
International Electronic Journal of Algebra
Volume 35 (2024) 20-31
DOI: 10.24330/ieja.1388822

ON THE CAPITULATION PROBLEM OF SOME PURE METACYCLIC
FIELDS OF DEGREE 20 II

Fouad Elmouhib, Mohamed Talbi and Abdelmalek Azizi

Received: 23 May 2022; Revised: 30 September 2022; Accepted: 27 October 2022

Communicated by Tuğçe Pekacar Çalcı

Abstract. Let n be a 5th power-free natural number and k0 = Q(ζ5) be the cyclotomic field

generated by a primitive 5th root of unity ζ5. Then k = Q( 5
√
n, ζ5) is a pure metacyclic field of

absolute degree 20. In the case that k possesses a 5-class group Ck,5 of type (5, 5) and all the

classes are ambiguous under the action of Gal(k/k0), the capitulation of 5-ideal classes of k in

its unramified cyclic quintic extensions is determined.
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1. Introduction

Let k be a number field, and L be an unramified abelian extension of k. We say that an ideal
I of k or its class capitulates in L if I becomes principal in L.

Let Γ = Q( 5
√
n) be a pure quintic field, where n is a 5th power free natural number, and

k0 = Q(ζ5) be the cyclotomic field generated by a primitive 5th root of unity ζ5. Then k = Γ(ζ5)

is the normal closure of Γ and a pure metacyclic field of absolute degree 20. Let k(1)5 be the Hilbert
5-class field of k, Ck,5 be the 5-ideal class group of k and C

(σ)
k,5 be the subgroup of ambiguous ideal

classes under the action of Gal(k/k0) = ⟨σ⟩.
In the case that Ck,5 is of type (5, 5) and rank C

(σ)
k,5 = 1, the capitulation of the 5-ideal classes

of k in the six intermediate extensions of k(1)5 /k is determined in [2].
Let p and q be primes such that p ≡ 1 (mod 5) and q ≡ ±2 (mod 5). According to [1, Theorem

1.1], if Ck,5 is of type (5, 5) and rank C
(σ)
k,5 = 2, we have three forms of the radicand n as follows:

• n = pe with e ∈ {1, 2, 3, 4} and p ≡ 1 (mod 25).
• n = 5e1pe2 with e1, e2 ∈ {1, 2, 3, 4} and p ̸≡ 1 (mod 25).
• n = pe1qe2 ≡ ±1,±7 (mod 25) with e1, e2 ∈ {1, 2, 3, 4}, p ̸≡ 1 (mod 25) and q ̸≡
±7 (mod 25).

In this paper, we investigate the capitulation of the 5-ideal classes of the pure metacyclic field k

in the unramified cyclic quintic extensions of k within the Hilbert 5-class field k
(1)
5 of k, whenever

Ck,5 is of type (5, 5) and rank C
(σ)
k,5 = 2, which means that all classes are ambiguous.

We will study the capitulation of Ck,5 in the six intermediate extensions K1, . . . ,K6 of k(1)5 /k

by distinguishing the three cases of the radicand n. Figure 1 illustrates the situation.
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Figure 1: The unramified quintic sub-extensions of k(1)5 /k

The theoretical results are underpinned by numerical examples obtained with the computational
number theory system PARI/GP [6].

Notations.

Throughout this paper, we use the following notations:

• The lower case letters p and q denote a prime numbers such that, p ≡ 1 (mod 5) and
q ≡ ±2 (mod 5).

• Γ = Q( 5
√
n): a pure quintic field, where n ̸= 1 is a 5th power-free natural number.

• k0 = Q(ζ5): the cyclotomic field, where ζ5 = e2iπ/5 is a primitive 5th root of unity.
• k = Q( 5

√
n, ζ5): the normal closure of Γ, a quintic Kummer extension of k0.

• ⟨τ⟩ = Gal(k/Γ) such that τ is identity on Γ, and sends ζ5 to its square. Hence τ has
order 4.

• ⟨σ⟩ = Gal(k/k0) such that σ is identity on k0, and sends 5
√
n to ζ5 5

√
n. Hence σ has order

5.
• For a number field L, denote by:

– OL: the ring of integers of L.
– CL, hL, CL,5: the class group, class number, and 5-class group of L.
– L

(1)
5 , L∗: the Hilbert 5-class field of L, and the absolute genus field of L.

– [I]: the class of a fractional ideal I in the class group of L.
• (ab )5 = 1 ⇔ X5 ≡ a (mod b) soluble in Ok0

, where a, b are primes in Ok0
.

2. Preliminaries

2.1. Decomposition laws in Kummer extension. .
Since the pure quintic extensions of the 5th cyclotomic field k0 = Q(ζ5) and of k = Q( 5

√
n, ζ5)

are all Kummer’s extensions, we recall the decomposition laws of ideals in these extensions.

Proposition 2.1. Let L be a number field containing the lth roots of unity, where l is prime, and
θ be an element of L, such that θ ̸= µl, for all µ ∈ L. Therefore L( l

√
θ) is a cyclic extension of



22 FOUAD ELMOUHIB, MOHAMED TALBI AND ABDELMALEK AZIZI

degree l over L. We denote by ζ a primitive lth root of unity.
(1) We assume that a prime ideal P of L, divides θ exactly to the power Pa.

• If a = 0 and P does not divide l, then P splits completely in L( l
√
θ) when the congruence

θ ≡ X l (modP) has a solution in L.
• If a = 0 and P does not divide l, then P is inert in L( l

√
θ) when the congruence θ ≡

X l (modP) has no solution in L.
• If l ∤ a, then P is totally ramified in L( l

√
θ).

(2) Let B be a prime factor of 1− ζ that divides 1− ζ exactly to the ath power. Suppose that B ∤ θ,
then B splits completely in L( l

√
θ) if the congruence

θ ≡ X l (modBal+1) (∗)

has a solution in L. The ideal B is inert in L( l
√
θ) if the congruence

θ ≡ X l (modBal) (∗∗)

has a solution in L, but (∗) has no solution. The ideal B is totally ramified in L if the congruence
(∗∗) has no solution.

Proof. See [3, Theorems 118, 119]. □

2.2. Relative genus field (k/k0)
∗ of k over k0. .

Let Γ = Q( 5
√
n) be a pure quintic field, k0 = Q(ζ5) the 5th-cyclotomic field and k = Γ(ζ5)

be the normal closure of Γ. The relative genus field (k/k0)
∗ of k over k0 is the maximal abelian

extension of k0 which is contained in the Hilbert 5-class field k
(1)
5 of k.

Let q∗ be the exponent defined by [Nk/k0
(k−{0})∩Ek0 : Nk/k0

(Ek0
)] = 5q

∗
. Here Nk/k0

is the
relative norm from k to k0, and Ek0 the group of units of k0. We note that Nk/k0

(Ek0) = E5
k0

and
[Ek0

: E5
k0
] = 52, so we get that q∗ ∈ {0, 1, 2}.

The group Ek0
is generated by ζ5 and ζ5+1, then according to the definition of q∗, we see that:

q∗ =


2 if ζ, ζ + 1 ∈ Nk/k0

(k − {0}),

1 if ζi(ζ + 1)j ∈ Nk/k0
(k − {0}) for some i and j ,

0 if ζi(ζ + 1)j /∈ Nk/k0
(k − {0}) for 0 ≤ i, j ≤ 4 and i+ j ̸= 0.

The relative genus field (k/k0)
∗ is given explicitly by the following proposition by means of the

decomposition of n in k0 and the value of q∗.

Proposition 2.2. Let k = k0( 5
√
n) such that n = µλeλπe1

1 . . . π
ef
f π

ef+1

f+1 . . . π
eg
g in k0, where µ is

unity of Ok0 , λ = 1 − ζ5 the unique prime above 5 in k0 and each prime πi ≡ ±1,±7 (modλ5)

for 1 ≤ i ≤ f and πj ̸≡ ±1,±7 (modλ5) for f + 1 ≤ j ≤ g. Then we have:

(i) There exists hi ∈ {1, . . . , 4} such that πf+1π
hi
i ≡ ±1,±7 (modλ5) for f + 2 ≤ i ≤ g.

(ii) If n ̸≡ ±1,±7 (modλ5) and q∗ = 1, then the genus field (k/k0)
∗ is given as:

(k/k0)
∗ = k

(
5
√
π1, . . . , 5

√
πf ,

5

√
πf+1π

hf+2

f+2 , . . . ,
5

√
πf+1π

hg
g

)
where hi is chosen as in (i).

(iii) In the other cases of q∗ and the congruence of n, the genus field (k/k0)
∗ is given by deleting

an appropriate number of 5th root from the right side of (ii).

Proof. See [4, Proposition 5.8]. □
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3. Study of capitulation

Let Γ, k0 and k as above. If Ck,5 is of type (5, 5) and the subgroup of ambiguous classes C
(σ)
k,5

under the action of Gal(k/k0) = ⟨σ⟩ has rank 2, we have Ck,5 = C
(σ)
k,5 .

By class field theory, the principal genus C1−σ
k,5 corresponds to (k/k0)

∗, and since Ck,5 = C
(σ)
k,5

we get that C1−σ
k,5 = {1}, whence (k/k0)

∗ coincides with the Hilbert 5-class field k
(1)
5 of k.

When Ck,5 is of type (5, 5), it has 6 subgroups of order 5, denoted Hi, 1 ≤ i ≤ 6. Let Ki be
the intermediate extension of k(1)5 /k which corresponds by class field theory to Hi.
As each Ki is cyclic of order 5 over k, by Hilbert’s theorem 94, there is at least one subgroup of
order 5 of Ck,5, i.e. at least one Hl for some l ∈ {1, 2, 3, 4, 5, 6}, which capitulates in Ki.

Definition 3.1. Let Sj be a generator of Hj (1 ≤ j ≤ 6) which corresponds to Kj . For 1 ≤ j ≤ 6,
let ij ∈ {0, 1, 2, 3, 4, 5, 6}. We say that the capitulation is of type (i1, i2, i3, i4, i5, i6) to mean the
following:

(1) when ij ∈ {1, 2, 3, 4, 5, 6}, then only the class Sij and its powers capitulate in Kj ;
(2) when ij = 0, then all the 5-classes capitulate in Kj .

We find ourselves in front of 76 = 117649 possible types which need to be reduced.

Its easy to see that Ck,5 ≃ C+
k,5 × C−

k,5 such that C+
k,5 = {A ∈ Ck,5 | Aτ2

= A} and
C−

k,5 = {X ∈ Ck,5 | X τ2

= X−1}, with Gal(k/Γ) = ⟨τ⟩. We order the subgroups Hi of Ck,5

as follows:
H1 = C+

k,5 = ⟨A⟩, H6 = C−
k,5 = ⟨X ⟩, H2 = ⟨AX⟩, H3 = ⟨AX 2⟩, H4 = ⟨AX 3⟩ and

H5 = ⟨AX 4⟩.

By the action of Gal(k/Q) on Ck,5, we can give the following proposition:

Proposition 3.1. For all continuations of the automorphisms σ and τ we have:

(1) Kσ
i = Ki (i = 1, 2, 3, 4, 5, 6), i.e σ sets all Ki.

(2) Kτ2

1 = K1, Kτ2

6 = K6, Kτ2

2 = K5 and Kτ2

3 = K4. i.e τ2 sets K1, K6 and permutes
K2 with K5 and K3 with K4.

Proof. We will agree that for all 1 ≤ i ≤ 6 and for all w ∈ Gal(k/Q) we have Hw
i = {Cw | C ∈ Hi}.

(1) Since all classes are ambiguous because Ck,5 = C
(σ)
k,5 , σ sets all Hi.

(2)We have H1 = C+
k,5 = ⟨A⟩ and H6 = C−

k,5 = ⟨X ⟩, then Hτ2

1 = H1 and Hτ2

6 = H6.
- Since (AX )τ

2

= Aτ2X τ2

= AX−1 = AX 4 ∈ H5, Hτ2

2 = H5.
- Since (AX 2)τ

2

= Aτ2

(X 2)τ
2

= AX−2 = AX 3 ∈ H4, Hτ2

3 = H4.
- Since τ4 = 1, we get that Hτ2

5 = H2 and Hτ2

4 = H3.
The relations between the fields Ki in (1) and (2) are nothing else than the translations of the

corresponding relations for the subgroups Hi via class field theory. □

To study the capitulation problem of k whenever Ck,5 is of type (5, 5) and Ck,5 = C
(σ)
k,5 , we

will investigate the three forms of the radicand n proved in [1, Theorem 1.1], and mentioned above.
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3.1. The case n = pe where p ≡ 1 (mod 25). .
Let k = Γ(ζ5) be the normal closure of Γ = Q( 5

√
n), where n = pe such that p ≡ 1 (mod 25)

and e ∈ {1, 2, 3, 4}. By [5, Theorem 2.13], since p ≡ 1 (mod 5) we have that p splits completely in
k0 = Q(ζ5) as p = π1π2π3π4, with πi are primes in k0. As the discriminant of Γ/Q is 53p4, we
get that p is ramified in Γ, then the primes πi are ramified in k.

If P1,P2,P3 and P4 are respectively the prime ideals of k above π1, π2, π3 and π4, then P5
i =

πiOk (i = 1, 2, 3, 4). Since τ acts transitively on πi, we have that τ2 permutes π1 with π3, hence τ2

permutes P1 with P3. Since πσ
i = πi, we have Pσ

i = Pi. In fact [Pi] (i = 1, 2, 3, 4) generate the
subgroup of strong ambiguous ideal classes denoted C

(σ)
k,s and defined by C

(σ)
k,s = {[P] ∈ Ck,5 | Pσ =

P}.
The next theorem allow us to determine explicitly the intermediate extensions of k(1)5 /k.

Theorem 3.1. Let k and n as above. Let π1, π2, π3 and π4 be primes of k0 congruent to 1 modulo
λ5 such that p = π1π2π3π4, then:

(1) k
(1)
5 = k

(
5
√
π1, 5

√
π3

)
.

(2) The six intermediate extensions of k(1)5 /k are: k
(

5
√
π1

)
, k

(
5
√
π3

)
, k

(
5
√
π1π3

)
, k

(
5
√
π1π2

3

)
,

k
(

5
√
π1π3

3

)
and k

(
5
√

π1π4
3

)
.

Furthermore τ2 permutes k
(

5
√
π1

)
with k

(
5
√
π3

)
and k

(
5
√
π1π2

3

)
with k

(
5
√
π1π3

3

)
, and

sets k
(

5
√
π1π3

)
, k

(
5
√

π1π4
3

)
.

Proof. (1) We have that k
(1)
5 = (k/k0)

∗. Since k = k0( 5
√
n) with n = p = π1π2π3π4 in k0 and

πi ≡ 1 (modλ5) (i = 1, 2, 3, 4), by Proposition 2.2 we have (k/k0)
∗ = k

(
5
√
π1, 5

√
π3

)
.

(2) If k(1)5 = k
(

5
√
π1, 5

√
π3

)
, then the six intermediate extensions are: k

(
5
√
π1

)
, k

(
5
√
π3

)
, k

(
5
√
π1π3

)
,

k
(

5
√

π1π2
3

)
, k

(
5
√

π1π3
3

)
and k

(
5
√
π1π4

3

)
. We have τ2(π1) = π3, so it is easy to see that τ2 sets

the fields k
(

5
√
π1π3

)
, k

(
5
√
π1π4

3

)
.

Since τ2(π1) = τ2( 5
√
π5
1) = (τ2( 5

√
π1))

5 = π3, τ2( 5
√
π1) is 5th root of π3. Thus k

(
5
√
π3

)
=

k
(
τ2( 5

√
π1

)
), i.e. k

(
5
√
π3

)
= k

(
5
√
π1

)τ2

. By the same reasoning we prove that k
(

5
√
π1

)
=

k
(

5
√
π3

)τ2

. Hence τ2 permutes k
(

5
√
π1

)
with k

(
5
√
π3

)
.

We have τ2(π1π
2
3) = π2

1π3 then τ2(π1π
2
3) = τ2( 5

√
(π1π2

3)
5) = (τ2( 5

√
π1π2

3))
5 = π2

1π3, then
τ2( 5

√
π1π2

3) is 5th root of π2
1π3. Thus k

(
5
√
π2
1π3

)
= k

(
τ2( 5

√
π1π2

3

)
) i.e k

(
5
√
π2
1π3

)
= k

(
5
√
π1π3

3

)
=

k
(

5
√

π1π2
3

)τ2

. By the same reasoning we prove that k
(

5
√

π1π2
3

)
= k

(
5
√
π1π3

3

)τ2

. Hence τ2 per-

mutes k
(

5
√
π1π2

3

)
with k

(
5
√

π1π3
3

)
. □

The generators of Ck,5 when it is of type (5, 5) and the radicand n is as above are determined
as follows:

Theorem 3.2. Let k and n as above. Let π1, π2, π3 and π4 be primes of k0 congruent to 1
(modλ5) such that n = p = π1π2π3π4. Let P1,P2,P3 and P4 be prime ideals of k such that
P5
i = πiOk0 (i = 1, 2, 3, 4). Then:

Ck,5 = ⟨[P1P3], [P1P4
3 ]⟩.
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Proof. According to the proof of [1, Theorem 1.1], , for this case of the radicand n, we have that
ζi5(1 + ζ5)

j is norm of element in k − {0} for some exponents i and j. By [4, Section 5.3], if ζ5 is
not norm of unit of k we have Ck,5 = C

(σ)
k,5 ̸= C

(σ)
k,s , so C

(σ)
k,s contained in C

(σ)
k,5 . Hence we discuss

two cases:
• 1st case: Ck,5 = C

(σ)
k,5 ̸= C

(σ)
k,s :

We have that C
(σ)
k,s is contained in Ck,5 = C

(σ)
k,5 , and by [4, Section 5.3] we have C

(σ)
k,5 /C

(σ)
k,s =

Ck,5/C
(σ)
k,s is cyclic group of order 5. Since Ck,5 has order 25, C(σ)

k,s is cyclic of order 5.

We have that C
(σ)
k,s = ⟨[P1], [P2], [P3], [P4]⟩, Pτ2

1 = P3 and Pτ2

2 = P4, so P1 and P2 can not be

both principals in k, otherwise P3 = Pτ2

1 and P4 = Pτ2

2 will be principals too, Thus C(σ)
k,s = {1},

which is impossible. By the same reasoning we have that P3 and P4 can not be both principals
in k.
Since C

(σ)
k,s is cyclic of order 5 and without loosing generality, we get that C

(σ)
k,s = ⟨[P1]⟩, so P1

and P3 = Pτ2

1 are not principals. Since Ck,5 ≃ C+
k,5 × C−

k,5, it is sufficient to find generators
of C+

k,5 and C−
k,5. As [P1P3]

τ2

= [(P1P3)
τ2

] = [P1P3], then C+
k,5 = ⟨[P1P3]⟩ and [P1P4

3 ]
τ2

=

[(P1P4
3 )

τ2

] = [P4
1P3] = [P1P4

3 ]
−1, then C−

k,5 = ⟨[P1P4
3 ]⟩. Hence Ck,5 = ⟨[P1P3], [P1P4

3 ]⟩.
• 2nd case: Ck,5 = C

(σ)
k,5 = C

(σ)
k,s :

We apply the same reasoning as in the 1st case, because none of Pi (i = 1, 2, 3, 4) is principal,
otherwise Ck,5 = C

(σ)
k,s = {1}, which is impossible. Hence Ck,5 = ⟨[P1P3], [P1P4

3 ]⟩. □

Now we are able to state the main theorem of capitulation in this case.

Theorem 3.3. We keep the same assumptions as in Theorem 3.2. Then:

(1) If (π1

π3
)5 = 1 we have K1 = k

(
5
√
π1π3

)
or k

(
5
√
π1π4

3

)
, K2 = k

(
5
√
π3

)
, K3 = k

(
5
√
π1π2

3

)
or k

(
5
√
π1π3

3

)
, K4 = k

(
5
√

π1π3
3

)
or k

(
5
√

π1π2
3

)
, K5 = k

(
5
√
π1

)
and K6 = k

(
5
√

π1π4
3

)
or k

(
5
√
π1π3

)
. Otherwise we just permute K2 and K5 in equalities.

(2) [P1P3] capitulates in k
(

5
√
π1π3

)
, [Pi] capitulates in k

(
5
√
πi

)
(i = 1, 3), [P1P2

3 ] capitulates

in k
(

5
√
π1π2

3

)
, [P1P3

3 ] capitulates in k
(

5
√

π1π3
3

)
and [P1P4

3 ] capitulates in k
(

5
√
π1π4

3

)
.

(3) (i) If (π1

π3
)5 = 1 and K6 = k

(
5
√
π1π4

3

)
, then the possible types of capitulation are:

(0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0), (0, 2, 0, 0, 5, 0), (1, 2, 0, 0, 5, 0),
{(0, 0, 3, 4, 0, 0) or (0, 0, 4, 3, 0, 0)}, {(1, 0, 3, 4, 0, 0) or (1, 0, 4, 3, 0, 0)}, {(0, 2, 3, 4, 5, 0) or
(0, 2, 4, 3, 5, 0)}, {(1, 2, 3, 4, 5, 0) or (1, 2, 4, 3, 5, 0)}.

(ii) If (π1

π3
)5 = 1 and K6 = k

(
5
√
π1π3

)
then the same possible types of capitulation occur as in (i)

with i6 = 0 or 1 and i1 = 0 or 6.
(iii) If (π1

π3
)5 ̸= 1 then the same possible types of capitulation occur as (i) and (ii) by permuting 2

and 5 in the given types of capitulation.

Proof. (1) According to Theorem 3.1, we have that τ2 permutes k
(

5
√
π1

)
with k

(
5
√
π3

)
and

k
(

5
√
π1π2

3

)
with k

(
5
√
π1π3

3

)
, moreover τ2 sets k

(
5
√
π1π3

)
, k

(
5
√
π1π4

3

)
.

By class field theory Ki corresponds to Hi (i = 1, 2, 3, 4, 5, 6). We determine explicitly the six
subgroups Hi of Ck,5 as follows:
We have that Ck,5 = ⟨A,X⟩, where H1 = C+

k,5 = ⟨A⟩ and H6 = C−
k,5 = ⟨X ⟩. By Theorem 3.2

we have A = [P1P3] and X = [P1P4
3 ], then AX = [P1]

2, AX 2 = [P1P3
3 ]

3, AX 3 = [P1P2
3 ]

4 and
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AX 4 = [P3]
4. Thus H2 = ⟨[P1]⟩, H3 = ⟨[P1P3

3 ]⟩, H4 = ⟨[P1P2
3 ]⟩ and H5 = ⟨[P3]⟩. Since τ2

sets k
(

5
√
π1π3

)
and k

(
5
√

π1π4
3

)
, if K1 = k

(
5
√
π1π3

)
, then K6 = k

(
5
√

π1π4
3

)
and vice versa.

If (π1

π3
)5 = 1 then X5 ≡ π1 (modπ3) is resolved in Ok0

and by Proposition 2.1, we have that
π1 splits completely in k0( 5

√
π3), which equivalent to say that P1 splits completely in k

(
5
√
π3

)
, so

K2 = k
(

5
√
π3

)
and we get that K5 = k

(
5
√
π1

)
. If K3 = k

(
5
√

π1π2
3

)
, then K4 = k

(
5
√
π1π3

3

)
and

vice versa. Since π1 and π3 divide π1π3, π1π
2
3 , π1π

3
3 and π1π

4
3 , if (π1

π3
)5 ̸= 1, then K2 = k

(
5
√
π1

)
and K5 = k

(
5
√
π3

)
.

(2) Since P5
i = πiOk (i = 1, 3), we have (P1P3)

5 = π1π3Ok, then (P1P3)
5 = π1π3Ok( 5

√
π1π3) in

k
(

5
√
π1π3

)
and π1π3Ok( 5

√
π1π3) =

(
5
√
π1π3Ok( 5

√
π1π3)

)5, whence P1P3Ok( 5
√
π1π3) = 5

√
π1π3Ok( 5

√
π1π3).

Thus P1P3 seen in Ok( 5
√
π1π3) becomes principal, i.e [P1P3] capitulates in k

(
5
√
π1π3

)
.

Since (P1P2
3 )

5 = π1π
2
3Ok, we have (P1P2

3 )
5 = π1π

2
3Ok

(
5
√

π1π2
3

) in k
(

5
√
π1π2

3

)
and π1π

2
3Ok

(
5
√

π1π2
3

) =(
5
√
π1π2

3Ok
(

5
√

π1π2
3

))5

, hence P1P2
3Ok

(
5
√

π1π2
3

) = 5
√

π1π2
3Ok

(
5
√

π1π2
3

). Thus P1P2
3 seen in O

k
(

5
√

π1π2
3

)
becomes principal, i.e [P1P2

3 ] capitulates in k
(

5
√

π1π2
3

)
.

By the same reasoning, we have [P1P3
3 ] capitulates in k

(
5
√
π1π3

3

)
and [P1P4

3 ] capitulates in

k
(

5
√

π1π4
3

)
.

We have P5
1 = π1Ok, then P1Ok( 5

√
π1) = 5

√
π1Ok( 5

√
π1). Hence [P1] capitulates in k

(
5
√
π1

)
. By

the same reasoning, we have [P3] capitulates in k
(

5
√
π3

)
.

(3) (i) If (π1

π3
)5 = 1 and K6 = k

(
5
√
π1π4

3

)
we have [P1P4

3 ] capitulates in K6. According to

[[4], Lemma 6.2], we have that C+
k,5 ≃ CΓ,5 and by class field theory CΓ,5 ≃ Gal(Γ

(1)
5 /Γ), then we

obtain Ck,5/C
−
k,5 ≃ Gal(Γ

(1)
5 /Γ) ≃ Gal(kΓ

(1)
5 /k). Thus kΓ(1)

5 is an unramified cyclic extension of k
corresponds to C−

k,5. We denote by jk/Γ : CΓ,5 −→ Ck,5 the homomorphism induced by extension
of ideals of Γ in k. Since C+

k,5 = ⟨[P1P3]⟩ and P1P3 = jk/Γ(J ) such that CΓ,5 = ⟨J ⟩, [P1P3]

capitulates in K6 = kΓ
(1)
5 . As Ck,5 = ⟨[P1P3], [P1P4

3 ]⟩, then all classes capitulate in K6.
We determine possible types of capitulation (i1, i2, i3, i4, i5, i6). We have that i6 = 0, K2 =

Kτ2

5 , K3 = Kτ2

4 , then the same number of classes capitulate in K2, K5 and similarly for K3, K4.
If i1 ̸= 0 we have i1 = 1, if i2 ̸= 0 we have i2 = 2 and if i5 ̸= 0 we have i5 = 5. i3 and i4 are

both nulls or non nulls, so if i3 and i4 ̸= 0, then (i3, i4) = (3, 4) or (4, 3). Thus the possible types
of capitulation are:
(0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0), (0, 2, 0, 0, 5, 0), (1, 2, 0, 0, 5, 0), {(0, 0, 3, 4, 0, 0) or (0, 0, 4, 3, 0, 0)},
{(1, 0, 3, 4, 0, 0) or (1, 0, 4, 3, 0, 0)}, {(0, 2, 3, 4, 5, 0) or (0, 2, 4, 3, 5, 0)},
{(1, 2, 3, 4, 5, 0) or (1, 2, 4, 3, 5, 0)}.
(ii) If (π1

π3
)5 = 1 and K6 = k

(
5
√
π1π3

)
we have [P1P3] capitulates in K6, then if i6 ̸= 0 we have

i6 = 1. [P1P4
3 ] capitulates in K1, then if i1 ̸= 0 we have i1 = 6, so the same possible types of

capitulation occur as in (i) with i6 = 0 or 1 and i1 = 0 or 6.
(iii) If (π1

π3
)5 ̸= 1, by (1) we have K2 = k

(
5
√
π3

)
and K5 = k

(
5
√
π1

)
then the same possible types

of capitulation occur as (i) and (ii) by permuting 2 and 5 in the given types of capitulation. □

3.2. The case n = pe1qe2 ≡ ±1,±7 (mod 25) where p ̸≡ 1 (mod 25), q ̸≡ ±7 (mod 25). .
Let k = Γ(ζ5) be the normal closure of Γ = Q( 5

√
n), where n = pe1qe1 ≡ ±1,±7 (mod 25)

such that p ̸≡ 1, (mod 25), q ̸≡ ±7 (mod 25) and e1, e2 ∈ {1, 2, 3, 4}. By [5, Theorem 2.13], since
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q ≡ ±2 (mod 5) we have that q is inert in k0 = Q(ζ5), so we set in the squel q = π5 as prime in
k0.

By P1,P2,P3,P4 and P5 we denote respectively the prime ideals of k above π1, π2, π3, π4 and
π5 in k0, such that P5

i = πiOk (i = 1, 2, 3, 4, 5). We have that τ2 permutes π1 with π3, then τ2

permutes P1 with P3, moreover τ2 sets q = π5 and also P5.
The six intermediate extensions of k(1)5 /k are determined as follows:

Theorem 3.4. Let k, n, π1, π2, π3, π4 and π5 as above. Put x1 = π1π
h1
5 and x2 = π1π

4
3 where

h1 ∈ {1, 2, 3, 4} is chosen such that x1 ≡ x2 ≡ 1 (modλ5), where h1 ∈ {1, 2, 3, 4}. Then:

(1) k
(1)
5 = k

(
5
√
x1, 5

√
x2

)
.

(2) The six intermediate extensions of k(1)5 /k are:

k
(

5
√
x1

)
, k

(
5
√
x2

)
, k

(
5

√
π1π3π

2h1
5

)
, k

(
5

√
π2
1π

4
3π

h1
5

)
, k

(
5

√
π4
1π

2
3π

h1
5

)
and k

(
5

√
π3π

h1
5

)
.

Furthermore τ2 permutes k

(
5

√
π2
1π

4
3π

h1
5

)
with k

(
5

√
π4
1π

2
3π

h1
5

)
and

k
(

5
√
x1

)
with k

(
5

√
π3π

h1
5

)
, and sets k

(
5
√
x2

)
, k

(
5

√
π1π3π

2h1
5

)
.

Proof. Since k = k0 ( 5
√
n) we can write n in k0 as n = πe

1π
e
2π

e
3π

e
4π5, with πi do not all verified

πi ≡ 1 (modλ5), because we have p ̸≡ 1 (mod 25). By Proposition 2.2 there exist h1, h2 ∈
{1, .., 4} such that π1π

h1
5 ≡ ±1,±7 (modλ5) and π1π

h2
3 ≡ ±1,±7 (modλ5). To investigate the

correspondence between the six intermediate extensions of k(1)5 /k and the six subgroups of Ck,5,
we assume that h2 = 4. Put x1 = π1π

h1
5 and x2 = π1π

4
3 .

(1) The fact that k
(1)
5 = k

(
5
√
x1, 5

√
x2

)
follows from Proposition 2.2.

(2) The six intermediate extensions are: k
(

5
√
x1

)
, k

(
5
√
x2

)
, k

(
5
√
x1x2

)
, k

(
5
√

x1x2
2

)
, k

(
5
√
x1x3

2

)
and k

(
5
√
x1x4

2

)
. Since x1 = π1π

h1
5 and x2 = π1π

4
5 , we have k

(
5
√
x1x2

)
= k

(
5

√
π2
1π

4
3π

h1
5

)
,

k
(

5
√
x1x2

2

)
= k

(
5

√
π1π3π

2h1
5

)
, k

(
5
√
x1x3

2

)
= k

(
5

√
π4
1π

2
3π

h1
5

)
and k

(
5
√

x1x4
2

)
= k

(
5

√
π3π

h1
5

)
.

Since πτ2

1 = π3, πτ2

3 = π1 and πτ2

5 = π5, and by the same reasoning as (2) of Theorem 3.1 we

prove that τ2 permutes k

(
5

√
π2
1π

4
3π

h1
5

)
with k

(
5

√
π4
1π

2
3π

h1
5

)
and k

(
5
√
x1

)
with k

(
5

√
π3π

h1
5

)
,

and sets k
(

5
√
x2

)
, k

(
5

√
π1π3π

2h1
5

)
. □

The generators of Ck,5 in this case are determined as follows:

Theorem 3.5. Let k, n, π1, π2, π3, π4, π5 and h1 as above. Let P1,P2,P3,P4 and P5 prime ideals
of k such that P5

i = πiOk0
(i = 1, 2, 3, 4, 5). Then:

Ck,5 = ⟨[P1P3P2h1
5 ], [P1P4

3 ]⟩

Proof. According to [1, Theorem 1.1], for this case of the radicand n, we have that ζi5(1 + ζ5)
j

is not norm of element in k − {0} for any exponents i and j, then by [4, Section 5.3], we have
Ck,5 = C

(σ)
k,5 = C

(σ)
k,s = ⟨[P1], [P2], [P3], [P4], [P5]⟩. Since Pτ2

1 = P3, Pτ2

2 = P4 and Pτ2

5 = P5,
as the proof of Theorem 3.2 we have that P1,P3 and P5 are non principals. As [P1P3P2h1

5 ]τ
2

=

[(P1P3P2h1
5 )τ

2

] = [P3P1P2h1
5 ] = [P1P3P2h1

5 ] then C+
k,5 = ⟨[P1P3P2h1

5 ]⟩, and we have that
C−

k,5 = ⟨[P1P4
3 ]⟩. Hence Ck,5 = ⟨[P1P3P2h1

5 ], [P1P4
3 ]⟩. □
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The main theorem of capitulation in this case is as follows:

Theorem 3.6. We keep the same assumptions as Theorem 3.5. Then:

(1) K1 = k
(

5
√

π1π4
3

)
or k

(
5

√
π1π3π

2h1
5

)
, K2 = k

(
5

√
π1π

h1
5

)
or k

(
5

√
π3π

h1
5

)
, K3 = k

(
5

√
π2
1π

4
3π

h1
5

)
or k

(
5

√
π4
1π

2
3π

h1
5

)
, K4 = k

(
5

√
π4
1π

2
3π

h1
5

)
or k

(
5

√
π2
1π

4
3π

h1
5

)
, K5 = k

(
5

√
π3π

h1
5

)
or k

(
5

√
π1π

h1
5

)
and K6 = k

(
5

√
π1π3π

2h1
5

)
or k

(
5
√
π1π4

3

)
.

(2) [P1P3P2h1
5 ] capitulates in k

(
5

√
π1π3π

2h1
5

)
, [P1Ph1

5 ] capitulates in k

(
5

√
π1π

h1
5

)
, [P2

1P4
3P

h1
5 ]

capitulates in k

(
5

√
π2
1π

4
3π

h1
5

)
, [P4

1P2
3P

h1
5 ] capitulates in k

(
5

√
π4
1π

2
3π

h1
5

)
, [P3Ph1

5 ] capitulates in

k

(
5

√
π3π

h1
5

)
and [P1P4

3 ] capitulates in k
(

5
√
π1π4

3

)
.

(3) If K1 = k

(
5

√
π1π3π

2h1
5

)
, then the possible types of capitulation are:

(0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0), {(0, 5, 0, 0, 2, 0) or (0, 2, 0, 0, 5, 0)},
{(1, 5, 0, 0, 2, 0) or (1, 2, 0, 0, 5, 0)}, {(0, 5, 4, 3, 2, 0) or (0, 2, 4, 3, 5, 0)},
{(1, 5, 4, 3, 2, 0) or (1, 2, 4, 3, 5, 0)},
{(0, 5, 3, 4, 2, 0) or (0, 2, 3, 4, 5, 0)}, {(1, 5, 3, 4, 2, 0) or (1, 2, 3, 4, 5, 0)},
{(0, 0, 3, 4, 0, 0) or (0, 0, 4, 3, 0, 0)}, {(1, 0, 3, 4, 0, 0) or (1, 0, 4, 3, 0, 0)}.
If K1 = k

(
5
√
π1π4

3

)
, then the same possible types occur, where i6 takes the value 0 or 1.

Proof. (1) According to Theorem 3.4, we have that τ2 permutes k
(

5

√
π2
1π

4
3π

h1
5

)
with k

(
5

√
π4
1π

2
3π

h1
5

)
and k

(
5
√
x1

)
with k

(
5

√
π3π

h1
5

)
, and sets k

(
5
√
x2

)
, k

(
5

√
π1π3π

2h1
5

)
. We determine first the six

subgroups Hi of Ck,5. We have that Ck,5 = ⟨A,X⟩, where H1 = C+
k,5 = ⟨A⟩ and H6 = C−

k,5 =

⟨X ⟩. By Theorem 3.5 we have A = [P1P3P2h1
5 ] and X = [P1P4

3 ], then AX = [P1Ph1
5 ]2,

AX 2 = [P2
1P4

3P
h1
5 ]4, AX 3 = [P4

1P2
3P

h1
5 ] and AX 4 = [P3Ph1

5 ]3. Hence H2 = ⟨[P1Ph1
5 ]⟩,

H3 = ⟨[P2
1P4

3P
h1
5 ]⟩, H4 = ⟨[P4

1P2
3P

h1
5 ]⟩ and H5 = ⟨[P3Ph1

5 ]⟩.

Since τ2 sets k
(

5

√
π1π3π

2h1
5

)
and k

(
5
√
π1π4

3

)
, so if K1 = k

(
5

√
π1π3π

2h1
5

)
then K6 = k

(
5
√
π1π4

3

)
and inversely.

By class field theory, the fact that Hi (i = 2, 5) corresponds to Ki (i = 2, 5) means that P1Ph1
5

splits completely in K2 and P3Ph1
5 splits completely in K5. As π1π

h1
5 divides π2

1π
4
3π

h1
5 and π4

1π
2
3π

h1
5 ,

by Proposition 2.1, π1π
h1
5 can not split in k0(

5

√
π2
1π

4
3π

h1
5 ) and k0(

5

√
π4
1π

2
3π

h1
5 ), this equivalent to

say that P1Ph1
5 can not split completely in k

(
5

√
π2
1π

4
3π

h1
5

)
and k

(
5

√
π4
1π

2
3π

h1
5

)
. By the same

reasoning we have that P3Ph1
5 can not split completely in k 5

√
π2
1π

4
3π

h1
5 and k 5

√
π4
1π

2
3π

h1
5 . Thus

if K2 = k

(
5

√
π1π

h1
5

)
then K5 = k

(
5

√
π3π

h1
5

)
and inversely, which allow us to deduce that if

K3 = k

(
5

√
π2
1π

4
3π

h1
5

)
then K5 = k

(
5

√
π4
1π

2
3π

h1
5

)
and inversely.

(2) We keep the same reasoning as the proof of (2) Theorem 3.3.

(3) If K1 = k

(
5

√
π1π3π

2h1
5

)
, then K6 = kΓ

(1)
5 = k

(
5
√
π1π4

3

)
and we have that [P1P4

3 ]

capitulates in K6, moreover since C+
k,5 = ⟨[P1P3P2h1

5 ]⟩ ≃ CΓ,5 P1P3P2h1
5 = jk/Γ(J ) such
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that CΓ,5 = ⟨J ⟩, then [P1P3P2h1
5 ] capitulates in K6. As Ck,5 = ⟨[P1P3P2h1

5 ], [P1P4
3 ]⟩, then

all classes capitulate in K6 = k
(

5
√
π1π4

3

)
. We determine the possible types of capitulation

(i1, i2, i3, i4, i5, i6).
We have that i6 = 0, K2 = Kτ2

5 , K3 = Kτ2

4 , then the same number of classes capitulate in K2,
K5 and similarly for K3, K4. If i1 ̸= 0 we have i1 = 1. i2 and i5 are both nulls or non nulls, so if i2

and i5 ̸= 0, then (i2, i5) = (2, 5) or (5, 2) depending on P1Ph1
5 splits completely in k

(
5

√
π1π

h1
5

)
or in k

(
5

√
π3π

h1
5

)
. Similarly if i3 and i4 ̸= 0, then (i3, i4) = (3, 4) or (4, 3). Hence the possible

types given are proved.

If K1 = k
(

5
√

π1π4
3

)
then K6 = kΓ

(1)
5 = k

(
5

√
π1π3π

2h1
5

)
and we have C+

k,5 = ⟨[P1P3P2h1
5 ]⟩

capitulates in K6, the possible values of i2, i3, i4, i5 are as above, (i2, i5) = (2, 5) or (5, 2) if they
are non nulls, (i3, i4) = (3, 4) or (4, 3) if they are non nulls. If i1 ̸= 0 then i1 = 6 because
H6 = ⟨[P1P4

3 ]⟩, and if i6 ̸= 0 then i1 = 1 because H1 = ⟨[P1P3P2h1
5 ]⟩. Hence the possible types

given are proved. □

3.3. The case n = 5e1pe2 where p ̸≡ 1 (mod 25). .
Let k = Γ(ζ5) be the normal closure of Γ = Q( 5

√
n), where n = 5e1pe2 such that p ̸≡

1, (mod 25) and e1, e2 ∈ {1, 2, 3, 4}. By [4, Lemma 5.1], since n = 5e1pe2 ̸≡ ±1,±7, (mod 25) we
have λ = 1− ζ5 is ramified in k/k0.

Let π1, π2, π3 and π4 primes of k0 such that p = π1π2π3π4. Let P1,P2,P3,P4 and I prime
ideals of k above π1, π2, π3, π4 and λ, we have P5

i = πiOk and I5 = λOk. According to [1,
Theorem 1.1], for this case of the radicand n, we have that ζi5(1 + ζ5)

j is not norm of element in
k − {0} for any exponents i and j, then we have Ck,5 = C

(σ)
k,5 = C

(σ)
k,s . Hence the results about

the six intermediate extensions of k(1)5 /k, the generators of Ck,5 and the capitulation problem in
this case are the same as case 2 by substituting q by 5, π5 by λ and P5 by I.

4. Numerical examples

The task to determine the capitulation in a cyclic quintic extension of a base field of degree
20, that is, in a field of absolute degree 100, is definitely far beyond the reach of computational
algebra systems like MAGMA and Pari/GP. For this reason we give examples of pure metacyclic
fields k = Q( 5

√
n, ζ5) such that Ck,5 is of type (5, 5) and Ck,5 = C

(σ)
k,5 .
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Table 1: k = Q( 5
√
n, ζ5) with Ck,5 of type (5, 5) and Ck,5 = C

(σ)
k,5 .

No n Factorization n(mod 25) Section Ck,5 C
(σ)
k,5

1 55 5 . 11 +5 3.3 (5, 5) 2

2 82 2 . 41 +7 3.2 (5, 5) 2

3 93 3 . 31 −7 3.2 (5, 5) 2

4 99 32 . 11 −1 3.2 (5, 5) 2

5 124 22 . 31 −1 3.2 (5, 5) 2

6 143 11 . 13 −7 3.2 (5, 5) 2

7 151 151 +1 3.1 (5, 5) 2

8 176 24 . 11 +1 3.2 (5, 5) 2

9 205 5 . 41 +5 3.3 (5, 5) 2

10 251 251 +1 3.1 (5, 5) 2

11 355 5 . 71 +5 3.3 (5, 5) 2

12 382 2 . 191 +7 3.2 (5, 5) 2

13 393 3 . 131 −7 3.2 (5, 5) 2

14 407 11 . 37 +7 3.2 (5, 5) 2

15 524 22 . 131 −1 3.2 (5, 5) 2

16 543 3 . 181 −7 3.2 (5, 5) 2

17 568 23 . 71 −7 3.2 (5, 5) 2

18 601 601 +1 3.1 (5, 5) 2

19 605 5 . 112 +5 3.3 (5, 5) 2

20 655 5 . 131 +5 3.3 (5, 5) 2

21 724 22 . 181 −1 3.2 (5, 5) 2

22 905 5 . 181 +5 3.3 (5, 5) 2

23 943 23 . 41 −7 3.2 (5, 5) 2

24 976 24 . 61 +1 3.2 (5, 5) 2

25 982 2 . 491 +7 3.2 (5, 5) 2

26 993 3 . 331 −7 3.2 (5, 5) 2

27 1051 1051 +1 3.1 (5, 5) 2

28 1301 1301 +1 3.1 (5, 5) 2

29 1457 31 . 47 +7 3.2 (5, 5) 2

30 1555 5 . 311 +5 3.3 (5, 5) 2

31 1775 52 . 71 0 3.3 (5, 5) 2

32 1801 1801 +1 3.1 (5, 5) 2

33 1901 1901 +1 3.1 (5, 5) 2

34 2155 5 . 431 +5 3.3 (5, 5) 2

35 6943 53 . 131 −7 3.2 (5, 5) 2

36 8275 52 . 331 0 3.3 (5, 5) 2

37 8507 47 . 181 +7 3.2 (5, 5) 2

38 12707 97 . 131 +7 3.2 (5, 5) 2

39 30125 53 . 241 0 3.3 (5, 5) 2
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