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1. Introduction

A Lie algebra is called algebraic if it is the Lie algebra of an algebraic group [4].

C. Chevalley in [3] gave an alternative definition of algebraic Lie algebras based on

the replica of a matrix. In the second section, an algebraic Lie algebra bundle is

defined and a few basic properties of algebraic Lie algebra bundles are discussed.

A derivation of a Lie algebra plays an important role in the structure of a Lie

algebra. G. Hochschild [6] defined derivation algebras of a Lie algebra. B. S. Ki-

ranagi, R. Kumar, K. Ajaykumar and B. Madhu have defined and studied derivation

algebra bundle of a Lie algebra bundle in [7]. In the third section, characteristically

solvable Lie algebra bundles are characterized and the relations between inner and

central derivations are discussed.

Here we assume that all the base spaces are compact Hausdorff and the under-

lying field is real or complex.

2. Algebraic Lie algebra bundles

We recall a few relevant definitions to define our algebraic Lie algebra bundles. If

k is any integer and Ek is the unit matrix of degree k then the Kronecker sum is given

byX⊕Y = X⊗En+Em⊗Y whereX,Y are matrices of degreem and n respectively.

Further, for any matrix X, Xrs = X∗ ⊕X∗ ⊕X∗ ⊕ · · · ⊕X∗︸ ︷︷ ︸
r times

⊕X ⊕X ⊕ · · · ⊕X︸ ︷︷ ︸
s times

.
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It is a matrix of degree mr+s. A vector of type (r, s) is a column of mr+s elements

from the field. A vector e⃗ of type (r, s) is called an invariant of X if Xrse⃗ = 0.

C. Chevalley in [2] introduced the notion of a replica of a matrix. A matrix Y is

said to be a replica of a matrix X if every invariant of X is also an invariant of Y .

A Lie algebra bundle is a vector bundle ξ = (E, p,B) in which each fibre ξx

is a Lie algebra and for each x in B, there is an open neighbourhood U of x, a Lie

algebra L and a homeomorphism ϕ : U × L → p−1(U) such that for each y in U ,

ϕy : L→ p−1(y) is a Lie algebra isomorphism.

Definition 2.1. Let ξ = (E, p,B) be a Lie algebra bundle with local trivialization

ϕ : U × L→ p−1(U). For any endomorphism A of ξ, we define A′ ∈ End(ξ) as the

replica of A, if any invariant of A|ξx is also an invariant of A′|ξx. The set of all

replicas of A is denoted by {A}.

A Lie algebra of matrices is said to be algebraic [3] if replicas of every matrix

is in the same Lie algebra. Morikuni Gôtô in [5] refers to this algebraicity of Lie

algebra of matrices as l − algebraicity.

Definition 2.2. Any subbundle of End(ξ) is said to be an l-algebraic bundle if

each of its fibre is l − algebraic.

The smallest l-algebraic Lie algebra which contains a subalgebra L of gl(n,K) is

called the algebraic hull of L and is denoted by L∗[5]. It is the smallest l-algebraic

Lie algebra containing L.

Definition 2.3. Let ξ = (E, p,B) be a Lie algebra bundle and Endξ be the Lie

algebra bundle of endomorphisms on ξ with the local trivialization ϕ : U×EndL→
(Endp)−1(U) such that ϕx : {x} × EndL → (Endp)−1(x) is an isomorphism. By

this isomorphism, for a subbundle η of End(ξ) there exists a smallest algebraic Lie

algebra η∗x containing ηx for all x ∈ B. Then η∗ =
⋃

x∈B

η∗x is a Lie algebra bundle

and is called the algebraic hull of η.

Lemma 2.4. Let ξ = (E, p,B) be a Lie algebra bundle. Then any A ∈ End(ξ)

can be uniquely expressed as A = A0 +As where A0 is nilpotent and As on ξx is a

matrix with simple elementary divisors.

Proof. Let ϕ : U ×EndL→ (Endp)−1(U) be a local trivialization of Endξ. Then

from the isomorphism ϕx : {x} × EndL → (Endp)−1(x) for any A ∈ Endξ corre-

sponding to eigenvalues λ1, λ2, . . . of A in ξx, the Lie algebra ξx can be written as a

direct sum of eigenspaces, ξx = Eλ1
⊕Eλ2

⊕· · · . Let As be such that As|ξx : ξx → ξx
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is Asy = λiy for y ∈ Eλi
. Then As is well defined endomorphism on ξ. Further,

As on ξx is a matrix with simple elementary divisors, (X − λi). Put A
0 = A− As

on each ξx. Then A0 is nilpotent. Also, A0 and As commute and hence this

representation is unique. □

Lemma 2.5. In the representation of Lemma 2.4, A0 and As are replicas of A.

Proof. Let A = A0 +As. Then by the methods of [8] , (Ars)x = (A0
rs)x + (As

rs)x.

For each x, (A0
rs)x is nilpotent and (As

rs)x is a matrix with simple elementary

divisors. If V is the vector space on which A|ξx operates. Let (Irs)x denote the

Kronecker product V ∗ ⊗ V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
r times

⊗V ⊗ V ⊗ . . .⊗ V︸ ︷︷ ︸
s times

and (Ik)x the eigenspace

of (Irs)x corresponding to a eigenvalue λk of (Ars)x. For any y ∈ (Ik)x, (Ars)xy =

λky and by Lemma 2.4 (As
rs)xy = λky. Let z ∈ (Irs)x and (Ars)xz = 0. Then

z ∈ (I0)x and hence (As
rs)xz = 0. Therefore, (As

rs)x is a replica of (Ars)x. Now,

(A0
rs)xz = ((Ars)x−(As

rs)x)z = 0. This shows that (A0
rs)x is a replica of (Ars)x. □

Lemma 2.6. Any A ∈ End(ξ) can be decomposed as Ax = (A0)x + λ1(A1)x +

λ2(A2)x + · · ·+ λl(Al)x on each fibre ξx of End(ξ).

Proof. A|ξx is an endomorphism on ξx. Let λ1, λ2, . . . , λk be the distinct eigen-

values of A|ξx. Of these let l be the maximal number of λi’s which are linearly

independent over the prime field P of complex numbers, say, λ1, λ2, . . . , λl. Then

for each i = 1, 2, . . . , k, λi =
∑l

j=1 rijλj , rij ∈ P . If V is the vector space on which

A|ξx operates, then V =
⊕k

i=1 Vλi
. Let Ei be the projection of V on Vλi

. Then for

y ∈ V , y = y1+y2+· · ·+yk and Eiy = yi. From Lemma 2.4, (A′)xyi = λiyi. Hence,

we get (A′)xy = (A′)x(
∑k

i=1 yi) =
∑k

i=1(A
′)xyi =

∑k
i=1 λiyi =

∑k
i=1(λiEi)y from

which it follows that (A′)x =
∑k

i=1 λiEi. Take (Aj)x =
∑k

i=1 rijEi, j = 1, 2, . . . , l.

Then (A)x = (A0)x + (A′)x = (A0)x +
∑k

i=1 λiEi = (A0)x +
∑k

i=1

∑l
j=1 rijλjEi =

(A0)x +
∑l

j=1 λj(Aj)x. This proves the lemma. □

Theorem 2.7. If ξ is a Lie algebra bundle then the derivation algebra bundle of ξ,

D(ξ) is l-algebraic.

Proof. For any D ∈ D(ξ) we show that {D} ⊂ D(ξ). From the derivation D|ξx =

Dx we have the decomposition of ξx as ξx = Eα ⊕ Eβ ⊕ . . . where α, β, . . . are the

eigenvalues of Dx, x ∈ B. Then for y ∈ Eα and z ∈ Eβ , Dxy = αy and Dxz = βz.

Dx[y, z] = [Dxy, z]+[y,Dxz] = [αy, z]+[y, βz] = (α+β)[y, z] so that [y, z] ∈ E(α+β)

if α + β is an eigenvalue of Dx. Therefore, [Eα, Eβ ] ⊆ E(α+β). From [5] Ds is a

derivation of ξ. Therefore, we consider the case when D is an s-matrix on ξx.
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Then for a suitable basis x1, x2, . . . , xr of ξx we have Dxxi = aixi, i = 1, 2, . . . , r.

Let the structure constants of ξx be [xi, xj ] =
∑

h cijhxh. Then D ∈ D(ξ) implies

D[xi, xj ] = D
∑

h cijhxh = (ai + aj)[xi, xj ]. From the equality of sums on both

sides, (ai + aj)cijh = ahcijh,∀ i, j, h = 1, 2, . . . , r or (ai + aj − ah)cijh = 0 ∀ i,

j, h = 1, 2, . . . , r. Let D = D0 +Ds be a canonical decomposition of D such that

Dx = D0
x+λ1(Dx)1+λ2(Dx)2+ . . .+λk(Dx)k. Then each (Dx)l may be defined as

(Dx)lxi = rlixi where ai =
∑

l λlr
l
i. Now (ai + aj − ah)cijh = 0 is a trivial relation

if cijh = 0. If cijh ̸= 0, (ai + aj − ah) = 0 which gives
∑

l(r
l
i + rlj − rlh)λl = 0. Since

λl’s are linearly independent rli + rlj − rlh = 0. Thus when ai = rli the condition

(ai + aj − ah)cijh = 0 is satisfied. This gives Dl ∈ D(ξ) so that {D} ⊆ D(ξ).

Therefore, D(ξ) is l-algebraic. □

Proposition 2.8. Let η be a Lie subbundle of End(ξ) and η1 be a subbundle of η.

Then I(η1)
∗ = I(η∗1).

Proof. Let ϕx : {x} × ad(L1)
∗ → Ix(η1)

∗ be the local trivialization of I(η1)
∗ at

x ∈ B. By [10] Proposition 4, ad(L1)
∗ is spanned by the replicas, {ady} with y

in L1. For any element A of End(L) and a subalgebra H of End(L) such that

[A,H] ⊂ H, {adA} = ad{A}. Therefore, ad(L1)
∗ = span{{ady} : y ∈ L1} =

ad{span{y} : y ∈ L1} = ad(L∗
1). Then ψx : {x} × ad(L∗

1) → Ix(η
∗
1) is the local

trivialization of I(η∗1) and hence I(η1)
∗ = I(η∗1). □

Remark 2.9. For a Lie subalgebra L of gl(V ), R(L∗) = R(L)∗[5].

For a subbundle η of End(ξ), R(η) =
⋃

x∈B

R(ηx) and hence R(η∗) = R(η)∗.

Proposition 2.10. Let η∗ be the algebraic hull of a subbundle η of End(ξ). Then

(1) Every ideal bundle of η is also an ideal bundle in η∗.

(2) Center of η is contained in the center of η∗.

(3) η and η∗ have the same derived algebra.

(4) If η is an ideal bundle in a subbundle η1 of End(ξ) then [η∗1 , η
∗] ⊂ η.

Proof. Let ϕx : {x}×η∗x → p−1(x) be the local trivialization of η∗ at x ∈ B. Then

by [3] every ideal in ηx is an ideal in η∗x. For any ideal bundle η‘ of η, η‘ is an

ideal bundle of η∗ by the local trivialization ϕx : p−1(x) → x × η‘x which proves

(1). (2) follows from Z(η) =
⋃

x∈B Z(ηx) ⊂
⋃

x∈B Z(η
∗
x) = Z(η∗). For any k, ηk =⋃

x∈B η
k
x =

⋃
x∈B(η

∗
x)

k = (η∗)k which proves (3). [η∗1 , η
∗] =

⋃
x∈B [(η

∗
1)x, (η

∗)x] ⊂⋃
x∈B ηx = η from which (4) holds. □

Corollary 2.11. If η∗ is the algebraic hull of a subbundle η of End(ξ), then η is

an ideal in η∗ and η∗/η is an abelian subbundle. If η is solvable, then η∗ is solvable.
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Proof. By Proposition 2.10, η is an ideal bundle in η∗. From Proposition 2.10(4),

[η∗, η∗] ⊂ η implies ∀x ∈ B, [η∗x, η
∗
x] ⊂ ηx. For all k, k′ ∈ η∗x, [k + ηx, k

′ + ηx] =

[k.k′] + ηx = 0+ ηx so that η∗x/ηx is abelian for all x ∈ B. Hence η∗/η is an abelian

Lie subbundle. η is solvable and hence ηx is solvable for every x ∈ B. η∗x/ηx is

abelian as a Lie algebra and hence η∗x is solvable. Therefore, η∗ is solvable. □

Proposition 2.12. Let η be an algebraic Lie subbundle of End(ξ). If R(η) is the

radical of η and η = S+R(η), then R(η) is algebraic.

Proof. Let R(η)∗ be the algebraic hull of R(η). Since η is algebraic, R(η)∗ ⊂ η

and [η,R(η)∗] =
⋃

x∈B [ηx, R(η)
∗
x] ⊂ R(η) ⊂ R(η)∗. Therefore, it follows that R(η)∗

is an ideal subbundle of η. By Proposition 2.10, [R(η)∗, R(η)∗] ⊂ R(η) so that

by Corollary 2.11 R(η)∗/R(η) is an abelian Lie subbundle of η and hence R(η)∗ is

solvable. Therefore, R(η)∗ = R(η) which shows that R(η) is algebraic. □

3. Derivations of Lie algebra bundles

Let ξ be a Lie algebra bundle. A vector bundle morphism D : ξ → ξ is called a

derivation if D([u, v]) = [u,D(v)] + [D(u), v] for all u, v ∈ ξx.

A derivation D is called inner if there exists a section s of ξ such that for all u

in ξx and x in B, D(u) = [u, s(x)][7].

A derivation D is central if for each x in B, Dξx ⊆ Z(ξx). The set of all

derivations of ξ form a Lie algebra bundle denoted by D(ξ). Then the set of all

inner derivations of ξ denoted by I(ξ) and the set of all central derivations denoted

by C(ξ) form subbundles of D(ξ).

Let ξ = (E, p,B) be a Lie algebra bundle, ϕ : U×L→
⋃

x∈B

ξx be a local triviality

of ξ where L is a Lie algebra, let R be the radical of L, ξx
r be the radical of ξx.

Then ϕ : U × R → ξx
r is an isomorphism. We call the bundle as radical bundle

of ξ.

Let ξ = (E, p,B) be a Lie algebra bundle and ξ be the direct sum of the ideal

bundles ξ1, ξ2, . . . , ξn. Let pi be the projection morphism of ξ onto ξi. Identify an

element ϕij of End(ξi, ξj) with an element ϕijpi of End(ξ). Then End(ξi, ξj) ⊂
End(ξ). Let D(ξi, ξj) = D(ξ) ∩ End(ξi, ξj). So that D(ξi, ξi) = D(ξi).

Theorem 3.1. Let ξ be the direct sum of the ideal bundles ξ1, ξ2,. . . , ξn. Then

(1) D(ξ) =
∑n

i,j=1D(ξi, ξj).

(2) For i ̸= j,D(ξi, ξj) consists of ϕij ∈ End(ξi, ξj) such that ϕijξi ⊂ Z(ξj)

and ϕij [ξi, ξj ] = 0.

(3) For i ̸= j,D(ξi, ξj) is abelian.
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Proof. We shall first prove (2). Let D ∈ D(ξi, ξj). Then D ∈ End(ξi, ξj). For

b ∈ B and xi, xj in ξi and ξj respectively, D[xi, xj ] = 0 and hence D(ξi)b ⊂ Z(ξj)b.

It follows that D(ξi) ⊂ Z(ξj). Also, D[ξi, ξi] = 0. Conversely, let ϕij be an element

of End(ξi, ξj) which satisfies the conditions in (2). Then ϕij is identified with

ϕijpi of End(ξ) so that ϕij [xk, xl] = 0 = [ϕij(xk), xl] + [xk, ϕij(xl)] for all xk, xl in

ξx, x ∈ B. This shows that ϕij is a derivation of ξ. This proves (1).

Let D ∈ D(ξ). Set ϕij = pjDpi where pi, pj are projections on ξi, ξj respectively.

Then ϕij : ξi → ξj is a Lie algebra homomorphism and D =
∑n

i,j=1 ϕij .

For i ̸= j, ϕij satisfies conditions of (2). Therefore, ϕij ∈ D(ξi, ξj). From this it

follows that D ∈
∑n

i,j=1D(ξi, ξj) and hence D(ξ) ⊂
∑n

i,j=1D(ξi, ξj). Converse is

also true. Therefore, D(ξ) =
∑n

i,j=1D(ξi, ξj) which proves (2).

Let i ̸= j and Dij , D
′
ij ∈ D(ξi, ξj). Then for x in B, [Dij , D

′
ij ](xk) = 0, xk ∈ ξx

which shows that D(ξi, ξj) is abelian. This proves (3). □

Definition 3.2. A Lie algebra bundle ξ = (E, p,B) is said to be characteristically

solvable if D(ξ) is solvable and Z(ξ) ⊂ [ξ, ξ].

Theorem 3.3. Let ξ be a solvable Lie algebra bundle such that Z(ξ) ⊂ [ξ, ξ]. If

D(ξ) = S+R(ξ), then ξ is characteristically solvable.

Proof. By hypothesis, Z(ξ) ⊂ [ξ, ξ]. We need only prove that D(ξ) is solvable.

Since ξ is solvable, ad ξ is solvable and hence ad ξ is an ideal bundle of R(ξ).

Let D be a derivation in S. Then for any x ∈ B, [adξx, D|ξx] ⊆ adξx and

[adξx, D|ξx] ⊆ Sx. Therefore, [adξ,D] ⊆ adξ and [adξ,D] ⊆ S so that [adξ,D]

is solvable. By hypothesis, [adξ,D] = 0 and hence Dξ ⊂ Z(ξ) ⊂ [ξ, ξ]. Now,

D2ξ ⊂ D[ξ, ξ] and D2 = 0 gives D is nilpotent.

Let V be a finite dimensional ample Lie subalgebra of Γ(S) and s ∈ V . Then

s(x) is a derivation in S and is nilpotent. This implies ads is nilpotent. By

Engel’s Theorem for Lie algebra bundles S is nilpotent and hence solvable. Since

S is semisimple, S = 0. Therefore, D(ξ) = R(ξ) and we conclude that D(ξ) is

solvable. □

Let D(ξ) denote the subbundle of D(ξ) consisting of all derivations of ξ such

that Dξ ⊂ Z(ξ).

Theorem 3.4. Suppose ξ = (E, p,B) is the direct sum of the ideal bundles

ξ1, ξ2, . . . , ξn. Suppose Z(ξj) ⊂ [ξj , ξj ] for some j, then

(1) D(ξj) is an abelian ideal bundle of D(ξ).

(2) [D(ξi, ξj), D(ξj , ξi)] ∈ D(ξj) for all i ̸= j.
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Proof. For all x ∈ B, D(ξj)x is an abelian ideal of D(ξj)x and hence D(ξj) is an

abelian ideal bundle of D(ξj). Further, [D(ξj),
∑

i ̸=j D(ξi) +
∑

i ̸=kD(ξi, ξk)] = (0)

so that from Theorem 3.1(1), D(ξj) is an abelian ideal bundle of D(ξ) which proves

(1).

Let Dij and Dji, i ̸= j be two elements of D(ξi, ξj) and D(ξj , ξi) respectively. Then,

[Dij , Dji]x(ξi)x = (0) and [Dij , Dji]x(ξj)x ∈ Z(ξj)x for all x in B so that [Dij , Dji]

belongs to D(ξj). Therefore, (2) is proved. □

Theorem 3.5. Let ξ be a nonabelian solvable Lie algebra bundle. If D(ξ) = S+R,

then D(ξ) is solvable and ξ is either characteristically solvable or the direct sum of

a characteristically solvable ideal bundle and a central ideal bundle of rank 1.

Proof. Let ϕ : U × L →
⋃

x∈U

ξx be the local triviality of ξ. From Theorem 3.3, we

need only prove the result when Z(ξ) ̸⊂ [ξ, ξ].

Let L1 and Z be subspaces of Z(L) such that

Z(L) = L1 ⊕ Z, L1 ∩ [L,L] = (0), Z ⊂ [L,L].

Let L2 be a subspace of the Lie algebra L containing [L,L] such that L = L1 ⊕L2.

For each x ∈ B, let (ξ1)x and Zx be subspaces of ξx such that

Z(ξx) = (ξ1)x ⊕ Zx, (ξ1)x ∩ [ξx, ξx] = (0), Z(ξx) ⊂ [ξx, ξx].

Let (ξ2)x be a subalgebra of ξx containing [ξx, ξx] such that ξx = (ξ1)x ⊕ (ξ2)x for

x ∈ B. Then by the local triviality

ϕ′ : U × L1 →
⋃
x∈U

(ξ1)x, ϕ′′ : U × Z →
⋃
x∈U

Zx

and

ϕ′′′ : U × L2 →
⋃
x∈U

(ξ2)x

ξ1 =
⋃
(ξ1)x, Z =

⋃
Zx and ξ2 =

⋃
(ξ2)x form subbundles of ξ such that Z(ξ) =

ξ1 ⊕ Z and ξ = ξ1 ⊕ ξ2. ξ1 ⊂ Z(ξ) and hence ξ1 is a central ideal bundle of

ξ. ξ is non abelian and ξ2 ⊃ [ξ, ξ] so that ξ2 is a non-zero ideal bundle of ξ.

Z(ξ2)x ⊂ [(ξ2)x, (ξ2)x] and hence Z(ξ2) ⊂ [ξ2, ξ2]. By hypothesis, D(ξ) = S ⊕ R

where S is a semisimple ideal bundle and R is the radical bundle of D(ξ). Let

D(ξ2) = S2 ⊕R2 by Levi decomposition for Lie algebra bundles. From Theorem

3.4(1), D(ξ2) is an abelian ideal bundle of D(ξ) and hence D(ξ2) is solvable from

which it follows D(ξ2) ⊂ R2.

For x ∈ B, set

Mx = span{(D1)x, D(ξ1, ξ2)x, D(ξ2, ξ1)x, (R2)x}
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where D1 is the identity derivation of ξ1. If I is the ideal

span{D1, D(L1, L2), D(L2, L1), R2} and ψ : U × D(L) →
⋃

x∈U

D(ξx) is the local

triviality of D(ξ), then by the morphism ψ|M : U × I →
⋃

x∈U

Mx ,M =
⋃

x∈B Mx

is an ideal bundle of D(ξ). By Theorem 3.1 and Theorem 3.4, M
(i)
x ⊂ (R2)x +

(D(ξ2) +D(ξ1, ξ2) +D(ξ2, ξ1))x. Since R2 is solvable, R
(k)
2 = 0 for some k so that

M
(k)
x ⊂ (D(ξ2)+D(ξ1, ξ2)+D(ξ2, ξ1))x. Using Theorem 3.4 , M

(k+1)
x ⊂ D(ξ2)x and

hence M
(k+2)
x = (0). Hence M is a solvable ideal bundle of ξ. Therefore, M ⊂ R.

Since S is a unique maximal semisimple subalgebra bundle of D(ξ), S contains S2.

[R2,S2] is a solvable semisimple ideal bundle of D(ξ) and hence [R2,S2] = (0).

This shows that D(ξ2) = S2 ⊕ R2. Therefore, ξ2 is characteristically solvable by

Theorem 3.3. For any D ∈ M, Dξx ∈ (D1)x + D(ξ1, ξ2)x + D(ξ2, ξ1)x + (R2)x ⊂
(D1)x + D(ξ1, ξ2)x + D(ξ2, ξ1)x + D(ξ2)x. Therefore, M ⊂ (D1) + D(ξ1, ξ2) +

D(ξ2, ξ1) +D(ξ2). Also for any D ∈ (D1) +D(ξ1, ξ2) +D(ξ2, ξ1) +D(ξ2), by con-

struction of M, D ∈ M. Hence, M = (D1) +D(ξ1, ξ2) +D(ξ2, ξ1) +D(ξ2).

We assert that rank(ξ1) = 1. If dim(ξ1)x > 1, then by [9] D(ξ1)x = (S1)x + (D1)x

where (S1)x is a non-zero semisimple ideal of D(ξ1)x.

Therefore, D(ξ)x = (S1)x +Mx and [(S1)x,Mx] = (0).

Let D11 be any element of (S1)x. Then [D21, D11] = (0) for any element D21 of

D(ξ2, ξ1)x so that D21D11 = (0). (ξ1)x is abelian and by Theorem 3.1(2),

D(ξ2, ξ1)x(ξ2)x = (ξ1)x.

Therefore, D11 = 0 whence (S1)x = (0) which is a contradiction. Therefore,

dim(ξ1)x = 1. This gives that rank of ξ1 is 1. Thus D(ξ1) = (D1). Therefore,

D(ξ) = M from which it can be concluded that D(ξ) is solvable. This proves the

theorem. □

From [1] Herm(E) =
⋃

x∈B

Herm(Ex) forms a vector bundle where Herm(Ex) is

the vector space of all Hermitian forms on Ex.

For x ∈ B and ∀f, g ∈ Herm(Ex) define [f, g] = fog − gof . Then Herm(Ex)

becomes a Lie algebra with this product structure. For every x ∈ B and a neigh-

bourhood U of x in B let ϕ : p−1(U) → U × ξx be the local trivialization of ξ.

Define Hermϕ : U×Herm(Ex) → (Hermp)−1 by Hermϕ(s, T ) = ϕsoTo(ϕs)
−1.

We observe that Hermϕ is a Lie bundle isomorphism. Hence Herm(E) is a Lie

algebra bundle.
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Definition 3.6. A Hermitian metric on a Lie algebra bundle is a section h : E →
HermE such that h(x) is positive definite for all x ∈ B. A Lie bundle with a

specified Hermitian metric is called a Hermitian Lie bundle.

Proposition 3.7. Let ξ = (E, p,B) be a Lie algebra bundle. η be a subbundle of

ξ and h be the Hermitian metric on ξ. Then there exists a subbundle η′ of ξ such

that ξ = η ⊕ η′.

Proof. For all x ∈ B consider the orthogonal projection Px : ξx → ηx given by the

Hermitian metric. Define P : ξ → η such that P on ξx is the projection Px for all

x ∈ B.

We claim that P is continuous. As the problem is local in nature, we assume

that ξ is trivial. Then there exists sections s1, s2, . . . , sn of ξ which forms a basis

on each fibre. For any v ∈ ξx, v =
∑
hx(v, si(x))si(x). P is continuous since h is

continuous. Therefore, P is a projection operator on ξ. If η⊥x is the Lie subalgebra

of ξx which is orthogonal to ηx under the metric h, then η⊥ = ∪η⊥x is the kernel of

P and hence is a subbundle of ξ. Therefore, ξ = η ⊕ η⊥. □

Proposition 3.8. Let ξ be any subbundle of the Lie algebra bundle End(ξ). If

C(ξ) ⊂ I(ξ)∗, then Z(ξ) = 0 or ξ = [ξ, ξ].

Proof. By Levi decomposition, ξ = S+R where S is a semisimple subbundle and

R is the radical bundle of ξ. Further, since ξ∗ is algebraic, ξ∗ = S+R∗. Suppose

Z(ξ) ̸= 0 and ξ ̸= [ξ, ξ]. We have,

[ξ, ξ] = [ξ,S+R]

= [ξ,S] + [ξ,R]

= [S+R,S] + [ξ,R]

= S+ [ξ,R].

Since ξ ̸= [ξ, ξ], ξ ̸= S + [ξ,R] so that [ξ,R] ̸= R. Since [ξ, ξ] ̸= 0, [ξ,R] ̸= R, by

Proposition 3.7 we can choose a subbundle U of R such that R = U ⊕ [ξ,R]. Then

ξ = S⊕ U ⊕ [ξ,R]. Define a non-zero morphism D on ξ as, for x ∈ B,

DUx ⊂ Z(ξx) and D(S+ [ξ,R(ξ)]) = 0.

Then D is a central derivation on ξ. Given C(ξ) ⊂ I(ξ)∗ and hence C(ξ) ⊂
I(S + R∗) so that D is in I(S + R∗) which implies that there exists a section s

with s(x) ∈ ξx = Sx +R∗
x such that D(u) = [u, v0] where v0 = px + rx ∈ Sx +R∗

x.

Therefore, D(u) = [u, px] + [u, rx]. Since DS = 0, D(u) = adrx(u). This implies
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D(Ux) = adrx(Ux) = [rx, Ux] ⊂ [R∗
x, Ux] ⊂ [R∗

x, Rx] = 0. Hence D(Ux) = 0 which

shows that D is a zero morphism which is a contradiction. Therefore, Z(ξ) = 0 or

ξ = [ξ, ξ]. □

Let ξ = (E, p,B) be a Lie algebra bundle. Set Z1(ξx) = {e ∈ ξx : [e, ξx] ⊆ Z(ξx)}
for all x ∈ B. Then Z1(ξx) is a subalgebra of ξx, x ∈ B. Define Z1(ξ) =

⋃
Z1(ξx).

Then Z1(ξ) is a subbundle of ξ.

Proposition 3.9. Let Z(ξ) be the center of ξ. Then I(ξ) ∩ C(ξ) = I(Z1(ξ)).

Proof. Let D ∈ I(ξ) ∩ C(ξ). Then D : ξ → ξ is an inner derivation. Therefore,

there exists a section s of ξ such that D(u) = [u, s(x)] for all u in ξx and x in B. Let

x ∈ B. Then [u, s(x)] = D(u) ∈ Z(ξx) for all u ∈ ξx which implies s(x) ∈ Z1(ξx).

Therefore, s : ξ → Z1(ξ) is a section of Z1(ξ). Hence D ∈ I(Z1(ξ)).

On the other hand, let D ∈ I(Z1(ξ)). Clearly D ∈ I(ξ). Also, D(u) = [u, s(x)] for

some section s of Z1(ξ) and s(x) ∈ Z1(ξx) so that D(u) = [u, s(x)] ∈ Z(ξx) which

shows that D ∈ C(ξ). Hence the proof is completed. □

Theorem 3.10. I(ξ) ⊂ C(ξ) if and only if ξ3 = 0.

Proof. I(ξ) ⊂ C(ξ) gives Iξx ⊂ Z(ξx) ∀x ∈ B. Then for any I in I(ξ), [ξx, I(ξx)] =

0 for all x ∈ B.

Now,

Iξx = {[u, s(x)] | ∀u ∈ ξx and s is a section of ξ such that s(x) = v0 ∈ ξx}

= {[u, v0] | ∀u ∈ ξx and for some v0 ∈ ξx}.

Therefore, Iξx = [ξx, v0] for some v0 ∈ ξx so that Iξx = ξ2x.

Let v0 ∈ ξx. Then Y = {x} is a closed subspace of B. Define a section s : Y → E/Y

as s(x) = v0. Then the section can be extended to E by [1]. Therefore, ∀ v0 ∈ ξx,

there exists a section s of ξ such that s(x) = v0.

Set, Du = [u, v0] = [u, S(x)] for every u ∈ ξx. Then D is an inner derivation of

ξ. Therefore, I(ξ) ⊂ C(ξ) giving [ξx, D(ξx)] = 0 ∀x ∈ B. It follows that ξ3x = 0

∀x ∈ B and hence ξ3 = 0.

Conversely, suppose ξ3 = 0. This implies ξ2 ⊂ Z which gives [ξ2x, u] = 0 ∀u ∈
ξx, x ∈ B. Hence [I(ξx), u] = 0∀x ∈ B which shows that I(ξx) ⊂ Z(ξx). Therefore,

I(ξ) ⊂ C(ξ). This proves the result. □

Theorem 3.11. Assume that the center Z(ξx) is non-zero for each x ∈ B. Then

I(ξ) = C(ξ) if and only if ξ2 = Z and rank Z(ξ) = 1.
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Proof. Let ϕ : U × Z(L) →
⋃

x∈U

Z(ξx) be the local triviality of centre bundle of ξ,

D be the identity derivation on Z(ξ) i.e., D(y) = y ∀ y ∈ Z(ξx), x in B. Extend this

trivially to a derivation of ξ. Then D is a central derivation of ξ. If D is an inner

derivation, then there exists a section s of ξ such that Du = [u, v0], v0 = s(x), u ∈
ξx and x ∈ B. If ξ2 ̸= Z(ξ), then there exists x ∈ B such that ξ2x ̸= Z(ξx). Let

u ∈ Z(ξx) − ξ2x. Then Du = [u, v0] = 0, v0 = s(x) which is not true since Du = u

for all u ∈ Z(ξx). Therefore, D is not an inner derivation which is a contradiction.

Hence ξ2 = Z(ξ).

For any x ∈ B, dimI(ξx) = dim(ξx/Z(ξx)) and dimC(ξx) = dim(ξx/ξ
2
x) ×

dimZ(ξx) which gives dimZ(ξx) = 1 and hence rank Z(ξ) = 1.

Conversely, suppose ξ2 = Z and rank Z(ξ) = 1. Then ξ2 = Z gives ξ3 = 0. By

Theorem 3.10, I(ξ) ⊂ C(ξ). By the above formulae on dimensions of I(ξx) and

C(ξx), dim I(ξx) = dimC(ξx) ∀x ∈ B. Thus I(ξ) = C(ξ). □

Theorem 3.12. D(ξ) = C(ξ) if and only if ξ is abelian.

Proof. We prove that ξ2 = 0. Suppose ξ2 =
⋃

x∈B

ξ2x ̸= (0). Then we can find a

x ∈ B such that ξ2x ̸= (0). If Z(ξx) = (0), then C(ξx) = (0) which givesD(ξx) = (0).

It follows that ξx = 0. Therefore, we assume Z(ξ) ̸= (0). Then by Theorem 3.10,

ξ3 = 0. Since ξ2 ̸= 0, for some x in B we obtain a Lie subalgebra Ux ̸= 0 such

that ξx = Ux ⊕ (ξx)
2. Let Dx be the identity mapping of Ux, Dxu = u, for all

x ∈ Ux. We shall extend this mapping trivially to a derivation D of ξ. Then D is a

derivation of ξ which is not central - a contradiction to our supposition. Therefore,

ξ2 = 0. Conversely, if ξ is abelian, then Z(ξ) = ξ and hence every derivation is

central. □

Theorem 3.13. Let ξ be the direct sum of the ideal bundles ξ1, ξ2, . . . , ξn. Then

D(ξ) = I(ξ)⊕ C(ξ) if and only if D(ξi) = I(ξi)⊕ C(ξi).

Proof. SupposeD(ξi) = I(ξi)⊕C(ξi). From [11]D(ξ) =
∑n

i=1D(ξi)⊕
∑n

i,j=1D(ξi, ξj).

For i ̸= j, D(ξi, ξj)ξi ⊂ Z(ξj). Therefore, D(ξi, ξj) ⊂ C(ξi). It follows that

D(ξ) =
∑n

i=1 I(ξi) ⊕ C(ξi) =
∑n

i=1 I(ξi) ⊕
∑n

i=1 C(ξi). Further
∑n

i=1 I(ξi) =∑n
i=1 ad(ξi) = ad(ξ1 ⊕ ξ2 ⊕ . . .⊕ ξn) = I(ξ). Also, C(ξ) =

∑n
i=1 C(ξi). Therefore,

D(ξ) = I(ξ)⊕ C(ξ).

Conversely, assume D(ξ) = I(ξ)⊕C(ξ). Any derivation Di of ξi can be trivially ex-

tended to a derivationD of ξ. ThenD = D1+D whereD1 is in I(ξ) andD is in C(ξ)

which gives D|ξi = Di = D1|ξi +D|ξi. Therefore, D|ξi = Di = Di −D1|ξi so that

Diξi ⊂ ξi ∩Z(ξ) = Z(ξi). Hence Di ∈ C(ξi) which gives D(ξi) = I(ξi)⊕C(ξi). □
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Theorem 3.14. Let ξ be a non abelian nilpotent Lie algebra bundle such that Z(ξ)

is not contained in [ξ, ξ]. Then D(ξ) is not nilpotent. D(ξ) contains a solvable non

nilpotent ideal bundle.

Proof. Let ξ1 and ξ2 be subbundles of ξ as in Theorem 3.5. Then Z(ξ2) ⊂ [ξ2, ξ2].

For x ∈ B, set Mx=span{(D1)x, D(ξ1, ξ2)x, D(ξ2, ξ1)x, D(ξ2)x} where D1 is the

identity derivation of ξ1. Let M =
⋃

x∈B

Mx. Then by Theorem 3.1, M is an ideal

bundle of D(ξ). M
(1)
x ⊂ D(ξ2)x + D(ξ1, ξ2)x + D(ξ2, ξ1)x. Then by Theorem 3.4

M
(3)
x = 0 so that M is a solvable ideal bundle of D(ξ). Since ξ is non abelian and

nilpotent D(ξ1, ξ2) ̸= 0. Since [D1, D(ξ1, ξ2)x] = D(ξ1, ξ2)x, M is not nilpotent.

Thus M is a solvable non nilpotent ideal bundle of D(ξ). □

Acknowledgement. The authors would like to thank the referee and the editor

for the valuable suggestions and comments.

References

[1] M. F. Atiyah, K - Theory, W. A. Benjamin, Inc., New York- Amsterdam, 1967.

[2] C. Chevalley, A new kind of relationship between matrices, Amer. J. Math., 65

(1943), 521-531.

[3] C. Chevalley, Algebraic Lie algebras, Ann. of Math. (2), 48 (1947), 91-100.
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