| = |B2{u}|.
As previously done, we consider the number of all t-spread monomials of S of

degree 4: c = |M11,4,2| =
(
11−3

4

)
=

(
8
4

)
= 70.

In order to compute c3 = |B2{u}|, we take the following binomial decomposition:(
8

4

)
=

(
7

3

)
+

(
6

3

)
+

(
5

3

)
+

(
4

3

)
+

(
3

3

)
. (30)

With the same scheme used in Example 3.15, we start looking at the first index

of u, i1 = 2. So, we consider the first two binomial coefficients in (30), i.e., c1 =(
7
3

)
+
(
6
3

)
. Clearly, we must iterate the decomposition on each of the chosen binomial
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coefficients: (
7

3

)
=

(
6

2

)
+

(
5

2

)
+

(
4

2

)
+

(
3

2

)
+

(
2

2

)
,(

6

3

)
=

(
5

2

)
+

(
4

2

)
+

(
3

2

)
+

(
2

2

)
.

(31)

Considering the second index of u, i2 = 5, from (31)1, we must take the first

i2 − 1− t+ 1 = 3 binomials coefficients:
(
6
2

)
+
(
5
2

)
+
(
4
2

)
.

From (31)2, we must take the first 5 − 2 − t + 1 = 2 binomials coefficients:(
5
2

)
+

(
4
2

)
. Also in this case, the sum of all the underlined binomial coefficients in

(31) is the bound c2.

Finally, we look at the third index of u, i3 = 8. The maximum number of

binomial coefficients we must take into consideration is i3 − 2 − 2t + 2 = 4. This

value will decrease by 1 for the next binomial coefficient, and so on. Hence, we

have: (
6

2

)
=

(
5

1

)
+

(
4

1

)
+

(
3

1

)
+

(
2

1

)
+

(
1

1

)
,(

5

2

)
=

(
4

1

)
+

(
3

1

)
+

(
2

1

)
+

(
1

1

)
,(

4

2

)
=

(
3

1

)
+

(
2

1

)
+

(
1

1

)
.

(32)

Finally, we have the following partial value of c3:

(5 + 4 + 3 + 2) + (4 + 3 + 2) + (3 + 2) = 14 + 14 = 28.

From (31)2, we can do analogous operations:

(
5

2

)
=

(
4

1

)
+

(
3

1

)
+

(
2

1

)
+

(
1

1

)
,(

4

2

)
=

(
3

1

)
+

(
2

1

)
+

(
1

1

)
.

(33)

In such a case, the number of monomials analyzed is

(4 + 3 + 2) + (3 + 2) = 14,
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and the cardinality of the 2-spread strongly stable set generated by u is c3 =

|B2{u}| = 28 + 14 = 42. The procedure can be summarized as follows:

(
8
4

)
=
(
7
3

)
+
(
6
3

)
+
(
5
3

)
+
(
4
3

)
+
(
3
3

)
(
7
3

)
=

(
6
2

)
+
(
5
2

)
+

(
4
2

)
+
(
3
2

)
+
(
2
2

)
(
6
2

)
=

(
5
1

)
+
(
4
1

)
+

(
3
1

)
+

(
2
1

)
+
(
1
1

)
→ 14(

5
2

)
=

(
4
1

)
+

(
3
1

)
+

(
2
1

)
+

(
1
1

)
→ 9(

4
2

)
=

(
3
1

)
+

(
2
1

)
+
(
1
1

)
→ 5(

6
3

)
=

(
5
2

)
+

(
4
2

)
+
(
3
2

)
+
(
2
2

)
(
5
2

)
=

(
4
1

)
+

(
3
1

)
+

(
2
1

)
+

(
1
1

)
→ 9(

4
2

)
=

(
3
1

)
+

(
2
1

)
+
(
1
1

)
→ 5 .

Also in this case, the binomial coefficients in bold are those described by the

Formula (24). Similarly to Example 3.15, the number of these binomial coefficients

is

C3(4, 3, 2) = C2(4, 3) + C2(3, 2) = (4 + 3 + 2) + (3 + 2) = 14,

and the monomials in B2{u} turn out to be

x1x3x5x7, x1x3x5x8, x1x3x5x9, x1x3x5x10, x1x3x5x11,

x1x3x6x8, x1x3x6x9, x1x3x6x10, x1x3x6x11,

x1x3x7x9, x1x3x7x10, x1x3x7x11,

x1x3x8x10, x1x3x8x11,

→ 14

x1x4x6x8, x1x4x6x9, x1x4x6x10, x1x4x6x11,

x1x4x7x9, x1x4x7x10, x1x4x7x11,

x1x4x8x10, x1x4x8x11,

→ 9

x1x5x7x9, x1x5x7x10, x1x5x7x11, x1x5x8x10, x1x5x8x11, → 5

x2x4x6x8, x2x4x6x9, x2x4x6x10, x2x4x6x11,

x2x4x7x9, x2x4x7x10, x2x4x7x11,

x2x4x8x10, x2x4x8x11,

→ 9

x2x5x7x9, x2x5x7x10, x2x5x7x11,

x2x5x8x10, x2x5x8x11.
→ 5 .

The pseudocode in Algorithm 5 shows the implementation of the steps used in

the proof of Theorem 3.13.
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Algorithm 5: Computation of the cardinality Bt{u} ⊂ Mn,d,t

Input: Monomial u, positive integer t

Output: positive integer c

begin

if isTSpread(u,t) then

m← max(u);

d← deg(u);

c← 0;

p← d− 1;

for r ← 1 to p do

ind(r)← 1;

end

while ind(1) ≤ j1 do

c← c + m− (d− 1) ∗ (t− 1)− ind(1)− · · · − ind(p);

ind(p)← ind(p) + 1;

while p > 0 and ind(p) > ip − ind(1)− · · · − ind(p) + p ∗ (1− t) do

ind(p)← 1;

p← p− 1;

ind(p)← ind(p) + 1;

end

p← d− 1;

end

else

error expected a t-spread monomial;

end

return c;

end

The mechanism used in the algorithm fully exploits the theoretical result in (24).

More precisely, a list of d−1 positive integer, initialized to 1, acts as the multi-index

(s1, . . . , sd−1). At each step the achievement of the maximum value for the involved

component is dynamically checked and the multi-index is updated.

4. Observations and outlook

The algorithmic constructions and the examples in this paper have been tested

using the package TSpreadIdeals running on Macaulay2 1.81. To the best of our

knowledge, packages for managing classes of t-spread ideals have not been heretofore

implemented.

We are hopeful that the computational methods analyzed in this paper can be

used for further studies and applications. In fact, such methods could be useful

for investigating the t-spread generic initial ideal or in general to find alternative

methods to compute the generic initial ideal of a graded squarefree ideal [10].

Moreover, we are working to optimize construction and counting methods for t-

stable sets of monomials. As a first step, we plan to use the same approach for t-

strongly stable sets, even if we are aware that for the t-stable case the linearization

could encounter some difficulties.

We are confident that many other problems will arise around t-spread structures,

and that, consequently, new implementations could be added to the package in order

to improve it so providing new tools and functionalities.
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