ON AUTOMORPHISM-INVARIANT MULTIPLICATION MODULES OVER A NONCOMMUTATIVE RING

Le Van Thuyet and Truong Cong Quynh
Received: 24 July 2023; Accepted: 5 October 2023
Communicated by Sait Halıcıoğlu

Abstract

One of the important classes of modules is the class of multiplication modules over a commutative ring. This topic has been considered by many authors and numerous results have been obtained in this area. After that, Tuganbaev also considered the multiplication module over a noncommutative ring. In this paper, we continue to consider the automorphism-invariance of multiplication modules over a noncommutative ring. We prove that if R is a right duo ring and M is a multiplication, finitely generated right R-module with a generating set $\left\{m_{1}, \ldots, m_{n}\right\}$ such that $r\left(m_{i}\right)=0$ and $\left[m_{i} R: M\right] \subseteq C(R)$ the center of R, then M is projective. Moreover, if R is a right duo, left quasi-duo, CMI ring and M is a multiplication, non-singular, automorphism-invariant, finitely generated right R-module with a generating set $\left\{m_{1}, \ldots, m_{n}\right\}$ such that $r\left(m_{i}\right)=0$ and $\left[m_{i} R: M\right] \subseteq C(R)$ the center of R, then $M_{R} \cong R$ is injective.

Mathematics Subject Classification (2020): 16D40, 16D50, 16D80, 16D99, 16E50

Keywords: Automorphism-invariant module, duo ring, quasi-duo ring, multiplication module, commutative multiplication of ideals

1. Introduction

Throughout this paper, all rings are associative rings with unit and all modules are right unital modules. We use $N \leq M(N \lesseqgtr M)$ to mean that N is a submodule (respectively, a proper submodule) of $M . E(M), C(R), J(R)$ denote the injective envelope of M, the center of the ring R and the Jacobson radical of R, respectively. A submodule N of a module M is said to be essential if $N \cap X \neq 0$ for every nonzero submodule X of M, denoted by $N \leq^{e} M$. In this case, M is called an essential extension of N.

A ring R is called right duo if every right ideal is an ideal. A right R-module M is called multiplication if for every submodule N of M, there exists an ideal B of R such that $N=M B$. So it is easy to see that R is right duo if and only if R_{R} is multiplication. Indeed, if R is right duo, then for every right ideal I of R,
I is an ideal of R, so we can write $I=R I$, i.e., R_{R} is multiplication. Conversely, if R_{R} is multiplication and I is a right ideal of R, then there exists an ideal J of R such that $I=R J=J$. So I is an ideal of R, i.e., R is right duo. A ring R is called right multiplication if R_{R} is multiplication. Note that over a right duo (or a right multiplication) ring, every cyclic right R-module is multiplication. In [19], Tuganbaev gave the definition of concept "commutative multiplication of ideals" (briefly CMI) and obtained many results on multiplication modules over a right duo ring or a ring with CMI. A ring R is called commutative multiplication of ideals if $A B=B A$ for any ideals A, B of R. Two above conditions are followed from commutativity of a ring but the converses are not true, in general. So it makes sense if we consider a multiplication module over a right duo rings (or a ring with CMI).

For a subset X of a right R-module M over a ring R, we denote that $r_{R}(X)$ or $r(X)$ the right annihilator of X in R. A right R-module M is said to be faithful if $r(M)=0$. Now let X and Y be two subsets of a right R-module M, the subset $\{r \in R \mid X r \subseteq Y\}$ of R is denoted by $[Y: X]$. Recall that if $Y \leq M_{R}$, then $[Y: X] \leq R_{R}$ and if $X \leq M_{R}$ and $Y \leq M_{R}$, then $[Y: X]$ is an ideal of R. A submodule N of the module M is said to be closed in M if N^{\prime} is an essential extension of N in M, then $N=N^{\prime}$. A module M is called square-free if M does not have nonzero submodules of the form $X \oplus Y$ with $X \cong Y$. Recall that $Z(M)=\left\{m \in M \mid r(m) \leq^{e} R_{R}\right\}$ is called the singular submodule of M, and if $Z(M)=M$ (resp. $Z(M)=0$), then M is called singular (resp. non-singular). A ring R is said to be right non-singular if R_{R} is non-singular. A ring is said to be reduced if each of its nilpotent elements is equal to zero. Left-sided for these notations are defined similarly.

For a module N, a module M is said to be injective with respect to N or N injective if for any submodule $X \leq N$, every homomorphism $X \rightarrow M$ can be extended to a homomorphism $N \rightarrow M$. A module is said to be injective if it is injective with respect to each module. A module is said to be quasi-injective if it is injective with respect to itself. It is well known that a module M is quasiinjective if and only if $f(M) \leq M$ for any endomorphism f of the injective envelope of the module M (see [7]). A module M is said to be automorphism-invariant if $f(M) \leq M$ for any automorphism f of the injective envelope of M. Automorphisminvariant modules are studied in [4], [6], [17], [21], and [22].

Multiplication modules over a commutative ring were considered by many authors, for examples, see [3], [10], [12], and [13]. However, when we consider this
kind of modules over a noncommutative ring, we will meet many difficulties. Although many difficulties arise, many results about the multiplication modules over a noncommutative ring were obtained, for example see [18], [19], and [20]. In [10], S. Singh and Y. Al-Shaniafi obtained many results on quasi-injective multiplication modules over a commutative ring. In this paper we continue to consider the quasi-injectivity of multiplication modules over a noncommutative ring. From this we obtain the result on automorphism-invariant multiplication modules over a noncommutative ring.

All terms such as "duo" and 'non-singular" when applied to a ring will apply all both sided. For any terms not defined here the reader is referred to [1], [2], [8], [9], [15] and [23].

2. Results

The following properties are interesting when considering a multiplication module over a noncommutative ring.

Proposition 2.1. The following statements are equivalent for a right R-module M:
(1) M is a multiplication module.
(2) $N \leq M \cdot[N: M]$ for every $N \leq M_{R}$.
(3) $N=M \cdot[N: M]=M r(M / N)$ for every $N \leq M_{R}$.

Proof. See [19, Note 1.3].
Proposition 2.2. Let R be a right duo ring with commutative multiplication of ideals. Then the following conditions are equivalent for a right R-module M :
(1) M is a multiplication module.
(2) For every nonempty collection of right ideals $\left\{B_{i}\right\}_{i \in I}$ of R, we have

$$
\bigcap_{i \in I}\left(M B_{i}\right)=M\left[\bigcap_{i \in I}\left(B_{i}+r(M)\right)\right],
$$

and for any submodule N of M and each right ideal C of R with $N \subsetneq M C$, there exists an ideal B of R such that $B \subsetneq C$ and $N \subsetneq M B$.

Proof. See [19, Theorem 4.3].
Proposition 2.3. Let M be a non-singular automorphism-invariant right R-module. Then there exists a direct decomposition $M=X \oplus Y$ such that X is a quasi-injective non-singular module, Y is a square-free non-singular automorphism-invariant module, the modules X and Y are injective with respect to each other, any sum of closed
submodules of the module Y is an automorphism-invariant module, $\operatorname{Hom}(X, Y)=$ $\operatorname{Hom}(Y, X)=0$, and $\operatorname{Hom}\left(Y_{1}, Y_{2}\right)=0$ for any two submodules Y_{1} and Y_{2} in Y with $Y_{1} \cap Y_{2}=0$.

Proof. See [11, Theorem 3.6].
Next, we study the non-singularity of rings and faithful multiplication modules over a right duo ring.

Proposition 2.4. Let R be a right duo (or right multiplication) ring. Then the following conditions hold.
(1) R is right non-singular if and only if R is reduced.
(2) Let M_{R} be a faithful multiplication module. Then M is non-singular if and only if R is right non-singular.
(3) Let M_{R} be a non-singular faithful multiplication module and N be a closed submodule of M. Then $[N: M]$ is a closed ideal of R.

Proof. (1) It's clear that "reduced" \Rightarrow 'right non-singular".
To prove the converse, let a be an element of R such that $a^{2}=0$. Then for $a R$ there exists a right ideal B of R such that $B \cap a R=0$ and $B \oplus a R$ is an essential right ideal of R. Since B is an ideal of $R, a B \leq B \cap A=0$, and so $a B=0$. From this, $a(B+a R)=0$ and $B \oplus a R \leq^{e} R_{R}$, it follows that $a=0$. Hence R is reduced.
(2) Let R be a right non-singular ring. Take $x \in Z(M)$. Then there exists an essential right ideal I of R such that $x I=0$. Since M is multiplication, there exists an ideal A of R such that $x R=M A$. Then $0=x I=x R I=M A I=0$. It follows that $A I=0$. We have that I is essential in R and obtain $A=0$, and so $x=0$ or $Z(M)=0$.

To prove the converse, if $Z(M)=0$, then by [19, Proposition 3.13], $Z(M)=$ $M Z_{r}(R)$, it follows that $M Z_{r}(R)=0$. But M is faithful, and so $Z_{r}(R)=0$.
(3) By (2), R is right non-singular. Since $N \leq M_{R},[N: M]$ is an ideal of R. We have $R /[N: M]$ is a cyclic right R-module, so it is multiplication. Note that since N is a closed submodule of a non-singular module M, by [15, Corollary 4.2], M / N is non-singular. Now, let $r+[N: M] \in Z(R /[N: M])$. Then there exists an essential right ideal I of R such that $(r+[N: M]) I=0$, so $r I \leq[N: M]$ and hence $M r I \leq N$. It follows that $M r+N \leq Z(M / N)=0$, so $M r \leq N$ or $r \in[N: M]$. Thus $Z(R /[N: M])=0$ or $R /[N: M]$ is a non-singular right R-module.

Assume that $[N: M] \leq^{e} I$ for some ideal I of R. Then, $I /[N: M]$ is singular. It follows that

$$
0 \neq Z(I /[N: M]) \leq Z(R /[N: M])=0
$$

It contradicts, and so $[N: M]$ is closed in R.
Corollary 2.5. If R a right duo (or right multiplication) right non-singular ring, then $r_{R}(x)=l_{R}(x)$ for all $x \in R$.

Proof. Let x be an element of R. If $y \in r_{R}(x)$, then $x y=0$ and so $(y x)^{2}=0$. By Proposition 2.4(2), it immediately infers that $y x=0$. This means that $y \in l_{R}(x)$. It is shown that $r_{R}(x) \subseteq l_{R}(x)$. It is similar to prove that $l_{R}(x) \subseteq r_{R}(x)$.

Proposition 2.6. Let R be a right duo, CMI ring and M be a faithful, multiplication right R-module. Then for any closed ideal A of R and $N=M A, N$ is a closed submodule of M and $A=[N: M]$.

Proof. Let K be a closed closure of N in M. Then by Proposition 2.1, $K=M B$, where $B=[K: M]$. It implies that $A \leq B$. We show that A is essential in B. In fact, take b an arbitrary nonzero element in B. Then, we have $M b \leq K$. Since M is faithful, $M b \neq 0$ and so $M b R \leq K$ and $M b R \neq 0$. We have that K is an essentially extension of N and obtain that $M b R \cap N \neq 0$ and $M b R \cap M A \neq 0$. By Proposition 2.2, $M(b R \cap A)=M b R \cap M A \neq 0$. It follows $b R \cap A \neq 0$. Thus, A is essential in B. Since A is closed in $R_{R}, A=B$ and so $N=K$.

By the same above proof, we show that $A=[N: M]$. One can check that $A \leq$ $[N: M]$. Let y be an arbitrary nonzero element in $[N: M]$. Then, $M y \leq N=M A$ and so $M y R \leq M A$. We have, from Proposition 2.2, that

$$
M(y R \cap A)=M y R \cap M A=M y R \neq 0 .
$$

It follows $y R \cap A \neq 0$. It is shown that A is essential in $[N: M]$. Since A is closed in $R_{R}, A=[N: M]$.

Corollary 2.7. Let R be a ring with commutative multiplication of right ideals. If M is a faithful, multiplication right R-module, then for any closed ideal A of R and $N=M A, N$ is a closed submodule of M and $A=[N: M]$.

Proposition 2.8. Let R be a right duo ring and M be a faithful, non-singular, multiplication right R-module. Then $E(R) \cong E(M)$.

Proof. By Proposition 2.4(1), R is right non-singular. Then, there exists an embedding of M into $E(R)$. By Zorn's Lemma, there exists a maximal embedding of $K \leq M_{R}$ into $E(R)$, that is $t: K \longrightarrow E(R)$. It is easy to see that K is a closed submodule of M. Let N be a complement of K in M, then $N \cap K=0$. Let $A=[K: M]$ and $B=[N: M]$. Then by Proposition 2.4(3), A and B are closed ideals of R. Now if $r \in A \cap B$, then $M r \subseteq K, M r \subseteq N$, and so
$M r \subseteq K \cap N=0$ and since M is faithful, $r=0$. It means that $A \cap B=0$. This gives $A B \subseteq A \cap B=0 \Rightarrow A B=0, B A=0, K=M A, N=M B$. Hence $A \leq r(B)$. Now if $B r=0$, then $M B r=0=N r$. It follows that $r \in r(N)$ and $r(B) \leq r(N)$. Now let $r \in r(N)$, then $N r=0$. From this $M r=(K+N) r \subseteq K r \subseteq K$. So $r(N) \leq A$. Thus $A=r(B)=r(N)$. Similarly, $B=r(A)=r(K)$.

Assume that $N \neq 0$. Then $A=r(N) \neq R$. So it is easy to see that R / A is a right non-singular ring and N is a non-singular, faithful right R / A-module. Now we consider any $y \neq 0, y \in N$. Then by Zorn's Lemma, there exists a nonzero ideal of C such that $C \cap A=0$. Let $\theta: C \rightarrow y C$ defined by $c \longmapsto y c$. Then if $y\left(c-c^{\prime}\right)=0$ and $c \neq c^{\prime}$ in C, then $c-c^{\prime} \in r(y) \geq N=A$. It follows that $y A=0$, and so $y \in Z(N)=0$, a contradiction. Thus, we have $C \cong y C$.

We can consider an embedding $\mu: y C \longrightarrow E(R)$. Now if $x \in t(K) \cap \mu(y C) \leq$ $E(R)$, then $x(A+B) \leq K \cap N=0$. Therefore, $x(A+B)=0$ or $x \in Z(E(R)=0$. So $x=0$. It follows that $t(K) \cap \mu(y C)=0$. So we obtain a large embedding, a contradiction. Thus, $N=0$ and then $K=M$.

Assume that $E(M) \cong E(t(M)) \neq E(R)$. Then, there exists a nonzero right ideal C of R (and hence ideal) such that $t(M) \cap C=0$. Take $L=t(M) \cap R$. Note that $L R=L$, then L is a right ideal and hence an ideal of R. So $C L \leq C$ and $C L=L C \leq t(M) C \leq t(M)$, hence $C L=0$. Since R is right non-singular and $L \leq^{e} t(M) \leq R \leq^{c} E(R), C \leq Z_{r}(R)=0$, a contradiction. Hence $E(M) \cong$ $E(t(M))=E(R)$.

Proposition 2.9. Let R be a right duo ring with commutative multiplication of ideals and M be a faithful, multiplication right R-module. Then the following conditions hold.
(1) There exists a smallest ideal $\tau(M)$ of R such that $M=M \tau(M)$. Moreover, $\tau(M)=R$ if and only if M is finitely generated.
(2) Let $\tau(M)$ be in (1) and $M=N \oplus K$ for some submodules N and K of M, $A=[N: M], B=[K: M]$.

Then

$$
A \cap \tau(M)=A \tau(M)=(A \tau(M))^{2}, \tau(M)=\tau(M) A \oplus \tau(M) B
$$

Moreover

$$
r(\tau(M) A) \cap \tau(M)=\tau(M) B, N=N \tau(M) A
$$

and

$$
r(\tau(M) B) \cap \tau(M)=\tau(M) A, K=K \tau(M) B
$$

Proof. (1) We have $M=M B$ for some ideal B of R. Let τ be the set of all ideals B of R such that $M=M B$. Now we take $\tau(M)$ the intersection of all ideals in τ. By [19, Theorem 4.3],

$$
M\left[\bigcap_{B \in \tau} B\right]=M(\tau(M))=\bigcap_{B \in \tau}(M B)=M
$$

We deduce that $\tau(M)$ is the smallest ideal such that $M=M \tau(M)$.
Now if M is finitely generated, faithful, then by [19, Theorem 3.11], $M \neq M B$ for every proper ideal B of R. So $\tau(M)=R$. Conversely, if $\tau(M)=R$, then R is the smallest ideal B of R such that $M=M B$. Then $M \neq M B$ for every proper ideal B of R. Also by [19, Theorem 3.11], M is finitely generated.
(2) From (1), it infers that $M=M \tau(M)$ and $\tau(M)=\tau(M)^{2}$. Assume that $M=N \oplus K$ for some submodules N and K of $M, A=[N: M], B=[K: M]$. Then, $N=M A$ and $K=M B$. We have $A \cap B=0$ and obtain $M=N \oplus K=$ $M A \oplus M B=M \tau(M) A \oplus M \tau(M) B$. It follows that $M=M(\tau(M) A \oplus \tau(M) B)$ and $\tau(M) A \oplus \tau(M) B \leq \tau(M)$. Since $\tau(M)$ is the smallest ideal of R such that $M=M \cdot \tau(M), \tau(M)=\tau(M) A \oplus \tau(M) B$. From this, it immediately infers that $A \cap \tau(M)=\tau(M) A$ and $B \cap \tau(M)=\tau(M) B$. We have $A B=B A \leq A \cap B=0$ and so

$$
(\tau(M) A)^{2} \leq \tau(M) A=[\tau(M) A \oplus \tau(M) B] A=\tau(M) A^{2}=\tau(M)^{2} A^{2}=(\tau(M) A)^{2} .
$$

It follows that $A \cap \tau(M)=A \tau(M)=(A \tau(M))^{2}$. Next, we show that $r(\tau(M) A) \cap$ $\tau(M)=\tau(M) B$. In fact, let $x \in \tau(M) B=B \cap \tau(M)$. Then, $(\tau(M) A) x \subseteq$ $(\tau(M) A) \cap(\tau(M) B) \subseteq A \cap B=0$ and so $x \in r(\tau(M) A) \cap \tau(M)$. Thus, $\tau(M) B$ is contained in $r(\tau(M) A)$. To prove the converse, take $x \in r(\tau(M) A) \cap \tau(M)$, and so $M x=M \tau(M) x=M(\tau(M) A \oplus \tau(M) B) x=M \tau(M) B x \subseteq K$, since $\tau(M) A x=0$. It follows that $x \in B \cap \tau(M)=\tau(M) B$.

Moreover, we have

$$
\begin{aligned}
N=M A & =(M \tau(M) A \oplus M \tau(M) B) A \\
& =M \tau(M) A^{2}=M A \tau(M) A \\
& =N \tau(M) A .
\end{aligned}
$$

Similarly, we have $r(\tau(M) B) \cap \tau(M)=\tau(M) A, K=K \tau(M) B$.
Theorem 2.10. Let R be a right duo ring and M be a multiplication, finitely generated right R-module with a generating set $\left\{m_{1}, \ldots, m_{n}\right\}$ such that $r\left(m_{i}\right)=0$ and $\left[m_{i} R: M\right] \subseteq C(R)$ for every $i=1,2, \ldots, n$. Then, M is projective.

Proof. By [19, Theorem 3.11],

$$
R=\sum_{i=1}^{n}\left[m_{i} R: M\right] .
$$

Thus, there exist elements $r_{i} \in C(R)(1 \leq i \leq n)$ such that $M r_{i} \subseteq m_{i} R$ and

$$
1=r_{1}+r_{2}+\cdots+r_{n}
$$

We show that

$$
R=\sum_{i=1}^{n} r_{i}^{2} R
$$

In fact, assume that $B=\sum_{i=1}^{n} r_{i}^{2} R$ and $B \neq R$. Then, there exists a maximal ideal P of A containing B. So for every element $r_{i}^{2} \in P, r_{i} \in P$, since R / P is a division ring. Thus

$$
P \ni \sum_{i=1}^{n} r_{i}=1 \notin P .
$$

It contradicts. We deduce that $R=B$.
From this, there exist $s_{i} \in R(1 \leq i \leq n)$ such that

$$
1=\sum_{i=1}^{n} r_{i}^{2} s_{i}
$$

Now for each $1 \leq i \leq n$, we define $\theta_{i}: M \longrightarrow R$ as follows: for each $m \in R$, $\theta_{i}(m)=r_{m} . r_{i} . s_{i}$ where $r_{m} \in R$ is any element such that satisfying the condition $m r_{i}=m_{i} r_{m}$.

Assume that $m_{i} r_{m}=m_{i} r_{m}^{\prime}$ with $r_{m}, r_{m}^{\prime} \in R$. From this $r_{i}\left(r_{m}-r_{m}^{\prime}\right)=0$. Then $r_{m}=r_{m}^{\prime}$. Hence θ_{i} is well defined.

Now we show that θ_{i} is a homomorphism. Indeed, for all $m, m^{\prime} \in M, \theta_{i}\left(m+m^{\prime}\right)=$ $r_{m+m^{\prime}} r_{i} s_{i}$ such that $\left(m+m^{\prime}\right) r_{i}=m_{i} r_{m+m^{\prime}}$ and $\theta_{i}(m)=r_{m} r_{i} s_{i}, \theta_{i}\left(m^{\prime}\right)=r_{m^{\prime}} r_{i} s_{i}$, such that $m r_{i}=m_{i} r_{m}, m^{\prime} r_{i}=m_{i} r_{m^{\prime}}$. Then, $m_{i}\left(r_{m+m^{\prime}}-r_{m}-r_{m^{\prime}}\right)=0$. It follows that $r_{m+m^{\prime}}=r_{m}+r_{m^{\prime}}$. Moreover, for all $a \in R, \theta_{i}(m a)=r_{m a} r_{i} s_{i}$ such that $m a r_{i}=m_{i} r_{m a}$. Since $\operatorname{mar}_{i}=m r_{i} a, m_{i}\left(r_{m a}-r_{m} a\right)=0$. Hence $r_{m a}=r_{m} a$. Now, $M r_{1} s_{i} \subseteq m_{1} R s_{i} \subseteq m_{1} R$, and so $r_{1} s_{i} \in C(R)$. Similarly $r_{n} s_{i} \in C(R)$. From this, $s_{i} \in C(R)$. One can check that $\theta_{i}(m a)=\theta_{i}(m) a$ for all $a \in R$.

It is shown that θ_{i} is an R-homomorphism for each $1 \leq i \leq n$. Now, for each $m \in M$, we can write

$$
\begin{aligned}
m=m .1 & =m\left(r_{1}^{2} s_{1}\right)+\cdots+m s_{n}^{2} s_{n} \\
& =m r_{1} r_{1} s_{1}+\cdots+m r_{n} r_{n} s_{n} \\
& =m_{1} r_{1 m} r_{1} s_{1}+\cdots+m_{n} r_{n m} r_{n} s_{n} \\
& =m_{1} \theta_{1}(m)+\cdots+m_{n} \theta_{n}(m)
\end{aligned}
$$

By the Dual Basis Lemma, it infers that M is projective.
From this result, we can obtain the following general case.
Corollary 2.11. Let R be a right duo ring and M be a multiplication, finitely generated right R-module with a generating set $\left\{m_{1}, \ldots, m_{n}\right\}$ such that $r\left(m_{i}\right)=e R$ for every $i=1,2, \ldots, n$ and for some central idempotent $e \in R$ with $\left[m_{i}(1-e) R\right.$: $\left.M_{(1-e) R}\right] \subseteq C((1-e) R)$. Then, M is projective.

Proof. Note that $r(M) \leq r\left(m_{i}\right)=e R$, and so M is a finitely generated multiplication right $(R / e R \cong)(1-e) R$-module such that $r\left(m_{i}\right)=0_{R / e R}$ and $\left[m_{i}(1-e) R\right.$: $\left.\left.M_{(1-e) R}\right] \subseteq C((1-e) R)\right]$ for every $i=1,2, \ldots, n$. By Theorem $2.10, M$ is a projective $(1-e) R$-module. Since a right R-module and homomorphism are also a right $(1-e) R$-module and homomorphism respectively, M is a projective right R-module.
P. Smith ([12, Theorem 11]) proved the following result for a multiplication module over a commutative ring and A. A. Tuganbaev reproved it in [19, Theorem 7.6].

Corollary 2.12. Let R be a commutative ring with identity and M be a multiplication, finitely generated R-module such that $r(M)=e R$ for some idempotent e in R. Then, M is projective.

Proof. See [12, Theorem 11] and [19, Theorem 7.6].
Let R be a right duo ring and P be a maximal ideal of R. Then it is easy to prove that $R \backslash P$ is multiplicatively closed and satisfies the following condition

$$
(S 1): \forall s \in R \backslash P \text { and } r \in R \text {, there exist } t \in R \backslash P \text { and } u \in R \text { such that su }=r t \text {. }
$$

Moreover, if R satisfies ACC on right annihilators, then by [15, Proposition 1.5], $R \backslash P$ is a right denominator set. In this case, the ring $R(R \backslash P)^{-1}$ is called the right localization with respect to P and we write R_{P} and M_{P} instead of $R(R \backslash P)^{-1}$ and $M(R \backslash P)^{-1}=M \otimes_{R} R_{P}$, respectively. A ring R is called right localizable if for each maximal right ideal P of R, the right localization R_{P} exists. A ring R is said to be left quasi-duo if each of its maximal left ideals is an ideal of R. Now we give another condition for $R \backslash P$ to be a right denominator set.

Lemma 2.13. Let R be a right duo right non-singular ring and P be a maximal ideal of R. Then, $R \backslash P$ is a right denominator set, i.e., the right localization R_{P} exists.

Proof. We show that $R \backslash P$ satisfies the condition (S2): If $x \in R \backslash P$ and $a \in R$ with $x a=0$, then there exists $y \in R \backslash P$ such that $a y=0$. Indeed, we take $y=x$.

Corollary 2.14. [19, Theorem 4.18] Let R be a right duo ring with commutative multiplication of ideals. Then, for every maximal right ideal P of R, the right localization R_{P} exists and R_{P} is a right duo ring with commutative multiplication of ideals.

Proof. We show that R satisfies the condition: $l(x)=r(x)$ for all $x \in R$. Indeed, we take $a \in R, a \in l(x)$. Then $a x=0$ and $\operatorname{Rax} R=0$. Since R is a right duo ring, $R a R x R=0$ and $R a R R x R=0$. We have that R has the commutative multiplication of ideals and obtain $R x R R a R=0$, and so $x a=0$ or $a \in r(x)$.

Conversely, let $b \in r(x)$. Then $x b R=0$ and so $0=x R b R=R x R R b R$, since R is a right duo ring. And hence $R b R R x R=0$. It follows that $b x=0$ or $b \in l(x)$.

Recall that a ring R is called right $Q F-3^{+}$(see [16]) if the injective envelope $E=E(R)$ of R is a projective right R-module.

Proposition 2.15. Let R be a right duo right non-singular ring. If R is a right $Q F-3^{+}$, then E_{P} is a free right R_{P}-module.

Proof. Let P be a maximal ideal of R and $\theta: E \rightarrow E_{P}$ be the canonical map. By Lemma 2.13, the right localization R_{P} exists. We have that E is projective and obtain $E \oplus A=R^{(X)}$ with some A_{R} and index set X. It is well-known $E_{P}=E \otimes_{R} R_{P}$, and so

$$
\begin{aligned}
(E \oplus A) \otimes_{R} R_{P} & =\left(E \otimes_{R} R_{P}\right) \oplus\left(A \otimes_{R} R_{P}\right) \\
& =R^{(X)} \otimes_{R} R_{P} \cong R_{P}^{(X)}
\end{aligned}
$$

Hence E_{P} is a projective right R_{P}-module.
Let $F=\{x \in E \mid[E P: x] \nsubseteq P\}$. With assumption $\theta(1) \in E_{P} P$ and by [19, Lemma 3.17], it infers that $[E P: 1] \nsubseteq P$. It means that $1 \in F$. Similarly, by [19, Lemma 3.17], $\theta(x) \in E_{P} P$ if and only if $[E P: x] \nsubseteq P$. It follows that $F=\{x \in$ $\left.E \mid \theta(x) \in E_{P} P\right\}$. Because θ is an R-homomorphism, we can prove easily that F is a submodule of E.

Now we will prove that F is quasi-injective. This is equivalent to F being invariant under all endomorphisms of injective envelope $E(F)$. Since $E(F)$ is a direct summand of E, we show that F is invariant under all endomorphisms of E. Let $\psi: E \longrightarrow E$ be an endomorphism of E. There exists an R_{P}-homomorphism
$\sigma: E_{P} \longrightarrow E$ such that $\sigma \theta=\psi$, i.e., the following diagram is commutative:

Now, let t be an element in F. Then $t \in E$ and there exists $r \notin P$ such that $\operatorname{tr} \in E P$. Moreover, $\theta(t) \in E_{P} P$. Hence there exist $p \in P, e_{t} \in E_{p}$ such that $\theta(t)=e_{t} p$. So $\psi(t)=(\sigma \theta)(t r)=\sigma(\theta(t)) r=(\sigma \theta)\left(e_{t} p\right) r=(\sigma \theta)\left(e_{t}\right) p r \in E P$. It follows that $\psi(t) \in L$.

Since F is invariant under any homomorphism of E, F is quasi-injective. Now since $1 \in F$, there exists $r \in E P$ such that $r \notin P$. Let $e \in E$. We have $r \in(E P) \cap R$ and obtain $e r \in E[(E P) \cap R] \leq E P$, and so $e \in F$. It follows that $E=F$.

Note that $E_{P} \neq E_{P} P$. So there exists $e \in E$ such that $\theta(e) \notin E_{P} P$. We have $E=L, e \in L$ and obtain that $[E P: e] \nsubseteq P$. Then there is $v \notin P$ with $e v \in E P$. Hence $\theta(e) \in E P$, a contradiction. It follows that $\theta(1) \notin E_{P} P$. Since R_{P} is a local ring and E_{P} is a nonzero projective R_{P}-module, so it is free and then

$$
E_{P}=\bigoplus_{i \in I} A_{i}, \quad A_{i} \cong R_{P}
$$

S. Singh and Y. Al-Shaniafi (see [10, Theorem 1.10]) proved that if R is a commutative, QF-3 3^{+}ring with identity, then R is self-injective. We will extend this result to the noncommutative case as follows.

Lemma 2.16. Let R be a right duo right non-singular, right $Q F-3^{+}$, left quasi-duo ring. Then, R is right self-injective.

Proof. Now we show that E / R is a flat right R-module. By [15, Exercise 39, p. 48] we need to show that for every maximal left ideal P of $R, E P \neq E$. Note that P is an ideal and since $\theta(1) \notin E_{P} P, R \cap E P \leq P$. Assume that $E P=E$. Then $x \in R \Rightarrow x \in E \Rightarrow x \in E P \Rightarrow x \in P$. So $R=P$, a contradiction. Since E is projective and by [9, Lemma 7.30], E is also finitely generated, so for some $n \in \mathbb{N}$, we obtain that $R^{n} \rightarrow E / R \rightarrow 0$ is exact. From [15, Corollary 11.4, p.38], it infers that E / R is projective. We deduce that $E=R$, and so R is right self-injective.

From Lemma 2.16 and [24, Theorem 2.7], we have the following result.

Theorem 2.17. Let R be a right non-singular, right $Q F-3^{+}$ring. Then R is right self-injective if and only if R is right automorphism-invariant.

Proof. Assume that R is a right non-singular, right QF-3 ${ }^{+}$, right automorphisminvariant ring. Then, R has a ring decomposition $R=S \oplus T$, where S is a right self-injective and T_{T} is square-free by [14, Theorem 4.12]. It follows, from the [5, Theorem 15], that T is a right and left quasi-duo ring. Note that T is also a right non-singular, right $\mathrm{QF}-3^{+}$, right automorphism-invariant ring. Thus, T is a von Neumann regular ring by Proposition 1 in [4]. Applying Theorem 2.7 in [24] we have that T is a right and left duo ring. From Lemma 2.16, we deduce that T is a right self-injective ring. Thus, R is a right self-injective ring.

Corollary 2.18. The following conditions are equivalent for a ring R :
(1) R is a right automorphism-invariant right non-singular, right $Q F-3^{+}$ring.
(2) R is a right automorphism-invariant regular, right $Q F-3^{+}$ring.
(3) R is a right self-injective regular ring.

Lemma 2.19. Every idempotent element of a right duo ring is central.
Proof. Let e be an idempotent element of a right duo ring R. We have that $1-e$ is in $r(e)$ and obtain that $R(1-e) \subseteq r(e)$, since R is a right duo ring. It follows that $e R(1-e)=0$. It is similar to see that $(1-e) R e=0$. Thus, e is central.
S. Singh and Y. Al-Shaniafi (see [10, Theorem 1.11]) proved that if R is a commutative ring with identity and M is a finitely generated, faithful, quasi-injective multiplication right R-module, then $M \cong R$ (and M is injective). We will extend this result to the noncommutative case as follows.

Theorem 2.20. Let R be a right duo, left quasi-duo, CMI ring and M be a multiplication, quasi-injective, finitely generated right R-module with a generating set $\left\{m_{1}, \ldots, m_{n}\right\}$ such that $r\left(m_{i}\right)=0$ and $\left[m_{i} R: M\right] \subseteq C(R)$. Then $M_{R} \cong R$ is injective.

Proof. For some $n \geq 1, R$ is embedded in M^{n}. We have that M is quasi-injective and obtain that M^{n} is injective and so $M^{n}=E\left(R_{R}\right) \oplus L$ for some injective right R-module L. By Theorem 2.10, M is projective and then so is M^{n}. Then $E\left(R_{R}\right)$ is projective. From Lemma 2.16, we infer that $R=E(R)$. Since L is injective, by [8, Theorem 1.21] we can apply the exchange property to the injective module L, so we obtain that

$$
L \oplus R=L \oplus \bigoplus_{i=1}^{n} B_{i}
$$

where each B_{i} is a direct summand of M. And then $R \cong \stackrel{n}{i=1} B_{i}$.
So there exists a direct summand of R is embedded in M. By Zorn's Lemma, there exists a maximal embedding $\alpha: A \rightarrow M$, where $A=e R$ is a direct summand of R_{R} for some idempotent e of R. We obtain

$$
M=\alpha(A) \oplus N
$$

for some submodule N of M. Suppose that $e \neq 1$. Now if $m(1-e) \in \alpha(e R)$, then $m(1-e)=\alpha(e r)$ for some $r \in R$. Then, we have

$$
m(1-e)(1-e)=\alpha(e r)(1-e)=\alpha(e r(1-e)=\alpha(0)=0
$$

So $M(1-e) \cap \alpha(A)=0$.
Now take any $m \in M$. Then, $m=\alpha(e r)+n$ for some $r \in R, n \in N$. From this we have $m(1-e)=\alpha(e r)(1-e)+n(1-e)$ and by Lemma 2.19, $m(1-e)=n(1-e)$. We write $m=\alpha(e r)+n(1-e)+n e \Rightarrow m-m(1-e)=\alpha\left(e r^{\prime}\right)$ for some $r^{\prime} \in R$. And then $\alpha\left(e r^{\prime}\right)-\alpha(e r)=n e$. It follows that $n e=0$. Hence $m=\alpha(e r)+m(1-e)$ and then $M=\alpha(A) \oplus M(1-e)$ and $M(1-e)$ is finitely generated by $\left\{m_{i}(1-e) \mid i=1, \ldots, n\right\}$ since
$M(1-e)=M(1-e)^{2} R=\sum_{i=1}^{n} m_{i} R(1-e) R=\sum_{i=1}^{n} m_{i}(1-e) R=\sum_{i=1}^{n} m_{i}(1-e)(1-e) R$.
Moreover, $M(1-e)$ is a quasi-injective, multiplication module over the ring $(1-e) R$. We also have

$$
r_{(1-e) R}\left(m_{i}(1-e)\right)=\left\{(1-e) r \mid m_{i}(1-e)(1-e) r=0\right\}=0
$$

since $r\left(m_{i}\right)=0$. Let $(1-e) r \in\left[m_{i}(1-e)(1-e) R: M(1-e)\right]$ for some $r \in R$. Then, $m(1-e) r \in m_{i}(1-e) R \leq m_{i} R$ for every $m \in M$. It means that $(1-e) r \in\left[m_{i}\right.$: $M] \subseteq C(R)$, and so $(1-e) r \in C(R)$. Of course, $(1-e) r \in C((1-e) R)$. It follows that $\left[m_{i}(1-e)(1-e) R: M(1-e)\right] \subseteq C((1-e) R)$. So a nonzero direct summand of $(1-e) R$ embeds in $M(1-e)$. This contradicts the maximality of α.

Hence $e=1$. We deduce that $M=K \oplus N$, where $R \stackrel{\varphi}{\cong} K$. From Proposition 2.9(2), it infers that $R=A \oplus B, N=N A, K=K B$, where $A=[N: M], B=$ [$K: M]$. Therefore, $K=K B=\varphi(R) B=\varphi(R B)=\varphi(B R)=\varphi(B)$. Inasmuch as $\varphi(R)=\varphi(A) \oplus \varphi(B)$ we have $K=\varphi(R)=\varphi(A) \oplus K$. It follows $\varphi(A)=0$ so that $A=0$. From this, we have $N=0$. It is shown that $M=K$ and so $M \cong R$.

Now we will give a condition for an automorphism-invariant module to be injective. In this case it is isomorphic to the ring R.

Theorem 2.21. Let R be a right duo, left quasi-duo, CMI ring and M be a multiplication, non-singular automorphism-invariant, finitely generated right R-module with a generating set $\left\{m_{1}, \ldots, m_{n}\right\}$ such that $r\left(m_{i}\right)=0$ and $\left[m_{i} R: M\right] \subseteq C(R)$. Then $M_{R} \cong R$ is injective.

Proof. By Proposition 2.3, there exists a direct decomposition $M=X \oplus Y$ such that X is a quasi-injective non-singular module, Y is a square-free non-singular automorphism-invariant module, the modules X and Y are injective with respect to each other, any sum of closed submodules of the module Y is an automorphisminvariant module, $\operatorname{Hom}(X, Y)=\operatorname{Hom}(Y, X)=0$. By [19, Note 1.7], X is a multiplication module satisfying Theorem 2.20. It follows that $X_{R} \cong R$. We have $0=\operatorname{Hom}(X, Y) \cong \operatorname{Hom}(R, Y) \cong Y$, and so $Y=0$. Thus $M_{R} \cong R$ is injective.

Acknowledgement. The authors would like to thank the referee for the valuable suggestions and comments. Le Van Thuyet and Truong Cong Quynh acknowledge the support/partial support of the Core Research Program of Hue University, Grant No. NCTB.DHH.2024.01.

References

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, SpringerVerlag, New York, 1992.
[2] N. V. Dung, D.V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Longman Scientific \& Technical, 1994.
[3] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16(4) (1988), 755-779.
[4] P. A. Guil Asensio and A. K. Srivastava, Automorphism-invariant modules satisfy the exchange property, J. Algebra, 388 (2013), 101-106.
[5] P. A. Guil Asensio and A. K. Srivastava, Automorphism-invariant modules, in: Noncommutative Rings and Their Applications, Contemp. Math., vol. 634 (2015), 19-30.
[6] P. A. Guil Asensio, D. K. Tütüncü and A. K. Srivastava, Modules invariant under automorphisms of their covers and envelopes, Israel J. Math., 206 (2015), 457-482.
[7] R. E. Johnson and E. T. Wong, Quasi-injective modules and irreducible rings, J. London Math. Soc., 36 (1961), 260-268.
[8] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, Cambridge University Press, Cambridge, 1990.
[9] W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge University Press, Cambridge, 2003.
[10] S. Singh and Y. Al-Shaniafi, Quasi-injective multiplication modules, Comm. Algebra, 28(7) (2000), 3329-3334.
[11] S. Singh and A. K. Srivastava, Rings of invariant module type and automorphism-invariant modules, in: Ring Theory and Its Applications, Contemp. Math., vol. 609 (2014), 299-311.
[12] P. F. Smith, Some remarks on multiplication modules, Arch. Math. (Basel), 50(3) (1988), 223-235.
[13] P. F. Smith, Multiplication modules and projective modules, Period. Math. Hungar., 29(2) (1994), 163-168.
[14] A. K. Srivastava, A. A. Tuganbaev and P. A. Guil Asensio, Invariance of Modules Under Automorphisms of Their Envelopes and Covers, Cambridge University Press, Cambridge, 2021.
[15] B. Stenström, Rings of Quotients, Springer-Verlag, 1975.
[16] H. Tachikawa, On left QF-3 rings, Pacific J. Math., 32 (1970), 255-268.
[17] L. V. Thuyet, P. Dan and and T. C. Quynh, Modules which are invariant under idempotents of their envelopes, Colloq. Math., 143 (2016), 237-250.
[18] A. A. Tuganbaev, Multiplication modules over noncommutative rings, Sb . Math., 194(11-12) (2003), 1837-1864.
[19] A. A. Tuganbaev, Multiplication modules, J. Math. Sci. (N.Y.), 123(2) (2004), 3839-3905.
[20] A. A. Tuganbaev, Multiplication modules and ideals, J. Math. Sci. (N.Y.), 136(4) (2006), 4116-4130.
[21] A. A. Tuganbaev, Automorphism-invariant modules, J. Math. Sci. (N.Y.), 206 (2015), 694-698.
[22] A. A. Tuganbaev, Automorphism-invariant non-singular rings and modules, J. Algebra, 485 (2017), 247-253.
[23] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
[24] H. P. Yu, On quasi-duo rings, Glasgow Math. J., 37 (1995), 21-31.

Le Van Thuyet

Department of Mathematics
College of Education - Hue University
34 Le Loi, Hue city, Vietnam
e-mail: lvthuyet@hueuni.edu.vn

Truong Cong Quynh (Corresponding Author)
Department of Mathematics
The University of Danang - University of Science and Education
459 Ton Duc Thang, Danang city, Vietnam
e-mail: tcquynh@ued.udn.vn

