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Abstract. According to Dastanpour and Ghorbani, a ring R is said to satisfy

divisibility on ascending chains of right ideals (ACCd) if, for every ascending

chain of right ideals I1 ⊆ I2 ⊆ I3 ⊆ I4 ⊆ . . . of R, there exists an integer k ∈ N
such that for each i ≥ k, there exists an element ai ∈ R such that Ii = aiIi+1.

In this paper, we examine the transfer of the ACCd-condition on ideals to

trivial ring extensions. Moreover, we investigate the connection between the

ACCd on ideals and other ascending chain conditions. For example we will

prove that if R is a ring with ACCd on ideals, then R has ACC on prime ideals.
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1. Introduction

In [5], extending the notion of ACC on right ideals (i.e. right noetherian rings),

a ring R is said to satisfy divisibility on ascending chains of right ideals (ACCd on

right ideals, for short) if, for every ascending chain of right ideals I1 ⊆ I2 ⊆ I3 ⊆
I4 ⊆ . . . of R, there exists an integer k ∈ N such that for each i ≥ k, there exists

an element ai ∈ R such that Ii = aiIi+1. If R is commutative and all the multiple

factors ai are invertible, then R is noetherian.

In [5], Dastanpour and Ghorbani investigated thoroughly the notion of ACCd

on right ideals, highlighting some of its properties and obtaining several interesting

results in the commutative case. For example, they prove that every commutative

semilocal ring that satisfies ACCd on ideals has a finitely generated socle and has

only finitely many minimal prime ideals.

In this paper we focus our attention on commutative rings and continue the

investigation that was carried out by Dastanpour and Ghorbani in [5]. In particular,

we provide sufficient conditions for the trivial extension of rings to satisfy the ACCd

on ideals. Moreover, we consider the connection between ACCd and other ascending
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chain conditions on ideals. For example, we prove that if R satisfies ACCd on ideals,

then R satisfies ACC on prime ideals.

Throughout this paper, all rings are commutative with identity, and all modules

are unital. If R is a ring, we denote by Nil(R) to the set (ideal) of all nilpotent

elements of R. When A is a local ring with M as its unique maximal ideal, we will

write and say (A,M) is local.

2. Main results

Let A be a ring and E an A-module. Then A⋉E, the trivial (ring) extension of

A by E, is the ring whose additive structure is that of the external direct sum A⊕E

and whose multiplication is defined by (a, e)(b, f) := (ab, af+be) for all a, b ∈ A and

all e, f ∈ E. The basic properties of trivial ring extensions are summarized in [6]

and [7]. Moreover, interesting examples and constructions of trivial ring extensions

could be found in [1], [3] and [8].

In [5, Proposition 2.3], the authors proved that homomorphic images of rings

with ACCd on right ideals satisfy the ACCd on right ideals. We will use this result

to establish our next theorem on the transfer of the ACCd-condition on ideals to

trivial ring extensions.

Theorem 2.1. Let A be a ring, E a nonzero A-module, and R := A ∝ E the trivial

ring extension of A by E. Then:

(1) If R satisfies ACCd, then so is A.

(2) Assume that (A,M) is local such that ME = 0:

(a) If R satisfies ACCd, then A is noetherian.

(b) If E is finitely generated, then R satisfies ACCd if and only if A is

noetherian, if and only if R is noetherian.

Proof. (1). Assume that R satisfies ACCd on ideals. Inasmuch as (0 ∝ E) is an

ideal of R, we infer from [5, Proposition 2.3] that A ∼= R/(0 ∝ E) satisfies ACCd

on ideals.

(2a). Assume that R satisfies ACCd. We need to show that A is noetherian. Let

I1 ⊆ I2 ⊆ I3 ⊆ I4 ⊆ . . . be an ascending chain of ideals of A. Since I1 ∝ E ⊆
I2 ∝ E ⊆ I3 ∝ E ⊆ I4 ∝ E ⊆ . . . is an ascending chain of ideals of the ring

R, there exists an integer k ∈ N such that for each i ≥ k, there is an element

(ai, ei) ∈ R such that Ii ∝ E = (ai, ei)(Ii+1 ∝ E). This means that if i ≥ k and

(si, fi) ∈ Ii ∝ E, then there exists an element (si+1, fi+1) ∈ Ii+1 ∝ E such that

(si, fi) = (ai, ei)(si+1, fi+1), and so (si, fi) = (aisi+1, si+1ei+aifi+1). Inasmuch as

ME = 0, si+1 ∈ Ii+1 ⊆ M , and so (si, fi) = (aisi+1, aifi+1). Therefore (si, fi) =
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(ai, 0)(si+1, fi+1), and so Ii ∝ E = (ai, 0)(Ii+1 ∝ E). Thus Ii = aiIi+1 with

ai ∈ A. We claim that ai /∈ M . Otherwise, assume that ai ∈ M . In this case, since

(si, fi) = (aisi+1, aifi+1), it follows that aifi+1 = 0, and so (si, fi) = (aisi+1, 0).

This means that fi = 0 for all fi ∈ E, a clear contradiction since E ̸= 0. Now,

inasmuch as (A,M) is a local ring and ai /∈ M , we infer that ai is invertible, and

so Ii = aiIi+1 = Ii+1 for all i ≥ k. This shows that I1 ⊆ I2 ⊆ I3 ⊆ I4 ⊆ . . . is

stationary, and the ring A is noetherian as required.

(2b). Since E is finitely generated, A is noetherian if and only if R is noetherian,

Now, the claim follows from (2a). □

Example 2.2. If R is the field of real numbers, R[[X]] is the ring of formal power

series, and Z2 :=
{

a
b : a, b ∈ Z, 2 ∤ b

}
the localization of Z at the prime ideal 2Z,

then A := Z2 + XR[[X]] is a local ring with maximal ideal M = 2Z2 + XR[[X]].

Let E be an A/M -vector space and R := A ∝ E be the trivial ring extension of A

by E. According to [4, Example 2.8], A is not noetherian and (R,M ∝ E) is local

such that ME = 0. By Theorem 2.1, R does not satisfy the ACCd-condition.

Remark 2.3. Theorem 2.1 above shows that if A is a ring, E is a nonzero A-

module, and R := A ∝ E has the ACCd, then so is A. However, Example 2.2 shows

that the converse need not be true. Moreover, we will construct below an example

to show that if E is not finitely generated, then statement (2b) of Theorem 2.1 need

not be true. But first, the next result will be needed to construct the example.

Theorem 2.4. Let A be a ring. Then:

(1) If (A,M) is a local ring with M2 = 0, then A satisfies ACCd if and only if

A is noetherian.

(2) If P is a prime ideal of A such that P 2 = 0, then, AP satisfies ACCd if

and only if AP is noetherian, where AP is the localization of A with respect

to the prime ideal P .

Proof. (1) We only need to establish the forward implication. To see this, assume

that A satisfies ACCd and let I1 ⊆ I2 ⊆ I3 ⊆ I4 ⊆ . . . be an ascending chain of

nonzero ideals of A. We will show that the chain is stationary. By the ACCd, there

exists an integer k ∈ N such that for each i ≥ k, there is an element ai ∈ A such

that Ii = aiIi+1. We claim that ai /∈ M for each i ≥ k. Otherwise, if ai ∈ M for

some i ≥ k, then Ii = aiIi+1 = 0, a clear contradiction since M2 = 0. Now, since

ai /∈ M for each i ≥ k, it follows that each ai is invertible, and so Ii = aiIi+1 = Ii+1,

as required.
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(2) If P is a prime ideal of A with P 2 = 0, then (AP , (PAP )) is a local ring with

(PAP )
2 = 0. Now an application of part (1) above will yield the result; i.e. AP

satisfies ACCd if and only if AP is noetherian. □

Example 2.5. Let A be an integral domain, K the quotient field of A, E an

infinite dimensional K-vector space, and R := A ∝ E the trivial ring extension

of A by E. We claim that R does not satisfy the ACCd-condition. For, since

P := 0 ∝ E is a prime ideal of R, and dimKE = ∞, we infer from Theorem

2.1 that RP := K ∝ E is not noetherian. Now, by Theorem 2.4, RP does not

satisfy the ACCd-condition, and so R also does not satisfy the ACCd-condition. In

particular, the trivial extension Z ∝ R does not satisfy the ACCd-condition.

Example 2.6. Let (A,M) be a local noetherian integral domain, E an infinite

dimentional A/M -vector space, and R := A ∝ E. Then by Example 2.5 above, R

does not satisfy the ACCd-condition. This shows that if E is not finitely generated,

then statement (2b) of Theorem 2.1 need not be true.

In the next theorem we establish one of the main results of this paper. More

precisely, we will show that if A is a ring satisfying the ACCd-condition, then A

satisfies the ACC on prime ideals. But first, we need to prove a couple of lemmas.

Lemma 2.7. Let A be an integral domain, I a proper ideal of A and P1, P2, . . . , Pn

a set of prime ideals of A such that
⋂n

i=1 Pi = xI where x is a non-zero element of

A. Then there exists a subset J of {1, 2, . . . .., n} such that
⋂

i∈J Pi = I.

Proof. Observe first that x /∈
⋂n

i=1 Pi. Otherwise, the equation
⋂n

i=1 Pi = xI

implies the existence of a non-zero element y of I such that x = xy, a contradiction

since A is an integral domain and I ̸= A. With this observation in mind, we

consider two cases:

Case 1: Suppose that x /∈
⋃n

i=1 Pi. Since x /∈ Pi, xI ⊆ Pi and Pi is a prime

ideal, 1 ≤ i ≤ n, we infer that I ⊆ Pi, 1 ≤ i ≤ n. Therefore I ⊆
⋂n

i=1 Pi, and so

I =
⋂n

i=1 Pi.

Case 2: Suppose that x ∈
⋃n

i=1 Pi, and let J be a subset of {1, 2, . . . .., n} such

that x ∈
⋂

i∈J Pi and x /∈ (
⋃

i/∈J Pi). Now for each i /∈ J , since Pi is a prime ideal,

xI ⊆ Pi, and x /∈ Pi, we infer that I ⊆ Pi for each i /∈ J . Therefore xI ⊆ xPi

for each i /∈ J , and so (xI)
⋂
(
⋂

i/∈J xPi) = xI. Moreover, since x ∈ Pj , for each

j ∈ J , it follows that xPi

⋂
Pj = xPi for each j ∈ J . Furthermore, we have

(
⋂n

i=1 Pi)
⋂

(
⋂

i/∈J xPi) = xI
⋂

(
⋂

i/∈J xPi) = xI, and so (
⋂

i∈J Pi)
⋂

(
⋂

i/∈J Pi)
⋂

(
⋂

i/∈J xPi) = xI. Therefore, (
⋂

i∈J Pi)
⋂

(
⋂

i/∈J xPi) = xI. Since xPi

⋂
Pj = xPi
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for each j ∈ J , it follows that
⋂

i/∈J xPi = xI, and so x(
⋂

i/∈J Pi) = xI. Inasmuch

as A is an integral domain, we infer that
⋂

i/∈J Pi = I, as required. □

Lemma 2.8. If A is an integral domain satisfying the ACCd-condition, then the

following hold:

(1) A satisfies the ACC on ideals each of which is an intersection of a finite

number of prime ideals. In particular, A satisfies the ACC on prime ideals.

(2) If whenever I and J are ideals of A, there exists a set of prime ideals

P1, P2, . . . , Pn of A such that I ⊆
⋂n

i=1 Pi ⊆ J , then A is noetherian.

Proof. (1) Let I1 ⊆ I2 ⊆ I3 ⊆ I4 ⊆ . . . be an ascending chain of non-zero ideals

of A such that, for each k ∈ N, Ik =
⋂

i∈Jk
Pi, an intersection of a finite number

of prime ideals Pi. Since A satisfies the ACCd-condition, there exists an integer k

such that for each n > k, there exists an element an of A satisfying the relation

Ik = anIn. Thus,
⋂

i∈Jk
Pi = an(

⋂
i∈Jn

Pi). By Lemma 2.7 above, there exists a

subset Sk ⊆ Jk such that
⋂

i∈Sk
Pi =

⋂
i∈Jn

Pi = In. Inasmuch as the sequence

{|Sk|} is bounded and decreasing, it is convergent, where |S| denotes the number

of elements of the set S. Therefore, the sequence {|Sk|} is stationary. Let K ∈ N
such that for each i ≥ K, Si = SK . Since IK ⊆ Ii, it follows that IK = Ii for each

i ≥ K. This shows that the chain I1 ⊆ I2 ⊆ I3 ⊆ I4 ⊆ . . . is stationary, as required.

(2) This claim follows easily from (1). □

Theorem 2.9. Let A be a ring. If A satisfies ACCd, then A satisfies ACC on

prime ideals.

Proof. We consider two cases:

Case 1: A is an integral domain. In this case, apply Lemma 2.8.

Case 2: A is not an integral domain. We need to show that A satisfies the ACC

on prime ideals. To see this, let P1 ⊆ P2 ⊆ P3 ⊆ P4 ⊆ P5 ⊆ . . . be an ascending

chain of proper prime ideals of A. By [5, Proposition 2.3], since P1 is a proper prime

ideal of A, A/P1 is an integral domain with the ACCd-condition. Now, by Lemma

2.8, the ascending chain P2/P1 ⊆ P3/P1 ⊆ P4/P1 ⊆ P5/P1 ⊆ . . . is stationary, and

so is the chain P1 ⊆ P2 ⊆ P3 ⊆ P4 ⊆ P5 ⊆ . . ., as required. □

The following example shows that the converse to Theorem 2.9 need not be true.

Example 2.10. Let K be a field, E an infinite dimensional K-vector space, and

R = K ∝ E. Then R satisfies the ACC on prime ideals but R does not satisfy the

ACCd-condition.
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In the next result we highlight some of the interesting features of the rings that

satisfy the ACCd-condition. But first, we need the following lemma.

Lemma 2.11. Let A be a ring satisfying the ACCd-condition and I1 ⊆ I2 ⊆ I3 ⊆
I4 ⊆ . . . be a non-stationary ascending chain of ideals of A. Then for each n ≥ 1,

In is strictly contained in a proper principal ideal of A.

Proof. Since A satisfies the ACCd-condition, there exists an integer k such that

for each i ≥ k, Ii = xiIi+1 for some xi ∈ A. Let n be a nonzero integer, and

consider the following two cases:

Case 1: If n ≥ k, then In = xnIn+1 ⊆ xnA. As the chain is non-stationary, xn

is not invertible, and so In is properly contained in the principal ideal xnA.

Case 2: If n < k, then we have In ⊆ Ik ⊂ xkA, where xkA is a proper principal

ideal by case 1 above. Thus In is strictly contained in xkA. □

Theorem 2.12. Let A be a ring with the ACCd-condition and I be a proper ideal

of A. Then:

(1) Either I is strictly contained in a proper principal ideal of A or A/I is

noetherian.

(2) If Nil(A) is finitely generated that is not strictly contained in any proper

principle ideal of A, then A is noetherian.

Proof. (1) If every ascending chain of ideals containing I is stationary, then A/I

is noetherian. Otherwise, there exists a non-stationary ascending chain of ideals of

A containing I. By Lemma 2.11, I is strictly contained in a proper principal ideal

of A.

(2) By (1), A/Nil(A) is noetherian, and so every ideal of A/Nil(A) is finitely

generated. In particular, P/Nil(A) is finitely generated, where P is a prime ideal of

A. Inasmuch as Nil(A) is finitely generated, we infer that P is finitely generated.

This means that all prime ideals of A are finitely generated, and so A is noetherian.

□

Corollary 2.13. Let A be a ring with the ACCd-condition and I be an ideal of

A that is not strictly contained in any proper principal ideal of A. If every ideal

contained in I is finitely generated, then A is noetherian.

Proof. Assume that I is not strictly contained in any proper principal ideal. Then

according to (1) of Theorem 2.12, A/I is noetherian. Furthermore, every ideal

contained in I is finitely generated. So, I is noetherian as an A-module. Since both

A/I and I are noetherian as A-modules, A is noetherian. □
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In [2], a ring A is called Q-noetherian if A/P is a noetherian domain for every

prime ideal P of A.

Corollary 2.14. Let A be a ring such that Nil(A) is not strictly contained in

any proper principal ideal of A. If A satisfies the ACCd-condition, then A is Q-

noetherian.

Proof. By Theorem 2.12, A/Nil(A) is noetherian. Now if P is a prime ideal of A,

then A/P is noetherian, and so A is Q-noetherian. □

Finally, we end the paper with examples distinguishing the notion of a coher-

ent ring from that of a ring with the ACCd-condition. Recall first, a ring R is

called (left) coherent if every finitely generated (left) ideal of R is finitely pre-

sented. Clearly every (left) noetherian ring is (left) coherent, but the converse need

not be true in general. We will show in the next two examples that neither coherent

implies ACCd nor ACCd implies coherent.

Example 2.15. Consider the ring extension R = Z(p) ∝ Zp∞ , where p is a prime

number, Z(p) is the ring of p-adic integers, and Zp∞ is the Prüfer p-group. As shown

in [5, Example 2.2 (b)], R satisfies the ACCd-condition, and as shown in [9], R is

not a coherent ring.

Example 2.16. Let (A,M) be a non noetherian local ring such that M2 = 0 and

M is finitely generated. Then, by Theorem 2.4, A does not satisfy the ACCd-

condition. However, since M is finitely generated, A is a coherent ring.

Next, we provide an example of a ring R with ACC on prime ideals that is not

coherent.

Example 2.17. Let K be a field, E an infinite dimensional K-vector space, and

R = K ∝ E. By Example 2.10, R satisfies the ACC on prime ideals. However, it

is not difficult to see that R is not coherent.
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