International Electronic Journal of Algebra
Volume 36 (2024) 1-15
DOI: 10.24330/ieja. 1404435

STRONGLY GRADED MODULES AND POSITIVELY GRADED MODULES WHICH ARE UNIQUE FACTORIZATION MODULES

I. Ernanto, A. Ueda and I. E. Wijayanti
Received: 15 November 2022; Revised: 10 August 2023; Accepted: 18 October 2023
Communicated by Meltem Altun Özarslan

Abstract

Let $M=\oplus_{n \in \mathbb{Z}} M_{n}$ be a strongly graded module over strongly graded ring $D=\oplus_{n \in \mathbb{Z}} D_{n}$. In this paper, we prove that if M_{0} is a unique factorization module (UFM for short) over D_{0} and D is a unique factorization domain (UFD for short), then M is a UFM over D. Furthermore, if D_{0} is a Noetherian domain, we give a necessary and sufficient condition for a positively graded module $L=\oplus_{n \in \mathbb{Z}_{0}} M_{n}$ to be a UFM over positively graded domain $R=\oplus_{n \in \mathbb{Z}_{0}} D_{n}$.

Mathematics Subject Classification (2020): 13A05, 13C05, 13C70, 13E15, 13F15
Keywords: Graded ring, graded module, unique factorization module

1. Introduction

Throughout this paper $R=\oplus_{n \in \mathbb{Z}_{0}} D_{n}$ is a positively graded domain which is a sub-domain of the strongly graded domain $D=\oplus_{n \in \mathbb{Z}} D_{n}$ and $L=\oplus_{n \in \mathbb{Z}_{0}} M_{n}$ is a positively graded module over R which is a subset of the strongly graded module $M=\oplus_{n \in \mathbb{Z}} M_{n}$.

In [12], the authors defined a concept of a Unique Factorization Module (UFM for short) by submodule approach. They also proved that the concept of UFM by [12] is equivalent to Nicolas's UFM (see [8] for the definition of a UFM by Nicolas), which is defined in terms of irreducible elements of D and M. In [12], the authors proved that if M is a UFM, then the polynomial module $M[x]$ is also a UFM. There are several papers on UFMs, see for example [1], [5], [8] and [9].

[^0]On the other hand, in [11], it is shown that $D=\oplus_{n \in \mathbb{Z}} D_{n}$, a strongly graded domain, is a G-Dedekind domain if and only if D_{0} is a G-Dedekind domain. Moreover, in [2], it is shown that $R=\oplus_{n \in \mathbb{Z}_{0}} D_{n}$, a positively graded domain, is a Unique Factorization Domain (UFD for short) if and only if D_{0} is a UFD and D_{1} is a principal D_{0}-module.

The aim of this paper is to extend the main results of [11] and [12] to a strongly graded module $M=\oplus_{n \in \mathbb{Z}} M_{n}$. The paper is organized as follows. In Section 2, we give some characterizations of a unique factorization module that will be very useful in Section 3 and Section 4. We refer the reader to [2], [6], [7], [11] and [13], and for details regarding graded rings, and to [3] regarding graded modules, that are not mentioned in this paper.

In Section 3, we prove that if M_{0} is a UFM over D_{0}, then $M=\oplus_{n \in \mathbb{Z}} M_{n}$ is a UFM over D as a generalization of the result in [12]. We give some examples of strongly graded modules which are UFMs.

In Section 4, we give the necessary and sufficient condition for a positively graded module $L=\oplus_{n \in \mathbb{Z}_{0}} M_{n}$ to be a UFM. We end Section 4 with some examples of positively graded modules which are UFMs as the application of the main result of this paper, that is, Theorem 4.8.

We refer the reader to [10], [14], [15] for the concept and properties of v submodules and [4] to some properties of multiplicative ideal theory which are not mentioned in this paper.

2. Unique factorization modules

Let M be a torsion-free module over an integral domain D with the quotient fi eld K. In [15], the authors defined the following concepts.

Definition 2.1. (1) A non-zero D-submodule N of $K M$ is called a fractional D-submodule in $K M$ if there is a non-zero $r \in D$ such that $r N \subseteq M$ and $K N=K M$.
(2) A non-zero D-submodule \mathfrak{a} of K is called a fractional M-ideal in K if there is a non-zero $m \in M$ such that $\mathfrak{a} m \subseteq M$.

We represent $F(M)$ as the collection of all fractional D-submodules in $K M$, while $F_{M}(D)$ refers to the set containing all fractional M-ideals in K. Suppose $N \in F(M)$ and $\mathfrak{a} \in F_{M}(D)$. We define $N^{-}=\{k \in K \mid k N \subseteq M\}$ and $\mathfrak{a}^{+}=\{m \in$ $K M \mid \mathbf{a} m \subseteq M\}$. Then, it easily follows that $N^{-} \in F_{M}(D)$ and $\mathfrak{a}^{+} \in F(M)$.

For $N \in F(M)$ and $\mathfrak{a} \in F_{M}(D)$, we define $N_{v}=\left(N^{-}\right)^{+}$and $\mathfrak{a}_{v 1}=\left(\mathfrak{a}^{+}\right)^{-}$. Consequently, $N_{v} \in F(M)$, and it satisfies $N_{v} \supseteq N$. Similarly, $\mathfrak{a}_{v 1} \in F_{M}(D)$, and
it satisfies $\mathfrak{a}_{v 1} \supseteq \mathfrak{a}$. When $N=N_{v}$, we classify N as a fractional v-submodule in KM. Moreover, if $\mathfrak{a}=\mathfrak{a}_{v 1}$, we refer to \mathfrak{a} as a v_{1}-ideal (with respect to M). We refer the reader to [10], [14], [15] for details regarding v-submodules and v_{1}-operation.

In [12], the authors defined a concept of a unique factorization module by a submodule approach. The authors gave the definition and characterization of unique factorization modules as follows.

Definition 2.2. [[12], Definition 2] A torsion-free module M over an integral domain D is called a unique factorization module (UFM for short) if
(1) M is completely integrally closed (CIC for short), that is, $O_{K}(N)=\{k \in$ $K \mid k N \subseteq N\}=D$ for every non-zero submodule N of M, where K is the quotient field of D,
(2) every v-submodule of M is principal,
(3) M satisfies the ascending chain condition on v-submodules of M.

Theorem 2.3. [[12], Theorem 1] Suppose $O_{K}(M)=D$. The following conditions are equivalent:
(1) M is a UFM.
(2) M is a v-multiplication module and D is a UFD.
(3) (a) D is a UFD.
(b) For every prime element p of $D, p M$ is a maximal v-submodule.
(c) For every v-submodule N of $M, \mathfrak{n}=(N: M) \neq\{0\}$, where $(N: M)=$ $\{r \in D \mid r M \subseteq N\}$.
(4) Every v-submodule of M is principal and D is a UFD.

Note that if M is a finitely generated torsion-free D-module, then $O_{K}(M)=D$ by Lemma 2.1 of [3]. Throughout this paper, M is a finitely generated torsion-free D-module and satisfies the ascending chain condition on v-submodules of M.

Lemma 2.4. Let P be a maximal v-submodule of M. Then P is a prime submodule.
Proof. Let $r m \in P$ where $r \in D$ and $m \in M$. If $m \notin P$, then $P \subset D m+P \subseteq$ $(D m+P)_{v} \subseteq M$ and so $(D m+P)_{v}=M$. Then $P \supseteq(D r m+r P)_{v}=(r(D m+$ $P))_{v}=r(D m+P)_{v}=r M$. Hence P is prime.

The following theorem will be very useful for Section 3 and Section 4.
Theorem 2.5. Suppose that D is a UFD and M is a CIC module that satisfies the ascending chain condition on v-submodules of M. Then M is a UFM if and only if every prime v-submodule of M is principal.

Proof. If M is a UFM, then it is clear that every prime v-submodule of M is principal, by Theorem 2.3. Conversely, we assume on the contrary that M is not a UFM. Let N be a v-submodule of M which is not principal and we may assume that N is maximal with this property because M satisfies the ascending chain condition on v-submodules of M. Let P be a maximal v-submodule of M containing N. Then $P=p M$ for some non-zero $p \in D$ by Lemma 2.4. Since $N \subset P \subset M$, we have $N \subseteq p^{-1} N \subset M$ and so $\left(p^{-1} N\right)_{v}=p^{-1} N_{v}=p^{-1} N$. Then $N=p^{-1} N$ or $p^{-1} N$ is principal by the maximality of N. If $p^{-1} N$ is principal, then $p^{-1} N=t M$ for some $t \in D$ and so $N=p t M$, a contradiction. Hence $N=p^{-1} N$, which implies $p^{-1} \in O_{K}(N)=D$. Then $P=p M \supseteq p\left(p^{-1} M\right)=M$, a contradiction. Hence every v-submodule N of M is principal and so M is a UFM.

In a UFD, the concept of a principal ideal, a v-ideal, and an invertible ideal are equivalent.

Remark 2.6. Let D be a UFD and A be a v-ideal of D. Then
(1) D is a UFM over D.
(2) A is a UFM over D.
(3) If M is a finitely generated projective module over D, then M is a UFM. In particular, every finite direct sum of D is a UFM.

Proof. (1) It is clear.
(2) Note that A is principal since A is a v-ideal of D. Then A is isomorphic to D as a D-module. Hence A is a UFM by (1).
(3) By Theorem 3.1 of [15], M is a v-multiplication module. Then by Theorem 2.3, M is a UFM since D is a UFD.

3. Strongly graded modules which are UFMs

Throughout this section, $D=\oplus_{n \in \mathbb{Z}} D_{n}$ is a strongly graded domain. It is known that D is a G-Dedekind domain if and only if D_{0} is a G-Dedekind domain by Theorem 2.1 of [11]. Assume that K_{0} and K are the quotient fields of D_{0} and D respectively. Let $M=\oplus_{n \in \mathbb{Z}} M_{n}$ be a strongly graded module over D where M_{0} is a finitely generated torsion-free D_{0}-module and we assume that M satisfies the ascending chain condition on v-submodules of M. In this section, we will prove that M is a UFM over D if M_{0} is a UFM over D_{0}.

Note that the concept of a principal ideal, a v-ideal, and an invertible ideal are equivalent in a UFD. We begin this section with the following proposition.

Proposition 3.1. If D_{0} is a UFD then $D=\oplus_{n \in \mathbb{Z}} D_{n}$ is a UFD.
Proof. Suppose that D_{0} is a UFD, that is, D_{0} is a maximal order and each prime v-ideal P_{0} of D_{0} is principal (see Proposition 1 of [3]). Then D is a maximal order by Theorem 1 of [6]. Let P be a non-zero prime v-ideal of D. If $P_{0}=P \cap D_{0} \neq\{0\}$, then $P=P_{0} D$ and P_{0} is a v-ideal of D_{0} (see the proof of Theorem 2.1 and Lemma 1.2 of [11]). So $P_{0}=p_{0} D_{0}=D_{0} p_{0}$ for some $p_{0} \in P_{0}$ and $P=p_{0} D=D p_{0}$ follows. If $P_{0}=P \cap D_{0}=(0)$, then $P=w A_{0}^{-1} B_{0} D$ for some invertible ideals A_{0}, B_{0} of D_{0}, which implies P is principal since D_{0} is a UFD. Thus P is principal and hence D is a UFD by Proposition 1 of [2].

Recall that a module M over a CIC domain D is a UFM if and only if every prime v-submodule P of M is principal, that is, $P=p M$ for some element $p \in D$ by Theorem 2.5 (see [12] for the definition of a UFM).

Note that M is a finitely generated torsion-free D-module since M_{0} is a finitely generated torsion-free D_{0}-module. Furthermore, M_{0} is CIC if and only if M is CIC by Theorem 3.1 of [3].

In the rest of this section, we assume that M_{0} is a UFM. Then D_{0} is a UFD (see Theorem 2.3).

Now, we study the structure of v-submodule P of M with $P \cap M_{0} \neq\{0\}$.
Lemma 3.2. [Lemma 5.1 of [3]] Let N_{0} be a fractional D_{0}-submodule of M_{0} with $N_{0} \subseteq M_{0}$ and $N=D N_{0}$. Then
(1) $N^{-}=D\left(N_{0}\right)^{-}$, and
(2) $N_{v}=D\left(N_{0}\right)_{v}$.

Lemma 3.3. Let P be a prime D-submodule of M with $P_{0}=P \cap M_{0} \neq\{0\}$. Then
(1) P_{0} is a prime submodule of M_{0}, and
(2) $P^{\prime}=D P_{0}$ is a prime submodule of M.
(3) If P is a prime v-submodule, then P_{0} is a prime v-submodule of M_{0}, and $P=D P_{0}$.

Proof. (1) See Lemma 5.2 of [3].
(2) See Lemma 5.2 of [3].
(3) Let $P^{\prime}=D P_{0} \subseteq M$. Consider that $P=P_{v} \supseteq\left(P^{\prime}\right)_{v}=\left(D P_{0}\right)_{v}=D\left(P_{0}\right)_{v}$ by Lemma 3.2. Thus $P_{0}=P \cap M_{0} \supseteq D\left(P_{0}\right)_{v} \cap M_{0}=\left(P_{0}\right)_{v}$. Hence $P_{0}=\left(P_{0}\right)_{v}$ and so P_{0} is a prime v-submodule by (1).
Note that $P^{\prime}=D P_{0}=D p_{0} M_{0}$ for some non-zero $p_{0} \in D_{0}$ because M_{0} is a UFM. Since $D p_{0}$ is an invertible ideal, $\left(P^{\prime}\right)^{-}=\left(D p_{0}\right)^{-1}=D p_{0}^{-1} \supseteq P^{-}$,
which implies $D \supseteq D p_{0} P^{-}$and $P^{\prime}=D p_{0} M_{0}=D p_{0} M \supseteq D p_{0} P^{-} P$. If $P \supset P^{\prime}$ then $D p_{0} P^{-} M \subseteq P^{\prime} \subseteq D p_{0} M$ since P^{\prime} is a prime submodule by (2). Then $P^{-} M \subseteq M$ and so $P^{-}=D$ since M is CIC. Thus $P=P_{v}=$ $\left(P^{-}\right)^{+}=(D)^{+}=M$, a contradiction. Hence $P=D P_{0}$.

In the rest of this section, we assume that M satisfies the ascending chain condition on v-submodules of M.

Proposition 3.4. Let N be a v-submodule of M with $N_{0}=N \cap M_{0} \neq\{0\}$. Then
(1) N_{0} is a v-submodule of M_{0} and $N_{0}=\mathfrak{n}_{0} M_{0}$ for some ideal \mathfrak{n}_{0} of D_{0}.
(2) $N=D \mathfrak{n}_{0} M$ and $D \mathfrak{n}_{0}=(N: M)$.

Proof. (1) Similar to the previous lemma, we get that N_{0} is a v-submodule of M_{0}. Furthermore, $N_{0}=\mathfrak{n}_{0} M_{0}$ for some ideal \mathfrak{n}_{0} of D_{0} follows since M_{0} is a UFM over D_{0} and by Theorem 2.3.
(2) Suppose there is a v-submodule N such that $N \neq D \mathfrak{n}_{0} M$ where \mathfrak{n}_{0} is an ideal of D_{0}. We may assume that N is maximal with this property because M satisfies the ascending chain condition on v-submodules of M. Then there is a maximal v-submodule P with $P \supseteq N$ and $P=D \mathfrak{p}_{0} M$, where \mathfrak{p}_{0} is a maximal ideal of D_{0}. It follows that $M \supseteq\left(D \mathfrak{p}_{0}\right)^{-1} N \supseteq$ N. If $\left(D \mathfrak{p}_{0}\right)^{-1} N=N$, then $\left(D \mathfrak{p}_{0}\right)^{-1} \subseteq D$, a contradiction because M is CIC. Thus $\left(D \mathfrak{p}_{0}\right)^{-1} N \supset N$ and it follows from Lemma 3.2 of [14] that $\left(\left(D \mathfrak{p}_{0}\right)^{-1} N\right)_{v}=\left(D \mathfrak{p}_{0}\right)^{-1} N$. By the choice of $N,\left(D \mathfrak{p}_{0}\right)^{-1} N=D \mathfrak{t}_{0} M$ for some ideal \mathfrak{t}_{0} of D_{0}. Hence $N=D \mathfrak{p}_{0} \mathfrak{t}_{0} M$, a contradiction. Hence $N=$ $D \mathfrak{n}_{0} M$ for some ideal \mathfrak{n}_{0} of D_{0}. The last statement easily follows since $D \mathfrak{n}_{0}$ is invertible.

Next we study the structure of a prime v-submodule P of M such that $P \cap M_{0}=$ $\{0\}$. Since $K^{g}=\oplus_{n \in \mathbb{Z}} K_{0} D_{n}=K_{0} D$ is a principal ideal domain by [6] and $K_{0} M$ is a finitely generated torsion-free K^{g}-module, we have that a v-submodule P_{1} of $K_{0} M$ is prime if and only if $P_{1}=\mathfrak{p}_{1} K_{0} M$, where \mathfrak{p}_{1} is a maximal ideal of K^{g} such that $\mathfrak{p}_{1}=\left(P_{1}: K_{0} M\right)$ by Theorem 3.3 of [14].

Note that if D_{0} is a UFD and \mathfrak{p} is a prime v-ideal of D, then $\mathfrak{p}=\mathfrak{p}_{0} D$ for some prime v-ideal \mathfrak{p}_{0} of D_{0} or $\mathfrak{p}=\mathfrak{p}_{1} \cap D$ for some prime ideal \mathfrak{p}_{1} of $K_{0} D$ by Lemma 2.6 of [11], and moreover $\mathfrak{p}=p D$ for some $p \in D$ by Proposition 3.1.

The following lemma is a graded version of Lemma 4.5 of [14].

Lemma 3.5. Let N be a D-submodule of M. Then
(1) $\left(K_{0} N: K_{0} M\right)=K_{0} \mathfrak{n}$, where $\mathfrak{n}=(N: M)$ and $K_{0} N^{-}=\left(K_{0} N\right)^{-}$.
(2) $\left(K_{0} N\right)_{v}=K_{0} N_{v}$.

Proof. See the proof of Lemma 5.4 of [3].
The following lemma is a graded version of Lemma 4.6 of [14]. We write the proof because we need v_{1}-operation to prove the last properties (see [10], [14], [15] for details regarding v-submodules and v_{1}-operation).

Lemma 3.6. Let M_{0} be a UFM over D_{0} and $P_{1}=\mathfrak{p}_{1} K_{0} M$ be a prime v-submodule of $K_{0} M$, where \mathfrak{p}_{1} is a maximal ideal of $K_{0} D, P=P_{1} \cap M$ and $\mathfrak{p}=\mathfrak{p}_{1} \cap D$. Then
(1) P is a prime submodule of M and $\mathfrak{p}=(P: M)$.
(2) $K_{0} P=P_{1}$ and $P \cap M_{0}=\{0\}$.
(3) $P=\mathfrak{p} M$ and P is a maximal v-submodule of M

Proof. (1) See Lemma 5.5 (1) of [3].
(2) See Lemma 5.5 (2) of [3].
(3) By Lemma 3.5 and (2), we have $P_{1}=\left(P_{1}\right)_{v}=\left(K_{0} P\right)_{v}=K_{0} P_{v}$, so P is a v-submodule of M. Since M is a v-Noetherian D-module, there are finite elements $m_{i} \in P$ such that $P=\left(D m_{1}+\ldots+D m_{k}\right)_{v}$. Note that $K_{0} P=K_{0}\left(D m_{1}+\ldots+D m_{k}\right)_{v}=\left(K_{0} D m_{1}+\ldots+K_{0} D m_{k}\right)_{v}$ by Lemma 3.5. Further since $K_{0} P=P_{1}=K_{0} \mathfrak{p} K_{0} M=\mathfrak{p} K_{0} M$, for m_{i} there are finite $p_{i j} \in \mathfrak{p}$ and $l_{i j} \in K_{0} M$ such that $m_{i}=\sum_{j} p_{i j} l_{i j}$. Then there is a non-zero $c \in D_{0}$ with $c l_{i j} \in M$ for all $l_{i j}$ so that $c m_{i} \in \mathfrak{p} M$. Put $\mathfrak{a}=\left\{r_{0} \in D_{0} \mid r_{0} P \subseteq \mathfrak{p} M\right\}$, an ideal of D_{0} with $\mathfrak{a} P \subseteq \mathfrak{p} M$. If $\mathfrak{a}=D_{0}$, then $P=\mathfrak{p} M$ and we are done. If $\mathfrak{a} \subset D_{0}$, by Lemma 3.2 of [10], $\mathfrak{a}_{v_{1}} P \subseteq$ $\left(\mathfrak{a}_{v_{1}} P\right)_{v}=(\mathfrak{a} P)_{v} \subseteq(\mathfrak{p} M)_{v}=\mathfrak{p} M_{v}=\mathfrak{p} M$ because \mathfrak{p} is an invertible ideal. By the definition of \mathfrak{a}, we have that $\mathfrak{a}_{v_{1}} \subseteq \mathfrak{a}$, which implies $\mathfrak{a}_{v_{1}}=\mathfrak{a}$, that is, \mathfrak{a} is a v_{1}-ideal of D_{0}. Since \mathfrak{a} is a v_{1}-ideal of D_{0}, \mathfrak{a}^{+}is a v-submodule of M_{0} by Lemma 2.3 of [15], which implies $\mathfrak{a}^{+}=r_{0} M_{0}$ because M_{0} is a UFM. Then $\mathfrak{a}=\mathfrak{a}_{v_{1}}=\left(\mathfrak{a}^{+}\right)^{-}=\left(r_{0} M_{0}\right)^{-}=r_{0}^{-1} D_{0}$ and so \mathfrak{a} is an invertible ideal. Note that $\mathfrak{p}^{-1} \mathfrak{a} P \subseteq M$ and $K_{0} \mathfrak{p}^{-1} \mathfrak{a} P=K_{0} \mathfrak{p}^{-1} \mathfrak{p}_{1} K_{0} M=K_{0} M$, since $K_{0} D \mathfrak{p}=\mathfrak{p}_{1}$. It follows that $\mathfrak{p}^{-1} \mathfrak{a} P \cap M \neq\{0\}$ and $\left(\mathfrak{p}^{-1} \mathfrak{a} P\right)_{v}=$ $\mathfrak{p}^{-1} \mathfrak{a} P_{v}=\mathfrak{p}^{-1} \mathfrak{a} P$ by Lemma 3.2 of [14] since $\mathfrak{p}^{-1} \mathfrak{a}$ is an invertible D-ideal in K^{g}. Then by Proposition 3.4, $\mathfrak{p}^{-1} \mathfrak{a} P=\mathfrak{n} D M$ for some ideal \mathfrak{n} of D_{0} and $P=\mathfrak{p a}^{-1} \mathfrak{n} D M$. It follows that $\mathfrak{p}=(P: M)=\mathfrak{p a}^{-1} \mathfrak{n} D$ and that $D=\mathfrak{a}^{-1} \mathfrak{n} D$. Hence $P=\mathfrak{p} M$.
To prove that P is a maximal v-submodule of M, let N be a maximal
v-submodule of M containing P. Then $K_{0} N$ is a v-submodule of $K_{0} M$ containing $K_{0} P=P_{1}$ by Lemma 3.5, so $K_{0} N=P_{1}$ by the assumption. Thus $P=P_{1} \cap M \supseteq N$ and $N=P$ follows. Hence P is a maximal v-submodule of M.

Lemma 3.7. Let M_{0} be a UFM over D_{0} and P be a prime v-submodule of M such that $P \cap M_{0}=\{0\}$. Then there is a maximal v-submodule P_{1} of $K_{0} M$ such that $P=P_{1} \cap M$.

Proof. Let $\mathfrak{p}=(P: M)$. Then \mathfrak{p} is a prime v-ideal of D, so \mathfrak{p} is a non-zero minimal prime ideal. Thus \mathfrak{p} is in one of the following form: $\mathfrak{p}=\mathfrak{p}_{0} D$ for some prime ideal \mathfrak{p}_{0} of D_{0} or $\mathfrak{p}=\mathfrak{p}_{1} \cap D$ for some prime ideal \mathfrak{p}_{1} of $K_{0} D$ by Theorem 2.1 and Lemma 2.6 of [11]. In the first case, $P \supseteq \mathfrak{p}_{0} D M \supseteq \mathfrak{p}_{0} M_{0} \neq\{0\}$, a contradiction. Hence $\mathfrak{p}=\mathfrak{p}_{1} \cap D$ with $K_{0} \mathfrak{p}=\mathfrak{p}_{1}$. Since $P \cap M_{0}=\{0\}, K_{0} M \supset K_{0} P=\left(K_{0} P\right)_{v}$ by Lemma 3.5. Thus there is a maximal v-submodule P_{1} of $K_{0} M$ such that $P_{1} \supseteq K_{0} P$. By Lemma 3.5, $\left(P_{1}: K_{0} M\right) \supseteq\left(K_{0} P: K_{0} M\right)=K_{0}(P: M)=K_{0} \mathfrak{p}=\mathfrak{p}_{1}$. Since $\left(P_{1}: K_{0} M\right)$ is a prime ideal of $K_{0} D, \mathfrak{p}_{1}=\left(P_{1}: K_{0} M\right)$. Hence $P_{1}=\mathfrak{p}_{1} K_{0} M$ and $P_{1} \cap M \supseteq P$. By Lemma 3.6, $P_{1} \cap M=\mathfrak{p} M \subseteq P$ and hence $P=P_{1} \cap M$ and $P=\mathfrak{p} M$.

Proposition 3.8. Let P be a prime v-submodule of M with $P \cap M_{0}=\{0\}$. Then $P=\mathfrak{p} M$ for some prime v-ideal D where $\mathfrak{p} \cap D_{0}=\{0\}$.

From Lemma 3.3 and Proposition 3.8 we get the following theorem.
Theorem 3.9. Let $D=\oplus_{n \in \mathbb{Z}} D_{n}$ be a strongly graded domain and $M=\oplus_{n \in \mathbb{Z}} M_{n}$ be a strongly graded module over D where M satisfies the ascending chain condition on v-submodules of M. If M_{0} is a UFM over D_{0} then M is a UFM over D.

Proof. Since D_{0} is a UFD, D is a UFD by Proposition 3.1, and so every prime v-ideal of D is principal. It is clear that D is a maximal order by Proposition 1 of [2], which implies D_{0} is a maximal order by Theorem 1 of [6] and so M is CIC by Theorem 3.1 of [3]. To prove M is a UFM, let P be a prime v-submodule of M and $P_{0}=P \cap M_{0}$.
(1) Case $P_{0} \neq\{0\}$. Then $P=D P_{0}$ by Lemma 3.3. Note that P_{0} is a prime v-submodule of D_{0} by Lemma 3.3. Since M_{0} is a UFM, $P_{0}=p_{0} M_{0}$ for some $p_{0} \in D_{0}$ and so $P=D P_{0}=D p_{0} M_{0}=p_{0} D M_{0}=p_{0} M$.
(2) Case $P_{0}=\{0\}$. Then $P=\mathfrak{p} M$ for some v-ideal \mathfrak{p} of D where $\mathfrak{p} \cap D_{0}=\{0\}$ by Proposition 3.8. Since D is a UFD, $\mathfrak{p}=p D$ for some element $p \in D$ and so $P=\mathfrak{p} M=p D M=p M$, for some element $p \in D$.

Hence every prime v-submodule of M is principal and so M is a UFM by Theorem 2.5.

As an application of Theorem 3.9, we have the following examples.
Example 3.10. If M is a UFM over an integral domain D then the Laurent polynomial module $M\left[x, x^{-1}\right]$ is a UFM over $D\left[x, x^{-1}\right]$.

Example 3.11. Let T be an arbitrary UFD and A, B be two non-zero v-ideals of T. Let K be the quotient field of T. Then $M=\oplus_{n \in \mathbb{Z}} A B^{n} x^{n}=\ldots+A B^{-2} x^{-2}+$ $A B^{-1} x^{-1}+A+A B x+A B^{2} x^{2}+\ldots$ is a UFM over $D=\oplus_{n \in \mathbb{Z}} B^{n} x^{n}=\ldots+$ $B^{-2} x^{-2} B^{-1} x^{-1}+T+B x+B^{2} x^{2}+\ldots \subseteq K\left[x, x^{-1}\right]$, a Laurent polynomial ring over K.

4. Positively graded modules which are UFMs

Let $R=\oplus_{n \in \mathbb{Z}_{0}} D_{n}$ be a positively graded domain which is a sub-domain of the strongly graded domain $D=\oplus_{n \in \mathbb{Z}} D_{n}$. It is known that R is Noetherian if and only if D_{0} is Noetherian by Proposition 2.1 of [13]. In this section, we will prove that $L=\oplus_{n \in \mathbb{Z}_{0}} M_{n}$, a positively graded module over R, is a UFM if and only if M_{0} is a UFM over D_{0} when D_{0} is a Noetherian domain.

In the rest of this section, $R=\oplus_{n \in \mathbb{Z}_{0}} D_{n}$ and $L=\oplus_{n \in \mathbb{Z}_{0}} M_{n}$, where D_{0} is a Noetherian domain and M_{0} is a finitely generated torsion-free D_{0}-module.

In [2], it is shown that R is a UFR if and only if D_{0} is a UFR and D_{1} is a principal D_{0}-module. We begin this section with the following proposition that is a commutative case of Theorem 1 of [2].

Proposition 4.1. A positively graded domain $R=\oplus_{n \in \mathbb{Z}_{0}} D_{n}$ is a UFD if and only if
(1) D_{0} is a UFD, and
(2) D_{1} is a principal D_{0}-module, that is, there is $p_{1} \in D_{1}$ such that $D_{1}=D_{0} p_{1}$.

Note that L is a finitely generated torsion-free R-module since M_{0} is a fi nitely generated torsion-free D_{0}-module (see [3], Lemma 4.4.). Furthermore, M_{0} is CIC if and only if L is CIC by Theorem 4.1 of [3].

The following lemma is a module version of Lemma 2.5 (2) of [13] and can be proved in a similar way as in Lemma 5.1 of [3].

Lemma 4.2. Let N_{0} be a fractional D_{0}-submodule of M_{0} with $N_{0} \subseteq M_{0}$ and $N=R N_{0}$. Then
(1) $N^{-}=R\left(N_{0}\right)^{-}$,
(2) $N_{v}=R\left(N_{0}\right)_{v}$.

The following lemma is a graded version of Lemma 4.2 and Lemma 4.3 of [14].
Lemma 4.3. Let M_{0} be a UFM over D_{0} and P be a prime R-submodule of L with $P_{0}=P \cap M_{0} \neq\{0\}$. Then
(1) P_{0} is a prime submodule of M_{0}, and
(2) $P^{\prime}=R P_{0}$ is a prime submodule of L.
(3) If P is a prime v-submodule, then P_{0} is a prime v-submodule of M_{0}, and $P=R P_{0}$.

Proof. (1) The proof is similar to the proof of Lemma 4.2 (1) of [14].
(2) The proof is similar to the proof of Lemma 4.2 (2) of [14].
(3) Let $P^{\prime}=R P_{0} \subseteq L$. Consider that $P=P_{v} \supseteq\left(P^{\prime}\right)_{v}=\left(R P_{0}\right)_{v}=R\left(P_{0}\right)_{v}$ by Lemma 4.2. Thus $P_{0}=P \cap M_{0} \supseteq R\left(P_{0}\right)_{v} \cap M_{0}=\left(P_{0}\right)_{v}$. Hence $P_{0}=\left(P_{0}\right)_{v}$ and so P_{0} is a prime v-submodule by (1).
Note that $P^{\prime}=R P_{0}=R p_{0} M_{0}$ for some non-zero $p_{0} \in D_{0}$ because M_{0} is a UFM. Since $R p_{0}$ is an invertible ideal, $\left(P^{\prime}\right)^{-}=\left(R p_{0}\right)^{-1}=R p_{0}^{-1} \supseteq P^{-}$, which implies $R \supseteq R p_{0} P^{-}$and $P^{\prime}=R p_{0} M_{0}=R p_{0} L \supseteq R p_{0} P^{-} P$. If $P \supset P^{\prime}$ then $R p_{0} P^{-} L \subseteq P^{\prime}=R p_{0} L$ since P^{\prime} is a prime submodule by Lemma 4.3 (2). Then $P^{-} L \subseteq L$ and so $P^{-}=D$. Thus $P=P_{v}=\left(P^{-}\right)^{+}=$ $(D)^{+}=L$, a contradiction. Hence $P=R P_{0}$.

The following proposition is a graded version of Proposition 4.4 of [14].
Proposition 4.4. Let M_{0} be a UFM over D_{0} and N be a v-submodule of L with $N_{0}=N \cap M_{0} \neq\{0\}$. Then
(1) N_{0} is a v-submodule of M_{0} and $N_{0}=\mathfrak{n}_{0} M_{0}$ for some ideal \mathfrak{n}_{0} of D_{0}.
(2) $N=R \mathfrak{n}_{0} L$ and $R \mathfrak{n}_{0}=(N: L)$.

Proof. (1) Similar to the previous lemma, we get that N_{0} is a v-submodule of M_{0}. Furthermore, $N_{0}=\mathfrak{n}_{0} M_{0}$ for some ideal \mathfrak{n}_{0} of D_{0} follows since M_{0} is a UFM over D_{0} and by Theorem 2.3.
(2) Suppose there is a v-submodule N such that $N \neq R \mathfrak{n}_{0} L$ where \mathfrak{n}_{0} is an ideal of D_{0}. We may assume that N is maximal with this property because
M is Noetherian. Then there is a maximal v-submodule P with $P \supseteq N$ and $P=R \mathfrak{p}_{0} L$, where \mathfrak{p}_{0} is a maximal ideal of D_{0}. It follows that $L \supseteq$ $\left(R \mathfrak{p}_{0}\right)^{-1} N \supseteq N$. If $\left(R \mathfrak{p}_{0}\right)^{-1} N=N$, then $\left(R \mathfrak{p}_{0}\right)^{-1} \subseteq R$, a contradiction because L is CIC. Thus $\left(R \mathfrak{p}_{0}\right)^{-1} N \supset N$ and it follows from Lemma 3.2 of [14] that $\left(\left(R \mathfrak{p}_{0}\right)^{-1} N\right)_{v}=\left(R \mathfrak{p}_{0}\right)^{-1} N$. By the choice of $N,\left(R \mathfrak{p}_{0}\right)^{-1} N=R \mathfrak{t}_{0} L$ for some ideal \mathfrak{t}_{0} of D_{0}. Hence $N=R \mathfrak{p}_{0} \mathfrak{t}_{0} L$, a contradiction. Hence $N=R \mathfrak{n}_{0} L$ for some ideal \mathfrak{n}_{0} of D_{0}. The last statement easily follows since $R \mathfrak{n}_{0}$ is invertible.

Next we study the structure of a prime v-submodule P of L such that $P \cap M_{0}=$ $\{0\}$. Since $Q^{g}=\oplus_{n \in \mathbb{Z}_{0}} K_{0} D_{n}=K_{0} R$ is a principal ideal domain by Lemma 2.1 of [13] and $K_{0} L$ is a finitely generated torsion-free Q^{g}-module, we have that a v submodule P_{1} of $K_{0} L$ is prime if and only if $P_{1}=\mathfrak{p}_{1} K_{0} L$, where \mathfrak{p}_{1} is a maximal ideal of Q^{g} such that $\mathfrak{p}_{1}=\left(P_{1}: K_{0} L\right)$ by Theorem 3.3 of [14].

The following lemma is a graded version of Lemma 4.5 of [14].
Lemma 4.5. Let N be an R-submodule of L. Then
(1) $\left(K_{0} N: K_{0} L\right)=K_{0} \mathfrak{n}$, where $\mathfrak{n}=(N: L)$ and $K_{0} N^{-}=\left(K_{0} N\right)^{-}$.
(2) $\left(K_{0} N\right)_{v}=K_{0} N_{v}$.

Proof. (1) The proof is similar to the proof of Lemma 4.5 (1) of [14].
(2) Let $m^{\prime} \in\left(K_{0} N\right)_{v}=\left(\left(K_{0} N\right)^{-}\right)^{+}=\left(K_{0} N^{-}\right)^{+}$, that is, $K_{0} L \supseteq K_{0} N^{-} m^{\prime} \supseteq$ $N^{-} m^{\prime}$. Then there is $r \in D_{0}$ such that $N^{-} r m^{\prime}=r N^{-} m^{\prime} \subseteq L$. Thus $r m^{\prime} \in\left(N^{-}\right)^{+}=N_{v}$ and so $m^{\prime} \in r^{-1} N_{v} \subseteq K_{0} N_{v}$.
Conversely, let $m^{\prime} \in K_{0} N_{v}$. We write $m^{\prime}=\sum_{i=1}^{t} k_{0_{i}} m_{i}$ where $k_{0_{i}} \in K_{0}$ and $m_{i} \in N_{v}$ for all $i=1,2, \ldots, t$. Then for all $i=1,2, \ldots, t$, we have $N^{-} m_{i} \subseteq L$ and so $K_{0} N^{-} m^{\prime}=K_{0} N^{-}\left(\sum_{i=1}^{t} k_{0_{i}} m_{i}\right) \subseteq N^{-}\left(K_{0} m_{1}+\ldots+\right.$ $\left.K_{0} m_{t}\right) \subseteq K_{0} L$. Then

$$
m^{\prime} \in\left(K_{0} N^{-}\right)^{+}=\left(\left(K_{0} N\right)^{-}\right)^{+}=\left(K_{0} N\right)_{v}
$$

Hence $\left(K_{0} N\right)_{v}=K_{0} N_{v}$.

The following lemma is a graded version of lemma 4.6 of [14]. We write the proof because we need v_{1}-operation to prove the last properties (see [10], [14], [15] for details regarding v-submodules and v_{1}-operation).

Lemma 4.6. Let M_{0} be a UFM over D_{0} and $P_{1}=\mathfrak{p}_{1} K_{0} L$ be a prime v-submodule of $K_{0} L$, where \mathfrak{p}_{1} is a maximal ideal of $K_{0} R, P=P_{1} \cap L$ and $\mathfrak{p}=\mathfrak{p}_{1} \cap R$. Then
(1) P is a prime submodule of L and $\mathfrak{p}=(P: L)$.
(2) $K_{0} P=P_{1}$ and $P \cap M_{0}=\{0\}$.
(3) $P=\mathfrak{p} L$ and P is a maximal v-submodule of L.

Proof. (1) Let $r \in R$ and $m \in L$ such that $r m \in P$ and $m \notin P$. Since $m \notin P_{1}$ and P_{1} is prime, we have $r L \subseteq r K_{0} L \subseteq P_{1}$ and so $r L \subseteq P$. Hence P is a prime submodule of L.
Since $\mathfrak{p} L \subseteq \mathfrak{p} K_{0} L=P_{1}$, we have $\mathfrak{p} L \subseteq P$, so $\mathfrak{p} \subseteq(P: L)$. Conversely let $r \in(P: L)$, that is, $r \in R$ and $r L \subseteq P$. Then $r K_{0} L \subseteq K_{0} P \subseteq P_{1}$, so $r \in\left(P_{1}: K_{0} L\right)=\mathfrak{p}_{1}$. Thus $r \in \mathfrak{p}_{1} \cap R=\mathfrak{p}$. Hence $\mathfrak{p}=(P: L)$.
(2) Let $m^{\prime} \in P_{1}$ and we write $m^{\prime}=\sum_{i=1}^{n} t_{i} m_{i}$ where $t_{i} \in \mathfrak{p}_{1}$ and $m_{i}^{\prime} \in K_{0} L$. Then there are $\alpha, \beta \in D_{0}$ such that $\alpha t_{i} \in \mathfrak{p}$ and $\beta m_{i}^{\prime} \in L$ and so $\alpha \beta m^{\prime} \in \mathfrak{p} L \subseteq P$. Thus $m^{\prime} \in(\alpha \beta)^{-1} P \subseteq K_{0} P$. Hence $K_{0} P=P_{1}$.
Note that $\mathfrak{p}_{1}=\langle t\rangle=t K_{0} R$ for some prime element $t \in K_{0} R$ with $\operatorname{deg}(t) \geq$ 1. If $P \cap M_{0} \neq\{0\}$ and let $0 \neq m \in P \cap M_{0}$. Then $m=t m^{\prime}$ for some $m^{\prime} \in K_{0} L$, since $K_{0} P=P_{1}=t K_{0} L$. Write $t=t_{n}+t_{n-1}+\ldots+t_{0}$ $\left(t_{i} \in K_{0} D_{i}\right.$, with $\left.t_{n} \neq 0\right)$ and $m^{\prime}=m_{l}+\ldots+m_{0}\left(m_{j} \in K_{0} M_{j}\right)$. Then we get $t_{n} m_{l}=0$, so $m_{l}=0$ and so on. Then we have $m=0$, a contradiction. Hence $P \cap M_{0}=\{0\}$.
(3) The proof is similar to Lemma 3.6 (3).

Lemma 4.7. Let M_{0} be a UFM over D_{0} and P be a prime v-submodule of L such that $P \cap M_{0}=\{0\}$. Then $P=\oplus_{n \geq 1} M_{n}=D_{1} L$ or there is a maximal v-submodule P_{1} of $K_{0} L$ such that $P=P_{1} \cap L$.

Proof. Let $\mathfrak{p}=(P: L)$. Then \mathfrak{p} is a prime v-ideal of R, so \mathfrak{p} is a non-zero minimal prime ideal. Thus \mathfrak{p} is in one of the following form: $\mathfrak{p}=\mathfrak{p}_{0} R$ for some prime ideal \mathfrak{p}_{0} of $D_{0}, \mathfrak{p}=\oplus_{n \geq 1} D_{n}$ or $\mathfrak{p}=\mathfrak{p}_{1} \cap R$ for some prime ideal \mathfrak{p}_{1} of $K_{0} R$ by Proposition 3.1 of [13]. In the first case, $P \supseteq \mathfrak{p}_{0} R L \supseteq \mathfrak{p}_{0} M_{0} \neq\{0\}$, a contradiction. In the second case, if $P \supseteq\left(\oplus_{n \geq 1} D_{n}\right) L=R D_{1} L=D_{1} L=\oplus_{n \geq 1} M_{n}$. If $P \supset \oplus_{n \geq 1} M_{n}$, there is a non-zero submodule T_{0} of M_{0} such that $P=T_{0}+\oplus_{n \geq 1} M_{n}$. Then $P \cap M_{0} \supseteq T_{0} \neq\{0\}$, a contradiction. Hence $P=\oplus_{n \geq 1} M_{n}$. In the last case, $\mathfrak{p}=\mathfrak{p}_{1} \cap R$ with $K_{0} \mathfrak{p}=\mathfrak{p}_{1}$. Since $P \cap M_{0}=\{0\}, K_{0} L \supset K_{0} P=\left(K_{0} P\right)_{v}$ by Lemma 4.5. Thus there is a maximal v-submodule P_{1} of $K_{0} L$ such that $P_{1} \supseteq K_{0} P$. By Lemma 4.5, $\left(P_{1}: K_{0} L\right) \supseteq\left(K_{0} P: K_{0} L\right)=K_{0}(P: L)=K_{0} \mathfrak{p}=\mathfrak{p}_{1}$. Since $\left(P_{1}: K_{0} L\right)$
is a prime ideal of $K_{0} R, \mathfrak{p}_{1}=\left(P_{1}: K_{0} L\right)$. Hence $P_{1}=\mathfrak{p}_{1} K_{0} L$ and $P_{1} \cap L \supseteq P$. By Lemma 4.6, $P_{1} \cap L=\mathfrak{p} L \subseteq P$ and hence $P=P_{1} \cap L$ and $P=\mathfrak{p} L$. So by the last two cases, $P=\oplus_{n \geq 1} M_{n}$ or there is a maximal v-submodule P_{1} of $K_{0} L$ such that $P=P_{1} \cap L$.

Note that if $R=\oplus_{n \in \mathbb{Z}_{0}} D_{n}$ is a Noetherian UFD, then $R=D_{0}\left[p_{1}\right]$ for some element $p_{1} \in D_{1}$ by Theorem 1 of [2] and so $M=M_{0}\left[p_{1}\right]$, a polynomial module. Then the necessary condition of Theorem 4.8 is already proved in [12], but we give another proof by using v_{1}-operator.

Theorem 4.8. Let $R=\oplus_{n \in \mathbb{Z}_{0}} D_{n}$ be a Noetherian UFD and $L=\oplus_{n \in \mathbb{Z}_{0}} M_{n}$ be a positively graded module over R. Then L is a UFM if and only if M_{0} is a UFM.

Proof. (\Rightarrow) Suppose that $L=\oplus_{n \in \mathbb{Z}_{0}} M_{n}$ is a UFM over R. Then L is CIC and so M_{0} is CIC by Theorem 4.1 of [3]. Let P_{0} be a non-zero prime v-submodule of M_{0}. Then $P=R P_{0}$ is a v-submodule of L by Lemma 4.2. Furthermore, as in Lemma 4.3 (2), $R P_{0}$ is a prime submodule of L. Hence $R P_{0}$ is a prime v-submodule of L and so it is principal since L is a UFM. Then $R P_{0}=r L$ for some $r \in R$. Since $\{0\} \neq P_{0} \subset R P_{0}=r L, r \in D_{0}$, which implies $P_{0}=r M_{0}$. Hence P_{0} is principal and so M_{0} is a UFM by Theorem 2.5.
(\Leftarrow) Suppose that M_{0} is a UFM over D_{0}. Since R is a UFD, it is clear that R is a maximal order by Proposition 1 of [2], which implies D_{0} is a maximal order by Theorem 2.1 of [13] and so L is CIC by Theorem 4.1 of [3]. Note that D_{0} is a UFD and D_{1} is a principal D_{0}-module since R is a UFD. To prove L is a UFM, let P be a prime v-submodule of L and $P_{0}=P \cap M_{0}$. By Lemma 4.3 (3), P_{0} is a prime v-submodule.
(1) Case $P_{0} \neq\{0\}$. Then $P=R P_{0}$ by Lemma 4.3 (3). Since M_{0} is a UFM, $P_{0}=p_{0} M_{0}$ for some $p_{0} \in D_{0}$ and so $P=R P_{0}=R p_{0} M_{0}=p_{0} R M_{0}=p_{0} L$.
(2) Case $P_{0}=\{0\}$. Then $P=\oplus_{n \geq 1} M_{n}=D_{1} L$ or $P=\mathfrak{p} L$ for some v-ideal \mathfrak{p} of R by Lemma 4.7. If $P=\oplus_{n \geq 1} M_{n}=D_{1} L$, then $P=d_{1} D_{0} L=d_{1} L$ for some $d_{1} \in D_{1}$ since D_{1} is a principal D_{0}-module. If $P=\mathfrak{p} L$, then $P=\mathfrak{p} L=p R L=p L$ for some $p \in R$ since R is a UFD.

Hence every prime v-submodule of L is principal and so L is a UFM by Theorem 2.5.

We end this section with examples of a positively graded module which is a UFM.

Example 4.9. Let $R=\oplus_{n \in \mathbb{Z}_{0}} D_{n}$ be a positively graded domain where D_{0} is a Noetherian UFD and D_{1} is a principal D_{0}-module. Let $M=R \oplus R \oplus \ldots \oplus R$ be a positively graded module over R and P be a graded submodule of M such that $M=P \oplus T$. Then P is a UFM.

Proof. Note that P is a projective module. Then P is a G-Dedekind module and it is a v-multiplication module by Theorem 3.1 of [15]. Furthermore, since P is a v-multiplication module and R is a UFD, P is a UFM by Theorem 2.3.

Lemma 4.10. Let D be a domain, B be an invertible ideal of D and A be a nonzero ideal of D. Let $R=D+B x+B^{2} x^{2}+\ldots \subseteq D[x]$, where $D[x]$ is a polynomial ring over D and $L=A+A B x+A B^{2} x^{2}+\ldots=A R$. Then L is a positively graded module over positively graded domain R.

From Remark 2.6 and Lemma 4.10 we have the following example.
Example 4.11. Let D be an arbitrary Noetherian UFD and A, B be two nonzero v-ideals of D. Then $L=A+A B x+A B^{2} x^{2}+\ldots$ is a UFM over $R=$ $D+B x+B^{2} x^{2}+\ldots$.

Proof. Note that R is a UFD since D is a UFD and $B x$ is a principal D-module. Since A is a non-zero v-ideal of D, A is a UFM by Remark 2.6. Then by Theorem 4.8, L is a UFM over R.

Acknowledgement. The authors would like to thank the referee for the valuable comments and suggestions that significantly improved this manuscript.

References

[1] D. L. Costa, Unique factorization in modules and symmetric algebras, Trans. Amer. Math. Soc., 224(2) (1976), 267-280.
[2] I. Ernanto, H. Marubayashi, A. Ueda and S. Wahyuni, Positively graded rings which are unique factorization rings, Vietnam J. Math., 49 (2021), 1037-1041.
[3] I. Ernanto, A. Ueda, I. E. Wijayanti and Sutopo, Some remarks on strongly graded modules, submitted for publication, 2022.
[4] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[5] C. P. Lu, Factorial modules, Rocky Mountain J. Math., 7 (1977), 125-139.
[6] H. Marubayashi, S. Wahyuni, I. E. Wijayanti and I. Ernanto, Strongly graded rings which are maximal orders, Sci. Math. Jpn., 82 (2019), 207-210.
[7] C. Nastasescu and F. van Oystaeyen, Graded Ring Theory, North-Holland Mathematical Library, 28, North-Holland Publishing Co., Amsterdam-New York, 1982.
[8] A. M. Nicolas, Modules factoriels, Bull. Sci. Math. (2), 95 (1971), 33-52.
[9] A. M. Nicolas, Extensions factorielles et modules factorables, Bull. Sci. Math. (2), 98 (1974), 117-143.
[10] M. M. Nurwigantara, I. E. Wijayanti, H. Marubayashi and S. Wahyuni, Krull modules and completely integrally closed modules, J. Algebra Appl., 21(1) (2022), 2350038 (14 pp).
[11] S. Wahyuni, H. Marubayashi, I. Ernanto and Sutopo, Strongly graded rings which are generalized Dedekind rings, J. Algebra Appl., 19(3) (2020), 2050043 (8 pp).
[12] S. Wahyuni, H. Marubayashi, I. Ernanto and I. P. Y. Prabhadika, On unique factorization modules: a submodule approach, Axioms, 11(6) (2022), 288 (7 pp).
[13] I. E. Wijayanti, H. Marubayashi and Sutopo, Positively graded rings which are maximal orders and generalized Dedekind prime rings, J. Algebra Appl., 19(8) (2020), 2050143 (11 pp).
[14] I. E. Wijayanti, H. Marubayashi, I. Ernanto and Sutopo, Finitely generated torsion-free modules over integrally closed domains, Comm. Algebra, 48(8) (2020), 3597-3607.
[15] I. E. Wijayanti, H. Marubayashi, I. Ernanto and Sutopo, Arithmetic modules over generalized Dedekind domains, J. Algebra Appl., 21(3) (2022), 2250045 (14 pp).

```
Iwan Ernanto (Corresponding Author) and Indah E. Wijayanti
Department of Mathematics
Faculty of Mathematics and Natural Sciences
Universitas Gadjah Mada
Sekip Utara Yogyakarta, Indonesia
e-mails: iwan.ernanto@ugm.ac.id (I. Ernanto)
    ind_wijayanti@ugm.ac.id (I. E. Wijayanti)
```

Akira Ueda
Department of Mathematics
Interdisciplinary Faculty of Science and Engineering
Shimane University
1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
e-mail: ueda@riko.shimane-u.ac.jp (A. Ueda)

[^0]: This work was done with the support from Universitas Gadjah Mada under Research Grant Year 2022 (Hibah Penelitian Dosen Dana Masyarakat Alokasi Fakultas MIPA Nomor 155/J01.1.28/PL.06.02/2022) as the implementation of JSPS RONPAKU (Dissertation Ph.D.) Program and the continuation of the research cooperation between the second author and the members of the Algebra Research Group at the Department of Mathematics UGM.

