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Abstract. Let M = ⊕n∈ZMn be a strongly graded module over strongly

graded ring D = ⊕n∈ZDn. In this paper, we prove that if M0 is a unique

factorization module (UFM for short) over D0 and D is a unique factorization

domain (UFD for short), then M is a UFM over D. Furthermore, if D0 is a

Noetherian domain, we give a necessary and sufficient condition for a positively

graded module L = ⊕n∈Z0
Mn to be a UFM over positively graded domain

R = ⊕n∈Z0
Dn.
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1. Introduction

Throughout this paper R = ⊕n∈Z0
Dn is a positively graded domain which is a

sub-domain of the strongly graded domain D = ⊕n∈ZDn and L = ⊕n∈Z0Mn is a

positively graded module over R which is a subset of the strongly graded module

M = ⊕n∈ZMn.

In [12], the authors defined a concept of a Unique Factorization Module (UFM

for short) by submodule approach. They also proved that the concept of UFM by

[12] is equivalent to Nicolas’s UFM (see [8] for the definition of a UFM by Nicolas),

which is defined in terms of irreducible elements of D and M . In [12], the authors

proved that if M is a UFM, then the polynomial module M [x] is also a UFM. There

are several papers on UFMs, see for example [1], [5], [8] and [9].
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On the other hand, in [11], it is shown that D = ⊕n∈ZDn, a strongly graded

domain, is a G-Dedekind domain if and only if D0 is a G-Dedekind domain. More-

over, in [2], it is shown that R = ⊕n∈Z0Dn, a positively graded domain, is a Unique

Factorization Domain (UFD for short) if and only if D0 is a UFD and D1 is a

principal D0-module.

The aim of this paper is to extend the main results of [11] and [12] to a strongly

graded module M = ⊕n∈ZMn. The paper is organized as follows. In Section 2,

we give some characterizations of a unique factorization module that will be very

useful in Section 3 and Section 4. We refer the reader to [2], [6], [7], [11] and [13],

and for details regarding graded rings, and to [3] regarding graded modules, that

are not mentioned in this paper.

In Section 3, we prove that if M0 is a UFM over D0, then M = ⊕n∈ZMn is a

UFM over D as a generalization of the result in [12]. We give some examples of

strongly graded modules which are UFMs.

In Section 4, we give the necessary and sufficient condition for a positively graded

module L = ⊕n∈Z0
Mn to be a UFM. We end Section 4 with some examples of

positively graded modules which are UFMs as the application of the main result of

this paper, that is, Theorem 4.8.

We refer the reader to [10], [14], [15] for the concept and properties of v-

submodules and [4] to some properties of multiplicative ideal theory which are

not mentioned in this paper.

2. Unique factorization modules

Let M be a torsion-free module over an integral domain D with the quotient fi

eld K. In [15], the authors defined the following concepts.

Definition 2.1. (1) A non-zero D-submodule N of KM is called a fractional

D-submodule in KM if there is a non-zero r ∈ D such that rN ⊆ M and

KN = KM .

(2) A non-zero D-submodule a of K is called a fractional M -ideal in K if there

is a non-zero m ∈ M such that am ⊆ M .

We represent F (M) as the collection of all fractional D-submodules in KM ,

while FM (D) refers to the set containing all fractional M -ideals in K. Suppose

N ∈ F (M) and a ∈ FM (D). We define N− = {k ∈ K | kN ⊆ M} and a+ = {m ∈
KM | am ⊆ M}. Then, it easily follows that N− ∈ FM (D) and a+ ∈ F (M).

For N ∈ F (M) and a ∈ FM (D), we define Nv = (N−)+ and av1 = (a+)−.

Consequently, Nv ∈ F (M), and it satisfies Nv ⊇ N . Similarly, av1 ∈ FM (D), and
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it satisfies av1 ⊇ a. When N = Nv, we classify N as a fractional v-submodule in

KM. Moreover, if a = av1, we refer to a as a v1-ideal (with respect to M). We refer

the reader to [10], [14], [15] for details regarding v-submodules and v1-operation.

In [12], the authors defined a concept of a unique factorization module by a sub-

module approach. The authors gave the definition and characterization of unique

factorization modules as follows.

Definition 2.2. [[12], Definition 2] A torsion-free module M over an integral do-

main D is called a unique factorization module (UFM for short) if

(1) M is completely integrally closed (CIC for short), that is, OK(N) = {k ∈
K | kN ⊆ N} = D for every non-zero submodule N of M , where K is the

quotient field of D,

(2) every v-submodule of M is principal,

(3) M satisfies the ascending chain condition on v-submodules of M .

Theorem 2.3. [[12], Theorem 1] Suppose OK(M) = D. The following conditions

are equivalent:

(1) M is a UFM.

(2) M is a v-multiplication module and D is a UFD.

(3) (a) D is a UFD.

(b) For every prime element p of D, pM is a maximal v-submodule.

(c) For every v-submodule N of M , n = (N : M) ̸= {0}, where (N : M) =

{r ∈ D | rM ⊆ N}.
(4) Every v-submodule of M is principal and D is a UFD.

Note that if M is a finitely generated torsion-free D-module, then OK(M) = D

by Lemma 2.1 of [3]. Throughout this paper, M is a finitely generated torsion-free

D-module and satisfies the ascending chain condition on v-submodules of M .

Lemma 2.4. Let P be a maximal v-submodule of M . Then P is a prime submodule.

Proof. Let rm ∈ P where r ∈ D and m ∈ M . If m /∈ P , then P ⊂ Dm + P ⊆
(Dm + P )v ⊆ M and so (Dm + P )v = M . Then P ⊇ (Drm + rP )v = (r(Dm +

P ))v = r(Dm+ P )v = rM . Hence P is prime. □

The following theorem will be very useful for Section 3 and Section 4.

Theorem 2.5. Suppose that D is a UFD and M is a CIC module that satisfies the

ascending chain condition on v-submodules of M . Then M is a UFM if and only

if every prime v-submodule of M is principal.
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Proof. If M is a UFM, then it is clear that every prime v-submodule of M is

principal, by Theorem 2.3. Conversely, we assume on the contrary that M is not a

UFM. Let N be a v-submodule of M which is not principal and we may assume that

N is maximal with this property because M satisfies the ascending chain condition

on v-submodules of M . Let P be a maximal v-submodule of M containing N .

Then P = pM for some non-zero p ∈ D by Lemma 2.4. Since N ⊂ P ⊂ M , we

have N ⊆ p−1N ⊂ M and so (p−1N)v = p−1Nv = p−1N . Then N = p−1N or

p−1N is principal by the maximality of N . If p−1N is principal, then p−1N = tM

for some t ∈ D and so N = ptM , a contradiction. Hence N = p−1N , which implies

p−1 ∈ OK(N) = D. Then P = pM ⊇ p(p−1M) = M , a contradiction. Hence every

v-submodule N of M is principal and so M is a UFM. □

In a UFD, the concept of a principal ideal, a v-ideal, and an invertible ideal are

equivalent.

Remark 2.6. Let D be a UFD and A be a v-ideal of D. Then

(1) D is a UFM over D.

(2) A is a UFM over D.

(3) If M is a finitely generated projective module over D, then M is a UFM.

In particular, every finite direct sum of D is a UFM.

Proof. (1) It is clear.

(2) Note that A is principal since A is a v-ideal of D. Then A is isomorphic to

D as a D-module. Hence A is a UFM by (1).

(3) By Theorem 3.1 of [15], M is a v-multiplication module. Then by Theorem

2.3, M is a UFM since D is a UFD. □

3. Strongly graded modules which are UFMs

Throughout this section, D = ⊕n∈ZDn is a strongly graded domain. It is known

that D is a G-Dedekind domain if and only if D0 is a G-Dedekind domain by

Theorem 2.1 of [11]. Assume that K0 and K are the quotient fields of D0 and D

respectively. Let M = ⊕n∈ZMn be a strongly graded module over D where M0

is a finitely generated torsion-free D0-module and we assume that M satisfies the

ascending chain condition on v-submodules of M . In this section, we will prove

that M is a UFM over D if M0 is a UFM over D0.

Note that the concept of a principal ideal, a v-ideal, and an invertible ideal are

equivalent in a UFD. We begin this section with the following proposition.
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Proposition 3.1. If D0 is a UFD then D = ⊕n∈ZDn is a UFD.

Proof. Suppose that D0 is a UFD, that is, D0 is a maximal order and each prime

v-ideal P0 of D0 is principal (see Proposition 1 of [3]). Then D is a maximal order

by Theorem 1 of [6]. Let P be a non-zero prime v-ideal of D. If P0 = P ∩D0 ̸= {0},
then P = P0D and P0 is a v-ideal of D0 (see the proof of Theorem 2.1 and Lemma

1.2 of [11]). So P0 = p0D0 = D0p0 for some p0 ∈ P0 and P = p0D = Dp0 follows.

If P0 = P ∩D0 = (0), then P = wA−1
0 B0D for some invertible ideals A0, B0 of D0,

which implies P is principal since D0 is a UFD. Thus P is principal and hence D

is a UFD by Proposition 1 of [2]. □

Recall that a module M over a CIC domain D is a UFM if and only if every

prime v-submodule P of M is principal, that is, P = pM for some element p ∈ D

by Theorem 2.5 (see [12] for the definition of a UFM).

Note that M is a finitely generated torsion-free D-module since M0 is a finitely

generated torsion-free D0-module. Furthermore, M0 is CIC if and only if M is CIC

by Theorem 3.1 of [3].

In the rest of this section, we assume that M0 is a UFM. Then D0 is a UFD

(see Theorem 2.3).

Now, we study the structure of v-submodule P of M with P ∩M0 ̸= {0}.

Lemma 3.2. [Lemma 5.1 of [3]] Let N0 be a fractional D0-submodule of M0 with

N0 ⊆ M0 and N = DN0. Then

(1) N− = D(N0)
−, and

(2) Nv = D(N0)v.

Lemma 3.3. Let P be a prime D-submodule of M with P0 = P ∩M0 ̸= {0}. Then

(1) P0 is a prime submodule of M0, and

(2) P ′ = DP0 is a prime submodule of M .

(3) If P is a prime v-submodule, then P0 is a prime v-submodule of M0, and

P = DP0.

Proof. (1) See Lemma 5.2 of [3].

(2) See Lemma 5.2 of [3].

(3) Let P ′ = DP0 ⊆ M . Consider that P = Pv ⊇ (P ′)v = (DP0)v = D(P0)v by

Lemma 3.2. Thus P0 = P ∩M0 ⊇ D(P0)v ∩M0 = (P0)v. Hence P0 = (P0)v

and so P0 is a prime v-submodule by (1).

Note that P ′ = DP0 = Dp0M0 for some non-zero p0 ∈ D0 because M0 is

a UFM. Since Dp0 is an invertible ideal, (P ′)− = (Dp0)
−1 = Dp−1

0 ⊇ P−,
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which implies D ⊇ Dp0P
− and P

′
= Dp0M0 = Dp0M ⊇ Dp0P

−P . If

P ⊃ P ′ then Dp0P
−M ⊆ P ′ ⊆ Dp0M since P ′ is a prime submodule by

(2). Then P−M ⊆ M and so P− = D since M is CIC. Thus P = Pv =

(P−)+ = (D)+ = M , a contradiction. Hence P = DP0. □

In the rest of this section, we assume that M satisfies the ascending chain con-

dition on v-submodules of M .

Proposition 3.4. Let N be a v-submodule of M with N0 = N ∩M0 ̸= {0}. Then

(1) N0 is a v-submodule of M0 and N0 = n0M0 for some ideal n0 of D0.

(2) N = Dn0M and Dn0 = (N : M).

Proof. (1) Similar to the previous lemma, we get that N0 is a v-submodule of

M0. Furthermore, N0 = n0M0 for some ideal n0 of D0 follows since M0 is

a UFM over D0 and by Theorem 2.3.

(2) Suppose there is a v-submodule N such that N ̸= Dn0M where n0 is

an ideal of D0. We may assume that N is maximal with this property

because M satisfies the ascending chain condition on v-submodules of M .

Then there is a maximal v-submodule P with P ⊇ N and P = Dp0M ,

where p0 is a maximal ideal of D0. It follows that M ⊇ (Dp0)
−1N ⊇

N . If (Dp0)
−1N = N , then (Dp0)

−1 ⊆ D, a contradiction because M

is CIC. Thus (Dp0)
−1N ⊃ N and it follows from Lemma 3.2 of [14] that

((Dp0)
−1N)v = (Dp0)

−1N . By the choice of N , (Dp0)
−1N = Dt0M for

some ideal t0 of D0. Hence N = Dp0t0M , a contradiction. Hence N =

Dn0M for some ideal n0 of D0. The last statement easily follows since Dn0

is invertible. □

Next we study the structure of a prime v-submodule P of M such that P ∩M0 =

{0}. Since Kg = ⊕n∈ZK0Dn = K0D is a principal ideal domain by [6] and K0M

is a finitely generated torsion-free Kg-module, we have that a v-submodule P1 of

K0M is prime if and only if P1 = p1K0M , where p1 is a maximal ideal of Kg such

that p1 = (P1 : K0M) by Theorem 3.3 of [14].

Note that if D0 is a UFD and p is a prime v-ideal of D, then p = p0D for some

prime v-ideal p0 of D0 or p = p1 ∩D for some prime ideal p1 of K0D by Lemma

2.6 of [11], and moreover p = pD for some p ∈ D by Proposition 3.1.

The following lemma is a graded version of Lemma 4.5 of [14].
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Lemma 3.5. Let N be a D-submodule of M . Then

(1) (K0N : K0M) = K0n, where n = (N : M) and K0N
− = (K0N)−.

(2) (K0N)v = K0Nv.

Proof. See the proof of Lemma 5.4 of [3]. □

The following lemma is a graded version of Lemma 4.6 of [14]. We write the

proof because we need v1-operation to prove the last properties (see [10], [14], [15]

for details regarding v-submodules and v1-operation).

Lemma 3.6. Let M0 be a UFM over D0 and P1 = p1K0M be a prime v-submodule

of K0M , where p1 is a maximal ideal of K0D, P = P1 ∩M and p = p1 ∩D. Then

(1) P is a prime submodule of M and p = (P : M).

(2) K0P = P1 and P ∩M0 = {0}.
(3) P = pM and P is a maximal v-submodule of M

Proof. (1) See Lemma 5.5 (1) of [3].

(2) See Lemma 5.5 (2) of [3].

(3) By Lemma 3.5 and (2), we have P1 = (P1)v = (K0P )v = K0Pv, so P

is a v-submodule of M . Since M is a v-Noetherian D-module, there are

finite elements mi ∈ P such that P = (Dm1 + . . . + Dmk)v. Note that

K0P = K0(Dm1 + . . . +Dmk)v = (K0Dm1 + . . . +K0Dmk)v by Lemma

3.5. Further since K0P = P1 = K0pK0M = pK0M , for mi there are

finite pij ∈ p and lij ∈ K0M such that mi =
∑

j pij lij . Then there is

a non-zero c ∈ D0 with clij ∈ M for all lij so that cmi ∈ pM . Put

a = {r0 ∈ D0 | r0P ⊆ pM}, an ideal of D0 with aP ⊆ pM . If a = D0,

then P = pM and we are done. If a ⊂ D0, by Lemma 3.2 of [10], av1P ⊆
(av1P )v = (aP )v ⊆ (pM)v = pMv = pM because p is an invertible ideal.

By the definition of a, we have that av1 ⊆ a, which implies av1 = a, that

is, a is a v1-ideal of D0. Since a is a v1-ideal of D0, a
+ is a v-submodule

of M0 by Lemma 2.3 of [15], which implies a+ = r0M0 because M0 is a

UFM. Then a = av1 = (a+)− = (r0M0)
− = r−1

0 D0 and so a is an invertible

ideal. Note that p−1aP ⊆ M and K0p
−1aP = K0p

−1p1K0M = K0M ,

since K0Dp = p1. It follows that p−1aP ∩ M ̸= {0} and
(
p−1aP

)
v
=

p−1aPv = p−1aP by Lemma 3.2 of [14] since p−1a is an invertible D-ideal

in Kg. Then by Proposition 3.4, p−1aP = nDM for some ideal n of D0

and P = pa−1nDM . It follows that p = (P : M) = pa−1nD and that

D = a−1nD. Hence P = pM .

To prove that P is a maximal v-submodule of M , let N be a maximal
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v-submodule of M containing P . Then K0N is a v-submodule of K0M

containing K0P = P1 by Lemma 3.5, so K0N = P1 by the assumption.

Thus P = P1 ∩ M ⊇ N and N = P follows. Hence P is a maximal

v-submodule of M . □

Lemma 3.7. Let M0 be a UFM over D0 and P be a prime v-submodule of M such

that P ∩ M0 = {0}. Then there is a maximal v-submodule P1 of K0M such that

P = P1 ∩M .

Proof. Let p = (P : M). Then p is a prime v-ideal of D, so p is a non-zero minimal

prime ideal. Thus p is in one of the following form: p = p0D for some prime ideal

p0 of D0 or p = p1∩D for some prime ideal p1 of K0D by Theorem 2.1 and Lemma

2.6 of [11]. In the first case, P ⊇ p0DM ⊇ p0M0 ̸= {0}, a contradiction. Hence

p = p1∩D with K0p = p1. Since P ∩M0 = {0}, K0M ⊃ K0P = (K0P )v by Lemma

3.5. Thus there is a maximal v-submodule P1 of K0M such that P1 ⊇ K0P . By

Lemma 3.5, (P1 : K0M) ⊇ (K0P : K0M) = K0(P : M) = K0p = p1. Since

(P1 : K0M) is a prime ideal of K0D, p1 = (P1 : K0M). Hence P1 = p1K0M and

P1 ∩ M ⊇ P . By Lemma 3.6, P1 ∩ M = pM ⊆ P and hence P = P1 ∩ M and

P = pM . □

Proposition 3.8. Let P be a prime v-submodule of M with P ∩M0 = {0}. Then

P = pM for some prime v-ideal D where p ∩D0 = {0}.

From Lemma 3.3 and Proposition 3.8 we get the following theorem.

Theorem 3.9. Let D = ⊕n∈ZDn be a strongly graded domain and M = ⊕n∈ZMn

be a strongly graded module over D where M satisfies the ascending chain condition

on v-submodules of M . If M0 is a UFM over D0 then M is a UFM over D.

Proof. Since D0 is a UFD, D is a UFD by Proposition 3.1, and so every prime

v-ideal of D is principal. It is clear that D is a maximal order by Proposition 1 of

[2], which implies D0 is a maximal order by Theorem 1 of [6] and so M is CIC by

Theorem 3.1 of [3]. To prove M is a UFM, let P be a prime v-submodule of M

and P0 = P ∩M0.

(1) Case P0 ̸= {0}. Then P = DP0 by Lemma 3.3. Note that P0 is a prime

v-submodule of D0 by Lemma 3.3. Since M0 is a UFM, P0 = p0M0 for

some p0 ∈ D0 and so P = DP0 = Dp0M0 = p0DM0 = p0M .
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(2) Case P0 = {0}. Then P = pM for some v-ideal p of D where p∩D0 = {0}
by Proposition 3.8. Since D is a UFD, p = pD for some element p ∈ D and

so P = pM = pDM = pM , for some element p ∈ D.

Hence every prime v-submodule of M is principal and so M is a UFM by Theorem

2.5. □

As an application of Theorem 3.9, we have the following examples.

Example 3.10. If M is a UFM over an integral domain D then the Laurent

polynomial module M [x, x−1] is a UFM over D[x, x−1].

Example 3.11. Let T be an arbitrary UFD and A,B be two non-zero v-ideals of

T . Let K be the quotient field of T . Then M = ⊕n∈ZABnxn = . . .+ AB−2x−2 +

AB−1x−1 + A + ABx + AB2x2 + . . . is a UFM over D = ⊕n∈ZB
nxn = . . . +

B−2x−2B−1x−1 + T + Bx + B2x2 + . . . ⊆ K[x, x−1], a Laurent polynomial ring

over K.

4. Positively graded modules which are UFMs

Let R = ⊕n∈Z0
Dn be a positively graded domain which is a sub-domain of the

strongly graded domain D = ⊕n∈ZDn. It is known that R is Noetherian if and only

if D0 is Noetherian by Proposition 2.1 of [13]. In this section, we will prove that

L = ⊕n∈Z0
Mn, a positively graded module over R, is a UFM if and only if M0 is a

UFM over D0 when D0 is a Noetherian domain.

In the rest of this section, R = ⊕n∈Z0Dn and L = ⊕n∈Z0Mn, where D0 is a

Noetherian domain and M0 is a finitely generated torsion-free D0-module.

In [2], it is shown that R is a UFR if and only if D0 is a UFR and D1 is a

principal D0-module. We begin this section with the following proposition that is

a commutative case of Theorem 1 of [2].

Proposition 4.1. A positively graded domain R = ⊕n∈Z0Dn is a UFD if and only

if

(1) D0 is a UFD, and

(2) D1 is a principal D0-module, that is, there is p1 ∈ D1 such that D1 = D0p1.

Note that L is a finitely generated torsion-free R-module since M0 is a fi nitely

generated torsion-free D0-module (see [3], Lemma 4.4.). Furthermore, M0 is CIC

if and only if L is CIC by Theorem 4.1 of [3].

The following lemma is a module version of Lemma 2.5 (2) of [13] and can be

proved in a similar way as in Lemma 5.1 of [3].



10 I. ERNANTO, A. UEDA AND I. E. WIJAYANTI

Lemma 4.2. Let N0 be a fractional D0-submodule of M0 with N0 ⊆ M0 and

N = RN0. Then

(1) N− = R(N0)
−,

(2) Nv = R(N0)v.

The following lemma is a graded version of Lemma 4.2 and Lemma 4.3 of [14].

Lemma 4.3. Let M0 be a UFM over D0 and P be a prime R-submodule of L with

P0 = P ∩M0 ̸= {0}. Then

(1) P0 is a prime submodule of M0, and

(2) P ′ = RP0 is a prime submodule of L.

(3) If P is a prime v-submodule, then P0 is a prime v-submodule of M0, and

P = RP0.

Proof. (1) The proof is similar to the proof of Lemma 4.2 (1) of [14].

(2) The proof is similar to the proof of Lemma 4.2 (2) of [14].

(3) Let P ′ = RP0 ⊆ L. Consider that P = Pv ⊇ (P ′)v = (RP0)v = R(P0)v by

Lemma 4.2. Thus P0 = P ∩M0 ⊇ R(P0)v ∩M0 = (P0)v. Hence P0 = (P0)v

and so P0 is a prime v-submodule by (1).

Note that P ′ = RP0 = Rp0M0 for some non-zero p0 ∈ D0 because M0 is

a UFM. Since Rp0 is an invertible ideal, (P ′)− = (Rp0)
−1 = Rp−1

0 ⊇ P−,

which implies R ⊇ Rp0P
− and P

′
= Rp0M0 = Rp0L ⊇ Rp0P

−P . If

P ⊃ P ′ then Rp0P
−L ⊆ P ′ = Rp0L since P ′ is a prime submodule by

Lemma 4.3 (2). Then P−L ⊆ L and so P− = D. Thus P = Pv = (P−)+ =

(D)+ = L, a contradiction. Hence P = RP0. □

The following proposition is a graded version of Proposition 4.4 of [14].

Proposition 4.4. Let M0 be a UFM over D0 and N be a v-submodule of L with

N0 = N ∩M0 ̸= {0}. Then

(1) N0 is a v-submodule of M0 and N0 = n0M0 for some ideal n0 of D0.

(2) N = Rn0L and Rn0 = (N : L).

Proof. (1) Similar to the previous lemma, we get that N0 is a v-submodule of

M0. Furthermore, N0 = n0M0 for some ideal n0 of D0 follows since M0 is

a UFM over D0 and by Theorem 2.3.

(2) Suppose there is a v-submodule N such that N ̸= Rn0L where n0 is an

ideal of D0. We may assume that N is maximal with this property because
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M is Noetherian. Then there is a maximal v-submodule P with P ⊇ N

and P = Rp0L, where p0 is a maximal ideal of D0. It follows that L ⊇
(Rp0)

−1N ⊇ N . If (Rp0)
−1N = N , then (Rp0)

−1 ⊆ R, a contradiction

because L is CIC. Thus (Rp0)
−1N ⊃ N and it follows from Lemma 3.2 of

[14] that ((Rp0)
−1N)v = (Rp0)

−1N . By the choice ofN , (Rp0)
−1N = Rt0L

for some ideal t0 of D0. Hence N = Rp0t0L, a contradiction. Hence

N = Rn0L for some ideal n0 of D0. The last statement easily follows since

Rn0 is invertible. □

Next we study the structure of a prime v-submodule P of L such that P ∩M0 =

{0}. Since Qg = ⊕n∈Z0
K0Dn = K0R is a principal ideal domain by Lemma 2.1

of [13] and K0L is a finitely generated torsion-free Qg-module, we have that a v-

submodule P1 of K0L is prime if and only if P1 = p1K0L, where p1 is a maximal

ideal of Qg such that p1 = (P1 : K0L) by Theorem 3.3 of [14].

The following lemma is a graded version of Lemma 4.5 of [14].

Lemma 4.5. Let N be an R-submodule of L. Then

(1) (K0N : K0L) = K0n, where n = (N : L) and K0N
− = (K0N)−.

(2) (K0N)v = K0Nv.

Proof. (1) The proof is similar to the proof of Lemma 4.5 (1) of [14].

(2) Let m′ ∈ (K0N)v = ((K0N)−)+ = (K0N
−)+, that is, K0L ⊇ K0N

−m′ ⊇
N−m′. Then there is r ∈ D0 such that N−rm′ = rN−m′ ⊆ L. Thus

rm′ ∈ (N−)+ = Nv and so m′ ∈ r−1Nv ⊆ K0Nv.

Conversely, let m′ ∈ K0Nv. We write m′ =

t∑
i=1

k0imi where k0i ∈ K0

and mi ∈ Nv for all i = 1, 2, . . . , t. Then for all i = 1, 2, . . . , t, we have

N−mi ⊆ L and so K0N
−m′ = K0N

−

(
t∑

i=1

k0imi

)
⊆ N−(K0m1 + . . . +

K0mt) ⊆ K0L. Then

m′ ∈ (K0N
−)+ = ((K0N)−)+ = (K0N)v.

Hence (K0N)v = K0Nv. □

The following lemma is a graded version of lemma 4.6 of [14]. We write the proof

because we need v1-operation to prove the last properties (see [10], [14], [15] for

details regarding v-submodules and v1-operation).
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Lemma 4.6. Let M0 be a UFM over D0 and P1 = p1K0L be a prime v-submodule

of K0L, where p1 is a maximal ideal of K0R, P = P1 ∩ L and p = p1 ∩R. Then

(1) P is a prime submodule of L and p = (P : L).

(2) K0P = P1 and P ∩M0 = {0}.
(3) P = pL and P is a maximal v-submodule of L.

Proof. (1) Let r ∈ R and m ∈ L such that rm ∈ P and m /∈ P . Since m /∈ P1

and P1 is prime, we have rL ⊆ rK0L ⊆ P1 and so rL ⊆ P . Hence P is a

prime submodule of L.

Since pL ⊆ pK0L = P1, we have pL ⊆ P , so p ⊆ (P : L). Conversely let

r ∈ (P : L), that is, r ∈ R and rL ⊆ P . Then rK0L ⊆ K0P ⊆ P1, so

r ∈ (P1 : K0L) = p1. Thus r ∈ p1 ∩R = p. Hence p = (P : L).

(2) Letm′ ∈ P1 and we writem′ =

n∑
i=1

timi where ti ∈ p1 andm′
i ∈ K0L. Then

there are α, β ∈ D0 such that αti ∈ p and βm′
i ∈ L and so αβm′ ∈ pL ⊆ P .

Thus m′ ∈ (αβ)−1P ⊆ K0P . Hence K0P = P1.

Note that p1 = ⟨t⟩ = tK0R for some prime element t ∈ K0R with deg(t) ≥
1. If P ∩ M0 ̸= {0} and let 0 ̸= m ∈ P ∩ M0. Then m = tm′ for some

m′ ∈ K0L, since K0P = P1 = tK0L. Write t = tn + tn−1 + . . . + t0

(ti ∈ K0Di, with tn ̸= 0) and m′ = ml + . . .+m0 (mj ∈ K0Mj). Then we

get tnml = 0, so ml = 0 and so on. Then we have m = 0, a contradiction.

Hence P ∩M0 = {0}.
(3) The proof is similar to Lemma 3.6 (3). □

Lemma 4.7. Let M0 be a UFM over D0 and P be a prime v-submodule of L such

that P ∩M0 = {0}. Then P = ⊕n≥1Mn = D1L or there is a maximal v-submodule

P1 of K0L such that P = P1 ∩ L.

Proof. Let p = (P : L). Then p is a prime v-ideal of R, so p is a non-zero minimal

prime ideal. Thus p is in one of the following form: p = p0R for some prime ideal

p0 of D0, p = ⊕n≥1Dn or p = p1∩R for some prime ideal p1 of K0R by Proposition

3.1 of [13]. In the first case, P ⊇ p0RL ⊇ p0M0 ̸= {0}, a contradiction. In the

second case, if P ⊇ (⊕n≥1Dn)L = RD1L = D1L = ⊕n≥1Mn. If P ⊃ ⊕n≥1Mn,

there is a non-zero submodule T0 of M0 such that P = T0 + ⊕n≥1Mn. Then

P ∩ M0 ⊇ T0 ̸= {0}, a contradiction. Hence P = ⊕n≥1Mn. In the last case,

p = p1 ∩R with K0p = p1. Since P ∩M0 = {0}, K0L ⊃ K0P = (K0P )v by Lemma

4.5. Thus there is a maximal v-submodule P1 of K0L such that P1 ⊇ K0P . By

Lemma 4.5, (P1 : K0L) ⊇ (K0P : K0L) = K0(P : L) = K0p = p1. Since (P1 : K0L)
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is a prime ideal of K0R, p1 = (P1 : K0L). Hence P1 = p1K0L and P1 ∩ L ⊇ P . By

Lemma 4.6, P1 ∩ L = pL ⊆ P and hence P = P1 ∩ L and P = pL. So by the last

two cases, P = ⊕n≥1Mn or there is a maximal v-submodule P1 of K0L such that

P = P1 ∩ L. □

Note that if R = ⊕n∈Z0Dn is a Noetherian UFD, then R = D0[p1] for some

element p1 ∈ D1 by Theorem 1 of [2] and so M = M0[p1], a polynomial module.

Then the necessary condition of Theorem 4.8 is already proved in [12], but we give

another proof by using v1-operator.

Theorem 4.8. Let R = ⊕n∈Z0Dn be a Noetherian UFD and L = ⊕n∈Z0Mn be a

positively graded module over R. Then L is a UFM if and only if M0 is a UFM.

Proof. (⇒) Suppose that L = ⊕n∈Z0
Mn is a UFM over R. Then L is CIC and so

M0 is CIC by Theorem 4.1 of [3]. Let P0 be a non-zero prime v-submodule of M0.

Then P = RP0 is a v-submodule of L by Lemma 4.2. Furthermore, as in Lemma

4.3 (2), RP0 is a prime submodule of L. Hence RP0 is a prime v-submodule of L

and so it is principal since L is a UFM. Then RP0 = rL for some r ∈ R. Since

{0} ≠ P0 ⊂ RP0 = rL, r ∈ D0, which implies P0 = rM0. Hence P0 is principal and

so M0 is a UFM by Theorem 2.5.

(⇐) Suppose that M0 is a UFM over D0. Since R is a UFD, it is clear that R

is a maximal order by Proposition 1 of [2], which implies D0 is a maximal order by

Theorem 2.1 of [13] and so L is CIC by Theorem 4.1 of [3]. Note that D0 is a UFD

and D1 is a principal D0-module since R is a UFD. To prove L is a UFM, let P

be a prime v-submodule of L and P0 = P ∩M0. By Lemma 4.3 (3), P0 is a prime

v-submodule.

(1) Case P0 ̸= {0}. Then P = RP0 by Lemma 4.3 (3). Since M0 is a UFM,

P0 = p0M0 for some p0 ∈ D0 and so P = RP0 = Rp0M0 = p0RM0 = p0L.

(2) Case P0 = {0}. Then P = ⊕n≥1Mn = D1L or P = pL for some v-ideal

p of R by Lemma 4.7. If P = ⊕n≥1Mn = D1L, then P = d1D0L = d1L

for some d1 ∈ D1 since D1 is a principal D0-module. If P = pL, then

P = pL = pRL = pL for some p ∈ R since R is a UFD.

Hence every prime v-submodule of L is principal and so L is a UFM by Theorem

2.5. □

We end this section with examples of a positively graded module which is a

UFM.
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Example 4.9. Let R = ⊕n∈Z0
Dn be a positively graded domain where D0 is a

Noetherian UFD and D1 is a principal D0-module. Let M = R ⊕ R ⊕ . . . ⊕ R be

a positively graded module over R and P be a graded submodule of M such that

M = P ⊕ T . Then P is a UFM.

Proof. Note that P is a projective module. Then P is a G-Dedekind module and

it is a v-multiplication module by Theorem 3.1 of [15]. Furthermore, since P is a

v-multiplication module and R is a UFD, P is a UFM by Theorem 2.3. □

Lemma 4.10. Let D be a domain, B be an invertible ideal of D and A be a non-

zero ideal of D. Let R = D+Bx+B2x2 + . . . ⊆ D[x], where D[x] is a polynomial

ring over D and L = A+ABx+AB2x2 + . . . = AR. Then L is a positively graded

module over positively graded domain R.

From Remark 2.6 and Lemma 4.10 we have the following example.

Example 4.11. Let D be an arbitrary Noetherian UFD and A,B be two non-

zero v-ideals of D. Then L = A + ABx + AB2x2 + . . . is a UFM over R =

D +Bx+B2x2 + . . ..

Proof. Note that R is a UFD since D is a UFD and Bx is a principal D-module.

Since A is a non-zero v-ideal of D, A is a UFM by Remark 2.6. Then by Theorem

4.8, L is a UFM over R. □
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