ON THE CAPITULATION PROBLEM OF SOME PURE METACYCLIC FIELDS OF DEGREE 20 II

Fouad Elmouhib, Mohamed Talbi and Abdelmalek Azizi
Received: 23 May 2022; Revised: 30 September 2022; Accepted: 27 October 2022
Communicated by Tuğçe Pekacar Çalcı

Abstract

Let n be a $5^{t h}$ power-free natural number and $k_{0}=\mathbb{Q}\left(\zeta_{5}\right)$ be the cyclotomic field generated by a primitive $5^{t h}$ root of unity ζ_{5}. Then $k=\mathbb{Q}\left(\sqrt[5]{n}, \zeta_{5}\right)$ is a pure metacyclic field of absolute degree 20. In the case that k possesses a 5 -class group $C_{k, 5}$ of type $(5,5)$ and all the classes are ambiguous under the action of $\operatorname{Gal}\left(k / k_{0}\right)$, the capitulation of 5-ideal classes of k in its unramified cyclic quintic extensions is determined.

Mathematics Subject Classification (2020): 11R04, 11R18, 11R29, 11R37
Keywords: Pure metacyclic field, 5-class group, Hilbert 5-class field, capitulation

1. Introduction

Let k be a number field, and L be an unramified abelian extension of k. We say that an ideal \mathcal{I} of k or its class capitulates in L if \mathcal{I} becomes principal in L.

Let $\Gamma=\mathbb{Q}(\sqrt[5]{n})$ be a pure quintic field, where n is a $5^{t h}$ power free natural number, and $k_{0}=\mathbb{Q}\left(\zeta_{5}\right)$ be the cyclotomic field generated by a primitive $5^{t h}$ root of unity ζ_{5}. Then $k=\Gamma\left(\zeta_{5}\right)$ is the normal closure of Γ and a pure metacyclic field of absolute degree 20. Let $k_{5}^{(1)}$ be the Hilbert 5 -class field of $k, C_{k, 5}$ be the 5-ideal class group of k and $C_{k, 5}^{(\sigma)}$ be the subgroup of ambiguous ideal classes under the action of $\operatorname{Gal}\left(k / k_{0}\right)=\langle\sigma\rangle$.

In the case that $C_{k, 5}$ is of type $(5,5)$ and $\operatorname{rank} C_{k, 5}^{(\sigma)}=1$, the capitulation of the 5 -ideal classes of k in the six intermediate extensions of $k_{5}^{(1)} / k$ is determined in [2].

Let p and q be primes such that $p \equiv 1(\bmod 5)$ and $q \equiv \pm 2(\bmod 5)$. According to $[1$, Theorem 1.1], if $C_{k, 5}$ is of type $(5,5)$ and rank $C_{k, 5}^{(\sigma)}=2$, we have three forms of the radicand n as follows:

- $n=p^{e}$ with $e \in\{1,2,3,4\}$ and $p \equiv 1(\bmod 25)$.
- $n=5^{e_{1}} p^{e_{2}}$ with $e_{1}, e_{2} \in\{1,2,3,4\}$ and $p \not \equiv 1(\bmod 25)$.
- $n=p^{e_{1}} q^{e_{2}} \equiv \pm 1, \pm 7(\bmod 25)$ with $e_{1}, e_{2} \in\{1,2,3,4\}, p \not \equiv 1(\bmod 25)$ and $q \not \equiv$ $\pm 7(\bmod 25)$.

In this paper, we investigate the capitulation of the 5 -ideal classes of the pure metacyclic field k in the unramified cyclic quintic extensions of k within the Hilbert 5 -class field $k_{5}^{(1)}$ of k, whenever $C_{k, 5}$ is of type $(5,5)$ and rank $C_{k, 5}^{(\sigma)}=2$, which means that all classes are ambiguous.

We will study the capitulation of $C_{k, 5}$ in the six intermediate extensions K_{1}, \ldots, K_{6} of $k_{5}^{(1)} / k$ by distinguishing the three cases of the radicand n. Figure 1 illustrates the situation.

Figure 1: The unramified quintic sub-extensions of $k_{5}^{(1)} / k$
The theoretical results are underpinned by numerical examples obtained with the computational number theory system PARI/GP [6].

Notations.

Throughout this paper, we use the following notations:

- The lower case letters p and q denote a prime numbers such that, $p \equiv 1(\bmod 5)$ and $q \equiv \pm 2(\bmod 5)$.
- $\Gamma=\mathbb{Q}(\sqrt[5]{n})$: a pure quintic field, where $n \neq 1$ is a $5^{t h}$ power-free natural number.
- $k_{0}=\mathbb{Q}\left(\zeta_{5}\right)$: the cyclotomic field, where $\zeta_{5}=e^{2 i \pi / 5}$ is a primitive $5^{\text {th }}$ root of unity.
- $k=\mathbb{Q}\left(\sqrt[5]{n}, \zeta_{5}\right)$: the normal closure of Γ, a quintic Kummer extension of k_{0}.
- $\langle\tau\rangle=\operatorname{Gal}(k / \Gamma)$ such that τ is identity on Γ, and sends ζ_{5} to its square. Hence τ has order 4.
- $\langle\sigma\rangle=\operatorname{Gal}\left(k / k_{0}\right)$ such that σ is identity on k_{0}, and sends $\sqrt[5]{n}$ to $\zeta_{5} \sqrt[5]{n}$. Hence σ has order 5.
- For a number field L, denote by:
- \mathcal{O}_{L} : the ring of integers of L.
- $C_{L}, h_{L}, C_{L, 5}$: the class group, class number, and 5-class group of L.
- $L_{5}^{(1)}, L^{*}$: the Hilbert 5 -class field of L, and the absolute genus field of L.
$-[\mathcal{I}]$: the class of a fractional ideal \mathcal{I} in the class group of L.
- $\left(\frac{a}{b}\right)_{5}=1 \Leftrightarrow X^{5} \equiv a(\bmod b)$ soluble in $\mathcal{O}_{k_{0}}$, where a, b are primes in $\mathcal{O}_{k_{0}}$.

2. Preliminaries

2.1. Decomposition laws in Kummer extension.

Since the pure quintic extensions of the $5^{t h}$ cyclotomic field $k_{0}=\mathbb{Q}\left(\zeta_{5}\right)$ and of $k=\mathbb{Q}\left(\sqrt[5]{n}, \zeta_{5}\right)$ are all Kummer's extensions, we recall the decomposition laws of ideals in these extensions.

Proposition 2.1. Let L be a number field containing the $l^{\text {th }}$ roots of unity, where l is prime, and θ be an element of L, such that $\theta \neq \mu^{l}$, for all $\mu \in L$. Therefore $L(\sqrt[l]{\theta})$ is a cyclic extension of
degree l over L. We denote by ζ a primitive $l^{\text {th }}$ root of unity.
(1) We assume that a prime ideal \mathcal{P} of L, divides θ exactly to the power \mathcal{P}^{a}.

- If $a=0$ and \mathcal{P} does not divide l, then \mathcal{P} splits completely in $L(\sqrt[l]{\theta})$ when the congruence $\theta \equiv X^{l}(\bmod \mathcal{P})$ has a solution in L.
- If $a=0$ and \mathcal{P} does not divide l, then \mathcal{P} is inert in $L(\sqrt[l]{\theta})$ when the congruence $\theta \equiv$ $X^{l}(\bmod \mathcal{P})$ has no solution in L.
- If $l \nmid a$, then \mathcal{P} is totally ramified in $L(\sqrt[l]{\theta})$.
(2) Let \mathcal{B} be a prime factor of $1-\zeta$ that divides $1-\zeta$ exactly to the $a^{\text {th }}$ power. Suppose that $\mathcal{B} \nmid \theta$, then \mathcal{B} splits completely in $L(\sqrt[l]{\theta})$ if the congruence

$$
\begin{equation*}
\theta \equiv X^{l}\left(\bmod \mathcal{B}^{a l+1}\right) \tag{*}
\end{equation*}
$$

has a solution in L. The ideal \mathcal{B} is inert in $L(\sqrt[l]{\theta})$ if the congruence

$$
\begin{equation*}
\theta \equiv X^{l}\left(\bmod \mathcal{B}^{a l}\right) \tag{**}
\end{equation*}
$$

has a solution in L, but (*) has no solution. The ideal \mathcal{B} is totally ramified in L if the congruence (**) has no solution.

Proof. See [3, Theorems 118, 119].
2.2. Relative genus field $\left(k / k_{0}\right)^{*}$ of k over k_{0}.

Let $\Gamma=\mathbb{Q}(\sqrt[5]{n})$ be a pure quintic field, $k_{0}=\mathbb{Q}\left(\zeta_{5}\right)$ the $5^{t h}$-cyclotomic field and $k=\Gamma\left(\zeta_{5}\right)$ be the normal closure of Γ. The relative genus field $\left(k / k_{0}\right)^{*}$ of k over k_{0} is the maximal abelian extension of k_{0} which is contained in the Hilbert 5 -class field $k_{5}^{(1)}$ of k.

Let q^{*} be the exponent defined by $\left[N_{k / k_{0}}(k-\{0\}) \cap E_{k_{0}}: N_{k / k_{0}}\left(E_{k_{0}}\right)\right]=5^{q^{*}}$. Here $N_{k / k_{0}}$ is the relative norm from k to k_{0}, and $E_{k_{0}}$ the group of units of k_{0}. We note that $N_{k / k_{0}}\left(E_{k_{0}}\right)=E_{k_{0}}^{5}$ and $\left[E_{k_{0}}: E_{k_{0}}^{5}\right]=5^{2}$, so we get that $q^{*} \in\{0,1,2\}$.

The group $E_{k_{0}}$ is generated by ζ_{5} and $\zeta_{5}+1$, then according to the definition of q^{*}, we see that:

$$
q^{*}= \begin{cases}2 & \text { if } \zeta, \zeta+1 \in N_{k / k_{0}}(k-\{0\}) \\ 1 & \text { if } \zeta^{i}(\zeta+1)^{j} \in N_{k / k_{0}}(k-\{0\}) \text { for some i and } \mathrm{j} \\ 0 & \text { if } \zeta^{i}(\zeta+1)^{j} \notin N_{k / k_{0}}(k-\{0\}) \text { for } 0 \leq i, j \leq 4 \text { and } i+j \neq 0\end{cases}
$$

The relative genus field $\left(k / k_{0}\right)^{*}$ is given explicitly by the following proposition by means of the decomposition of n in k_{0} and the value of q^{*}.

Proposition 2.2. Let $k=k_{0}(\sqrt[5]{n})$ such that $n=\mu \lambda^{e_{\lambda}} \pi_{1}^{e_{1}} \ldots \pi_{f}^{e_{f}} \pi_{f+1}^{e_{f+1}} \ldots \pi_{g}^{e_{g}}$ in k_{0}, where μ is unity of $\mathcal{O}_{k_{0}}, \lambda=1-\zeta_{5}$ the unique prime above 5 in k_{0} and each prime $\pi_{i} \equiv \pm 1, \pm 7\left(\bmod \lambda^{5}\right)$ for $1 \leq i \leq f$ and $\pi_{j} \not \equiv \pm 1, \pm 7\left(\bmod \lambda^{5}\right)$ for $f+1 \leq j \leq g$. Then we have:
(i) There exists $h_{i} \in\{1, \ldots, 4\}$ such that $\pi_{f+1} \pi_{i}^{h_{i}} \equiv \pm 1, \pm 7\left(\bmod \lambda^{5}\right)$ for $f+2 \leq i \leq g$.
(ii) If $n \not \equiv \pm 1, \pm 7\left(\bmod \lambda^{5}\right)$ and $q^{*}=1$, then the genus field $\left(k / k_{0}\right)^{*}$ is given as:

$$
\left(k / k_{0}\right)^{*}=k\left(\sqrt[5]{\pi_{1}}, \ldots, \sqrt[5]{\pi_{f}}, \sqrt[5]{\pi_{f+1} \pi_{f+2}^{h_{f+2}}}, \ldots, \sqrt[5]{\pi_{f+1} \pi_{g}^{h_{g}}}\right)
$$

where h_{i} is chosen as in (i).
(iii) In the other cases of q^{*} and the congruence of n, the genus field $\left(k / k_{0}\right)^{*}$ is given by deleting an appropriate number of $5^{\text {th }}$ root from the right side of (ii).

Proof. See [4, Proposition 5.8].

3. Study of capitulation

Let Γ, k_{0} and k as above. If $C_{k, 5}$ is of type $(5,5)$ and the subgroup of ambiguous classes $C_{k, 5}^{(\sigma)}$ under the action of $\operatorname{Gal}\left(k / k_{0}\right)=\langle\sigma\rangle$ has rank 2 , we have $C_{k, 5}=C_{k, 5}^{(\sigma)}$.

By class field theory, the principal genus $C_{k, 5}^{1-\sigma}$ corresponds to $\left(k / k_{0}\right)^{*}$, and since $C_{k, 5}=C_{k, 5}^{(\sigma)}$ we get that $C_{k, 5}^{1-\sigma}=\{1\}$, whence $\left(k / k_{0}\right)^{*}$ coincides with the Hilbert 5 -class field $k_{5}^{(1)}$ of k.

When $C_{k, 5}$ is of type (5,5), it has 6 subgroups of order 5 , denoted $H_{i}, 1 \leq i \leq 6$. Let K_{i} be the intermediate extension of $k_{5}^{(1)} / k$ which corresponds by class field theory to H_{i}.
As each K_{i} is cyclic of order 5 over k, by Hilbert's theorem 94, there is at least one subgroup of order 5 of $C_{k, 5}$, i.e. at least one H_{l} for some $l \in\{1,2,3,4,5,6\}$, which capitulates in K_{i}.

Definition 3.1. Let \mathcal{S}_{j} be a generator of $H_{j}(1 \leq j \leq 6)$ which corresponds to K_{j}. For $1 \leq j \leq 6$, let $i_{j} \in\{0,1,2,3,4,5,6\}$. We say that the capitulation is of type $\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right)$ to mean the following:
(1) when $i_{j} \in\{1,2,3,4,5,6\}$, then only the class $\mathcal{S}_{i_{j}}$ and its powers capitulate in K_{j};
(2) when $i_{j}=0$, then all the 5 -classes capitulate in K_{j}.

We find ourselves in front of $7^{6}=117649$ possible types which need to be reduced.
Its easy to see that $C_{k, 5} \simeq C_{k, 5}^{+} \times C_{k, 5}^{-}$such that $C_{k, 5}^{+}=\left\{\mathcal{A} \in C_{k, 5} \mid \mathcal{A}^{\tau^{2}}=\mathcal{A}\right\}$ and $C_{k, 5}^{-}=\left\{\mathcal{X} \in C_{k, 5} \mid \mathcal{X}^{\tau^{2}}=\mathcal{X}^{-1}\right\}$, with $\operatorname{Gal}(k / \Gamma)=\langle\tau\rangle$. We order the subgroups H_{i} of $C_{k, 5}$ as follows:
$H_{1}=C_{k, 5}^{+}=\langle\mathcal{A}\rangle, H_{6}=C_{k, 5}^{-}=\langle\mathcal{X}\rangle, H_{2}=\langle\mathcal{A X}\rangle, H_{3}=\left\langle\mathcal{A} \mathcal{X}^{2}\right\rangle, H_{4}=\left\langle\mathcal{A X} \mathcal{X}^{3}\right\rangle$ and $H_{5}=\left\langle\mathcal{A} \mathcal{X}^{4}\right\rangle$.

By the action of $\operatorname{Gal}(k / \mathbb{Q})$ on $C_{k, 5}$, we can give the following proposition:
Proposition 3.1. For all continuations of the automorphisms σ and τ we have:
(1) $K_{i}^{\sigma}=K_{i}(i=1,2,3,4,5,6)$, i.e σ sets all K_{i}.
(2) $K_{1}^{\tau^{2}}=K_{1}, K_{6}^{\tau^{2}}=K_{6}, K_{2}^{\tau^{2}}=K_{5}$ and $K_{3}^{\tau^{2}}=K_{4}$. i.e τ^{2} sets K_{1}, K_{6} and permutes K_{2} with K_{5} and K_{3} with K_{4}.

Proof. We will agree that for all $1 \leq i \leq 6$ and for all $w \in \operatorname{Gal}(k / \mathbb{Q})$ we have $H_{i}^{w}=\left\{\mathcal{C}^{w} \mid \mathcal{C} \in H_{i}\right\}$.
(1) Since all classes are ambiguous because $C_{k, 5}=C_{k, 5}^{(\sigma)}, \sigma$ sets all H_{i}.
(2) We have $H_{1}=C_{k, 5}^{+}=\langle\mathcal{A}\rangle$ and $H_{6}=C_{k, 5}^{-}=\langle\mathcal{X}\rangle$, then $H_{1}^{\tau^{2}}=H_{1}$ and $H_{6}^{\tau^{2}}=H_{6}$.

- Since $(\mathcal{A X})^{\tau^{2}}=\mathcal{A}^{\tau^{2}} \mathcal{X}^{\tau^{2}}=\mathcal{A} \mathcal{X}^{-1}=\mathcal{A} \mathcal{X}^{4} \in H_{5}, H_{2}^{\tau^{2}}=H_{5}$.
- Since $\left(\mathcal{A} \mathcal{X}^{2}\right)^{\tau^{2}}=\mathcal{A}^{\tau^{2}}\left(\mathcal{X}^{2}\right)^{\tau^{2}}=\mathcal{A} \mathcal{X}^{-2}=\mathcal{A} \mathcal{X}^{3} \in H_{4}, H_{3}^{\tau^{2}}=H_{4}$.
- Since $\tau^{4}=1$, we get that $H_{5}^{\tau^{2}}=H_{2}$ and $H_{4}^{\tau^{2}}=H_{3}$.

The relations between the fields K_{i} in (1) and (2) are nothing else than the translations of the corresponding relations for the subgroups H_{i} via class field theory.

To study the capitulation problem of k whenever $C_{k, 5}$ is of type $(5,5)$ and $C_{k, 5}=C_{k, 5}^{(\sigma)}$, we will investigate the three forms of the radicand n proved in [1, Theorem 1.1], and mentioned above.
3.1. The case $n=p^{e}$ where $p \equiv 1(\bmod 25)$.

Let $k=\Gamma\left(\zeta_{5}\right)$ be the normal closure of $\Gamma=\mathbb{Q}(\sqrt[5]{n})$, where $n=p^{e}$ such that $p \equiv 1(\bmod 25)$ and $e \in\{1,2,3,4\}$. By [5, Theorem 2.13], since $p \equiv 1(\bmod 5)$ we have that p splits completely in $k_{0}=\mathbb{Q}\left(\zeta_{5}\right)$ as $p=\pi_{1} \pi_{2} \pi_{3} \pi_{4}$, with π_{i} are primes in k_{0}. As the discriminant of Γ / \mathbb{Q} is $5^{3} p^{4}$, we get that p is ramified in Γ, then the primes π_{i} are ramified in k.

If $\mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{P}_{3}$ and \mathcal{P}_{4} are respectively the prime ideals of k above $\pi_{1}, \pi_{2}, \pi_{3}$ and π_{4}, then $\mathcal{P}_{i}^{5}=$ $\pi_{i} \mathcal{O}_{k}(i=1,2,3,4)$. Since τ acts transitively on π_{i}, we have that τ^{2} permutes π_{1} with π_{3}, hence τ^{2} permutes \mathcal{P}_{1} with \mathcal{P}_{3}. Since $\pi_{i}^{\sigma}=\pi_{i}$, we have $\mathcal{P}_{i}^{\sigma}=\mathcal{P}_{i}$. In fact $\left[\mathcal{P}_{i}\right](i=1,2,3,4)$ generate the subgroup of strong ambiguous ideal classes denoted $C_{k, s}^{(\sigma)}$ and defined by $C_{k, s}^{(\sigma)}=\left\{[\mathcal{P}] \in C_{k, 5} \mid \mathcal{P}^{\sigma}=\right.$ $\mathcal{P}\}$.

The next theorem allow us to determine explicitly the intermediate extensions of $k_{5}^{(1)} / k$.
Theorem 3.1. Let k and n as above. Let $\pi_{1}, \pi_{2}, \pi_{3}$ and π_{4} be primes of k_{0} congruent to 1 modulo λ^{5} such that $p=\pi_{1} \pi_{2} \pi_{3} \pi_{4}$, then:
(1) $k_{5}^{(1)}=k\left(\sqrt[5]{\pi_{1}}, \sqrt[5]{\pi_{3}}\right)$.
(2) The six intermediate extensions of $k_{5}^{(1)} / k$ are: $k\left(\sqrt[5]{\pi_{1}}\right), k\left(\sqrt[5]{\pi_{3}}\right), k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right), k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)$, $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{3}}\right)$ and $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$.
Furthermore τ^{2} permutes $k\left(\sqrt[5]{\pi_{1}}\right)$ with $k\left(\sqrt[5]{\pi_{3}}\right)$ and $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)$ with $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{3}}\right)$, and sets $k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right), k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$.

Proof. (1) We have that $k_{5}^{(1)}=\left(k / k_{0}\right)^{*}$. Since $k=k_{0}(\sqrt[5]{n})$ with $n=p=\pi_{1} \pi_{2} \pi_{3} \pi_{4}$ in k_{0} and $\pi_{i} \equiv 1\left(\bmod \lambda^{5}\right)(i=1,2,3,4)$, by Proposition 2.2 we have $\left(k / k_{0}\right)^{*}=k\left(\sqrt[5]{\pi_{1}}, \sqrt[5]{\pi_{3}}\right)$.
(2) If $k_{5}^{(1)}=k\left(\sqrt[5]{\pi_{1}}, \sqrt[5]{\pi_{3}}\right)$, then the six intermediate extensions are: $k\left(\sqrt[5]{\pi_{1}}\right), k\left(\sqrt[5]{\pi_{3}}\right), k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right)$, $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right), k\left(\sqrt[5]{\pi_{1} \pi_{3}^{3}}\right)$ and $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$. We have $\tau^{2}\left(\pi_{1}\right)=\pi_{3}$, so it is easy to see that τ^{2} sets the fields $k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right), k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$.
Since $\tau^{2}\left(\pi_{1}\right)=\tau^{2}\left(\sqrt[5]{\pi_{1}^{5}}\right)=\left(\tau^{2}\left(\sqrt[5]{\pi_{1}}\right)\right)^{5}=\pi_{3}, \tau^{2}\left(\sqrt[5]{\pi_{1}}\right)$ is $5^{\text {th }}$ root of π_{3}. Thus $k\left(\sqrt[5]{\pi_{3}}\right)=$ $k\left(\tau^{2}\left(\sqrt[5]{\pi_{1}}\right)\right.$, i.e. $k\left(\sqrt[5]{\pi_{3}}\right)=k\left(\sqrt[5]{\pi_{1}}\right)^{\tau^{2}}$. By the same reasoning we prove that $k\left(\sqrt[5]{\pi_{1}}\right)=$ $k\left(\sqrt[5]{\pi_{3}}\right)^{\tau^{2}}$. Hence τ^{2} permutes $k\left(\sqrt[5]{\pi_{1}}\right)$ with $k\left(\sqrt[5]{\pi_{3}}\right)$.
We have $\tau^{2}\left(\pi_{1} \pi_{3}^{2}\right)=\pi_{1}^{2} \pi_{3}$ then $\tau^{2}\left(\pi_{1} \pi_{3}^{2}\right)=\tau^{2}\left(\sqrt[5]{\left(\pi_{1} \pi_{3}^{2}\right)^{5}}\right)=\left(\tau^{2}\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)\right)^{5}=\pi_{1}^{2} \pi_{3}$, then $\tau^{2}\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)$ is $5^{\text {th }}$ root of $\pi_{1}^{2} \pi_{3}$. Thus $k\left(\sqrt[5]{\pi_{1}^{2} \pi_{3}}\right)=k\left(\tau^{2}\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)\right)$ i.e $k\left(\sqrt[5]{\pi_{1}^{2} \pi_{3}}\right)=k\left(\sqrt[5]{\pi_{1} \pi_{3}^{3}}\right)=$ $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)^{\tau^{2}}$. By the same reasoning we prove that $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)=k\left(\sqrt[5]{\pi_{1} \pi_{3}^{3}}\right)^{\tau^{2}}$. Hence τ^{2} permutes $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)$ with $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{3}}\right)$.

The generators of $C_{k, 5}$ when it is of type $(5,5)$ and the radicand n is as above are determined as follows:

Theorem 3.2. Let k and n as above. Let $\pi_{1}, \pi_{2}, \pi_{3}$ and π_{4} be primes of k_{0} congruent to 1 $\left(\bmod \lambda^{5}\right)$ such that $n=p=\pi_{1} \pi_{2} \pi_{3} \pi_{4}$. Let $\mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{P}_{3}$ and \mathcal{P}_{4} be prime ideals of k such that $\mathcal{P}_{i}^{5}=\pi_{i} \mathcal{O}_{k_{0}}(i=1,2,3,4)$. Then:

$$
C_{k, 5}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{3}\right],\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]\right\rangle
$$

Proof. According to the proof of [1, Theorem 1.1], , for this case of the radicand n, we have that $\zeta_{5}^{i}\left(1+\zeta_{5}\right)^{j}$ is norm of element in $k-\{0\}$ for some exponents i and j. By [4, Section 5.3], if ζ_{5} is not norm of unit of k we have $C_{k, 5}=C_{k, 5}^{(\sigma)} \neq C_{k, s}^{(\sigma)}$, so $C_{k, s}^{(\sigma)}$ contained in $C_{k, 5}^{(\sigma)}$. Hence we discuss two cases:

- $1^{\text {st }}$ case: $C_{k, 5}=C_{k, 5}^{(\sigma)} \neq C_{k, s}^{(\sigma)}$:

We have that $C_{k, s}^{(\sigma)}$ is contained in $C_{k, 5}=C_{k, 5}^{(\sigma)}$, and by [4, Section 5.3] we have $C_{k, 5}^{(\sigma)} / C_{k, s}^{(\sigma)}=$ $C_{k, 5} / C_{k, s}^{(\sigma)}$ is cyclic group of order 5 . Since $C_{k, 5}$ has order $25, C_{k, s}^{(\sigma)}$ is cyclic of order 5.
We have that $C_{k, s}^{(\sigma)}=\left\langle\left[\mathcal{P}_{1}\right],\left[\mathcal{P}_{2}\right],\left[\mathcal{P}_{3}\right],\left[\mathcal{P}_{4}\right]\right\rangle, \mathcal{P}_{1}^{\tau^{2}}=\mathcal{P}_{3}$ and $\mathcal{P}_{2}^{\tau^{2}}=\mathcal{P}_{4}$, so \mathcal{P}_{1} and \mathcal{P}_{2} can not be both principals in k, otherwise $\mathcal{P}_{3}=\mathcal{P}_{1}^{\tau^{2}}$ and $\mathcal{P}_{4}=\mathcal{P}_{2}^{\tau^{2}}$ will be principals too, Thus $C_{k, s}^{(\sigma)}=\{1\}$, which is impossible. By the same reasoning we have that \mathcal{P}_{3} and \mathcal{P}_{4} can not be both principals in k.
Since $C_{k, s}^{(\sigma)}$ is cyclic of order 5 and without loosing generality, we get that $C_{k, s}^{(\sigma)}=\left\langle\left[\mathcal{P}_{1}\right]\right\rangle$, so \mathcal{P}_{1} and $\mathcal{P}_{3}=\mathcal{P}_{1}^{\tau^{2}}$ are not principals. Since $C_{k, 5} \simeq C_{k, 5}^{+} \times C_{k, 5}^{-}$, it is sufficient to find generators of $C_{k, 5}^{+}$and $C_{k, 5}^{-}$. As $\left[\mathcal{P}_{1} \mathcal{P}_{3}\right]^{\tau^{2}}=\left[\left(\mathcal{P}_{1} \mathcal{P}_{3}\right)^{\tau^{2}}\right]=\left[\mathcal{P}_{1} \mathcal{P}_{3}\right]$, then $C_{k, 5}^{+}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{3}\right]\right\rangle$ and $\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]^{\tau^{2}}=$ $\left[\left(\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right)^{\tau^{2}}\right]=\left[\mathcal{P}_{1}^{4} \mathcal{P}_{3}\right]=\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]^{-1}$, then $C_{k, 5}^{-}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]\right\rangle$. Hence $C_{k, 5}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{3}\right],\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]\right\rangle$.

- $2^{\text {nd }}$ case: $C_{k, 5}=C_{k, 5}^{(\sigma)}=C_{k, s}^{(\sigma)}$:

We apply the same reasoning as in the $1^{\text {st }}$ case, because none of $\mathcal{P}_{i}(i=1,2,3,4)$ is principal, otherwise $C_{k, 5}=C_{k, s}^{(\sigma)}=\{1\}$, which is impossible. Hence $C_{k, 5}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{3}\right],\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]\right\rangle$.

Now we are able to state the main theorem of capitulation in this case.
Theorem 3.3. We keep the same assumptions as in Theorem 3.2. Then:
(1) If $\left(\frac{\pi_{1}}{\pi_{3}}\right)_{5}=1$ we have $K_{1}=k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right)$ or $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right), K_{2}=k\left(\sqrt[5]{\pi_{3}}\right), K_{3}=k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)$ or $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{3}}\right), K_{4}=k\left(\sqrt[5]{\pi_{1} \pi_{3}^{3}}\right)$ or $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right), K_{5}=k\left(\sqrt[5]{\pi_{1}}\right)$ and $K_{6}=k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$ or $k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right)$. Otherwise we just permute K_{2} and K_{5} in equalities.
(2) $\left[\mathcal{P}_{1} \mathcal{P}_{3}\right]$ capitulates in $k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right),\left[\mathcal{P}_{i}\right]$ capitulates in $k\left(\sqrt[5]{\pi_{i}}\right)(i=1,3),\left[\mathcal{P}_{1} \mathcal{P}_{3}^{2}\right]$ capitulates in $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right),\left[\mathcal{P}_{1} \mathcal{P}_{3}^{3}\right]$ capitulates in $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{3}}\right)$ and $\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]$ capitulates in $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$.
(3) (i) If $\left(\frac{\pi_{1}}{\pi_{3}}\right)_{5}=1$ and $K_{6}=k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$, then the possible types of capitulation are: $(0,0,0,0,0,0),(1,0,0,0,0,0),(0,2,0,0,5,0),(1,2,0,0,5,0)$, $\{(0,0,3,4,0,0)$ or $(0,0,4,3,0,0)\},\{(1,0,3,4,0,0)$ or $(1,0,4,3,0,0)\},\{(0,2,3,4,5,0)$ or $(0,2,4,3,5,0)\},\{(1,2,3,4,5,0)$ or $(1,2,4,3,5,0)\}$.
(ii) If $\left(\frac{\pi_{1}}{\pi_{3}}\right)_{5}=1$ and $K_{6}=k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right)$ then the same possible types of capitulation occur as in (i) with $i_{6}=0$ or 1 and $i_{1}=0$ or 6 .
(iii) If $\left(\frac{\pi_{1}}{\pi_{3}}\right)_{5} \neq 1$ then the same possible types of capitulation occur as (i) and (ii) by permuting 2 and 5 in the given types of capitulation.

Proof. (1) According to Theorem 3.1, we have that τ^{2} permutes $k\left(\sqrt[5]{\pi_{1}}\right)$ with $k\left(\sqrt[5]{\pi_{3}}\right)$ and $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)$ with $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{3}}\right)$, moreover τ^{2} sets $k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right), k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$.
By class field theory K_{i} corresponds to $H_{i}(i=1,2,3,4,5,6)$. We determine explicitly the six subgroups H_{i} of $C_{k, 5}$ as follows:
We have that $C_{k, 5}=\langle\mathcal{A}, \mathcal{X}\rangle$, where $H_{1}=C_{k, 5}^{+}=\langle\mathcal{A}\rangle$ and $H_{6}=C_{k, 5}^{-}=\langle\mathcal{X}\rangle$. By Theorem 3.2 we have $\mathcal{A}=\left[\mathcal{P}_{1} \mathcal{P}_{3}\right]$ and $\mathcal{X}=\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]$, then $\mathcal{A X}=\left[\mathcal{P}_{1}\right]^{2}, \mathcal{A} \mathcal{X}^{2}=\left[\mathcal{P}_{1} \mathcal{P}_{3}^{3}\right]^{3}, \mathcal{A} \mathcal{X}^{3}=\left[\mathcal{P}_{1} \mathcal{P}_{3}^{2}\right]^{4}$ and
$\mathcal{A} \mathcal{X}^{4}=\left[\mathcal{P}_{3}\right]^{4}$. Thus $H_{2}=\left\langle\left[\mathcal{P}_{1}\right]\right\rangle, H_{3}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{3}^{3}\right]\right\rangle, H_{4}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{3}^{2}\right]\right\rangle$ and $H_{5}=\left\langle\left[\mathcal{P}_{3}\right]\right\rangle$. Since τ^{2} sets $k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right)$ and $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$, if $K_{1}=k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right)$, then $K_{6}=k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$ and vice versa.

If $\left(\frac{\pi_{1}}{\pi_{3}}\right)_{5}=1$ then $X^{5} \equiv \pi_{1}\left(\bmod \pi_{3}\right)$ is resolved in $\mathcal{O}_{k_{0}}$ and by Proposition 2.1, we have that π_{1} splits completely in $k_{0}\left(\sqrt[5]{\pi_{3}}\right)$, which equivalent to say that \mathcal{P}_{1} splits completely in $k\left(\sqrt[5]{\pi_{3}}\right)$, so $K_{2}=k\left(\sqrt[5]{\pi_{3}}\right)$ and we get that $K_{5}=k\left(\sqrt[5]{\pi_{1}}\right)$. If $K_{3}=k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)$, then $K_{4}=k\left(\sqrt[5]{\pi_{1} \pi_{3}^{3}}\right)$ and vice versa. Since π_{1} and π_{3} divide $\pi_{1} \pi_{3}, \pi_{1} \pi_{3}^{2}, \pi_{1} \pi_{3}^{3}$ and $\pi_{1} \pi_{3}^{4}$, if $\left(\frac{\pi_{1}}{\pi_{3}}\right)_{5} \neq 1$, then $K_{2}=k\left(\sqrt[5]{\pi_{1}}\right)$ and $K_{5}=k\left(\sqrt[5]{\pi_{3}}\right)$.
(2) Since $\mathcal{P}_{i}^{5}=\pi_{i} \mathcal{O}_{k}(i=1,3)$, we have $\left(\mathcal{P}_{1} \mathcal{P}_{3}\right)^{5}=\pi_{1} \pi_{3} \mathcal{O}_{k}$, then $\left(\mathcal{P}_{1} \mathcal{P}_{3}\right)^{5}=\pi_{1} \pi_{3} \mathcal{O}_{k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right)}$ in $k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right)$ and $\pi_{1} \pi_{3} \mathcal{O}_{k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right)}=\left(\sqrt[5]{\pi_{1} \pi_{3}} \mathcal{O}_{k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right)}\right)^{5}$, whence $\mathcal{P}_{1} \mathcal{P}_{3} \mathcal{O}_{k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right)}=\sqrt[5]{\pi_{1} \pi_{3}} \mathcal{O}_{k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right)}$. Thus $\mathcal{P}_{1} \mathcal{P}_{3}$ seen in $\mathcal{O}_{k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right)}$ becomes principal, i.e [$\left.\mathcal{P}_{1} \mathcal{P}_{3}\right]$ capitulates in $k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right)$.
Since $\left(\mathcal{P}_{1} \mathcal{P}_{3}^{2}\right)^{5}=\pi_{1} \pi_{3}^{2} \mathcal{O}_{k}$, we have $\left(\mathcal{P}_{1} \mathcal{P}_{3}^{2}\right)^{5}=\pi_{1} \pi_{3}^{2} \mathcal{O}_{k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)}$ in $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)$ and $\pi_{1} \pi_{3}^{2} \mathcal{O}_{k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)}=$ $\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}} \mathcal{O}_{k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)}\right)^{5}$, hence $\mathcal{P}_{1} \mathcal{P}_{3}^{2} \mathcal{O}_{k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)}=\sqrt[5]{\pi_{1} \pi_{3}^{2}} \mathcal{O}_{k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)}$. Thus $\mathcal{P}_{1} \mathcal{P}_{3}^{2}$ seen in $\mathcal{O}_{k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)}$ becomes principal, i.e $\left[\mathcal{P}_{1} \mathcal{P}_{3}^{2}\right]$ capitulates in $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{2}}\right)$.

By the same reasoning, we have $\left[\mathcal{P}_{1} \mathcal{P}_{3}^{3}\right]$ capitulates in $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{3}}\right)$ and $\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]$ capitulates in $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$.

We have $\mathcal{P}_{1}^{5}=\pi_{1} \mathcal{O}_{k}$, then $\mathcal{P}_{1} \mathcal{O}_{k\left(\sqrt[5]{\pi_{1}}\right)}=\sqrt[5]{\pi_{1}} \mathcal{O}_{k\left(\sqrt[5]{\pi_{1}}\right)}$. Hence [$\left.\mathcal{P}_{1}\right]$ capitulates in $k\left(\sqrt[5]{\pi_{1}}\right)$. By the same reasoning, we have $\left[\mathcal{P}_{3}\right]$ capitulates in $k\left(\sqrt[5]{\pi_{3}}\right)$.
(3) (i) If $\left(\frac{\pi_{1}}{\pi_{3}}\right)_{5}=1$ and $K_{6}=k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$ we have $\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]$ capitulates in K_{6}. According to [[4], Lemma 6.2], we have that $C_{k, 5}^{+} \simeq C_{\Gamma, 5}$ and by class field theory $C_{\Gamma, 5} \simeq \operatorname{Gal}\left(\Gamma_{5}^{(1)} / \Gamma\right)$, then we obtain $C_{k, 5} / C_{k, 5}^{-} \simeq \operatorname{Gal}\left(\Gamma_{5}^{(1)} / \Gamma\right) \simeq \operatorname{Gal}\left(k \Gamma_{5}^{(1)} / k\right)$. Thus $k \Gamma_{5}^{(1)}$ is an unramified cyclic extension of k corresponds to $C_{k, 5}^{-}$. We denote by $j_{k / \Gamma}: C_{\Gamma, 5} \longrightarrow C_{k, 5}$ the homomorphism induced by extension of ideals of Γ in k. Since $C_{k, 5}^{+}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{3}\right]\right\rangle$ and $\mathcal{P}_{1} \mathcal{P}_{3}=j_{k / \Gamma}(\mathcal{J})$ such that $C_{\Gamma, 5}=\langle\mathcal{J}\rangle,\left[\mathcal{P}_{1} \mathcal{P}_{3}\right]$ capitulates in $K_{6}=k \Gamma_{5}^{(1)}$. As $C_{k, 5}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{3}\right],\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]\right\rangle$, then all classes capitulate in K_{6}.

We determine possible types of capitulation $\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right)$. We have that $i_{6}=0, K_{2}=$ $K_{5}^{\tau^{2}}, K_{3}=K_{4}^{\tau^{2}}$, then the same number of classes capitulate in K_{2}, K_{5} and similarly for K_{3}, K_{4}.

If $i_{1} \neq 0$ we have $i_{1}=1$, if $i_{2} \neq 0$ we have $i_{2}=2$ and if $i_{5} \neq 0$ we have $i_{5}=5 . i_{3}$ and i_{4} are both nulls or non nulls, so if i_{3} and $i_{4} \neq 0$, then $\left(i_{3}, i_{4}\right)=(3,4)$ or $(4,3)$. Thus the possible types of capitulation are:
$(0,0,0,0,0,0),(1,0,0,0,0,0),(0,2,0,0,5,0),(1,2,0,0,5,0),\{(0,0,3,4,0,0)$ or $(0,0,4,3,0,0)\}$, $\{(1,0,3,4,0,0)$ or $(1,0,4,3,0,0)\},\{(0,2,3,4,5,0)$ or $(0,2,4,3,5,0)\}$, $\{(1,2,3,4,5,0)$ or $(1,2,4,3,5,0)\}$.
(ii) If $\left(\frac{\pi_{1}}{\pi_{3}}\right)_{5}=1$ and $K_{6}=k\left(\sqrt[5]{\pi_{1} \pi_{3}}\right)$ we have $\left[\mathcal{P}_{1} \mathcal{P}_{3}\right]$ capitulates in K_{6}, then if $i_{6} \neq 0$ we have $i_{6}=1$. $\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]$ capitulates in K_{1}, then if $i_{1} \neq 0$ we have $i_{1}=6$, so the same possible types of capitulation occur as in (i) with $i_{6}=0$ or 1 and $i_{1}=0$ or 6 .
(iii) If $\left(\frac{\pi_{1}}{\pi_{3}}\right)_{5} \neq 1$, by (1) we have $K_{2}=k\left(\sqrt[5]{\pi_{3}}\right)$ and $K_{5}=k\left(\sqrt[5]{\pi_{1}}\right)$ then the same possible types of capitulation occur as (i) and $(i i)$ by permuting 2 and 5 in the given types of capitulation.
3.2. The case $n=p^{e_{1}} q^{e_{2}} \equiv \pm 1, \pm 7(\bmod 25)$ where $p \not \equiv 1(\bmod 25), q \not \equiv \pm 7(\bmod 25)$.

Let $k=\Gamma\left(\zeta_{5}\right)$ be the normal closure of $\Gamma=\mathbb{Q}(\sqrt[5]{n})$, where $n=p^{e_{1}} q^{e_{1}} \equiv \pm 1, \pm 7(\bmod 25)$ such that $p \not \equiv 1,(\bmod 25), q \not \equiv \pm 7(\bmod 25)$ and $e_{1}, e_{2} \in\{1,2,3,4\}$. By [5, Theorem 2.13], since
$q \equiv \pm 2(\bmod 5)$ we have that q is inert in $k_{0}=\mathbb{Q}\left(\zeta_{5}\right)$, so we set in the squel $q=\pi_{5}$ as prime in k_{0}.

By $\mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{P}_{3}, \mathcal{P}_{4}$ and \mathcal{P}_{5} we denote respectively the prime ideals of k above $\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}$ and π_{5} in k_{0}, such that $\mathcal{P}_{i}^{5}=\pi_{i} \mathcal{O}_{k}(i=1,2,3,4,5)$. We have that τ^{2} permutes π_{1} with π_{3}, then τ^{2} permutes \mathcal{P}_{1} with \mathcal{P}_{3}, moreover τ^{2} sets $q=\pi_{5}$ and also \mathcal{P}_{5}.
The six intermediate extensions of $k_{5}^{(1)} / k$ are determined as follows:
Theorem 3.4. Let $k, n, \pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}$ and π_{5} as above. Put $x_{1}=\pi_{1} \pi_{5}^{h_{1}}$ and $x_{2}=\pi_{1} \pi_{3}^{4}$ where $h_{1} \in\{1,2,3,4\}$ is chosen such that $x_{1} \equiv x_{2} \equiv 1\left(\bmod \lambda^{5}\right)$, where $h_{1} \in\{1,2,3,4\}$. Then:
(1) $k_{5}^{(1)}=k\left(\sqrt[5]{x_{1}}, \sqrt[5]{x_{2}}\right)$.
(2) The six intermediate extensions of $k_{5}^{(1)} / k$ are:
$k\left(\sqrt[5]{x_{1}}\right), k\left(\sqrt[5]{x_{2}}\right), k\left(\sqrt[5]{\pi_{1} \pi_{3} \pi_{5}^{2 h_{1}}}\right), k\left(\sqrt[5]{\pi_{1}^{2} \pi_{3}^{4} \pi_{5}^{h_{1}}}\right), k\left(\sqrt[5]{\pi_{1}^{4} \pi_{3}^{2} \pi_{5}^{h_{1}}}\right)$ and $k\left(\sqrt[5]{\pi_{3} \pi_{5}^{h_{1}}}\right)$.
Furthermore τ^{2} permutes $k\left(\sqrt[5]{\pi_{1}^{2} \pi_{3}^{4} \pi_{5}^{h_{1}}}\right)$ with $k\left(\sqrt[5]{\pi_{1}^{4} \pi_{3}^{2} \pi_{5}^{h_{1}}}\right)$ and
$k\left(\sqrt[5]{x_{1}}\right)$ with $k\left(\sqrt[5]{\pi_{3} \pi_{5}^{h_{1}}}\right)$, and sets $k\left(\sqrt[5]{x_{2}}\right), k\left(\sqrt[5]{\pi_{1} \pi_{3} \pi_{5}^{2 h_{1}}}\right)$.
Proof. Since $k=k_{0}(\sqrt[5]{n})$ we can write n in k_{0} as $n=\pi_{1}^{e} \pi_{2}^{e} \pi_{3}^{e} \pi_{4}^{e} \pi_{5}$, with π_{i} do not all verified $\pi_{i} \equiv 1\left(\bmod \lambda^{5}\right)$, because we have $p \not \equiv 1(\bmod 25)$. By Proposition 2.2 there exist $h_{1}, h_{2} \in$ $\{1, . ., 4\}$ such that $\pi_{1} \pi_{5}^{h_{1}} \equiv \pm 1, \pm 7\left(\bmod \lambda^{5}\right)$ and $\pi_{1} \pi_{3}^{h_{2}} \equiv \pm 1, \pm 7\left(\bmod \lambda^{5}\right)$. To investigate the correspondence between the six intermediate extensions of $k_{5}^{(1)} / k$ and the six subgroups of $C_{k, 5}$, we assume that $h_{2}=4$. Put $x_{1}=\pi_{1} \pi_{5}^{h_{1}}$ and $x_{2}=\pi_{1} \pi_{3}^{4}$.
(1) The fact that $k_{5}^{(1)}=k\left(\sqrt[5]{x_{1}}, \sqrt[5]{x_{2}}\right)$ follows from Proposition 2.2.
(2) The six intermediate extensions are: $k\left(\sqrt[5]{x_{1}}\right), k\left(\sqrt[5]{x_{2}}\right), k\left(\sqrt[5]{x_{1} x_{2}}\right), k\left(\sqrt[5]{x_{1} x_{2}^{2}}\right), k\left(\sqrt[5]{x_{1} x_{2}^{3}}\right)$ and $k\left(\sqrt[5]{x_{1} x_{2}^{4}}\right)$. Since $x_{1}=\pi_{1} \pi_{5}^{h_{1}}$ and $x_{2}=\pi_{1} \pi_{5}^{4}$, we have $k\left(\sqrt[5]{x_{1} x_{2}}\right)=k\left(\sqrt[5]{\pi_{1}^{2} \pi_{3}^{4} \pi_{5}^{h_{1}}}\right)$, $k\left(\sqrt[5]{x_{1} x_{2}^{2}}\right)=k\left(\sqrt[5]{\pi_{1} \pi_{3} \pi_{5}^{2 h_{1}}}\right), k\left(\sqrt[5]{x_{1} x_{2}^{3}}\right)=k\left(\sqrt[5]{\pi_{1}^{4} \pi_{3}^{2} \pi_{5}^{h_{1}}}\right)$ and $k\left(\sqrt[5]{x_{1} x_{2}^{4}}\right)=k\left(\sqrt[5]{\pi_{3} \pi_{5}^{h_{1}}}\right)$. Since $\pi_{1}^{\tau^{2}}=\pi_{3}, \pi_{3}^{\tau^{2}}=\pi_{1}$ and $\pi_{5}^{\tau^{2}}=\pi_{5}$, and by the same reasoning as (2) of Theorem 3.1 we prove that τ^{2} permutes $k\left(\sqrt[5]{\pi_{1}^{2} \pi_{3}^{4} \pi_{5}^{h_{1}}}\right)$ with $k\left(\sqrt[5]{\pi_{1}^{4} \pi_{3}^{2} \pi_{5}^{h_{1}}}\right)$ and $k\left(\sqrt[5]{x_{1}}\right)$ with $k\left(\sqrt[5]{\pi_{3} \pi_{5}^{h_{1}}}\right)$, and sets $k\left(\sqrt[5]{x_{2}}\right), k\left(\sqrt[5]{\pi_{1} \pi_{3} \pi_{5}^{2 h_{1}}}\right)$.

The generators of $C_{k, 5}$ in this case are determined as follows:
Theorem 3.5. Let $k, n, \pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}, \pi_{5}$ and h_{1} as above. Let $\mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{P}_{3}, \mathcal{P}_{4}$ and \mathcal{P}_{5} prime ideals of k such that $\mathcal{P}_{i}^{5}=\pi_{i} \mathcal{O}_{k_{0}}(i=1,2,3,4,5)$. Then:

$$
C_{k, 5}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{3} \mathcal{P}_{5}^{2 h_{1}}\right],\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]\right\rangle
$$

Proof. According to [1, Theorem 1.1], for this case of the radicand n, we have that $\zeta_{5}^{i}\left(1+\zeta_{5}\right)^{j}$ is not norm of element in $k-\{0\}$ for any exponents i and j, then by [4, Section 5.3], we have $C_{k, 5}=C_{k, 5}^{(\sigma)}=C_{k, s}^{(\sigma)}=\left\langle\left[\mathcal{P}_{1}\right],\left[\mathcal{P}_{2}\right],\left[\mathcal{P}_{3}\right],\left[\mathcal{P}_{4}\right],\left[\mathcal{P}_{5}\right]\right\rangle$. Since $\mathcal{P}_{1}^{\tau^{2}}=\mathcal{P}_{3}, \mathcal{P}_{2}^{\tau^{2}}=\mathcal{P}_{4}$ and $\mathcal{P}_{5}^{\tau^{2}}=\mathcal{P}_{5}$, as the proof of Theorem 3.2 we have that $\mathcal{P}_{1}, \mathcal{P}_{3}$ and \mathcal{P}_{5} are non principals. As $\left[\mathcal{P}_{1} \mathcal{P}_{3} \mathcal{P}_{5}^{2 h_{1}}\right]{ }^{\tau^{2}}=$ $\left[\left(\mathcal{P}_{1} \mathcal{P}_{3} \mathcal{P}_{5}^{2 h_{1}}\right)^{\tau^{2}}\right]=\left[\mathcal{P}_{3} \mathcal{P}_{1} \mathcal{P}_{5}^{2 h_{1}}\right]=\left[\mathcal{P}_{1} \mathcal{P}_{3} \mathcal{P}_{5}^{2 h_{1}}\right]$ then $C_{k, 5}^{+}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{3} \mathcal{P}_{5}^{2 h_{1}}\right]\right\rangle$, and we have that $C_{k, 5}^{-}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]\right\rangle$. Hence $C_{k, 5}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{3} \mathcal{P}_{5}^{2 h_{1}}\right],\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]\right\rangle$.

The main theorem of capitulation in this case is as follows:
Theorem 3.6. We keep the same assumptions as Theorem 3.5. Then:
(1) $K_{1}=k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$ or $k\left(\sqrt[5]{\pi_{1} \pi_{3} \pi_{5}^{2 h_{1}}}\right), K_{2}=k\left(\sqrt[5]{\pi_{1} \pi_{5}^{h_{1}}}\right)$ or $k\left(\sqrt[5]{\pi_{3} \pi_{5}^{h_{1}}}\right), K_{3}=k\left(\sqrt[5]{\pi_{1}^{2} \pi_{3}^{4} \pi_{5}^{h_{1}}}\right)$ or $k\left(\sqrt[5]{\pi_{1}^{4} \pi_{3}^{2} \pi_{5}^{h_{1}}}\right), K_{4}=k\left(\sqrt[5]{\pi_{1}^{4} \pi_{3}^{2} \pi_{5}^{h_{1}}}\right)$ or $k\left(\sqrt[5]{\pi_{1}^{2} \pi_{3}^{4} \pi_{5}^{h_{1}}}\right), K_{5}=k\left(\sqrt[5]{\pi_{3} \pi_{5}^{h_{1}}}\right)$ or $k\left(\sqrt[5]{\pi_{1} \pi_{5}^{h_{1}}}\right)$ and $K_{6}=k\left(\sqrt[5]{\pi_{1} \pi_{3} \pi_{5}^{2 h_{1}}}\right)$ or $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$.
(2) $\left[\mathcal{P}_{1} \mathcal{P}_{3} \mathcal{P}_{5}^{2 h_{1}}\right]$ capitulates in $k\left(\sqrt[5]{\pi_{1} \pi_{3} \pi_{5}^{2 h_{1}}}\right),\left[\mathcal{P}_{1} \mathcal{P}_{5}^{h_{1}}\right]$ capitulates in $k\left(\sqrt[5]{\pi_{1} \pi_{5}^{h_{1}}}\right),\left[\mathcal{P}_{1}^{2} \mathcal{P}_{3}^{4} \mathcal{P}_{5}^{h_{1}}\right]$ capitulates in $k\left(\sqrt[5]{\pi_{1}^{2} \pi_{3}^{4} \pi_{5}^{h_{1}}}\right),\left[\mathcal{P}_{1}^{4} \mathcal{P}_{3}^{2} \mathcal{P}_{5}^{h_{1}}\right]$ capitulates in $k\left(\sqrt[5]{\pi_{1}^{4} \pi_{3}^{2} \pi_{5}^{h_{1}}}\right),\left[\mathcal{P}_{3} \mathcal{P}_{5}^{h_{1}}\right]$ capitulates in $k\left(\sqrt[5]{\pi_{3} \pi_{5}^{h_{1}}}\right)$ and $\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]$ capitulates in $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$.
(3) If $K_{1}=k\left(\sqrt[5]{\pi_{1} \pi_{3} \pi_{5}^{2 h_{1}}}\right)$, then the possible types of capitulation are:
$(0,0,0,0,0,0),(1,0,0,0,0,0),\{(0,5,0,0,2,0)$ or $(0,2,0,0,5,0)\}$,
$\{(1,5,0,0,2,0)$ or $(1,2,0,0,5,0)\},\{(0,5,4,3,2,0)$ or $(0,2,4,3,5,0)\}$,
$\{(1,5,4,3,2,0)$ or $(1,2,4,3,5,0)\}$,
$\{(0,5,3,4,2,0)$ or $(0,2,3,4,5,0)\},\{(1,5,3,4,2,0)$ or $(1,2,3,4,5,0)\}$,
$\{(0,0,3,4,0,0)$ or $(0,0,4,3,0,0)\},\{(1,0,3,4,0,0)$ or $(1,0,4,3,0,0)\}$.
If $K_{1}=k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$, then the same possible types occur, where i_{6} takes the value 0 or 1 .
Proof. (1) According to Theorem 3.4, we have that τ^{2} permutes $k\left(\sqrt[5]{\pi_{1}^{2} \pi_{3}^{4} \pi_{5}^{h_{1}}}\right)$ with $k\left(\sqrt[5]{\pi_{1}^{4} \pi_{3}^{2} \pi_{5}^{h_{1}}}\right)$ and $k\left(\sqrt[5]{x_{1}}\right)$ with $k\left(\sqrt[5]{\pi_{3} \pi_{5}^{h_{1}}}\right)$, and sets $k\left(\sqrt[5]{x_{2}}\right), k\left(\sqrt[5]{\pi_{1} \pi_{3} \pi_{5}^{2 h_{1}}}\right)$. We determine first the six subgroups H_{i} of $C_{k, 5}$. We have that $C_{k, 5}=\langle\mathcal{A}, \mathcal{X}\rangle$, where $H_{1}=C_{k, 5}^{+}=\langle\mathcal{A}\rangle$ and $H_{6}=C_{k, 5}^{-}=$ $\langle\mathcal{X}\rangle$. By Theorem 3.5 we have $\mathcal{A}=\left[\mathcal{P}_{1} \mathcal{P}_{3} \mathcal{P}_{5}^{2 h_{1}}\right]$ and $\mathcal{X}=\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]$, then $\mathcal{A X}=\left[\mathcal{P}_{1} \mathcal{P}_{5}^{h_{1}}\right]^{2}$, $\mathcal{A} \mathcal{X}^{2}=\left[\mathcal{P}_{1}^{2} \mathcal{P}_{3}^{4} \mathcal{P}_{5}^{h_{1}}\right]^{4}, \mathcal{A} \mathcal{X}^{3}=\left[\mathcal{P}_{1}^{4} \mathcal{P}_{3}^{2} \mathcal{P}_{5}^{h_{1}}\right]$ and $\mathcal{A} \mathcal{X}^{4}=\left[\mathcal{P}_{3} \mathcal{P}_{5}^{h_{1}}\right]^{3}$. Hence $H_{2}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{5}^{h_{1}}\right]\right\rangle$, $H_{3}=\left\langle\left[\mathcal{P}_{1}^{2} \mathcal{P}_{3}^{4} \mathcal{P}_{5}^{h_{1}}\right]\right\rangle, H_{4}=\left\langle\left[\mathcal{P}_{1}^{4} \mathcal{P}_{3}^{2} \mathcal{P}_{5}^{h_{1}}\right]\right\rangle$ and $H_{5}=\left\langle\left[\mathcal{P}_{3} \mathcal{P}_{5}^{h_{1}}\right]\right\rangle$.
Since τ^{2} sets $k\left(\sqrt[5]{\pi_{1} \pi_{3} \pi_{5}^{2 h_{1}}}\right)$ and $k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$, so if $K_{1}=k\left(\sqrt[5]{\pi_{1} \pi_{3} \pi_{5}^{2 h_{1}}}\right)$ then $K_{6}=k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$ and inversely.

By class field theory, the fact that $H_{i}(i=2,5)$ corresponds to $K_{i}(i=2,5)$ means that $\mathcal{P}_{1} \mathcal{P}_{5}^{h_{1}}$ splits completely in K_{2} and $\mathcal{P}_{3} \mathcal{P}_{5}^{h_{1}}$ splits completely in K_{5}. As $\pi_{1} \pi_{5}^{h_{1}}$ divides $\pi_{1}^{2} \pi_{3}^{4} \pi_{5}^{h_{1}}$ and $\pi_{1}^{4} \pi_{3}^{2} \pi_{5}^{h_{1}}$, by Proposition 2.1, $\pi_{1} \pi_{5}^{h_{1}}$ can not split in $k_{0}\left(\sqrt[5]{\pi_{1}^{2} \pi_{3}^{4} \pi_{5}^{h_{1}}}\right)$ and $k_{0}\left(\sqrt[5]{\pi_{1}^{4} \pi_{3}^{2} \pi_{5}^{h_{1}}}\right)$, this equivalent to say that $\mathcal{P}_{1} \mathcal{P}_{5}^{h_{1}}$ can not split completely in $k\left(\sqrt[5]{\pi_{1}^{2} \pi_{3}^{4} \pi_{5}^{h_{1}}}\right)$ and $k\left(\sqrt[5]{\pi_{1}^{4} \pi_{3}^{2} \pi_{5}^{h_{1}}}\right)$. By the same reasoning we have that $\mathcal{P}_{3} \mathcal{P}_{5}^{h_{1}}$ can not split completely in $k \sqrt[5]{\pi_{1}^{2} \pi_{3}^{4} \pi_{5}^{h_{1}}}$ and $k \sqrt[5]{\pi_{1}^{4} \pi_{3}^{2} \pi_{5}^{h_{1}}}$. Thus if $K_{2}=k\left(\sqrt[5]{\pi_{1} \pi_{5}^{h_{1}}}\right)$ then $K_{5}=k\left(\sqrt[5]{\pi_{3} \pi_{5}^{h_{1}}}\right)$ and inversely, which allow us to deduce that if $K_{3}=k\left(\sqrt[5]{\pi_{1}^{2} \pi_{3}^{4} \pi_{5}^{h_{1}}}\right)$ then $K_{5}=k\left(\sqrt[5]{\pi_{1}^{4} \pi_{3}^{2} \pi_{5}^{h_{1}}}\right)$ and inversely.
(2) We keep the same reasoning as the proof of (2) Theorem 3.3.
(3) If $K_{1}=k\left(\sqrt[5]{\pi_{1} \pi_{3} \pi_{5}^{2 h_{1}}}\right)$, then $K_{6}=k \Gamma_{5}^{(1)}=k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$ and we have that $\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]$ capitulates in K_{6}, moreover since $C_{k, 5}^{+}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{3} \mathcal{P}_{5}^{2 h_{1}}\right]\right\rangle \simeq C_{\Gamma, 5} \mathcal{P}_{1} \mathcal{P}_{3} \mathcal{P}_{5}^{2 h_{1}}=j_{k / \Gamma}(\mathcal{J})$ such
that $C_{\Gamma, 5}=\langle\mathcal{J}\rangle$, then $\left[\mathcal{P}_{1} \mathcal{P}_{3} \mathcal{P}_{5}^{2 h_{1}}\right]$ capitulates in K_{6}. As $C_{k, 5}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{3} \mathcal{P}_{5}^{2 h_{1}}\right],\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]\right\rangle$, then all classes capitulate in $K_{6}=k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$. We determine the possible types of capitulation $\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right)$.
We have that $i_{6}=0, K_{2}=K_{5}^{\tau^{2}}, K_{3}=K_{4}^{\tau^{2}}$, then the same number of classes capitulate in K_{2}, K_{5} and similarly for K_{3}, K_{4}. If $i_{1} \neq 0$ we have $i_{1}=1 . i_{2}$ and i_{5} are both nulls or non nulls, so if i_{2} and $i_{5} \neq 0$, then $\left(i_{2}, i_{5}\right)=(2,5)$ or $(5,2)$ depending on $\mathcal{P}_{1} \mathcal{P}_{5}^{h_{1}}$ splits completely in $k\left(\sqrt[5]{\pi_{1} \pi_{5}^{h_{1}}}\right)$ or in $k\left(\sqrt[5]{\pi_{3} \pi_{5}^{h_{1}}}\right)$. Similarly if i_{3} and $i_{4} \neq 0$, then $\left(i_{3}, i_{4}\right)=(3,4)$ or $(4,3)$. Hence the possible types given are proved.

If $K_{1}=k\left(\sqrt[5]{\pi_{1} \pi_{3}^{4}}\right)$ then $K_{6}=k \Gamma_{5}^{(1)}=k\left(\sqrt[5]{\pi_{1} \pi_{3} \pi_{5}^{2 h_{1}}}\right)$ and we have $C_{k, 5}^{+}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{3} \mathcal{P}_{5}^{2 h_{1}}\right]\right\rangle$ capitulates in K_{6}, the possible values of $i_{2}, i_{3}, i_{4}, i_{5}$ are as above, $\left(i_{2}, i_{5}\right)=(2,5)$ or $(5,2)$ if they are non nulls, $\left(i_{3}, i_{4}\right)=(3,4)$ or $(4,3)$ if they are non nulls. If $i_{1} \neq 0$ then $i_{1}=6$ because $H_{6}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{3}^{4}\right]\right\rangle$, and if $i_{6} \neq 0$ then $i_{1}=1$ because $H_{1}=\left\langle\left[\mathcal{P}_{1} \mathcal{P}_{3} \mathcal{P}_{5}^{2 h_{1}}\right]\right\rangle$. Hence the possible types given are proved.
3.3. The case $n=5^{e_{1}} p^{e_{2}}$ where $p \not \equiv 1(\bmod 25)$.

Let $k=\Gamma\left(\zeta_{5}\right)$ be the normal closure of $\Gamma=\mathbb{Q}(\sqrt[5]{n})$, where $n=5^{e_{1}} p^{e_{2}}$ such that $p \not \equiv$ $1,(\bmod 25)$ and $e_{1}, e_{2} \in\{1,2,3,4\}$. By [4, Lemma 5.1], since $n=5^{e_{1}} p^{e_{2}} \not \equiv \pm 1, \pm 7,(\bmod 25)$ we have $\lambda=1-\zeta_{5}$ is ramified in k / k_{0}.

Let $\pi_{1}, \pi_{2}, \pi_{3}$ and π_{4} primes of k_{0} such that $p=\pi_{1} \pi_{2} \pi_{3} \pi_{4}$. Let $\mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{P}_{3}, \mathcal{P}_{4}$ and \mathcal{I} prime ideals of k above $\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}$ and λ, we have $\mathcal{P}_{i}^{5}=\pi_{i} \mathcal{O}_{k}$ and $\mathcal{I}^{5}=\lambda \mathcal{O}_{k}$. According to [1, Theorem 1.1], for this case of the radicand n, we have that $\zeta_{5}^{i}\left(1+\zeta_{5}\right)^{j}$ is not norm of element in $k-\{0\}$ for any exponents i and j, then we have $C_{k, 5}=C_{k, 5}^{(\sigma)}=C_{k, s}^{(\sigma)}$. Hence the results about the six intermediate extensions of $k_{5}^{(1)} / k$, the generators of $C_{k, 5}$ and the capitulation problem in this case are the same as case 2 by substituting q by $5, \pi_{5}$ by λ and \mathcal{P}_{5} by \mathcal{I}.

4. Numerical examples

The task to determine the capitulation in a cyclic quintic extension of a base field of degree 20 , that is, in a field of absolute degree 100 , is definitely far beyond the reach of computational algebra systems like MAGMA and Pari/GP. For this reason we give examples of pure metacyclic fields $k=\mathbb{Q}\left(\sqrt[5]{n}, \zeta_{5}\right)$ such that $C_{k, 5}$ is of type $(5,5)$ and $C_{k, 5}=C_{k, 5}^{(\sigma)}$.

Table 1: $k=\mathbb{Q}\left(\sqrt[5]{n}, \zeta_{5}\right)$ with $C_{k, 5}$ of type $(5,5)$ and $C_{k, 5}=C_{k, 5}^{(\sigma)}$.

No	n	Factorization	$n(\bmod 25)$	Section	$C_{k, 5}$	$C_{k, 5}^{(\sigma)}$
1	55	5.11	+5	3.3	$(5,5)$	2
2	82	2.41	+7	3.2	$(5,5)$	2
3	93	3.31	-7	3.2	$(5,5)$	2
4	99	$3^{2} .11$	-1	3.2	$(5,5)$	2
5	124	$2^{2} .31$	-1	3.2	$(5,5)$	2
6	143	11.13	-7	3.2	$(5,5)$	2
7	151	151	+1	3.1	$(5,5)$	2
8	176	$2^{4} .11$	+1	3.2	$(5,5)$	2
9	205	5.41	+5	3.3	$(5,5)$	2
10	251	251	+1	3.1	$(5,5)$	2
11	355	5.71	+5	3.3	$(5,5)$	2
12	382	2.191	+7	3.2	$(5,5)$	2
13	393	3.131	-7	3.2	$(5,5)$	2
14	407	11.37	+7	3.2	$(5,5)$	2
15	524	$2^{2} .131$	-1	3.2	$(5,5)$	2
16	543	3.181	-7	3.2	$(5,5)$	2
17	568	$2^{3} .71$	-7	3.2	$(5,5)$	2
18	601	601	+1	3.1	$(5,5)$	2
19	605	5.11^{2}	+5	3.3	$(5,5)$	2
20	655	5.131	+5	3.3	$(5,5)$	2
21	724	$2^{2} .181$	-1	3.2	$(5,5)$	2
22	905	5.181	+5	3.3	$(5,5)$	2
23	943	23.41	-7	3.2	$(5,5)$	2
24	976	$2^{4} .61$	+1	3.2	$(5,5)$	2
25	982	2.491	+7	3.2	$(5,5)$	2
26	993	3.331	-7	3.2	$(5,5)$	2
27	1051	1051	+1	3.1	$(5,5)$	2
28	1301	1301	+1	3.1	$(5,5)$	2
29	1457	31.47	+7	3.2	$(5,5)$	2
30	1555	5.311	+5	3.3	$(5,5)$	2
31	1775	$5^{2} .71$	0	3.3	$(5,5)$	2
32	1801	1801	+1	3.1	$(5,5)$	2
33	1901	1901	+1	3.1	$(5,5)$	2
34	2155	5.431	+5	3.3	$(5,5)$	2
35	6943	53.131	-7	3.2	$(5,5)$	2
36	8275	$5^{2} .331$	0	3.3	$(5,5)$	2
39	3507	47.181	+7	3.2	$(5,5)$	2
	30125	$5^{3} .241$	0	3.2	$(5,5)$	2
					$(5,5)$	2

Acknowledgement. The authors would like to thank the referee for the valuable suggestions and comments.

References

[1] A. Azizi, F. Elmouhib and M. Talbi, 5-rank of ambiguous class groups of quintic Kummer extensions, Proc. Indian Acad. Sci. Math. Sci., 132(12) (2022), 14 pp.
[2] F. Elmouhib, M. Talbi and A. Azizi, On the capitulation problem of some pure metacyclic fields of degree 20., Palest. J. Math., 11(1) (2022), 260-267.
[3] E. Hecke, Lectures on the Theory of Algebraic Numbers, Graduate Texts in Mathematics, 77, Springer-Verlag, New York-Berlin, 1981.
[4] M. Kulkarni, D. Majumdar and B. Sury, l-class groups of cyclic extension of prime degree l, J. Ramanujan Math. Soc., 30(4) (2015), 413-454.
[5] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New-York, 1982.
[6] The PARI Group, PARI/GP, Version 2.4.9, Bordeaux, 2017, http://pari.math.u-bordeaux.fr

