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1. Introduction

BGG category O plays a central role in representation theory, see [2]. For a

complex semisimple Lie algebra g we can consider its quantized universal enveloping

algebra Uq(g) and the category O of Uq(g) as in [1] and [4].

The large category Uq(g)-Mod has a tensor product, which makes it a braided

monoidal category; but category O is not closed under the tensor product. It is

well-known that for any finite dimensional module M ∈ O we have M ⊗N ∈ O for

any N ∈ O. See [2, Theorem 1.1(d)] for a proof for semisimple Lie algebras, which

can be generalized to quantum groups with little change. In [5] it has been proved

that if M ∈ O has the above property, then M must be finite dimensional.

Now the question is: if both M and N ∈ O are infinite dimensional, is it always

true that M ⊗N ∉ O. It is trivially false if we do not require that g is simple, as

shown by the following example provided by Victor Ostrik.

Example 1.1. Let g = sl(2) ⊕ sl(2). Let V be a Verma module for Uq(sl(2))
(with arbitrary highest weight). Using two projections g→ sl(2) we obtain p1, p2 ∶
Uq(sl(2)⊕ sl(2)) → Uq(sl(2)). Therefore we can consider V as a Uq(sl(2)⊕ sl(2))-
module by pull-back via p1 and p2. Let us call the resulting Uq(sl(2) ⊕ sl(2))-
modules V1 and V2. Then both V1 and V2 are in the category O for Uq(sl(2)⊕sl(2)),
and V1 ⊗ V2 is a Verma module of Uq(sl(2) ⊕ sl(2)).
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Therefore the relevant question is: if g is simple and M , N ∈ O are both infinite

dimensional, is it always true that M ⊗N ∉ O?
The main result of this paper is Theorem 4.9, which claims that if g is simple of

type ADE and M , N ∈ O are both infinite dimensional, then M ⊗N ∉ O. The proof
is based on a careful study of rational expressions of formal characters of modules

in O and a study of closed subroot systems of irreducible root systems.

2. A review of the BGG category O of a quantized universal

enveloping algebra

2.1. A review of quantized universal enveloping algebras. We follow the

notations in [4] and [5]. Let g be a semisimple Lie algebra over C of rankN . We fix a

Cartan subalgebra h ⊂ g. Let ∆ be the set of roots and we fix Σ = {α1, . . . , αN} ⊂∆
the set of simple roots. We write P, Q, and Q∨ for the weight, root, and coroot

lattices of g, respectively. It is well-known that β∨ ∈ Q∨ for each β ∈ ∆. Let

E = SpanR∆ = R⊗Z Q = R⊗Z Q∨ = R⊗Z P.

Let P+ be the set of dominant integral weights. We also write Q+ for the non-

negative integer combinations of the simple roots. Let ∆+ = Q+ ∩∆ be the set of

positive roots.

We write ( , ) for the bilinear form on h∗ obtained by rescaling the Killing form

such that the shortest root α of g satisfies (α,α) = 2. For a root β ∈ ∆, we set

dβ = (β,β)/2 and let β∨ = β/dβ be the corresponding coroot. In particular, let

di = (αi, αi)/2, and hence α∨i = d−1i αi for i = 1, . . . ,N .

The Cartan matrix for g is the matrix (aij)1≤i,j≤N with coefficients aij = (α∨i , αj) =
2(αi,αj)

(αi,αi)
. In our case aij are integers and we call such (∆,E) a crystallographic root

system.

We write W for the Weyl group and si for the reflection for αi ∈Σ.

Definition 2.1. [4, Definition 3.13] Let q ∈ C× be such that q2di ≠ 1 for i = 1, . . . ,N .

The algebra Uq(g) over C has generators Kλ for λ ∈ P, and Ei, Fi for i = 1, . . . ,N ,

and the defining relations for Uq(g) are

K0 = 1, KλKµ =Kλ+µ, KλEjK
−1
λ = q(λ,αj)Ej , KλFjK

−1
λ = q−(λ,αj)Fj ,

[Ei, Fj] = δij
Ki −K−1i

qi − q−1i
,
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for all λ,µ ∈ P and all i, j, together with the quantum Serre relations

1−aij

∑
k=0

(−1)k
⎡⎢⎢⎢⎢⎣

1 − aij
k

⎤⎥⎥⎥⎥⎦qi
E

1−aij−k
i EjE

k
i = 0,

1−aij

∑
k=0

(−1)k
⎡⎢⎢⎢⎢⎣

1 − aij
k

⎤⎥⎥⎥⎥⎦qi
F

1−aij−k
i FjF

k
i = 0.

In the above formulas we abbreviate Ki =Kαi for all simple roots, and we use the

notation qi = qdi .

We can define a comultiplication ∆̂, a counit ϵ̂, and an antipode Ŝ to make Uq(g)
a Hopf algebra, see [4, Definition 3.13] or [5, Definition 2.1] for details.

Let Uq(n+) be the subalgebra of Uq(g) generated by the elements E1, . . . ,EN ,

and let Uq(n−) be the subalgebra generated by F1, . . . , FN . Let Uq(b+) be the

subalgebra of Uq(g) generated by E1, . . . ,EN and all Kλ for λ ∈ P, and similarly

let Uq(b−) be the subalgebra generated by the elements F1, . . . , FN ,Kλ for λ ∈ P.

Moreover we let Uq(h) be the subalgebra generated by the elements Kλ for λ ∈ P.

These algebras are Hopf subalgebras.

By [4, Proposition 3.14], the multiplication in Uq(g) induces a linear isomorphism

Uq(n−) ⊗Uq(h) ⊗Uq(n+) ≅ Uq(g).

2.2. A review of the BGG category O. As in [4, Section 3.3.1], let h∗q ≅
Hom(P,C×) denote the abelian group of characters on Uq(h). Let M be a left

module over Uq(g). For any λ ∈ h∗q we define the weight space

Mλ = {v ∈M ∣Kµ ⋅ v = λ(µ)v for all µ ∈ P}.

Definition 2.2. A left module M over Uq(g) is said to belong to the BGG category

O if

a) M is finitely generated as a Uq(g)-module.

b) M is a weight module, that is, a direct sum of its weight spaces Mλ for λ ∈ h∗q .
c) The action of Uq(n+) on M is locally nilpotent, that is, for each v ∈ M , the

subspace Uq(n+) ⋅ v of M is finite dimensional.

Morphisms in a category O are all Uq(g)-linear maps.

We list some basic properties of category O.

Proposition 2.3. (1) O is closed under submodules, quotient modules, and

finite direct sums.

(2) All weight spaces of M in O are finite dimensional.
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(3) All finite dimensional weight modules of Uq(g) are in O.

From now on we restrict ourselves to the special case that q = eh ∈ R× for

some h ∈ R×. It is clear q is not a root of 1. We shall also use the notation

h∗ = HomC(h,C), and h̵ = h
2π

hence q = e2πh̵.
As in [4, Section 3.3.1], in this case we have h∗q ≅ h∗/ih̵−1Q∨ via the identification

λ(µ) = q(λ,µ) for any λ ∈ h∗q ≅ h∗/ih̵−1Q∨.

It is well defined: if λ ∈ ih̵−1Q∨, then for any µ ∈ P we have q(λ,µ) = e2πh̵(λ,µ) = 1.
Moreover, the addition in h∗/ih̵−1Q∨ corresponds to the product of characters.

It is clear that there is an embedding E = SpanR∆ ⊂ h∗q . In particularQ ⊂ P ⊂ h∗q .

Definition 2.4. [4, Section 3.3.3] For a λ ∈ h∗q , there exists a Verma module

M(λ) ∈ O and a simple highest weight module V (λ) ∈ O both with highest weight

λ.

Proposition 2.5. [4, Theorem 5.3, Jordan-Hölder decomposition] Every module

M ∈ O has a decomposition series 0 = M0 ⊂ M1 ⊂ ⋯ ⊂ Mn = M such that all

subquotients Mj+1/Mj are simple highest weight modules. Moreover, the number

of subquotients isomorphic to V (λ) for λ ∈ h∗q is independent of the decomposition

series and will be denoted by [M ∶ V (λ)].

3. Formal characters of modules in category O

3.1. Basic properties of formal characters. By Proposition 2.3, any module

M in category O satisfies dimMλ < ∞ for all λ ∈ h∗q . So we can define the formal

character of M .

Definition 3.1. We define the formal character of M in O by setting

ch(M) = ∑
λ∈h∗q

dim(Mλ)eλ,

here the expression on the right hand side is interpreted as a formal sum.

We have the following more general definition.

Definition 3.2. Let X be the formal sums of the form ∑λ∈h∗q
f(λ)eλ, where f ∶

h∗q → Z is any integer valued function whose support lies in a finite union of sets of

the form ν −Q+ with ν ∈ h∗q . The product in X is the convolution product given by

⎛
⎝ ∑λ∈h∗q

f(λ)eλ
⎞
⎠
⎛
⎝ ∑µ∈h∗q

g(µ)eµ
⎞
⎠
= ∑

λ,µ∈h∗q

f(λ)g(µ)eλ+µ.

It is clear that the right hand side is still in X .
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Remark 3.3. To define ν −Q+, we use the fact that Q embeds into h∗q .

To study the formal character of V (µ), we need to introduce the following con-

cepts.

Definition 3.4. We define Yq = {ζ ∈ h∗q ∣ 2ζ = 0} ≅ 1
2
ih̵−1Q∨/ih̵−1Q∨.

Since the Weyl group action preserves coroots Q∨ as well as 1
2
ih̵−1Q∨ and

ih̵−1Q∨, there is a well-defined action of W on Yq, and we have the following

definition.

Definition 3.5. The extended Weyl group Ŵ is defined as the semidirect product

Ŵ =Yq ⋊W

with respect to the action of W on Yq. Ŵ is a finite group.

Explicitly, the product in Ŵ is (iζ, v)(iη,w) = (iζ + ivη, vw). We define two

actions of Ŵ on h∗q by (iζ,w)λ = wλ + iζ and

(iζ,w) ⋅ λ = w ⋅ λ + ζ = w(λ + ρ) − ρ + iζ,

for λ ∈ h∗q . The latter is called the shifted action of Ŵ on h∗q .

Definition 3.6. We say that µ,λ ∈ h∗q are Ŵ -linked if ŵ ⋅ λ = µ for some ŵ ∈ Ŵ .

Definition 3.7. We define a partial order ≥ on h∗q by saying that λ ≥ µ if λ−µ ∈Q+.
Here we are identifying Q+ with its image in h∗q .

We have the following formula for ch(V (µ)).

Definition 3.8. We introduce an element p ∈ X as

p = ∏
β∈∆+

(
∞

∑
m=0

e−mβ) .

Lemma 3.9. [5, Lemma 3.5 and Corollary 3.7] For each µ ∈ h∗q , the formal char-

acter of the simple highest weight module V (µ) can be expressed as

ch(V (µ)) = ∑
λ∈h∗q

mλ,µ ch(M(λ)) = ∑
λ∈h∗q

mµ,λe
λp

where mµ,λ are integers such that mµ,µ = 1, and mµ,λ = 0 unless λ ≤ µ and λ is

Ŵ -linked to µ. In particular we have a finite sum on the right hand side.

Moreover, for each M ∈ O, there exists a finite set {λ1, . . . , λm} ⊂ h∗q and integers

cλi such that

ch(M) =
m

∑
i=1

cλie
λip.
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3.2. Reduced rational expressions of formal characters of modules in O.
Notice that we can write the formal character p = ∏β∈∆+ (∑∞m=0 e−mβ) as

p = 1

∏β∈∆+(1 − e−β)
.

Therefore by Lemma 3.9, we can write ch(M) as a rational function for M ∈ O.
Moreover, we want to simplify ch(M) to obtain a reduced fraction, which needs

some work because the ring X is not a UFD.

Let S be the ring of Z-coefficient polynomials generated by e−αi , i = 1, . . . ,N ,

where {α1, . . . , αN} is the set of simple roots. It is clear that ∏β∈∆+(1 − e−β) is in
S but in general ∑m

i=1 cλie
λi is not. We have the following definition.

Definition 3.10. [5, Definition 3.9] Let X be as in Definition 3.2. We say that

a ∈ X can be written in reduced rational form if there exist a subset Ta ⊂∆+ and

a finite collection {µ1, . . . , µm} ⊂ h∗q such that

a = ∑m
i=1 e

µifi

∏β∈Ta
(1 − e−β)nβ

(1)

where

(1) µi − µj is not in the root lattice Q for each i ≠ j;
(2) fi is a polynomial in S with nonzero constant term for each i;

(3) nβ is a positive integer for each β ∈ Ta ⊂∆+;
(4) The numerator and denominator of (1) are coprime. More precisely, for

each β ∈ Ta, there exists an fi in the numerator such that 1 − e−β is not a

factor of fi.

We call the set Ta the denominator roots of a.

In [5] we obtained the following result.

Lemma 3.11. [5, Lemma 3.10 and Lemma 3.11] For any a ∈ X , the reduced rational

form of a is unique if exists. Moreover, for a nonzero module M ∈ O, its formal

character ch(M) can be written uniquely in reduced rational form. In addition we

have

ch(M) = ∑m
i=1 e

µifi

∏β∈TM
(1 − e−β) (2)

and Property 1, 2, 3, 4 in Definition 3.10 are satisfied with all nβ = 1. We call the

set TM the denominator roots of M .

Corollary 3.12. [5, Corollary 3.13] A nonzero module M ∈ O is finite dimensional

if and only if its reduced rational form has denominator = 1, i.e. TM = ∅.
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3.3. The denominator roots of ch(V (µ)). Recall that

ch(V (µ)) = ∑
λ∈h∗q

mµ,λe
λp = ∑

λ∈h∗q

mµ,λe
λ

∏β∈∆+(1 − e−β)
(3)

where mµ,λ are integers such that mµ,µ = 1 and mµ,λ = 0 unless λ ≤ µ and λ is

Ŵ -linked to µ.

Recall that Ŵ =Yq ⋊W , where

Yq = {ζ ∈ h∗q ∣ 2ζ = 0} ≅
1

2
ih̵−1Q∨/ih̵−1Q∨,

and the shift action of (iζ,w) ∈ Ŵ on µ ∈ h∗q is given by

(iζ,w) ⋅ µ = w(µ + ρ) − ρ + iζ.

To emphasize the role of Ŵ we rewrite (3) as

ch(V (µ)) = ∑
ŵ∈Ŵ

mµ,ŵe
ŵ⋅µ

∏β∈∆+(1 − e−β)
(4)

where mµ,ŵ are integers such that mµ,1 = 1 and mµ,ŵ = 0 unless ŵ ⋅ µ ≤ µ. Notice

that we do not require the regularity of µ under the shift action of Ŵ . If there

exists n elements ŵ1, . . . , ŵn such that ŵ1 ⋅µ = . . . = ŵn ⋅µ = λ, then we simply take

mµ,ŵ1 = . . . =mµ,ŵn =mµ,λ/n.
Notice that the rational expressions in (3) and (4) are not reduced. In this

section we study the reduced rational form of ch(V (µ)) in more details. First we

need the following results.

Lemma 3.13. Fix a root β ∈ ∆. For any µ ∈ E = SpanR∆ ⊂ h∗q , there exists at

most one element w ⋅µ other than µ itself where w ∈W ⊂ Ŵ such that w ⋅µ−µ ∈ Zβ.
Moreover we can choose w = sβ for that element, where sβ is the reflection about

β.

Proof. The claim is clear since the (no-shift) W -action on E preserves length of

elements in E. □

Remark 3.14. In Lemma 3.13 the w ∈ W may be not unique since µ may be

singular. However the element w ⋅ µ must be unique. The same observation holds

for Lemma 3.15 below.

Let Ŵ ⋅ µ denote the Ŵ -orbit of µ under the shift action.

Lemma 3.15. Fix a root β ∈∆. For any µ ∈ h∗q , there exists at most one element

ŵ ⋅µ ∈ Ŵ ⋅µ other than µ itself such that ŵ ⋅µ−µ ∈ Zβ. Moreover we can choose ŵ =



TENSOR PRODUCTS OF INFINITE DIMENSIONAL MODULES IN BGG CATEGORY 115

( inβ
2h̵dβ

, sβ) for that element, where sβ is the reflection about β, and inβ
2h̵dβ

∈ 1
2
ih̵−1Q∨

for some n ∈ Z. In particular ŵ2 = 1 in Ŵ .

Proof. Let ŵ1 = (iζ1,w1) and ŵ2 = (iζ2,w2) and c1, c2 ∈ Z be such that

ŵ1(µ + ρ) − (µ + ρ) = c1β, ŵ2(µ + ρ) − (µ + ρ) = c2β.

We also write µ = η + iτ where η, τ ∈ E. Then we have

w1(η + ρ) − (η + ρ) = c1β, w1(iτ) − iτ + iζ1 ≡ 0 mod ih̵−1Q∨,

w2(η + ρ) − (η + ρ) = c2β, w2(iτ) − iτ + iζ2 ≡ 0 mod ih̵−1Q∨.

By Lemma 3.13 we have w1 ⋅ η = w2 ⋅ η and we can choose w1 = sβ and moreover

c1 = c2. Hence ŵ1 ⋅ µ = ŵ2 ⋅ µ. We also have ζ1 ≡ τ − sβτ is a real multiple of β.

And any element in Q∨ that is proportional to β is of the form nβ/dβ for some

n ∈ Z. □

Definition 3.16. We denote the element ( inβ
2h̵dβ

, sβ) in Lemma 3.15 by sµ,β . If

there is no ŵ ∈ Ŵ such that ŵ ⋅ µ ≠ µ and ŵ ⋅ µ − µ ∈ Zβ, then we say sµ,β does not

exist.

Remark 3.17. sµ,β is denoted by sk,β in [4, Section 5.1.3].

The following proposition describes the denominator of ch(V (µ)) in the reduced

rational form.

Proposition 3.18. Let µ ∈ h∗q . For any positive root β ∈∆+, we have that β ∉ TV (µ)

(i.e. 1 − e−β does not appear in the reduced rational form of ch(V (µ))) if and only

if the following conditions hold.

(1) For any ŵ ∈ Ŵ such that mµ,ŵ ≠ 0, the element sŵ⋅µ,β in Definition 3.16

exists;

(2) For any ŵ ∈ Ŵ such that mµ,ŵ ≠ 0, we have mµ,ŵ +mµ,sŵ⋅µ,βŵ = 0.

Proof. The numerator of (4) is

∑
ŵ∈Ŵ

mµ,ŵe
ŵ⋅µ = eµ ∑

ŵ∈Ŵ

mµ,ŵe
ŵ⋅µ−µ.

Notice that ∑ŵ∈Ŵ mµ,ŵe
ŵ⋅µ−µ is in the polynomial ring S since mµ,ŵ = 0 unless

ŵ ⋅µ ≤ µ. It is sufficient to prove that 1− e−β is a factor of ∑ŵ∈Ŵ mµ,ŵe
ŵ⋅µ−µ if and

only if conditions (1) and (2) hold.

“⇒”: If a polynomial is a multiple of 1 − e−β , then the coefficients of its terms

with the same degree mod eZβ must sum up to be 0. By Lemma 3.15, for each
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eŵ⋅µ−µ, the only element in the Ŵ -orbit that may be in the same mod eZβ-class is

esŵ⋅µ,βŵ⋅µ−µ. So either mµ,ŵ = 0 or mµ,ŵ +mµ,sŵ⋅µ,βŵ = 0.
“⇐”: We can write

∑
ŵ∈Ŵ

mµ,ŵe
ŵ⋅µ−µ = e−µ

2
( ∑
ŵ∈Ŵ

mµ,ŵe
ŵ⋅µ + ∑

ŵ∈Ŵ

mµ,sŵ⋅µ,βŵe
sŵ⋅µ,βŵ⋅µ)

= e−µ

2
[ ∑
ŵ∈Ŵ

mµ,ŵ(eŵ⋅µ − esŵ⋅µ,βŵ⋅µ) + ∑
ŵ∈Ŵ

(mµ,ŵ +mµ,sŵ⋅µ,β
)esŵ⋅µ,βŵ⋅µ].

By Condition (2), the second summation is 0. Moreover ŵ ⋅ µ − sŵ⋅µ,βŵ ⋅ µ is an

integer multiple of β. Hence e−µ(eŵ⋅µ − esŵ⋅µ,βŵ⋅µ) is a multiple of 1 − e−β for each

nonzero summand in the first summation. □

To give a further description of TV (µ) we need the following concepts.

Definition 3.19. For µ ∈ h∗q and TV (µ) as given in Lemma 3.11, let∆+µ ∶=∆+/TV (µ)

and ∆µ ∶=∆+µ ⊔ −∆+µ.

Recall the definition of subroot systems.

Definition 3.20. Let (∆,E) be a root system where E is the R-span of ∆. We

call a subset Φ ⊂∆ a subroot system if for any α, β ∈ Φ, we have sαβ ∈ Φ.

Proposition 3.21. For any µ ∈ h∗q , the set ∆µ in Definition 3.19 is a subroot

system of (∆,E).

Proof. For any α, β ∈∆+µ and any ŵ ∈ Ŵ such that mµ,ŵ ≠ 0, by Proposition 3.18

we can find

s1,α = (
in1α

2h̵dα
, sα) ∈ Ŵ

such that ŵ ⋅ µ − s1,αŵ ⋅ µ ∈ Zα and

mµ,ŵ +mµ,s1,αŵ = 0.

Using Proposition 3.18 repeatedly, we can find

s2,β = (
in2β

2h̵dβ
, sβ) and s3,α = (

in3α

2h̵dα
, sα) ∈ Ŵ

such that s1,αŵ ⋅ µ − s2,βs1,αŵ ⋅ µ ∈ Zβ and s2,βs1,αŵ ⋅ µ − s3,αs2,βs1,αŵ ⋅ µ ∈ Zα and

mµ,s1,αŵ +mµ,s2,βs1,αŵ = 0, mµ,s2,βs1,αŵ +mµ,s3,αs2,βs1,αŵ = 0,

hence mµ,ŵ +mµ,s3,αs2,βs1,αŵ = 0.
Moreover, the imaginary parts of mµ,ŵ and mµ,s2,βs1,αŵ are equal, so we can

choose n3 = n1, hence s3,α = s1,α. As a result we have

s1,αs2,βs1,α = (
i[n2 − (α,β∨)n1]sαβ

2h̵dβ
, sαβ).
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In summary for any ŵ such that mµ,ŵ ≠ 0 we can find

s4,sαβ ∶= s1,αs2,βs1,α

such that (s4,sαβ)2 = 1, ŵ ⋅ µ − s4,sαβŵ ⋅ µ ∈ Zsαβ and

mµ,ŵ +mµ,s4,sαβŵ = 0.

Again by Proposition 3.18 either sαβ ∈∆+µ or −sαβ ∈∆+µ, hence sαβ ∈∆µ. □

Remark 3.22. The analogue of Proposition 3.21 in the unquantized case also

holds.

Remark 3.23. For µ ∈ h∗q , the authors of [4] introduced a subroot system

∆[µ] ∶= {β ∈∆ ∣ q(µ+ρ,β
∨
)

β ∈ ±qZβ}, where qβ = qdβ = q(β,β)/2.

Notice that ∆[µ] is different from ∆µ and it is easy to see that ∆µ ⊂∆[µ].

The following result is a direct consequence of Corollary 3.12.

Corollary 3.24. For µ ∈ h∗q , the simple module V (µ) is finite dimensional if and

only if ∆µ =∆.

Remark 3.25. If q is not of the form eh for h ∈ R×, then the author does not know

whether the results in this section still hold. More generally, if q is a root of 1, then

we can still define the BGG category O for Uq(g). However, the structure of the

category O will be quite different than our case. See [1].

4. Tensor products in category O

4.1. Some general results. The category Uq(g)-Mod has a tensor product since

Uq(g) is a Hopf algebra. Moreover Uq(g)-Mod is a braided category since Uq(g)
is quasitriangular in the sense of [4, Theorem 3.108] and the comment after its

proof. In particular, for any left Uq(g)-modules V and W , we have a Uq(g)-module

isomorphism V ⊗W ≅W ⊗ V .

However categoryO is not closed under tensor product. To study tensor products

in O we introduce the following auxiliary category.

Definition 4.1. A left module M over Uq(g) is said to belong to the category Õ if

a) M is a weight module and all weight spaces of M are finite dimensional.

b) There exists finitely many weights ν1, . . . , νl ∈ h∗q such that suppM ⊂ ⋃l
i=1(νi −

Q+), where suppM = {λ ∈ h∗q ∣Mλ ≠ 0}.
Morphisms in category Õ are all Uq(g)-linear maps.
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It is clear that O is a full subcategory of Õ. Õ is closed under tensor product

and modules in Õ have formal characters in the ring X in Definition 3.2. Moreover

for M , N ∈ Õ we have ch(M ⊗N) = ch(M) ch(N).
We have the following result.

Lemma 4.2. [5, Lemma 4.6] For two simple highest weight module V (µ) and V (λ),
if V (µ) ⊗ V (λ) ≅ V (λ) ⊗ V (µ) ∈ O, then TV (µ) ∩ TV (λ) = ∅, i.e. ∆µ ∪∆λ =∆.

4.2. Tensor products of modules in category O for simple g of type ADE.

Definition 4.3. A root system (∆,E) is called simply laced if all roots in ∆ have

the same length.

It is well-known that a simple root system is simply laced if and only if it is of

type A, D or E.

Definition 4.4. [3, Definition 12-1] A subroot system ∆′ ⊂ ∆ is called closed if,

for any α, β ∈∆′, α + β ∈∆ implies α + β ∈∆′.

For simply laced root systems we have the following lemma.

Lemma 4.5. Any subroot system ∆′ of a simply laced root system ∆ is closed.

Proof. Let α, β ∈∆′ and α + β ∈∆. Since ∆ is simply laced, ∥α + β∥ = ∥α∥ = ∥β∥,
so we must have 2(α,β) = −(α,α). Hence α + β = sαβ ∈∆′. □

Remark 4.6. If ∆ is not simply laced, then there exist subroot systems of ∆

which is not closed. For example in the root system B2, the four short roots form

a subroot system but it is not closed.

The following proposition is important in the proof of Theorem 4.9.

Proposition 4.7. Let (∆,E) be an irreducible, reduced, crystallographic root sys-

tem. Then ∆ cannot be expressed as the union of two proper closed subroot systems.

In other words, if we have ∆ = ∆1 ∪∆2 for two closed subroot systems ∆1 and

∆2, then either ∆1 =∆ or ∆2 =∆.

Proof. Suppose we have ∆ =∆1 ∪∆2. First we can prove that ∆1/∆2 is orthog-

onal to ∆2/∆1. Pick α ∈ ∆1/∆2 and β ∈ ∆2/∆1. Without loss of generality, we

can assume that ∥α∥ ≥ ∥β∥, hence 2(α,β)/(α,α) = 0 or ±1 by the general theory of

root systems. We consider

sαβ = β − 2(α,β)/(α,α)α = β or β ± α.
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Since sαβ is a root, it is either in ∆1 or ∆2. If sαβ ∈∆1, then β = sα(sαβ) is also in

∆1, which is a contradiction. So we know that sαβ = β −2(α,β)/(α,α)α ∈∆2/∆1.

If (α,β) ≠ 0, then sαβ = β ± α. We know α = ±(sαβ − β) is a root in ∆, so by

the closeness of ∆2, α ∈∆2. Contradiction. We proved that ∆1/∆2 is orthogonal

to ∆2/∆1.

Moreover for any α ∈ ∆1 and β ∈ ∆2/∆1, we have sαβ ∈ ∆2/∆1. Hence sα

preserves SpanR(∆2/∆1). So either α ∈ SpanR(∆2/∆1) or α ∈ (SpanR(∆2/∆1))⊥.
Similarly for any β ∈∆2, either β ∈ SpanR(∆1/∆2) or β ∈ (SpanR(∆1/∆2))⊥.

As a result, we can decompose the root system ∆ into three disjoint parts:

∆′1 =∆ ∩ (SpanR(∆1/∆2)),

∆′2 =∆ ∩ (SpanR(∆2/∆1)),

∆′0 =∆ ∩ (SpanR(∆1/∆2) ⊕ SpanR(∆2/∆1))⊥.

It is clear that ∆ = ⊔2
i=0∆

′
i and ∆′i, i = 0,1,2 are subroot systems. So it is

contradictory to the fact that ∆ is irreducible. □

Remark 4.8. The result of Proposition 4.7 works for any simple root systems, not

just for simply laced ones.

Now we are ready to prove the main theorem of this paper.

Theorem 4.9. Let g be a simple Lie algebra over C of type A, D or E. Let q = eh ∈
R× for h ∈ R× and Uq(g) be the quantized universal enveloping algebra. Consider

the category O of Uq(g). For two infinite dimensional modules M , N in O, we

have M ⊗N ∉ O.

Proof. Since M and N are infinite dimensional, we can find infinite dimensional

simple modules V (µ) and V (λ) such that [M ∶ V (µ)] ≠ 0 and [N ∶ V (λ)] ≠ 0. Since
O is closed under subquotients, it is sufficient to prove V (µ) ⊗ V (λ) ∉ O.

Since V (µ) and V (λ) are infinite dimensional, by Corollary 3.24 we have∆µ ⊊∆
and∆λ ⊊∆, where∆µ and∆λ are given as in Definition 3.19. By Proposition 3.21,

∆µ and ∆λ are subroot systems of ∆. Moreover since g is of type ADE, Lemma

4.5 tells us that ∆µ and ∆λ are closed subroot systems. By Proposition 4.7 we

know that ∆µ ∪∆λ ⊊∆. Therefore by Lemma 4.2 we have V (µ) ⊗ V (λ) ∉ O. □

Remark 4.10. The same proof works for modules in category O of unquantized

simple Lie algebra of type ADE as well.

Remark 4.11. For non-ADE type simple Lie algebras, the result in Lemma 4.5

no longer holds. To study tensor products of modules in category O in this case
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we need deeper understanding of ch(V (µ)) and ∆µ, which is beyond the scope of

this paper.
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