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Abstract. Let G be a finite group. A subgroup H is called S-semipermutable

in G if HGp = GpH for any Gp ∈ Sylp(G) with (|H|, p) = 1, where p is a

prime number divisible |G|. Furthermore, H is said to be NH-embedded in G

if there exists a normal subgroup T of G such that HT is a Hall subgroup of G

and H ∩ T ≤ HsG, where HsG is the largest S-semipermutable subgroup of G

contained in H, and H is said to be SS-quasinormal in G provided there is a

supplement B of H to G such that H permutes with every Sylow subgroup of

B. In this paper, we obtain some criteria for p-nilpotency and Supersolvabil-

ity of a finite group and extend some known results concerning NH-embedded

and SS-quasinormal subgroups.
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1. Introduction

Throughout, all groups considered in this paper will be finite. Let G be a group,

H and K of are subgroups of G, they are said to be permutable if HK = KH, i.e.

HK is also a subgroup of G. H is a subgroup of G, it is said to be quasinormal

in G if H permutes with all subgroups of G. Kegel [8] introduced the concept of

S-quasinormal (or S-permutable), subgroup H of G said to be S-quasinormal if H

permutes with all Sylow subgroup of G. Recall that a supplement of H to G is a

subgroup B such that G = HB. As a generalization of S-quasinormal subgroup, Li

[9] introduced the following definition:
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Definition 1.1. [9] A subgroup H of G is said to be SS-quasinormal in G provided

there is a supplement B ofH to G such thatH permutes with every Sylow subgroup

of B.

Li [9] investigated the p-nilpotency and supersolvability of finite groups by some

SS-quasinormal subgroups of prime power order.

Recall that a subgroupH is called S-semipermutable in G ifHGp = GpH for any

Gp ∈ Sylp(G) with (|H|, p) = 1, p is a prime number divisible G(see [2]). Recently,

Gao and Li [5] introduce the following concept:

Definition 1.2. [5] A subgroup H of a group G is said to be NH-embedded in G

if there exists a normal subgroup T of G such that HT is a Hall subgroup of G and

H ∩T ≤ HsG, where HsG is the largest S-semipermutable subgroup of G contained

in H.

Gao and Li [5] showed that the finite group whose maximal subgroups of Sylow

subgroups are NH-embedded in G are supersolvable.

By the definition of NH-embedded and SS-quasinormal subgroups, it is obvious

that all Hall subgroups, normal subgroups and S-semipermutable subgroups are

NH-embedded subgroups. But the converse does not hold. Moreover, an NH-

embedded subgroup need not be SS-quasinormal. Conversely, it easy to see that

an SS-quasinormal subgroup need not be NH-embedded too.

In the light of above results, it is seem interesting to study the structure of finite

groups assuming that maximal subgroups of Sylow subgroups are SS-quasinormal

or NH-embedded in G. In this paper, we obtain some criteria for p-nilpotency and

supersolvability of a finite group. The main results are as follows.

Theorem 1.3. Let G be a finite group and Gp a Sylow p-subgroup of G, where p

is the smallest prime dividing |G|. Assume that every maximal subgroup of Gp is

either NH-embedded or SS-quasinormal in G. Then G is p-nilpotent.

Theorem 1.4. Let G be a finite group. Suppose that every maximal subgroup of

every Sylow subgroup of G is either NH-embedded or SS-quasinormal in G. Then

G is supersolvable.

Theorem 1.5. Let G be a finite group and H a normal subgroup of G. Suppose

that G/H is supersolvable and every maximal subgroup of every Sylow subgroup of

H is either NH-embedded or SS-quasinormal in G. Then G is supersolvable.

All unexplained notations and terminologies are standard and can be found in

[4,6].
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2. Preliminaries

In this section, we collect some results which will be used in the proof of main

results.

Lemma 2.1. [9] Suppose that H is SS-quasinormal in a group G, K ≤ G, and N

is a normal subgroup of G. We have

(1) if H ≤ K, then H is SS-quasinormal in K;

(2) HN/N is SS-quasinormal in G/N ;

(3) if N ≤ K and K/N is SS-quasinormal in G, then K is SS-quasinormal in

G;

(4) if K is quasinormal in G, then HK is SS-quasinormal in G.

Lemma 2.2. [9] Let H be a p-subgroup of G. Then the following statements are

equivalent:

(1) H is S-quasinormal in G;

(2) H ≤ Op(G), and H is SS-quasinormal in G.

Lemma 2.3. [3] If H is an S-quasinormal subgroup of the group G, then H/HG

is nilpotent, where HG is the core of H in G.

Lemma 2.4. [11] If H is S-quasinormal in a group G and H is a p-group for some

prime p, then Op(G) ≤ NG(H).

Lemma 2.5. [1] Let H be a nilpotent subgroup of a group G. Then the following

statements are equivalent:

(1) H is an S-quasinormal subgroup of G;

(2) the Sylow subgroups of H are S-quasinormal in G.

Lemma 2.6. [1] Let P be a Sylow p-subgroup of a group G, and let P0 be a maximal

subgroup of P . Then the following statements are equivalent:

(1) P0 is normal in G;

(2) P0 is S-quasinormal in G.

Lemma 2.7. [5] Let G be a group and H ≤ G. Suppose that H is NH-embedded

in G. Let N be a normal subgroup of G. Then

(1) If H ≤ K ≤ G and K is subnormal in G, then H is NH-embedded in K.

(2) Suppose that H is a p-group for some p ∈ π(G). If N ≤ H, then H/N is

NH-embedded in G/N .

(3) Suppose that H is a p-group for some p ∈ π(G) and N is a p′-subgroup of

G. Then HN/N is NH-embedded in G/N .
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Lemma 2.8. [12] Let G be a group and H ≤ K ≤ G.

(1) If H is S-semipermutable in G, then H is S-semipermutable in K;

(2) Suppose that N is normal in G and H is a p-group. If H is S-semipermutable

in G, then HN/N is S-semipermutable in G/N ;

(3) If H is S-semipermutable in G and H ≤ Op(G), then H is S-quasinormal

in G.

Lemma 2.9. [10] Let G be a group and H an S-semipermutable subgroup of G.

Suppose that H is a p-subgroup of G for some prime p ∈ π(G) and N is normal in

G. Then H ∩N is also an S-semipermutable subgoup of G.

Lemma 2.10. [7] Let H be an S-semipermutable π-subgroup of G. Then HG

contains a nilpotent π-complement, and all π-complements in HG are conjugate.

Also, if π consists of a single prime, then HG is solvable.

Lemma 2.11. [4] Let U , V and W be subgroups of a group G. Then the following

statements are equivalent:

(1) U ∩ VW = (U ∩ V )(U ∩W );

(2) UV ∩ UW = U(V ∩W ).

3. Proof of Theorem

Proof of Theorem 1.3 Assume that the theorem is false and let G be a coun-

terexample of minimal order. Let Gp be a Sylow p-subgroup of G and M(Gp) =

{P1, P2, · · · , Pm} denote the set of all maximal subgroups of Gp. By Theorem hy-

pothesis, every member Pi of M(Gp) is either NH-embedded or SS-quasinormal in

G. Without loss of generality, suppose that every member of the subset M1(Gp) =

{P1, · · · , Pk} of M(Gp) is NH-embedded in G, and every member of the subset

M2(Gp) = {Pk+1, · · · , Pm} of M(Gp) is SS-quasinormal in G for some 1 ≤ k ≤ m.

The proof of theorem will be divided into five steps as follows.

Step (1). G has a unique minimal normal subgroup N and G/N is p-nilpotent.

Let N is a minimal normal subgroup of G. Then GpN/N is a Sylow p-subgroup

of G/N . For any M/N ∈ M(GpN/N), let P = M ∩Gp, then

M = M ∩GpN = (M ∩Gp)N = PN

and

P ∩N = (M ∩Gp) ∩N = PN ∩Gp ∩N = Gp ∩N.

As |Gp : P | = |Gp : (Gp ∩M)| = |GpM : M | = p, we know that P ∈ M(Gp). By

Theorem hypothesis, P is either NH-embedded or SS-quasinormal in G.
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Suppose that P is SS-quasinormal in G, then M/N = PN/N is also SS-

quasinormal in G/N by Lemma 2.1(2).

Now, we assume that P is NH-embedded in G, then there is a normal subgroup

T of G such that PT is a Hall subgroup of G and P ∩ T ≤ PsG. It is easy seen

that TN/N is normal in G/N and PN/N ·TN/N = PTN/N is a Hall subgroup of

G/N . As P ∩N = Gp ∩N is a Sylow p-subgroup of N , we have

|N ∩ PT |p = |N |p = |N ∩ P |p = |(N ∩ P )(N ∩ T )|p

and

|N ∩ PT |p′ =
|PT |p′ |N |p′

|NPT |p′
=

|T |p′ |N |p′

|NT |p′
= |N ∩ P |p′ = |(N ∩ P )(N ∩ T )|p′ .

This implies that N ∩ PT = (N ∩ P )(N ∩ T ) and hence PN ∩ TN = (P ∩ T )N by

Lemma 2.11. Therefore,

PN/N ∩ TN/N = (PN ∩ TN)/N = (P ∩ T )N/N ≤ PsGN/N.

As PsG is S-semipermuted in G, we get that PsGN/N is also S-semipermuted in

G/N by Lemma 2.8(2). This leads to PsGN/N ≤ (PN/N)sG/N . So M/N = PN/N

is NH-embedded in G/N .

By above arguments, we know that G/N satisfies the hypothesis of theorem. By

the choice of G, we know that G/N is p-nilpotent. Moreover, as the class of all

p-nilpotent groups is saturated formation, we obtain that N is the unique minimal

normal subgroup of G.

Step (2). Op′(G) = 1.

Suppose that Op′(G) > 1, then N ≤ Op′(G) by (1). As G/N is p-nilpotent, we

know that G/Op′(G) is p-nilpotent and hence G is also p-nilpotent, a contradiction.

Therefore, Op′(G) = 1.

Step (3). N ≤ Pi for any Pi ∈ M1(Gp).

For anyH ∈ M1(Gp), H is NH-embedded in G, then there is a normal subgroup

T of G such that HT is a Hall subgroup of G and H ∩ T ≤ HsG. If T = 1, then

H is a Hall subgroup of G and hence H = 1. This implies that |Gp| = p, as P is a

maximal subgroup of Gp. By Burnside theorem, G is p-nilpotent, a contradiction.

Hence T ̸= 1 and N ≤ T . If H ∩ N = 1, then |N |p ≤ p. So N is p-nilpotent by

Burnside theorem. Let U be a normal Hall p′-subgroup of N , then U is normal in

G. By minimality of N , we know that U = 1 and hence N is a subgroup of order p.

Consequently, the nilpotency of G/N implies that G is p-nilpotent, a contradiction.

Therefore, we have H ∩ N ̸= 1. Since H ∩ N ≤ H ∩ T ≤ HsG ≤ H, we get that

HsG ∩ N ≤ H ∩ N and hence H ∩ N = HsG ∩ N . By Lemma 2.9, H ∩ N is S-

semipermuted in G. In the other hand, observe that N ≤ HG
sG, we know that N is
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solvable by Lemma 2.10. This implies that N is a p-group and hence N ≤ Op(G).

In particular, H ∩N ≤ Op(G). Applying Lemma 2.8(3), we get that H ∩N is S-

quasinormal in G. Thus, Op(G) ≤ NG(H ∩N) by Lemma 2.4. Noting that H ∩N

is normal in Gp which implies that H ∩N is normal in G. Thus, H ∩N = N . This

leads to N ≤ H.

Step (4). For every Pj ∈ M2(Gp), there exists a normal subgroup Mj of G such

N ≤ Mj .

For any H ∈ M2(Gp), we know that H is SS-quasinormal in G. So there exists

a subgroup B of G such that G = HB, and HBp = BpH for every Sylow subgroup

Bp of B. So |B : H ∩ B|p = |G : H|p = p from G = HB. Thus, Bp ⊈ H

and BpH = HBp is a Sylow p-subgroup of G. In view of H ∈ M2(Gp) and by

comparison of orders, |H ∩B|p = H ∩B. Therefore,

H ∩B =
⋂
b∈B

(Bb
p ∩H) ≤

⋂
b∈B

Bb
p = Op(B).

From |Op(B) : B ∩ H| = p or 1, we obtain |B/Op(B)|p = 1 or p. As p is the

smallest prime dividing |G|, by Burnside theorem, B/Op(B) is p-nilpotent. So B is

p-solvable. And there is a Hall p
′
-subgroup of B from ([6], IV, 1.7). Let K be a Hall

p
′
-subgroup of B, π(K) = (q2, . . . , qs), Qi ∈ Sylqi(K). According to the definition

of SS-quasinormal, H and < Q2, . . . , Qs >= K are permutations. So HK is a

subgroup of G. Obviously, K is a Hall p
′
-group of G, and HK is a subgroup of

index p in G. As p is the smallest prime dividing |G|, HK ⊴G. If HK = 1, then

G is elementary commutative p-group, contradiction. So, N ≤ HK = Mj .

Step (5). Final contradiction.

Set V = (
k⋂

i=1

Pi)
⋂
(

m⋂
j=k+1

Mj). By above arguments, we know that N ≤ V .

Moreover, we have

N = N ∩Gp ≤ V ∩Gp = ((
k⋂

i=1

Pi)
⋂
(

m⋂
j=k+1

Mj))
⋂

Gp =
m⋂
i=1

Pi = Φ(Gp).

By ([6]. III. 3.3), we know that Φ(Gp) ≤ Φ(G) and hence N ≤ Φ(G). Since G/N is

p-nilpotent, we get that G/Φ(G) is p-nilpotent. As the class of all p-nilpotent is a

statured formation, G will be p-nilpotent. This is finally contradiction. The proof of

theorem is complete. □

Proof of Theorem 1.4 Assume that the theorem is false and let G be a coun-

terexample of minimal order. Let p be the smallest prime dividing |G|. Then G is

p-nilpotent by Theorem 1.3. Let U be a Hall normal p′-subgroup of G. It is easy

seen that U satisfies the theorem hypothesis by Lemma 2.1(1) and Lemma 2.7(1).

By induction, U is supersolvable and hence G possesses Sylow tower property of

supersolvable type. Let q be the largest prime dividing |G| and Q is a Sylow q-

subgroup of G. Then Q is normal in G. By Lemmas 2.1(2) and 2.7(3), we know
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that G/Q satisfies the theorem hypothesis and hence G/Q is supersolvable by the

choice of G.

Let N be a minimal normal subgroup of G. Similar to the proof of Theorem 1.3,

G/N satisfies the theorem hypothesis and henceG/N is supersolvable by minimality

of G. As the class of all supersolvable group is a statured formation, N will be a

unique minimal normal subgroup of G. Therefore, we have N ≤ Q.

We claim that N ≤ H for any H ∈ M(Q). By theorem hypothesis, we know

that H is either NH-embedded or SS-quasinormal in G. If H is SS-quasinormal

in G. As Q is normal in G, we have H ≤ Q = Oq(G). Applying Lemma 2.2, H

is S-quasinormal in G. Moreover, H is normal in G by Lemma 2.6. So we have

N ≤ H.

Now, assume that H is NH-embedded in G. Then there exists a normal sub-

group T of G such that HT is a Hall subgroup of G and H ∩ T ≤ HsG. If T = 1,

then H = HT is a Hall subgroup of G. This implies that H = 1 and hence |Q| = q.

As G/Q is supersolvable, we get that G would be supersolvable, a contradiction.

Therefore, T ̸= 1 and hence N ≤ T . Consequently, G/T is supersolvable. If

H ∩ T = 1, then |Q∩ T | = q. This forces that N = Q∩ T is a subgroup of order q.

Therefore, G is supersolvable, a contradiction. Consequently, H ∩ T ̸= 1. Observe

that H ∩ T ≤ HsG ≤ H, we have H ∩ T = HsG ∩ T is S-semipermuted in G by

Lemma 2.9. In the other hand, H ∩ T ≤ Q = Oq(G) which implies that H ∩ T is

S-quasinormal in G by Lemma 2.8(3). Applying Lemma 2.4, Oq(G) ≤ NG(H ∩T ).

Furthermore, noting that H ∩ T is normal in Q. We can get that H ∩ T is normal

in G. Therefore, N ≤ H ∩ T ≤ H. The claim as desired.

By above arguments, we get that N ≤
⋂

H∈M(Q)

H = Φ(Q). By ([6], III, 3.3),

Φ(Q) ≤ Φ(G) and hence N ≤ Φ(G). So G/Φ(G) is supersolvable and hence G is

supersolvable. This is a finally contradiction. The proof of theorem is complete. □

Proof of Theorem 1.5 Assume that the result is false and let G be a coun-

terexample of minimal order. Applying Lemma 2.1(1) and Lemma 2.7(1), we know

that every maximal subgroup of Sylow subgroups of H is either NH-embedded or

SS-quasinormal in H. By Theorem 1.4, H is supersolvable. Let q be the largest

prime dividing |H| and Q = Oq(G) char Sylq(H). Then Q is normal in H and so it

is in G. Obviously, (G/Q)/(H/Q) ∼= G/H is supersolvable. By Lemmas 2.1(2) and

2.7(3), we know that every maximal subgroup of Sylow subgroups of H/Q is either

NH-embedded or SS-quasinormal in G/Q. Therefore, G/Q satisfies the theorem

hypothesis and hence G/Q is supersolvable.

Let N be a minimal normal subgroup of G contained in Q. Similar to the proof

of Theorem 1.3, we know that G/N satisfies the theorem hypothesis and hence G/N
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is supersolvable. As the class of all supersolvable group is a statured formation, N

will be a unique minimal normal subgroup of G contained in Q.

In the following, similar to the proof of Theorem 1.4, we can get that N ≤ Φ(Q)

and hence G/Φ(Q) is supersolvable. By ([6], III, 3.3), Φ(Q) ≤ Φ(G). So G/Φ(G) is

supersolvable. As the class of all supersolvable groups is a statured formation, we

obtain that G is supersolvable. This is a final contradiction. The proof of Theorem

is complete. □

4. Some applications

As an immediate consequence of Theorem 1.3, we can get the corollaries as

follows.

Corollary 4.1. ([5, Theorem 3.1]) Let p be the smallest prime dividing |G| and
Gp a Sylow p-subgroup of G. Suppose that every maximal subgroup of Gp is NH-

embedded in G. Then G is p-nilpotent.

Corollary 4.2. ([1, Theorem 3.1]) Let p be the smallest prime dividing |G| and
Gp a Sylow p-subgroup of G. Suppose that every maximal subgroup of Gp is SS-

quasinormal in G. Then G is p-nilpotent.

Theorem 1.5 immediately implies the following corollaries.

Corollary 4.3. ([9, Theorem 1]) Let G be a finite group. If the maximal subgroups

of the Sylow subgroups of G are SS-quasinormal in G, then G is supersolvable.

Corollary 4.4. ([5, Theorem 3.4]) Let G be a group with a normal subgroup E

such that G/E is supersolvable. If every maximal subgroup of every Sylow subgroup

of E is NH-embedded in G, then G is supersolvable.
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