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ABsTRACT. Let n be a 5'" power-free natural number and kg = Q((5) be the cyclotomic field
generated by a primitive 5¢* root of unity ¢5. Then k = Q(/n,(s5) is a pure metacyclic field of
absolute degree 20. In the case that k possesses a 5-class group Cj 5 of type (5,5) and all the
classes are ambiguous under the action of Gal(k/ko), the capitulation of 5-ideal classes of k in

its unramified cyclic quintic extensions is determined.
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1. Introduction

Let k be a number field, and L be an unramified abelian extension of k. We say that an ideal
T of k or its class capitulates in L if Z becomes principal in L.

Let ' = Q(¢/n) be a pure quintic field, where n is a 5" power free natural number, and
ko = Q(Cs5) be the cyclotomic field generated by a primitive 5 root of unity (5. Then k = T'((5)
is the normal closure of I' and a pure metacyclic field of absolute degree 20. Let kél) be the Hilbert
5-class field of k, C}, 5 be the 5-ideal class group of k and C,gag be the subgroup of ambiguous ideal
classes under the action of Gal(k/ko) = (o).

In the case that Cy 5 is of type (5,5) and rank C’,i? = 1, the capitulation of the 5-ideal classes
of k in the six intermediate extensions of kél) /k is determined in [2].

Let p and ¢ be primes such that p = 1 (mod5) and ¢ = +2 (mod 5). According to [1, Theorem
1.1], if Cy 5 is of type (5,5) and rank 01505) = 2, we have three forms of the radicand n as follows:

e n = p® with e € {1,2,3,4} and p = 1 (mod 25).

e n = 5%p° with e1,es € {1,2,3,4} and p #Z 1 (mod 25).

en = pfg? = +1,47(mod25) with ej,es € {1,2,3,4}, p #Z 1(mod25) and ¢ #
+7 (mod 25).

In this paper, we investigate the capitulation of the 5-ideal classes of the pure metacyclic field k
in the unramified cyclic quintic extensions of k within the Hilbert 5-class field kél) of k, whenever
Ch,5 1s of type (5,5) and rank C’,ggs) = 2, which means that all classes are ambiguous.

We will study the capitulation of C} 5 in the six intermediate extensions K, ..., Kg of kél) /k

by distinguishing the three cases of the radicand n. Figure 1 illustrates the situation.
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Figure 1: The unramified quintic sub-extensions of kzél) /k

The theoretical results are underpinned by numerical examples obtained with the computational
number theory system PARI/GP [6].

Notations.
Throughout this paper, we use the following notations:

e The lower case letters p and ¢ denote a prime numbers such that, p = 1(modb5) and
g = +2(mod?5).

I' = Q({/n): a pure quintic field, where n # 1 is a 5" power-free natural number.

ko = Q((s): the cyclotomic field, where (5 = €2™/% is a primitive 5" root of unity.

k = Q(¥/n,(5): the normal closure of T, a quintic Kummer extension of k.

() = Gal(k/T) such that 7 is identity on I', and sends (5 to its square. Hence 7 has

order 4.
e (o) = Gal(k/ko) such that o is identity on ko, and sends ¥/n to (5/n. Hence o has order
D.

For a number field L, denote by:
— Op: the ring of integers of L.
— Cp, hr, Cr5: the class group, class number, and 5-class group of L.
— Lél), L*: the Hilbert 5-class field of L, and the absolute genus field of L.
— [Z]: the class of a fractional ideal Z in the class group of L.

(4)5 = 1 & X° = a(modb) soluble in O,, where a,b are primes in O, .

2. Preliminaries

2.1. Decomposition laws in Kummer extension.
Since the pure quintic extensions of the 5! cyclotomic field ko = Q({5) and of k = Q(/n, (5)

are all Kummer’s extensions, we recall the decomposition laws of ideals in these extensions.

Proposition 2.1. Let L be a number field containing the I*" roots of unity, where | is prime, and
6 be an element of L, such that 8 # pt, for all uw € L. Therefore L(V/8) is a cyclic extension of
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degree | over L. We denote by ¢ a primitive I*" root of unity.
(1) We assume that a prime ideal P of L, divides 6 exactly to the power P®.
e Ifa=0 and P does not divide 1, then P splits completely in L(v/0) when the congruence
0 = X' (modP) has a solution in L.
e Ifa =0 and P does not divide 1, then P is inert in L(v/6) when the congruence § =
X' (mod P) has no solution in L.
o Iflta, then P is totally ramified in L(v/9).
(2) Let B be a prime factor of 1 — that divides 1 — ¢ exactly to the at" power. Suppose that B 19,
then B splits completely in L(v/8) if the congruence

6 = X' (mod B+1) (%)
has a solution in L. The ideal B is inert in L(v/8) if the congruence
0 = X! (mod BY) (xx)

has a solution in L, but (x) has no solution. The ideal B is totally ramified in L if the congruence

(%) has no solution.
Proof. See [3, Theorems 118, 119]. O

2.2. Relative genus field (k/ko)* of k over k.

Let T' = Q({/n) be a pure quintic field, kg = Q((s) the 5"-cyclotomic field and k = T'((5)
be the normal closure of I'. The relative genus field (k/kq)* of k over kg is the maximal abelian
extension of kg which is contained in the Hilbert 5-class field k;él) of k.

Let ¢* be the exponent defined by [Ny, (k —{0}) N Ey, : Ny /i, (B, )] = 59", Here Ny /i, is the
relative norm from & to ko, and Ej, the group of units of k. We note that Ny, (Ex,) = Ego and
[Ey, : Ep,] = 5%, so we get that ¢* € {0,1,2}.

The group Ey, is generated by (5 and (5 + 1, then according to the definition of ¢*, we see that:

2 if ¢+ 1€ Ngypo(k—{0}),
q" = q1 if ¢"(¢C+1)7 € Nyyio(k—{0}) for someiandj,
0 if ¢"(C+1)7 ¢ Ny, (k—{0})for 0<4,j<4and i+j#0.

The relative genus field (k/ko)* is given explicitly by the following proposition by means of the

decomposition of n in kg and the value of ¢*.
Proposition 2.2. Let k = ko(/n) such that n = pA> it ...w;fﬂ;fr*ll ..y’ in ko, where p is
unity of Ok, X\ = 1 — (5 the unique prime above 5 in ko and each prime m; = 41,47 (mod \°)
for 1 <i< fandm; £ £1,£7 (mod \%) for f+1 < j <g. Then we have:

(i) There exists h; € {1,...,4} such that 7rf+1ﬂ'£“ = 41,+£7 (mod \°) for f+2<i<g.

(ii) Ifn # +1,+£7(mod \%) and ¢* = 1, then the genus field (k/ko)* is given as:

* 5 5 h g
(k/kio) =k (8/7T1,...,15/7T s \/7Tf+17Tff+§2,..., {/Wf_;,_lﬂ'g )

where h; is chosen as in (i).

*

(iii) In the other cases of ¢* and the congruence of n, the genus field (k/ko)* is given by deleting

an appropriate number of 5" root from the right side of (ii).

Proof. See [4, Proposition 5.8]. O
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3. Study of capitulation

Let T', ko and k as above. If Cj 5 is of type (5,5) and the subgroup of ambiguous classes C,(CUE))
under the action of Gal(k/kg) = (o) has rank 2, we have Cy 5 = C’](Cgs)

By class field theory, the principal genus C,i;)” corresponds to (k/ko)*, and since C 5 = C,(f;
we get that C,i’g" = {1}, whence (k/ko)* coincides with the Hilbert 5-class field kzél) of k.

When Cy 5 is of type (5,5), it has 6 subgroups of order 5, denoted H;, 1 < ¢ < 6. Let K; be
the intermediate extension of kél) /k which corresponds by class field theory to H;.
As each Kj; is cyclic of order 5 over k, by Hilbert’s theorem 94, there is at least one subgroup of

order 5 of Cy 5, i.e. at least one H; for some [ € {1,2,3,4,5,6}, which capitulates in K.

Definition 3.1. Let S; be a generator of H; (1 < j < 6) which corresponds to K. For 1 < j <6,
let i; € {0,1,2,3,4,5,6}. We say that the capitulation is of type (i1,42, i3, 4,5, %6) to mean the

following:

(1) when i; € {1,2,3,4,5,6}, then only the class S;; and its powers capitulate in Kj;
(2) when i; = 0, then all the 5-classes capitulate in K.

We find ourselves in front of 7% = 117649 possible types which need to be reduced.

Its easy to see that Cjs =~ C’,:S x C} 5 such that 0;5 = {A € C’;€75|.AT2 = A} and
Crs = {X € Chs| X7 = X1}, with Gal(k/T) = (7). We order the subgroups H; of Cj,s
as follows:

Hy = Ciy = (A), Ho = Ci5 = (X), Hy = (AX), Hs = (AX?), Hy = (AX?) and
Hs = (AX?Y).

By the action of Gal(k/Q) on Cj 5, we can give the following proposition:

Proposition 3.1. For all continuations of the automorphisms o and T we have:
(1) K¢ = K; (i = 1,2,3,4,5,6), i.e o sets all K;.
(2) K{Q = Ky, Kg2 = Kg, KQT2 = Ky and K§2 = K,. i.e 7% sets K1, K¢ and permutes
K2 with K5 and Kg with K4.

Proof. We will agree that for all 1 <4 < 6 and for all w € Gal(k/Q) we have H* = {C¥|C € H,}.
(1) Since all classes are ambiguous because Cy 5 = C,ggg , o sets all H;.
(2)We have Hy = Gy = (A) and Hg = Cj 5 = (X), then H] = Hy and H} = H.

- Since (AX)™ = AT X = AX7! = AX € Hs, H = H;.

- Since (AX2)™ = A7 (X2)" = AX"? = AX® € H,, H] = H,.

- Since 7* = 1, we get that H5T2 = Hy and H] = Hs.

The relations between the fields K; in (1) and (2) are nothing else than the translations of the

corresponding relations for the subgroups H; via class field theory. O

o)

To study the capitulation problem of k whenever Cy 5 is of type (5,5) and Cy 5 = C,E’E), we

will investigate the three forms of the radicand n proved in [1, Theorem 1.1], and mentioned above.
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3.1. The case n = p°® where p = 1(mod 25).

Let k = T'(¢5) be the normal closure of I' = Q(+/n), where n = p° such that p = 1 (mod 25)
and e € {1,2,3,4}. By [5, Theorem 2.13|, since p = 1 (mod 5) we have that p splits completely in
ko = Q((5) as p = mmemsmy, with 7; are primes in ko. As the discriminant of I'/Q is 5%p*, we
get that p is ramified in I', then the primes m; are ramified in k.

If Py, P2, P3 and P, are respectively the prime ideals of k& above 71, 7o, 73 and w4, then 73? =
mOk (1 = 1,2,3,4). Since 7 acts transitively on m;, we have that 72 permutes m; with 73, hence 72
permutes P; with Ps. Since 77 = m;, we have P7 = P;. In fact [P;] (i = 1,2, 3,4) generate the
subgroup of strong ambiguous ideal classes denoted C,(fs) and defined by C,(fg) ={[P] € Cy5|P° =
P}.

The next theorem allow us to determine explicitly the intermediate extensions of kél) k.

Theorem 3.1. Let k and n as above. Let my,mo, 3 and w4 be primes of kg congruent to 1 modulo

A? such that p = mimamsTy, then:
(1) 1" = b (97, 7).
(2) The siz intermediate extensions of kél)/k are: k (/m), k (3/73), k (¢/mims), k (W),
k ( o 7T17T§> and k ({’/7?77%)
Furthermore 12 permutes k (\5/771) with k (\5/7?3) and k ( ¥ 7r17r§) with k ({’/7?7@’), and
sets k (y/mms), k (M)

Proof. (1) We have that kzél) = (k/ko)*. Since k = ko(/n) with n = p = mymemsmy in kg and
m; = 1(mod \°) (i = 1,2,3,4), by Proposition 2.2 we have (k/ko)* = k ({/71, /73).

(2)It kél) =k (\5/771, \5/773), then the six intermediate extensions are: k (\5/7?1), k (\0/7?3), k ({/ﬁ),
k (\5/7?7@), k (\5/7?77:;;’) and k ({’/ﬁ) We have 72(m) = 73, so it is easy to see that 72 sets
the fields k (/7). & (/).

Since 12(my) = T2(3/75) (
k(T2(y/m)), ie. k(/ms)
k (\77?3)72. Hence 72 permutes k (/1) with k (¢/73).

We have 72(mm3) = wimz then 72(mn3) = 72(3/(mi73)8) = (72(3/min3))® = nims, then

72(3/mm?) is 5" root of w373, Thus k (5/#%71‘3) =k (7’2(\5/ 77171'?2))) iek ( g 7T%7T3) =k ( 5 7r17r§)
7'2 7'2

k (\5/ 7r17r§) . By the same reasoning we prove that k (\5/ 7r17r§) =k ({’/ 7717r§> . Hence 72 per-

mutes k («5/ 7r17r§> with k («5/ 7r17r§). O

o/7m1))° = w3, T2(m) is 5" root of m3. Thus k (§/73) =
2

72(
k ( v 71'1)T . By the same reasoning we prove that k ( v 771) =

The generators of Cj 5 when it is of type (5,5) and the radicand n is as above are determined

as follows:

Theorem 3.2. Let k and n as above. Let 71,mo,m3 and w4 be primes of kg congruent to 1
(mod /\5) such that n = p = mimomsmy. Let P1,Pa,P3 and Py be prime ideals of k such that
PP = 1,0, (i = 1,2,3,4). Then:

K2

Crs = ([P1Ps], [P1P3]).
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Proof. According to the proof of [1, Theorem 1.1], , for this case of the radicand n, we have that
Ct(1 4 ¢5)7 is norm of element in k — {0} for some exponents i and j. By [4, Section 5.3], if (5 is
not norm of unit of k¥ we have Cj 5 = C,(fg £ C,Ef’s) , SO C,ggs) contained in C,(CUS) . Hence we discuss
two cases:

o 15t case: Ci5 = C,(fg + C,Sgg)

We have that C,(CUS) is contained in Cy5 = 0,275), and by [4, Section 5.3] we have 0,205)/01&05) =
Ck75/C,g:78) is cyclic group of order 5. Since Cy 5 has order 25, C’,(:S) is cyclic of order 5.

We have that C’,gc? = ([P1],[P2), [Ps], [Pa]), PT" = Ps and PJ_ = P4, so Py and P, can not be
both principals in k, otherwise P3 = P] *and Py = P3 * will be principals too, Thus CIEUS) = {1},
which is impossible. By the same reasoning we have that P3; and P, can not be both principals
in k.

Since C,(:g) is cyclic of order 5 and without loosing generality, we get that C,i?s) = ([P1]), so Py
and P3 = PJ * are not principals. Since Cj 5 =~ Cljﬁ X Cl; 5, it is sufficient to find generators
of Cify and Cpy. As [P1Ps]” = [(P1P3)7'] = [P1Ps], then Cify = ([P1Ps]) and [P1P4]7 =
[(77173;‘31)72] = [P{Ps] = [P1P3]~L, then Crs = ([P1P3]). Hence Cy 5 = ([P1Ps], [P1P3]).

o 2% case: Crps = C,igg = C’,EUS)

We apply the same reasoning as in the 1% case, because none of P; (i = 1,2,3,4) is principal,
otherwise Cj 5 = O,(CUS) = {1}, which is impossible. Hence Cy 5 = ([P1Ps], [P1P3]). O

Now we are able to state the main theorem of capitulation in this case.

Theorem 3.3. We keep the same assumptions as in Theorem 3.2. Then:

(1) If(2)s = Lwehave Ky = k ({/mrms) ork (e/mwg), Ky = k(¢/7s), K = k ({erg)
ork (\5/7717@’), Ky =k ( S 7717r§’) ork <\5/7r17r§), Ks = k({/m1) and K¢ = k (?/mwé)
or k (,5/7T1773). Otherwise we just permute Ko and Ks in equalities.

(2) [P1Ps] capitulates in k ({/mi73), [Ps] capitulates in k (/) (i = 1,3), [P1P3] capitulates
in k (\5/ 7T17T§), [P1P3] capitulates in k (\5/ 7T17Tg) and [P1P3] capitulates in k (\5/ 7r177§).

(3) () If ()s = 1 and K¢ = k (\5/7r177§), then the possible types of capitulation are:
(0,0,0,0,0,0), (1,0,0,0,0,0), (0,2,0,0,5,0), (1,2,0,0,5,0),

{(0,0,3,4,0,0) or (0,0,4,3,0,0)}, {(1,0,3,4,0,0) or (1,0,4,3,0,0)}, {(0,2,3,4,5,0) or
(0,2,4,3,5,0)}, {(1,2,3,4,5,0) or (1,2,4,3,5,0)}.
(ii) If (3)s = 1 and K¢ = k (¢/mim3) then the same possible types of capitulation occur as in (i)
with ig =0 or 1 and i, =0 or 6.
(iil) If (7’%)5 # 1 then the same possible types of capitulation occur as (i) and (it) by permuting 2

and 5 in the given types of capitulation.

Proof. (1) According to Theorem 3.1, we have that 72 permutes k (\0/7?1) with & (\J/ﬂ) and
k ({/7?7@) with k (m), moreover 72 sets k (¢/min3), k ({/7?7731)

By class field theory K; corresponds to H; (i = 1,2,3,4,5,6). We determine explicitly the six
subgroups H; of C} 5 as follows:

We have that Cy 5 = (A, X), where H; = C,j:f) = (A) and He = C} 5 = (X). By Theorem 3.2
we have A = [P1P3] and X = [P1P3], then AX = [P1]?, AX? = [P P5]3, AX? = [Py P2]* and
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AX* = [P3]t. Thus Hy = ([P1]), Hs = ([P1P3]), Hy = ([P1P3]) and Hs = ([Ps]). Since 72
sets k (m) and k ({’/7?77%), if Ky =k (m), then K¢ = k ( Y 7r17r§) and vice versa.

If (%)5 = 1 then X% = m; (mod73) is resolved in Oy, and by Proposition 2.1, we have that
1 splits completely in ko(/73), which equivalent to say that Py splits completely in k ({/73), so
Ky = k ({/7s) and we get that K5 = k (¢/m). It K3 = k ({/mm ), then Ky = k ({/mn]) and
vice versa. Since m; and 73 divide w73, m7w3, w5 and w73, if (%)5 # 1, then Ky = k (\5/771)

and K5 =k (\5/7'(3).
(2) Since PP = m;0f (i = 1,3), we have (P1P3)° = mm30, then (P1P3)° = 1730k g/mrms) N

3

5
k (,5/7'('17'&'3) and 7T17T3(9k( §mims) = (F/T(ﬂl’z;@mm)) , whence 7917?3(9k( Ymims) = \5/7T17T3Ok(\5/ﬁ).
Thus P1Ps seen in Oy smr7;) becomes principal, i.e [P;Ps] capitulates in k (¢/mims).

Since (P1P3)° = w20y, we have (P1P2)5 = ﬂlﬂgOk(W) ink (\5/71'17T32)> and wlﬂgOk(W) =

5

(Wok<m)> , hence Plpgok(m) = {’/ﬁrgok(m). Thus P, P3 seen in Ok(m)
becomes principal, i.e [P;P3] capitulates in k (S/?ﬂ'%)

By the same reasoning, we have [P;Pj] capitulates in k (m) and [P;P3] capitulates in

We have P} = w0, then P10k gm) = YT10k(gmr)- Hence [P1] capitulates in k (\5/7?1) By
the same reasoning, we have [P3] capitulates in & ({/73).
(3) (1) I (F)s = land K¢ = k (M) we have [P;Pj] capitulates in Kg. According to
[[4], Lemma 6.2], we have that C’,:S ~ Cr 5 and by class field theory Cr 5 ~ Gal(Fgl)/F), then we
obtain Cy5/C) 5 =~ Gal(I‘él)/F) o~ Gal(kfél)/k). Thus kI‘él) is an unramified cyclic extension of k
corresponds to Cy 5. We denote by jir : Cr;s — Cj 5 the homomorphism induced by extension
of ideals of T in k. Since G}y = ([P1Ps]) and P1Ps = jyr(J) such that Crs = (J), [P1Ps]
capitulates in Kg = kFél). As Cr5 = ([P1Ps), [P1P34]), then all classes capitulate in Kg.

We determine possible types of capitulation (i1,i9,13,14,1%5,%). We have that ig = 0, Ko =
ng, K3 = Kf, then the same number of classes capitulate in K5, K5 and similarly for K3, K4.

If 41 # 0 we have iy = 1, if i3 # 0 we have io = 2 and if i5 # 0 we have i5 = 5. i3 and i4 are
both nulls or non nulls, so if i3 and iy # 0, then (i3,74) = (3,4) or (4,3). Thus the possible types
of capitulation are:
(0,0,0,0,0,0), (1,0,0,0,0,0), (0,2,0,0,5,0), (1,2,0,0,5,0), {(0,0,3,4,0,0) or (0,0,4,3,0,0)},
{(1,0,3,4,0,0) or (1,0,4,3,0,0)}, {(0,2,3,4,5,0) or (0,2,4,3,5,0)},
{(1,2,3,4,5,0) or (1,2,4,3,5,0)}.
(ii) If (:—;)5 =1land K¢ = k (W) we have [P1P3] capitulates in Kg, then if ig # 0 we have
ig = 1. [P1P4] capitulates in K7, then if i; # 0 we have i; = 6, so the same possible types of
capitulation occur as in (i) with ig =0 or 1 and i; = 0 or 6.
(iii) If (%)s # 1, by (1) we have K = k (¢/m3) and K5 = k (/1) then the same possible types

of capitulation occur as (i) and (i¢) by permuting 2 and 5 in the given types of capitulation. O

3.2. The case n = p®¢°® = +1,+7 (mod 25) where p # 1(mod25), ¢ # £7 (mod 25).
Let & = T'((5) be the normal closure of I' = Q(¥/n), where n = p®¢® = 41,47 (mod 25)
such that p # 1,(mod25), ¢ # £7(mod 25) and ey, es € {1,2,3,4}. By [5, Theorem 2.13], since
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g = £2(mod5) we have that ¢ is inert in ky = Q({5), so we set in the squel ¢ = 75 as prime in
ko.

By P11, P2, P3, Py and P5 we denote respectively the prime ideals of k& above my, mo, 73, 74 and
75 in kg, such that PP = m;O0 (i = 1,2,3,4,5). We have that 72 permutes m; with 73, then 72
permutes P; with Ps, moreover 72 sets ¢ = 75 and also Ps.

The six intermediate extensions of kél) /k are determined as follows:

Theorem 3.4. Let k,n,m,m, 3,74 and w5 as above. Put r1 = 7r17ré“ and o = 7r171'§ where
hy € {1,2,3,4} is chosen such that x1 = x2 = 1(mod \), where hy € {1,2,3,4}. Then:

(1) K = k (a1, 9m2).

(2) The siz intermediate extensions of kél)/k‘ are:

k ({’/ﬂ), k ({’/E), k <\5/7T17r37rgh1>, k (\/7‘(17'(371'?1> k < 7T‘117T§7T5 ) and k (\/7’(’371’?1>
Furthermore 72 permutes k (\/w17737r5 ) with k (\/7‘(171'37Tg1> and
k ({”/ﬂ) with k (\/77377?1), and sets k (\5/972), k (\/7717737r§h1>

Proof. Since k = ko (¥/n) we can write n in kg as n = wir§nsnsms, with m; do not all verified
m; = 1(mod\®), because we have p #Z 1(mod25). By Proposition 2.2 there exist hy,hy €
{1,..,4} such that m7!" = +1,47 (mod \°) and my7h? = 41,47 (mod A%). To investigate the
correspondence between the six intermediate extensions of kél) /k and the six subgroups of Cj s,

1

we assume that ho = 4. Put 1 = 7r17rg and xo = m75.

(1) The fact that kél) = k (¢/x1, §/72) follows from Proposition 2.2.
(2) The six intermediate extensions are: k (,5/301), k (15/532), k (é/xlxg), k ( y xlx%), k (?/xlxg)

and k ( ¥/xi12%). Since z; = 7r17rh1 and o = mms, we have k (&z123) = k w2pdp
2 5 5> 17375

k(%/m3) = k(W)k(m) - k(W) and  ({/m73) = k<\/7r37>

. 2 2 .
Since 7] = w3, 13 = m; and 775 = 5, and by the same reasoning as (2) of Theorem 3.1 we

prove that 72 permutes k (\/Wlﬂ'gﬂgl) with k& <\/7T17T37T5 > and k (,/ 1) with k& (\5/ 7r37rg“>,
and sets k (\5/:52), k <\/7r17r37r§h1> O

The generators of C, 5 in this case are determined as follows:

Theorem 3.5. Let k,n,m, 72, T3, T4, 5 and hy as above. Let P1,Po, P3, Py and Ps prime ideals
of k such that PP = m;O, (i = 1,2,3,4,5). Then:
Crs = ([P1PsP"], [P1P1])

Proof. According to [1, Theorem 1.1], for this case of the radicand n, we have that ¢¢(1 + (5)7
is not norm of element in k — {0} for any exponents ¢ and j, then by [4, Section 5.3], we have
Crs = OF) = CF) = ([P], [Pa, [Ps], [Pa, [Ps]). Since PT" = P3, P3’ = Pyand PI = Ps,
as the proof of Theorem 3.2 we have that Py, P3 and P5 are non principals. As [P1P3P§h1]72 =
[(P1PsP2") ] = [PsPiPE] = [PyPsPE™] then Cf; = ([P1PsP2™]), and we have that
Cis = ([P1P3]). Hence Cr5 = ([PyPsP™], [P1P3]). O

o
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The main theorem of capitulation in this case is as follows:

Theorem 3.6. We keep the same assumptions as Theorem 3.5. Then:

(1)K, =k (\5/71'171'53) ork (\5/71'177377?”), Ky =k < ¥ 7T17Tg1> ork (\5/77377?1) Ky =k (\/771773772“>
ork < ¥ ﬂ%ﬂ%ﬁé“) , Ky =k <\/7F17T37T§1) ork ( Y W%ﬂ'gﬂgl>, Ks =k <\5/7r37rg“> ork (\/mﬂgl)
and K¢ = k <\5/ 7r17r37r§h1> or k (?/mwé),

(2) [P1PsP2"] capitulates in k (\/w17r37r5 ) [PyPI] capitulates in k (\/mws ) [PFPiPI
capitulates in k (\/7‘(‘171'5)4)71'5 ) [PLPIPL] capitulates in k (\/7‘(‘%7‘('371'5 ) [PsPI] capitulates in
k (\5/ 71'371'?1) and [P1Pj3] capitulates in k ({’/ ﬂ'ﬂrg‘).

3) If Ky =k <\5/ 7r17r37r52)'“>, then the possible types of capitulation are:

(0,0,0,0,0,0), (1,0,0,0,0,0), {(0,5,0,0,2,0) or (0,2,0,0,5,0)},

{(1,5,0,0,2,0) or (1,2,0,0,5,0)}, {(0,5,4,3,2,0) or (0,2,4,3,5,0)},

{(1,5,4,3,2,0) or (1,2,4,3,5,0)},

{(0,5,3,4,2,0) or (0,2,3,4,5,0)}, {(1,5,3,4,2,0) or (1,2,3,4,5,0)},

{(0,0,3,4,0,0) or (0,0,4,3,0,0)}, {(1,0,3,4,0,0) or (1,0,4,3,0,0)}.
If Ki =k (\5/ 7717r§), then the same possible types occur, where ig takes the value 0 or 1.

Proof. (1) According to Theorem 3.4, we have that 72 permutes k <1 [m2minl > with k (\ / 71'17r37rg“>
and k (¢/z1) with k <\/7r37ré“>, and sets k ({/72), k <\5/ 7T17Tg71'52)h1). We determine first the six

subgroups H; of Cy 5. We have that Cy5 = (A, X), where Hy = Cy/; = (A) and Hs = C; ; =

(X). By Theorem 3.5 we have A = [PiPsP3"] and X = [PiPj], then AX = [P1P}"]%

AXQ = [Plp ] AX?’ — [P%IPSIPS ] and AX4 — [7)3 ;L1}3. Hence H2 _ <[P1P§1]>,
= ([PEP4P; ]> Hy = ([PiP2PM]) and Hs = ([PsPl)).

Hs
Since 72 sets k (\/71’17'(37’('5 ) and k («/mw?,) soif K1 = k <\5/ 7T17Tg71'52)h1) then K¢ = k ({’/mwé‘)

and inversely.

By class field theory, the fact that H; (i = 2,5) corresponds to K; (i = 2,5) means that P; P

splits completely in Ky and 733’P5 splits completely in K5. Asmymg M divides 7T%7T§7Tgl and 7] W%?Tg '

by Proposition 2.1, w7l can not split in ko({/72mim?) and ko({/min3xl), this equivalent to
say that PP can not split completely in k (\/771%37% ) and k <\/7r17r37rgl>. By the same
reasoning we have that P3Py can not split completely in k{/n?minl and k{/nin2zlt. Thus
it Ky =k <\/7717r5 ) then K5 = k (\/71’371'?1) and inversely, which allow us to deduce that if

K3 =k (\/71’171'37(5 ) then K5 = k (\/wlwgw?) and inversely.

(2) We keep the same reasoning as the proof of (2) Theorem 3.3.

(3) If Ky = k (,5/7r17r37r§h1), then Kg = kI = k(«s/wmg) and we have that [PyP4]

capitulates in Kg, moreover since C’,:S = ([P1PsPM]) ~ Crs PiPsPEM = jryr(J) such
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that Crs = (J), then [P1PsP,

all classes capitulate in K¢ = k (\5/ 7r171'§). We determine the possible types of capitulation
(Z.17 i27 i3a i47 i57 1’6)
We have that ig = 0, Ky = KgQ, K; = Kf, then the same number of classes capitulate in Ko,

2] capitulates in Kg. As Crs = ([PyPsP2M], [P1P3]), then

5

K5 and similarly for K3, K4. If i1 # 0 we have i; = 1. i3 and i5 are both nulls or non nulls, so if iy

and i5 # 0, then (i2,i5) = (2,5) or (5,2) depending on 73173;“ splits completely in & (?/ 7r17r§1>

orin k < C 7r37rg1>. Similarly if i3 and i4 # 0, then (ig,i4) = (3,4) or (4,3). Hence the possible

types given are proved.

IfK, =k (M) then Kg = kl"él) =k (\5/7T17T37T§h1> and we have Clj,s = <[7717337752h1}>
capitulates in Kg, the possible values of i, 1i3,144,15 are as above, (iz,i5) = (2,5) or (5,2) if they
are non nulls, (ig,i4) = (3,4) or (4,3) if they are non nulls. If i; # 0 then 43 = 6 because
Hg = ([P1P4]), and if ig # 0 then i; = 1 because H; = ([P;P3P2"]). Hence the possible types

given are proved. O

3.3. The case n = 5°p° where p #Z 1(mod 25).

Let k = T'((5) be the normal closure of I' = Q(+/n), where n = 5°p° such that p #
1, (mod 25) and ey, es € {1,2,3,4}. By [4, Lemma 5.1], since n = 5%'p®2 # +1,£7, (mod 25) we
have A = 1 — (5 is ramified in k/ko.

Let mq,mo, m3 and w4 primes of kg such that p = mymomsmy. Let Py, Pa, P3, Py and Z prime
ideals of k above 71,72, m3,m4 and A, we have P} = m;O and Z° = AOj. According to [1,
Theorem 1.1], for this case of the radicand n, we have that ({(1 + (5)7 is not norm of element in
k — {0} for any exponents ¢ and j, then we have Cj 5 = C,ggg = Clias) Hence the results about
the six intermediate extensions of kzél) /k, the generators of Cj, 5 and the capitulation problem in

this case are the same as case 2 by substituting ¢ by 5, 75 by A and P5 by Z.

4. Numerical examples

The task to determine the capitulation in a cyclic quintic extension of a base field of degree
20, that is, in a field of absolute degree 100, is definitely far beyond the reach of computational
algebra systems like MAGMA and Pari/GP. For this reason we give examples of pure metacyclic
fields & = Q(¥/n,(5) such that Cy 5 is of type (5,5) and Cr5 = Céag
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Table 1: k = Q(¥/n, (5) with Cy 5 of type (5,5) and Ci 5 = C}gog

No n Factorization | n(mod 25) | Section | Cj 5 C,gog
1 55 5.11 +5 33 | (5,5)| 2
2 | 82 2.41 +7 32 | (5,5)| 2
31 93 3.31 -7 32 | (5,5)| 2
4 | 99 32.11 -1 32 | (5,5)| 2
5 | 124 22.31 -1 32 | (5,5)| 2
6 | 143 11.13 -7 32 | (5,5)| 2
7 | 151 151 +1 31 | (5,5)| 2
8 | 176 2411 +1 32 | (5,5)| 2
9 | 205 5.41 +5 33 | (5,5)| 2
10 | 251 251 +1 31 | (5,5)| 2
11 | 355 5.71 +5 33 | (5,5)| 2
12 | 382 2.191 +7 32 | (5,5)| 2
13 | 393 3.131 -7 32 | (5,5)| 2
14 | 407 11.37 +7 32 | (5,5)| 2
15 | 524 22.131 —1 32 | (5,5)| 2
16 | 543 3.181 -7 32 | (55| 2
17 | 568 23.71 -7 32 | (5,5)| 2
18 | 601 601 +1 31 | (5,5)| 2
19 | 605 5.112 +5 33 | (5,5)| 2
20 | 655 5.131 +5 33 | (5,5)| 2
21 | 724 22.181 -1 32 | (5,5)| 2
22 | 905 5.181 +5 33 | (5,5)| 2
23 | 943 23.41 -7 32 | (5,5)| 2
24 | 976 21.61 +1 32 | (5,5)| 2
25 | 982 2.491 +7 32 | (5,5)| 2
26 | 993 3.331 -7 32 | (5,5)| 2
27 | 1051 1051 +1 31 | (5,5)| 2
28 | 1301 1301 +1 31 | (5,5)| 2
29 | 1457 31.47 +7 32 | (5,5)| 2
30 | 1555 5.311 +5 33 | (5,5)| 2
31 | 1775 52.71 0 33 | (5,5)| 2
32 | 1801 1801 +1 31 | (5,5)| 2
33 | 1901 1901 +1 31 | (5,5)| 2
34 | 2155 5.431 +5 33 | (5,5)| 2
35 | 6943 53.131 -7 32 | (5,5)| 2
36 | 8275 52.331 0 33 | (5,5)| 2
37 | 8507 47.181 +7 32 | (5,5) | 2
38 | 12707 97.131 +7 32 | (5,5)| 2
39 | 30125 53.241 0 33 | (5,5)| 2
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