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Abstract. A. Haghany and M. Vedadi, as well as M. K. Patel, explored the
relationship between a semi-projective and retractable module and its endo-
morphism ring. In this work, we study the lattice-theoretic counterparts of
these results. To this end, we consider the category of linear modular lattices.
Specifically, we show a relation between a retractable and semi-projective com-
plete modular lattice and its monoid of endomorphisms.
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1. Introduction

For each right module MR, the set L(M) of submodules of M , ordered by
inclusion, is a complete modular lattice. Recall the correspondence theorem: if
f : MR → NR is a morphism of right modules, then there is a function f∗ :
[ker f,M ] → [0R, Im(f)] such that f∗(A) := {f(x) | x ∈ A}. f∗ is a lattice isomor-
phism, whose inverse is f∗ defined by f∗(B) := {x ∈ M | f(x) ∈ B}.

For a bounded lattice L, write 0L (resp., 1L) for the least (resp., greatest) element
of L. Albu and Iosif, in [1], define a linear morphism f between two bounded
modular lattices L and M as a function f : L → M for which there exists kf ∈ L

such that f |: [kf , 1L] → [0M , f(1L)] is an isomorphism of lattices, and such that
f(x ∨ kf ) = f(x) ∀x ∈ L. In this definition, kf is called the kernel of f . We will
denote an interval [a, b] in the lattice L by b/a. Special cases are the initial interval
a/0L, where a ∈ L, and the quotient interval 1L/b, where b ∈ L.

There is a category LM whose objects are the bounded modular lattices, and
whose morphisms are linear morphisms.

From these definitions, it is easy to see that for an R-morphism f : MR → NR,
the function f∗ : [0R,M ] → [0R, N ] is a linear morphism whose kernel kf∗ coincides
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with ker f because f∗ | [ker f,M ] → [0R, Im(f)] is a lattice isomorphism, by the
correspondence theorem.

In fact, the assignments
M L(M)

M 7−→ L(M); 7−→

N L(N)

f f∗

define a functor from R-Mod to LM.
In [5] A. Haghany and M. Vedadi studied the relation between a semi-projective

and retractable module and its endomorphism ring. In particular, they found nec-
essary and sufficient conditions on a module M for its endomorphism ring S to be
semiprime, right non-singular, finitely cogenerated, cocyclic, or weakly co-Hopfian.
Furthermore, they give descriptions of the right singular ideal of S and of the socle
of M .

In [9] M. K. Patel studies how the Hopfian, co-Hopfian, or directly finite proper-
ties of a semi-projective module are reflected in its endomorphism ring. He further
proves that for a pseudo-semi-injective module to be Hopfian, co-Hopfian, and di-
rectly finite are equivalent conditions.

In this work, we consider the full subcategory of LM whose objects are complete
modular lattices. It is in the context of this category that we aim to extend concepts
and results of module theory, such as the aforementioned ones, to their lattice-
theoretic counterparts. Previous research on this line has been done in [7] and [8].
Here, we translate the notion of semi-projective modules to linear modular lattices.

The rest of the paper is organized as follows: Section 2 gives some preliminary
definitions and introduces the notation for the category LM. In Section 3, we
describe semi-projective lattices and their relation with their corresponding monoids
of endomorphisms.

2. Preliminaries

This section provides basic notions and definitions of linear modular lattices and
linear morphisms. We refer the reader to [1] for a concise description of the category
LM.

We denote by L the class of all bounded modular lattices. L is the class of objects
of a category where the morphisms are the usual lattice morphisms, this is, functions
that respect the lattice operations of infimum and supremum. However, these lattice
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morphisms fail to express important module properties. In contrast, linear lattice
morphisms, or linear morphisms for short, come with two elements that evoke the
notion of kernel and image, so the First Isomorphism Theorem for modules holds
now for lattices. These linear morphisms, in turn, define a suitable category that we
will use to extend module-related properties to their lattice-theoretic counterparts.

Definition 2.1. [1, Definition 1.1] Let L,L′ ∈ L. The mapping f : L −→ L′ is
called a linear morphism if there exists k ∈ L, called the kernel of f , and a′ ∈ L′

such that the following two conditions hold:

(1) f(x) = f(x ∨ k) for all x ∈ L.
(2) The function f induces a lattice isomorphism f : 1L/k −→ a′/0L′ such that

f(x) = f(x) for all x ∈ 1L/k.

In [1, Proposition 2.2(1)], the authors denote by LM the category of linear mod-
ular lattices, whose objects are bounded modular lattices, and whose morphisms
are linear morphisms. Throughout this work, the objects of LM will be complete
modular lattices.

In the category LM, the isomorphisms are precisely the lattice isomorphisms,
the monomorphisms are precisely the injective linear morphisms (which coincide
with those linear morphisms with kernel zero), and the epimorphisms are precisely
the surjective linear morphisms. These results can be found in [1, Proposition
2.2(2)-(4) and Corollary 1.6]. We shall make use of them freely.

Remark 2.2. The category LM has a zero object and this is the lattice with a
single element, called the zero lattice and denoted by 0, because for any L ∈ LM

the only linear morphisms 0 −→ L and L −→ 0 are in both cases the zero constants.
The zero morphism 0L,M : L −→ M is the only morphism that factors through

the zero object: 0L,M : L −→ 0 −→ M . Thus the zero morphism between two
lattices must be the constant zero. If there is no risk of confusion, we shall simply
write 0 : L → M .

Theorem 2.3. In the category LM, every linear morphism L
f−→ L′ has a kernel1,

and it is given by the inclusion mapping kf/0L
i−→ L, where kf is the kernel of f

as a linear morphism.

Proof. By [1, Corollary 1.4], f is an increasing map, so for every x ∈ kf/0L,
f(x) ≤ f(kf ) = 0L′ , that is, f(x) = 0L′ , and therefore the composite f ◦ i is the
zero linear morphism.

1In the sense of category theory.
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On the other hand, if we assume that M ∈ LM and M g−→ L is a linear morphism
such that f ◦ g = 0, then by [1, Proposition 1.3(2)], g(1M ) ≤ kf and therefore the
corestriction M

g↾−→ kf/0L is the only linear morphism that makes the following
diagram commute:

kf/0L

L L′.

M.

i

0

f

g

g↾

0 □

Lemma 2.4. If L,L′ ∈ L and f, g : L −→ L′ are linear morphisms with respective
kernels kf , kg, such that kf = kg and that the induced lattice isomorphisms f and
g coincide, then f = g.

Proof. If x ∈ L, then f(x) = f(x
∨
kf ) = f(x

∨
kf ) = g(x

∨
kg) = g(x

∨
kg) =

g(x). □

Theorem 2.5. In the category LM, every linear morphism L
f−→ L′ has a cokernel,

and it is given by the linear morphism L′
∨f(1L)

−−−−−−−−−→ 1L′/f(1L).

Proof. For every element x ∈ L, f(x) ∨ f(1L) = f(1L), so the composite

L
f−→ L′

∨f(1L)
−−−−−−−−−→ 1L′/f(1L)

is the zero linear morphism.
On the other hand, if we assume that L′ g−→ M is a linear morphism such that
the composite L f−→ L′ g−→ M is the zero linear morphism, then g(f(x)) = 0M

for every element x ∈ L, and then by [1, Proposition 1.3(2)], f(1L) ≤ kg, so that
the restriction of g given by 1L′/f(1L) g|−→ M is a linear morphism that makes the
following diagram commute:

1L′/f(1L)

L L′

M.

g|f

0

0

∨f(1L)

g

In addition, for any other linear morphism 1L′/f(1L) h−→ M such that
h ◦ ( ∨ f(1L)) = g, we have, for x ∈ 1L′/f(1L), that
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h(x) = h(x ∨ f(1L)) = g(x) = g|(x)

so that h = g|. □

Theorem 2.6. In the category LM, every linear morphism L
f−→ L′ has an image

in the categorical sense, and it is given by the inclusion mapping f(1L)/0L′
i−→ L′.

Proof. Let f | : L −→ f(1L)/0L′ be the corestriction of f , then f = i ◦ f |.
On the other hand, if we assume that I = a/0L′ is an initial interval of L′, and
that there is a linear morphism g : L −→ I such that f = i′ ◦ g where I i′

−→ L′ is
the inclusion mapping, then f(1L) = g(1L) ≤ a, therefore the inclusion mapping
f(1L)/0L′

j−→ I is the only linear morphism that makes the following diagram
commutative:

L L′

f(1L)/0L′

I

g

f |

f

i

j

i′

□

Definition 2.7. We will say that a sequence of linear morphisms

...
fi−2−→ Li−1

fi−1−→ Li
fi−→ Li+1

fi+1−→ ...

is exact if for any pair of consecutive linear morphisms fi−1 and fi, the image of
fi−1 is the kernel of fi. By Theorems 2.3 and 2.6, this happens if and only if
fi−1(1Li−1) = kfi

.

Remark 2.8. The sequence of linear morphisms L f−→ M
g−→ N is exact if and

only if g ◦ f = 0 and for all m ∈ M such that g(m) = 0N , there exists a ∈ L such
that f(a) = m.

Also, note that the sequence 0 → L
f→ M (resp., L f→ M → 0) in LM is exact

if and only if f is a monomorphism (resp., an epimorphism).

Although the category LM is not abelian, we have at this point built enough
structure for it to satisfy, except for the non-existence of subtraction, all the so-
called elementary rules for chasing elements in diagrams stated by Mac Lane in [6,
VIII-4 Theorem 3].

Remark 2.9. If L f−→ L′ is a linear morphism, we can decompose it as f = mf ◦ef

where mf is an injective linear morphism and ef is a surjective linear morphism;
for this we only need to consider the following diagram:
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L f(1L)/0L′ L′.
f↾

f

i

Let us note that the inclusion f(1L)/0L′
i−→ L′ is the kernel of the cokernel of f ,

while the corestriction L
f↾−→ f(1L)/0L′ ∼= 1L/kf is the cokernel of the kernel of f .

Moreover, if M f ′

−→ M ′ is another linear morphism and we have the commutative
diagram, for linear morphisms g, h,

L L′

M M ′

f

h g

f ′

then (g◦f)(1L) = (f ′ ◦h)(1L) ≤ f ′(1M ), so that by restricting and correcting g, the
linear morphism f(1L)/0L′

g|−→ f ′(1M )/0M ′ is well defined. Thus, by decomposing
f and f ′ as in Remark 2.9, we obtain the following diagram

L f(1L)/0L′ L′

M f ′(1M )/0M ′ M ′

f↾

h

i

g| g

f ′↾ i

where g| is the only linear morphism that makes it commutative.

3. Semi-projective lattices

We start this section by translating well-known definitions of some module prop-
erties into their lattice-theoretic counterpart.

Definition 3.1. Let L ∈ LM and a ∈ L. We call the initial interval a/0L L-cyclic
if a/0L is isomorphic to a quotient interval of L.

Definition 3.2. Let L ∈ LM. We call L retractable if for every non-trivial initial
interval a/0L of L, one has that

HomLM

(
L, a/0L

)
̸= 0.

In other words, L is retractable if every non-trivial initial interval of L has a non-
trivial L-cyclic initial interval. The following two examples display a retractable
and a non-retractable lattice, respectively.

Example 3.3. Every complemented lattice L ∈ LM is retractable. Indeed, let
a/0L be a non-trivial initial interval of L, and let b ∈ L be a complement of a.

Then, the function defined by L
∨b

−−−−−−→ 1L/b is a linear morphism with kernel b.
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Furthermore, we have, by modularity, the lattice isomorphism

1L/b = a ∨ b/b
∧a

−−−−−−→ a/a ∧ b = a/0L.

Therefore, the non-trivial linear morphism ( ∧a) ◦ ( ∨ b) lies in HomLM

(
L, a/0L

)
,

showing thus that L is retractable.

Example 3.4. Consider the totally ordered set L = N∪{∞}. Since no finite initial
interval of N ∪ {∞} is L-cyclic, N ∪ {∞} is not retractable.

Definition 3.5. A lattice L ∈ LM is semi-projective if for any initial interval a/0L

of L, and any diagram
L

L a/0L 0

g

f

with the bottom row exact, there exists a linear morphism h : L −→ L that makes
L

L a/0L

h g

f

a commutative diagram; that is, f ◦ h = g.

Proposition 3.6. L ∈ LM is semi-projective if and only if g ◦ EndLM(L) ⊆
f ◦ EndLM(L) for any pair of linear endomorphisms f, g ∈ EndLM(L) such that
g(1L) ≤ f(1L).

Proof. (=⇒) If f and g are corestricted to f(1L)/0L, we obtain the following
diagram, whose bottom row is exact.

L

L f(1L)/0L 0

g

f

As L is semi-projective, there is a linear morphism h : L −→ L such that f ◦h = g,
so that g ◦ EndLM(L) = (f ◦ h) ◦ EndLM(L) ⊆ f ◦ EndLM(L).
(⇐=) Suppose a/0L is an initial interval and we have the following diagram with
exact bottom row.

L

L a/0L 0

g

f
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Extending the codomain of f and g to all L, we have f, g ∈ EndLM(L) and g(1L) ≤
a = f(1L), so g ◦EndLM(L) ⊆ f ◦EndLM(L) and thus there is a linear morphism
h : L −→ L such that f ◦ h = g. □

Next, we show two examples of lattices which are both retractable and semi-
projective.

Example 3.7. The simple lattice {0, 1} is retractable and semi-projective, as it is
a complemented lattice whose only non-trivial initial interval is the lattice {0, 1}.

Recall that the length of a chain C is |C| − 1, and that the length of a lattice L
is the greatest length of a chain in L.

Example 3.8. Any lattice L ∈ LM of length 2 is retractable and semi-projective.
Indeed, any such of these lattices has the form

•

• • . . .

•
Clearly, if L has only three elements, then it is retractable, and if L has more than
three elements, then it is complemented. Thus, these lattices are all retractable.

Let us now take any L ∈ LM with the above shape and let a/0L be an initial
interval of L. By considering the following diagram

L

L a/0L 0,

g

f

we see that if g = 0, then the linear morphism 0L,L : L −→ L satisfies f ◦ 0L,L = g

(seeing as all linear morphisms send zero to zero). That is, it makes the diagram
L

L a/0L 0

0L,L g

f

commutative. Therefore, we can assume that g ̸= 0.
If a = 1L, the exactness of the bottom row implies that f is a lattice isomorphism.

Thus, f−1 ◦ g is a linear morphism that makes the diagram commutative.
Let us now assume that a is an atom of L, so that the interval a/0L is a simple

lattice. This last implies that the kernel of the linear morphisms g and f , denoted
as kg and kf , respectively, are both atoms of L. Further, by the definition of linear
morphisms, it follows that, for any atom b ̸= kg of L,
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g(b) = g(kg ∨ b) = g(1L) = a,

showing thus that its kernel uniquely determines every non-trivial linear morphism
L −→ a/0L.

Considering the above, let h : L −→ L be the lattice isomorphism such that
h(kg) = kf , h(kf ) = kg, and h(x) = x whenever kg ̸= x ̸= kf . Note that h is a linear
morphism since h is a lattice isomorphism. Furthermore, as (f◦h)(1L) = f(1L) = a,
the composite f ◦h is a non-trivial linear morphism such that (f ◦h)(kg) = f(kf ) =
0L. Therefore, kf◦h ≥ kg, and thus, given that kf◦h < 1L and that kg is a coatom
of L, it follows that kf◦h = kg. Hence, f ◦ h = g, that is, h makes the diagram

L

L a/0L 0

h g

f

commute.

Definition 3.9. For a lattice L ∈ LM and an element a ∈ L, we call the element a
strongly invariant (in L) if f(a) ≤ a for any linear endomorphism f ∈ EndLM(L).

Proposition 3.10. If L is semi-projective and a ∈ L is strongly invariant, then
1L/a is semi-projective.

Proof. Let s ∈ EndLM(1L/a) and f : 1L/a −→ s(1L/a) be a linear morphism.
We have the solid part of the following diagram:

L

1L/a

L 1L/a s(1L/a)

∨a

g

f
( ∨a)◦(g|)

∨a s

Since L is semi-projective, there exists some linear morphism g which makes
the outermost triangle commutative. Let us verify that g| : 1L/a −→ 1L/g(a) (the
restriction and corestriction of g) is a linear morphism with kernel kg ∨ a. Indeed,
for x ∈ 1L/a,

g|((kg ∨ a) ∨ x) = g|(a ∨ x) = g|(x).

Also, g| : 1L/kg ∨ a −→ g(1L)/g(a) is a lattice isomorphism because it is the restriction
and corestriction of g.
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Since a is strongly invariant in L, g(a) ≤ a, so that ( ∨ a) : 1L/g(a) → 1L/a

is a linear morphism with kernel a. Therefore, the composite ( ∨ a) ◦ (g|) ∈
EndLM(1L/a).

Let us verify that the smaller triangle is commutative. For x ∈ 1L/a, we have
that

f(x) = f(x ∨ a) = (f ◦ ( ∨ a))(x) = (s ◦ ( ∨ a) ◦ g)(x) = (s ◦ ( ∨ a) ◦ (g|))(x).□

Theorem 3.11. Let L ∈ LM and let S = EndLM(L). Then, L is semi-projective
if and only if

(f ◦ S) = HomLM

(
L, f(L)

)
holds for every endomorphism f ∈ S.

Proof. (=⇒) Let f : L −→ L be an endomorphism in LM. For g ∈ S, it follows
that (f ◦ g)(L) ⊆ f(L), and thus, f ◦ g ∈ HomLM(L, f(L)). And, given g ∈
HomLM(L, f(L)), we have the diagram

L

L f(1L)/0L 0,

g

f

where f(1L)/0L = f(L) and whose bottom row is exact. As by hypothesis, L is a
semi-projective lattice, there exists h ∈ S such that f ◦h = g. Therefore, g ∈ f ◦S.

(⇐=) Let L ∈ LM, and let a/0L be an initial interval of L. Consider the diagram

L

L a/0L 0

g

f

with the bottom row exact. Then, as g ∈ HomLM(L, f(L)) = f ◦ S, there exists
h ∈ S such that f ◦ h = g. Hence, the diagram

L

L a/0L 0

h g

f

commutes, and thus, L is semi-projective. □

Remark 3.12. For each lattice L ∈ LM, the set S = EndLM(L) becomes a monoid
whose binary operation is the composition of linear morphisms. The identity ele-
ment for this operation corresponds to the linear morphism given by the identity
function on L. Moreover, this is a monoid with zero: 0L,L.

(A similar observation holds for any category with a zero object.)
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Definition 3.13. Let L ∈ LM and let S = EndLM(L). We say that H ⊆ S is a
right ideal of S if H is non-empty and closed under right composition with elements
of S; this is, for h ∈ H and f ∈ S, we have that (h ◦ f) ∈ H. Note that H is a
right ideal of S if and only if 0L,L ∈ H and H is closed under right composition
with elements of S.

Assume now that L ∈ LM, and let m,n ∈ L be such that m ≤ n. Then, the
inclusion mapping m/0L

ι−→ n/0L is a linear morphism. Moreover, ι induces an

injective mapping HomLM

(
L,m/0L

) ι◦
−−−−−−→ HomLM

(
L, n/0L

)
. This way, we

can think of HomLM

(
L,m/0L

)
as a subset of HomLM

(
L, n/0L

)
. Furthermore, if

n = 1L, the image of ι ◦ is a right ideal of S. Thus, we may think of any linear
morphism L

f−→ m/0L as an element of S.

Theorem 3.14. Let L ∈ LM be a semi-projective lattice. Then, a bijection exists
between the set of L-cyclic initial intervals of L and the set of principal right ideals
of S = EndLM(L).

Proof. We start the proof by noting that each L-cyclic initial interval a/0L of L
comes with a linear epimorphism f : L −→ a/0L. (Indeed, there is some u ∈ L such
that a/0L

∼= 1L/u, so we may set as f the composite L ∨u−→ 1L/u ∼= a/0L.) With
this in mind, we define the mapping F with the correspondence rule a/0L 7−→ f ◦S.
We claim that F is well-defined. Indeed, if g : L −→ a/0L is another linear
epimorphism, then we have the diagram

L

L a/0L 0

0,

g

f

where the row and the column are exact. Furthermore, since L is semi-projective,
we obtain two linear morphisms h, h′ : L −→ L such that f ◦ h = g and g ◦ h′ = f .
From these equalities it follows that g ◦ S ⊆ f ◦ S and f ◦ S ⊆ g ◦ S, respectively.
Thus, f ◦ S = g ◦ S.

We shall now show that the mapping F is a bijection. For surjectivity, note
that each endomorphism f : L −→ L induces the L-cyclic initial interval f(L) =(
f(1L)/0L

)
, as f(L) is isomorphic to the quotient interval 1L/kf of L. Hence, the

principal right ideal generated by f is obtained by evaluating F in the L-cyclic
initial interval f(L). Therefore, F is surjective. For injectivity, let a/0L and b/0L
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be two L-cyclic initial intervals of L. If f : L −→ a/0L and g : L −→ b/0L are linear
morphisms such that f ◦ S = g ◦ S, then there exist h, t ∈ S such that f ◦ h = g

and g ◦ t = f . We then have that

a = f(1L) = (g ◦ t)(1L) = g(t(1L)) ∈ g(1L/0L) = b/0L.

Thus, a ≤ b. Similarly, one shows that b ≤ a, wherewith we obtain that a = b.
Therefore, F is injective. □

Recall that an element a of a lattice L with zero is said to be essential (in L)
if for every 0L ̸= b ∈ L, it happens that a ∧ b ̸= 0L. Also, for m,n ∈ L such that
m ≤ n, we say that m is essential in n if m is essential in n/0L.

Definition 3.15. Let L ∈ LM. We say that a ∈ L is uniform (in L) if every
nonzero b ∈ L such that b ≤ a is essential in a. Furthermore, we say that the
lattice L is uniform if the element 1L is uniform in L.

Definition 3.16. Let L ∈ LM, and let a/0L be an initial interval of L. We
say that L generates a/0L if there exists a family of linear morphisms {ft}t∈T ⊆
HomLM(L, a/0L) such that

a =
∨

t∈T

ft(1L).

Let L ∈ LM and S = EndLM(L). Write R(S) for the set of right ideals of
S. Note that R(S) is partially ordered by inclusion. Furthermore, (R(S),⊆) is a
lattice, whose meet and join operations are intersection and union of sets, respec-
tively. The least (resp., greatest) element of R(S) is {0L,L} (resp., S). Since every
distributive lattice is modular, R(S) ∈ LM.

Recall that, for I, J ∈ R(S) such that I ⊆ J , we say that I is essential in J if
and only if I is an essential element of the initial interval J/{0} of (R(S),⊆). Partic-
ularly, for m ≤ n, we say that HomLM

(
L,m/0L

)
is essential in HomLM

(
L, n/0L

)
if and only if HomLM

(
L,m/0L

)
is an essential element of the initial interval

HomLM

(
L, n/0L

)
/{0} of (R(S),⊆).

Theorem 3.17. Let L ∈ LM be a retractable lattice, and let S = EndLM(L). If
I, J ∈ R(S) such that I ⊆ J and m,n ∈ L such that m ≤ n, then the following
statements hold:

(a) If HomLM

(
L,m/0L

)
is essential in HomLM

(
L, n/0L

)
, then m is essential

in n.
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(b) If L is semi-projective and m is essential in n, then HomLM

(
L,m/0L

)
is

essential in HomLM

(
L, n/0L

)
.

(c) Suppose that HomLM

(
L,

∨
j∈J

j(1L)/0L

)
= J . If I is essential in J , then∨

i∈I

i(1L) is essential in
∨

j∈J

j(1L).

(d) Suppose that L is semi-projective and that HomLM

(
L,

∨
i∈I

i(1L)/0L

)
= I. If∨

i∈I

i(1L) is essential in
∨

j∈J

j(1L), then I is essential in J .

(e) If HomLM

(
L,m/0L

)
is uniform as a right ideal of S, then m ∈ L is uni-

form. For semi-projective L, the converse holds.
(f) Suppose that L is semi-projective. If

∨
i∈I

i(1L) is a uniform element in L,

then I is a uniform right ideal of S.
(g) Consider the following statements:

(i) HomLM

(
L,m/0L

)
is simple (that is, minimal in R(S)\{{0}}).

(ii) m/0L is the simple lattice.
If L generates m/0L, then (i) implies (ii). If L is semi-projective, then (ii)
implies (i).

(h) If I = HomLM

(
L,

∨
i∈I

i(1L)/0L

)
and I is simple, then

∨
i∈I

i(1L)/0L is the simple

lattice. If L is semi-projective, then the converse holds.

Proof. (a) Let k ∈ n/0L such that m ∧ k = 0L, and let us assume that k ̸= 0L.
Then, as L is a retractable lattice, we have that HomLM

(
L, k/0L

)
̸= {0}. Further,

by hypothesis, HomLM

(
L,m/0L

)
is essential in HomLM

(
L, n/0L

)
, so that

HomLM

(
L,m/0L

)
∩HomLM

(
L, k/0L

)
̸= {0}.

However, for any f ∈ HomLM

(
L,m/0L

)
∩HomLM

(
L, k/0L

)
, we have that

f(1L) ≤ m ∧ k = 0L,

so that f = 0. This contradiction establishes that m is essential in n.
(b) Let X ∈ HomLM (L, n/0L)/{0} such that X ∩ HomLM

(
L,m/0L

)
= {0}, and

take f ∈ X. Note that f ◦ S ⊆ X, so that

HomLM

(
L,m/0L

)
∩ (f ◦ S) = {0}.

Since L is semi-projective by hypothesis, Theorem 3.11 provides that f ◦ S =
HomLM

(
L, f(L)

)
. It follows that

HomLM

(
L,m ∧ f(1L)/0L

)
= {0}.
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Then, as L is retractable, we have that m∧ f(1L) = 0L. This implies that f(1L) =
0L because m is essential in n, so that f = 0. Therefore, X = {0}, whence
HomLM

(
L,m/0L

)
is essential in HomLM

(
L, n/0L

)
.

(c) Note that
∨

i∈I

i(1L) ≤
∨

j∈J

j(1L), so that

I ⊆ HomLM

(
L,

∨
i∈I

i(1L)/0L

)
⊆ HomLM

(
L,

∨
j∈J

j(1L)/0L

)
= J .

Thus, as I is essential in J by hypothesis, we have that HomLM(L, (
∨
i∈I

i(1L))/0L) is

essential in HomLM(L, (
∨

j∈J

j(1L))/0L). Therefore, by (a), it follows that
∨

i∈I

i(1L) is

essential in
∨

j∈J

j(1L).

(d) We are supposing that L is semi-projective and that
∨

i∈I

i(1L) is essential in∨
j∈J

j(1L). Hence, by (b), we obtain that I = HomLM

(
L,

∨
i∈I

i(1L)/0L

)
is essential

in HomLM

(
L,

∨
j∈J

j(1L)/0L

)
. Now, let K ∈ J/{0} such that I ∩ K = {0}. Since

K ⊆ J ⊆ HomLM

(
L,

∨
j∈J

j(1L)/0L

)
and I is essential in HomLM

(
L,

∨
j∈J

j(1L)/0L

)
, K

must be trivial. Therefore, I is essential in J .
(e) Let x, y ∈ m/0L, with 0L < x, y. Since L is retractable by hypothesis, we

have that

HomLM(L, x/0L) ̸= {0} ≠ HomLM(L, y/0L).

Further, by assumption, HomLM

(
L,m/0L

)
is a uniform right ideal of S, and so,

{0} ≠ HomLM

(
L, x/0L

)
∩HomLM

(
L, y/0L

)
= HomLM

(
L,

(
x ∧ y)/0L

))
.

Therefore, x ∧ y ̸= 0L, thus showing that m is uniform in L.
For the converse, let I and J be nonzero right ideals contained inHomLM

(
L,m/0L

)
.

Then, we can choose two non-trivial linear morphisms i, j : L −→ m/0L, where
i ∈ I and j ∈ J . Note that i(1L) ̸= 0L ̸= j(1L), and i(1L), j(1L) ≤ m. Since m is
uniform in L, it follows that i(1L) ∧ j(1L) ̸= 0L. Further, we have that

HomLM

(
L, i(1L)/0L

)
∩HomLM

(
L, j(1L)/0L

)
=

HomLM

(
L,

(
i(1L) ∧ j(1L)

)
/0L

)
̸= {0},

because L is retractable by hypothesis. It follows that I ∩ J ̸= 0, because

{0} ≠ HomLM

(
L, i(1L)/0L

)
∩HomLM

(
L, j(1L)/0L

)
⊆ (i ◦ S) ∩ (j ◦ S) ⊆ I ∩ J,

where the first inclusion holds because L is semi-projective (see Theorem 3.11).
Therefore, HomLM

(
L,m/0L

)
is uniform in R(S).
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(f) Let
∨

i∈I

i(1L) be a uniform element in L. Then, by part (e), HomLM

(
L,

∨
i∈I

i(1L)/0L

)
is a uniform right ideal of S. Moreover, as I ⊆ HomLM

(
L,

∨
i∈I

i(1L)/0L

)
, it follows

that I is a uniform right ideal of S.
(g) Note first that (i) implies that 0L < m. Let k ∈ m/0L with k ̸= 0L. Then,

since L is retractable by hypothesis, we have that

{0} ≠ HomLM

(
L, k/0L

)
⊆ HomLM

(
L,m/0L

)
because k ≤ m. Furthermore, the fact that HomLM

(
L,m/0L

)
is simple implies

that

HomLM

(
L, k/0L

)
= HomLM

(
L,m/0L

)
.

Now, as m/0L is generated by L, there exists a family of linear morphisms {ft}t∈T

such that m =
∨

t∈T

ft(1L). This way, ft ∈ HomLM

(
L,m/0L

)
= HomLM

(
L, k/0L

)
,

so that ft(1L) ≤ k for all t ∈ T . Hence,∨
t∈T

ft(1L) ≤ k ≤ m =
∨

t∈T

ft(1L),

which implies that k = m. Therefore, m/0L is simple.
For the converse, note first that, as L is retractable, HomLM

(
L,m/0L

)
̸= {0}.

Let f ∈ HomLM

(
L,m/0L

)
with f ̸= 0. Then, by simpleness, f(L) = m/0L. Hence,

by Theorem 3.11, L being semi-projective implies that

f ◦ S = HomLM

(
L, f(L)

)
= HomLM

(
L,m/0L

)
,

thus showing that HomLM

(
L,m/0L

)
is simple.

(h) Necessity follows directly from (g).
For sufficiency, note first that, by (g), HomLM

(
L,

∨
i∈I

i(1L)/0L

)
is simple. Now,

since
∨

i∈I

i(1L) ̸= 0L, we have that

{0} ≠ I ⊆ HomLM

(
L,

∨
i∈I

i(1L)/0L

)
,

whence I = HomLM

(
L,

∨
i∈I

i(1L)/0L

)
. □

Definition 3.18. Let L ∈ LM. We say that L is co-Hopfian if every linear
monomorphism2 L

f−→ L is an epimorphism.

2By this we mean a monomorphism in the category LM.
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Example 3.19. Consider L(Z), the lattice of all submodules of ZZ. Observe that
both Z and 2Z are elements of L(Z). Since 2Z is isomorphic to Z, it follows that
L(2Z) is isomorphic to L(Z). Thus, 2Z/0 is an initial interval of L(Z) isomorphic to
L(Z). But also, 2Z is a proper submodule of Z. Therefore, the lattice L(Z) is not
co-Hopfian, as evidenced by the linear monomorphism:

L(Z)
∼=−→ 2Z/0 ↪→ L(Z)

which is not an epimorphism.

Proposition 3.20. Any finite lattice L ∈ LM is co-Hopfian.

Proof. Let L ∈ LM be a finite lattice, and let f : L −→ L be a linear monomor-
phism. We know that the kernel of f is trivial, so the induced lattice isomorphism
has the form f : L −→ f(1L)/0L. In this way, since L is a finite lattice, the initial
interval f(1L)/0L cannot be proper in L. Therefore, f(1L) = 1L, showing that f
is surjective. □

Definition 3.21. Let L ∈ LM, and let S = EndLM(L). A function φ : S −→ S

is called a right S-endomorphism (or, in this paper, simply an S-endomorphism) if
for any f, g ∈ S, one has that φ(f ◦ g) = φ(f) ◦ g.

Remark 3.22. It follows from Definition 3.21 that the image φ(S) of any S-
endomorphism φ : S −→ S is a right ideal of the monoid S.

We will call an S-endomorphism φ : S −→ S an S-monomorphism if, for any
two S-endomorphisms ψ,ψ′ : S −→ S such that φ ◦ ψ = φ ◦ ψ′, it follows that
ψ = ψ′.

Proposition 3.23. Let L ∈ LM, and S = EndLM(L). If the mapping φ : S −→ S

is an S-monomorphism, then{
f ∈ S|φ(f) = 0

}
= {0}.

Proof. Assume that there exists 0 ̸= g ∈ S such that φ(g) = 0. We define the
function ψg : S −→ S such that ψg(h) = g◦h. Note that ψg is an S-endomorphism.
Then, for h ∈ S,

(φ ◦ ψg)(h) = φ ◦ (ψg(h)) = φ(g ◦ h) = φ(g) ◦ h = 0 ◦ h = 0.

This way, φ ◦ψg = 0 = φ ◦ 0, from which we obtain that ψg = 0 because φ is an S-
monomorphism. However, one also has that ψg ̸= 0 since ψg(IdL) = g◦IdL = g ̸= 0.
This is a contradiction. □
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Definition 3.24. Let L ∈ LM and S = EndLM(L). We call the monoid S co-
Hopfian if every S-monomorphism φ : S −→ S is surjective.

Definition 3.25. Let L ∈ LM and S = EndLM(L). We say that f ∈ S is right
regular if f ◦ g = 0 with g ∈ S implies that g = 0.

Lemma 3.26. For a lattice L ∈ LM, the monoid S = EndLM(L) is co-Hopfian if
every right regular element in S is a unit.

Proof. Let φ : S −→ S be an S-monomorphism. We claim that, for the linear
morphism IdL ∈ S, the element φ(IdL) ∈ S is right regular. Indeed, if this were
not the case, there would exist some 0 ̸= g ∈ S such that

0 = φ(IdL) ◦ g = φ(IdL ◦ g) = φ(g).

However, this contradicts Proposition 3.23, as φ is an S-monomorphism.
Now, by hypothesis, we obtain that φ(IdL) is a unit. In particular, there exists

h ∈ S such that

φ(h) = φ(IdL ◦ h) = φ(IdL) ◦ h = IdL.

Thus, for any g ∈ S, it happens that

φ(h ◦ g) = φ(h) ◦ g = IdL ◦ g = g.

Hence, φ(S) = S, that is, φ is surjective. □

Definition 3.27. Let L ∈ LM and S = EndLM(L). We say that L is quasi-
injective if for any linear monomorphism m : N −→ L and any linear morphism
f : N −→ L, there exists f ′ ∈ S such that the following diagram is commutative:

0 N L

L.

m

f
f ′

(In module-theoretic language, this notion can be rendered as “L is L-injective”,
as “L belongs to its own injectivity class”, or as “L belongs to its own injectivity
domain”.)

For example, the simple lattice {0, 1} is a quasi-injective lattice. In contrast, the
next example provides a lattice that is not quasi-injective.

Example 3.28. Let P be the following complete modular lattice:
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3

2a 2b

2

1

0.
Consider the linear modular lattice 2/0:

2

1

0.

Then, the mapping f : 2/0 −→ P such that f(0) = 0, f(1) = 0, and f(2) = 1 is a
linear morphism (with kernel 1). Now, if P were a quasi-injective lattice, for the
inclusion mapping ι : 2/0 −→ P and the linear morphism f , there would exist a
linear morphism f ′ : P −→ P such that f ′ ◦ ι = f . Then

f ′(0) = f ′(ι(0)) = f(0) = 0 = f(1) = f ′(ι(1)) = f ′(1).

Moreover, since f ′(2) = f ′(ι(2)) = f(2) = 1, it follows that kf ′ = 1. Thus, accord-
ing to the definition of a linear morphism, we obtain a lattice isomorphism between
the quotient lattice 3

1 and an initial interval of P , which is evidently impossible.
Consequently, P cannot be a quasi-injective lattice.

Definition 3.29. For L ∈ LM and f ∈ S = EndLM(L), the right annihilator of f
is

Annr(f) =
{
g ∈ S|f ◦ g = 0

}
.

Remark 3.30. Annr(f) is a right ideal of the monoid S, for any L ∈ LM.

Definition 3.31. Let L ∈ LM, and let S = EndLM(L). The right singular ideal
of S is

Zr(S) = {f ∈ S|Annr(f) is essential in R(S)}.

Remark 3.32. Zr(S) is a right ideal of the monoid S. Indeed, let f ∈ Zr(S)
and g ∈ S. Let {0} ̸= I ∈ R(S), and choose some 0 ̸= h ∈ I. If g ◦ h = 0,
then 0 ̸= h ∈ I ∩ Annr(f ◦ g). If g ◦ h ̸= 0, then, as Annr(f) is essential in
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R(S), one has that (g ◦ h) ◦ S ∩ Annr(f) ̸= {0}, that is, there is k ∈ S such that
0 ̸= g ◦h ◦ k ∈ Annr(f). Thus, f ◦ g ◦h ◦ k = 0, so that 0 ̸= h ◦ k ∈ I ∩Annr(f ◦ g).
In either case, I ∩Annr(f ◦ g) ̸= {0}. Therefore, f ◦ g ∈ Zr(S).

(In fact, Zr(S) is also closed under left composition with elements of S, which
makes it a two-sided ideal of the monoid S. To verify this, observe that, for f ∈
Zr(S) and g ∈ S, Annr(f) ⊆ Annr(g ◦ f).)

Definition 3.33. Let L ∈ LM, and let AL be the set of all atoms of L. Then, the
socle of L is

Soc(L) =
∨

x∈AL

x/0L.

For a lattice L ∈ LM, a right ideal J of S = EndLM(L), and an initial interval
K of L, we denote by (J)(K) (or simply JK, when there is no risk of ambiguity)
the initial interval of L determined by

∨
g∈J

g(1K). That is,

(J)(K) =
∨

g∈J

g(1K)/0L.

Lemma 3.34. Let L ∈ LM be a retractable lattice, and let S = EndLM(L).

Then f ∈ S is a linear monomorphism if and only if S
f◦

−−−−−−→ S is an S-
monomorphism.

Proof. (=⇒) For convenience, let us write φf = f ◦ . Let ψ,ψ′ : S −→ S be two
S-endomorphisms such that φf ◦ ψ = φf ◦ ψ′. Then, for all g ∈ S,

f ◦ (ψ(g)) = (φf ◦ ψ)(g) = (φf ◦ ψ′)(g) = f ◦ (ψ′(g)).

Since f is a linear monomorphism, it follows that ψ(g) = ψ′(g), ∀g ∈ S. Therefore,
ψ = ψ′, showing that f ◦ is an S-monomorphism.
(⇐=) If 0 < kf , since L is retractable, there is a nonzero linear morphism g ∈
HomLM(L, kf/0), so that f ◦ g = 0, which is a contradiction because we assumed
that f ◦ was an S-monomorphism. □

Proposition 3.35. Let L ∈ LM be a retractable lattice, and let S = EndLM(L).
Then, the following statements hold:

(a) f ∈ S is a linear monomorphism if and only if f is right regular in S.
(b) L is co-Hopfian if and only if S is co-Hopfian.
(c) If L is quasi-injective, then each right regular element in S has a left inverse

in S.
(d) Zr(S) ⊆ {f ∈ S|kf is essential in L}, and further, (Zr(S))(Soc(L)) = 0.

Proof. (a) Note first that
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Annr(f) =
{
g ∈ S|f ◦ g = 0

}
= HomLM

(
L, kf/0L

)
,

where kf denotes the kernel of f . Therefore, f is a monomorphism if and only if
kf = 0L, which, by retractability of L, holds if and only if Annr(f) = 0, which is
equivalent to f being right regular.

(b) (=⇒) By part (a), any right regular element f ∈ S is a linear monomorphism.
Furthermore, since by hypothesis L is co-Hopfian, these linear monomorphisms are
surjective. Thus, every right regular element of S is an isomorphism, that is, a unit
in S. Therefore, by Lemma 3.26, S is co-Hopfian.

(⇐=) Let f : L −→ L be a linear monomorphism. By Lemma 3.34, the mapping
f ◦ is an S-monomorphism. Furthermore, since S is co-Hopfian by hypothesis,
f ◦ is surjective. Therefore, there exists g ∈ S such that f ◦ g = IdL. Thus, f is
surjective.

(c) Let f ∈ S be right regular. By part (a), f is a linear monomorphism, so
it induces a lattice isomorphism of the form f : L −→ f(1L)/0L. Further, as L is
quasi-injective, there exists g ∈ S that makes the following diagram, where ι is the
inclusion mapping, commutative:

0 f(1)/0L L

L

ι

(f)−1
g

For x ∈ L, f(x) ∈ f(1L)/0L, so that

g
(
f(x)

)
= (f)−1(

f(x)
)

= x.

Therefore, g is a left inverse of f in S.
(d) As noted in part (a), Annr(f) = HomLM

(
L, kf/0L

)
for each f ∈ S. In

particular, when f ∈ Zr(S), we have that HomLM

(
L, kf/0L

)
is an essential right

ideal of S. Thus, by Theorem 3.17(a), we obtain that kf is essential in L. Therefore,

Zr(S) ⊆
{
f ∈ S|kf is essential in L

}
.

Now, for the second statement, let x ∈ L be an atom and let f ∈ Zr(S). Then,
as kf is essential in L, we obtain that kf ∧ x = x, that is, x ≤ kf . It follows that∨
x∈AL

x ≤ kf , and hence, that f
( ∨

x∈AL

x
)

= 0L. Therefore,

(Zr(S))(Soc(L)) = 0. □

Definition 3.36. Let L ∈ LM, and let S = EndLM(L). We call the set

Socr(S) =
⋃ {

I | I is a simple right ideal of S
}
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the right socle of S.

Lemma 3.37. A lattice L ∈ LM is semi-projective if and only if I = HomLM(L, IL)
for any principal right ideal I of S.

Proof. Let g ∈ S and I = g ◦ S. Since g ∈ I and f(1L) ≤ g(1L) for any f ∈ I, it
holds that

∨
f∈I

f(1L) = g(1L), that is, IL = g(S).

The result now follows from Theorem 3.11. □

Proposition 3.38. Let L ∈ LM be retractable and semi-projective, and let S =
EndLM(L). Then,

(a) Zr(S) = {f ∈ S| kf is essential in L};
(b)

(
Socr(S)

)
(L) = Soc(L);

(c) Socr(S) ⊆ HomLM

(
L, Soc(L)

)
.

Proof. (a) By Proposition 3.35(d), Zr(S) ⊆ {f ∈ S| kf is essential in L}. For
the reverse inclusion, let f ∈ S be such that kf is essential in L, that is, kf is
essential in 1L. Theorem 3.17(b) implies that HomLM

(
L, kf/0L

)
is essential in

HomLM

(
L, 1L/0L

)
= S. Also, note that Annr(f) = HomLM

(
L, kf/0L

)
. There-

fore, f ∈ Zr(S).
(b) As any simple ideal I of S is principal, we can express I = HomLM(L, IL),

because of Lemma 3.37. Bearing this in mind, according to Theorem 3.17(h), we
have that IL = aI/0L, where aI is an atom of L. This holds for any simple right
ideal I of S, implying that (Socr(S))(L) ⊆ Soc(L).

For the reverse inclusion, take any atom a ∈ L, and write I = HomLM(L, a/0L).
By Theorem 3.17(g), I is a simple right ideal of S. Given this and the fact that
IL = a/0L, it follows that Soc(L) ⊆ (Socr(S))(L).

(c) Due to Lemma 3.37, any simple right ideal I of S can be expressed as I =
HomLM(L, IL). Thus, by Theorem 3.17(g), the initial interval IL is simple, thus
obtaining that I ⊆ HomLM(L, Soc(L)). As the latter holds for any simple right
ideal I of S, it follows that Socr(S) ⊆ HomLM(L, Soc(L)). □

Definition 3.39. Let L ∈ LM and S = EndLM(L). We say that L is weakly co-
Hopfian if for each linear monomorphism f ∈ S, one has that f(1L) is an essential
element in L.
Regarding the monoid S, we say it is weakly co-Hopfian if for each S-monomorphism
φ : S −→ S, one has that φ(S) is an essential right ideal of S.

Example 3.40. Let P(N) denote the power set of the set of natural numbers N.
As any power set, P(N) is partially ordered by inclusion, and moreover, P(N) forms



ON SEMI-PROJECTIVE MODULAR LATTICES 125

a lattice with the join and meet operations defined as the union and intersection
of sets, respectively. Of course, 0P(N) = ∅ and 1P(N) = N. Now, we define f :
P(N) → P(N) through f : X 7→ 2X, where 2X = {2x | x ∈ X}. Note that f is a
linear monomorphism in S = EndLM(P(N)) with f(N) = 2N, the set of all even
natural numbers. However, the element 2N is not essential in P(N): 2N ∩ {3} = ∅.
Consequently, P(N) is not weakly co-Hopfian.

Example 3.41. Consider the unit interval [0, 1] with the order induced by the
usual order of R. The function f : [0, 1] → [0, 1] defined by the rule f(x) = x/2 is a
linear monomorphism. However, f is not surjective, so that the lattice [0, 1] is not
co-Hopfian.

Nevertheless, for any linear monomorphism g : [0, 1] → [0, 1], the element g(1L)
is greater than zero. This implies that g(1L) is essential in [0, 1]. Consequently,
[0, 1] is weakly co-Hopfian.

Recall that a complete modular lattice L is upper semicontinuous —or upper
continuous for short— if for every a ∈ L and any upper directed set D ⊆ L, one
has that

a ∧ (
∨

d∈D

d) =
∨

d∈D

(a ∧ d).

Definition 3.42. We say that an upper continuous complete modular lattice L has
finite uniform dimension if L has a finite maximal independent subset of uniform
elements.

According to [4, Theorem 8.1], the uniform dimension of an upper continuous
complete modular lattice of finite uniform dimension can be defined as the cardi-
nality of a maximal independent subset of nonzero uniform elements.

Also, [4, Theorem 8.2] ensures that an upper continuous complete modular lattice
L has finite uniform dimension if and only if L does not contain infinite independent
subsets.

Definition 3.43. Let L ∈ LM, and let S = EndLM(L). We say that S has finite
right uniform dimension if R(S) has finite uniform dimension, that is, if there is a
finite maximal independent subset of uniform right ideals of S.

In [5, Theorem 2.6(a)], the authors proved that a retractable semi-projective
module M has finite uniform dimension if and only if its endomorphism ring S has
finite right uniform dimension. Furthermore, these dimensions coincide. The next
example shows that the corresponding statement for linear modular lattices does
not hold.
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Example 3.44. Let L ∈ LM be the lattice of length 2 with countably infinite
many atoms:

•

a1 a2 . . .

•.
We established in Example 3.8 that L is retractable and semi-projective. One
verifies easily that L is upper continuous, and has a finite uniform dimension equal
to two. However, its endomorphism monoid S has a countably infinite independent
set of uniform right ideals, each of which has the form HomLM(L, ak/0L) with ak

an atom of L (these right ideals are uniform because of Theorem 3.17(e)).

Definition 3.45. We say that a lattice L ∈ LM is weakly compressible if for all
a ∈ L with a ̸= 0L, there exists a linear morphism f : L −→ a/0L such that f2 ̸= 0.

Example 3.46. The simple lattice is weakly compressible. In contrast, the lattice
L = {0, 1, 2}, with the order induced by N, is not weakly compressible. Indeed, the
only nonzero linear morphism f : {0, 1, 2} −→ {0, 1} satisfies f2 = 0.

Definition 3.47. A lattice L ∈ LM is cocyclic if it has an essential atom. Likewise,
we say that the monoid S = EndLM(L) is cocyclic if there exists a non-trivial
endomorphism f ∈ S that lies in every nonzero right ideal of S.

Definition 3.48. A lattice L ∈ LM is called finitely cogenerated if for any subset
{xa}a∈A ⊆ L such that

∧
a∈A

xa = 0L, there exists a finite subset F of A with∧
a∈F

xa = 0L.

Similarly, we say that the monoid S = EndLM(L) is finitely cogenerated if for
any collection of right ideals {Ia}a∈A of S such that

⋂
a∈A

Ia = {0}, there exists a

finite subset F of A with
⋂

a∈F

Ia = {0}.

We say that S is semiprime if for every right ideal I and 0 ̸= n ∈ N,

I ̸= {0} ⇒ In ̸= {0},

where In = {f1 ◦ . . . ◦ fn | fi ∈ I for each 1 ≤ i ≤ n}.

Theorem 3.49. Let L ∈ LM be a retractable and semi-projective lattice, and let
S = EndLM(L). Then, the following statements are true:

(a) L is weakly co-Hopfian if and only if S is weakly co-Hopfian.
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(b) HomLM(1L/a, L) = {0} for every essential element a ∈ L if and only if
Zr(S) = {0}.

(c) If L is weakly compressible, then S is semiprime.
(d) L is cocyclic if and only if S is cocyclic.
(e) If S is finitely cogenerated, then L is finitely cogenerated.

Proof. (a) (=⇒) Let φ : S −→ S be an S-monomorphism, and let f = φ(IdL).
Note that, for any g ∈ S,

φ(g) = φ(IdL ◦ g) = φ(IdL) ◦ g = f ◦ g.

Thus, we can express φ as φ = f ◦ . Then, L being retractable, Lemma 3.34
ensures that f is a monomorphism, and hence, f(1L) is essential in L because L is
weakly co-Hopfian. Recall also that, by Theorem 3.11, f◦S = HomLM

(
L, f(1L)/0L

)
.

Considering the above, if we let I = φ(S) = f ◦ S and J = S, then, observing that∨
i∈I

i(1L) = f(1L) and
∨

j∈J

j(1L) = 1L, Theorem 3.17(d) provides that φ(S) is

essential in S. Therefore, S is weakly co-Hopfian.
(⇐=) Let f : L −→ L be a linear monomorphism. Since L is retractable, we

can appeal to Lemma 3.34 to obtain the S-monomorphism (f ◦ ) : S −→ S.
Thus, as S is weakly co-Hopfian, f ◦ S is an essential right ideal of S. Then, by
Theorem 3.17(c), we have that f(1L) =

∨
s∈S

(f ◦s)(1L) is essential in 1L =
∨

s∈S

s(1L).

Therefore, L is weakly co-Hopfian.
(b) Note first that, since L is retractable and semi-projective,

Zr(S) = {f ∈ S|kf is essential in L}

due to Proposition 3.38(a).
(=⇒) Let f ∈ S be such that its kernel kf is essential in L. Write f : 1L/kf −→

f(1L)/0L for the induced lattice isomorphism and ι : f(1L)/0L ↪→ L for the inclu-
sion mapping. Then, the composite ι◦f : 1L/kf −→ L lies in HomLM

(
1L/kf , L

)
=

{0}. Thus, ι ◦ f is the trivial morphism, so that kf = 1L. Therefore, f = 0.
(⇐=) Let a ∈ L be an essential element, and let f ∈ HomLM

(
1L/a, L

)
. If

L
a∨

−−−−→ 1L/a denotes the linear morphism such that x 7−→ x ∨ a, then the com-
posite f ◦ (a ∨ ) ∈ S. Furthermore, the kernel of f ◦ (a ∨ ) is greater than or
equal to a, so it is essential in L. Hence, f ◦ (a ∨ ) ∈ Zr(S) = {0}, which implies
that f = 0. Therefore, HomLM

(
1L/a, L

)
= {0}.

(c) Let us assume that L is weakly compressible and that S is not semiprime.
Then, S has a right ideal I ̸= {0} such that Ik = {0} for some k ≥ 2. Take the
least such k, so that Ik−1 ̸= {0}. Now, let J be a non-trivial principal right ideal
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contained in Ik−1. Then, since L is semi-projective and weakly compressible, in
view of Lemma 3.37, there exists a linear morphism f ∈ HomLM(L, JL) = J such
that f2 ̸= 0. However, f2 ∈ I2k−2 = {0} since, as k ≥ 2, 2k − 2 ≥ k. Therefore, S
is semiprime.

(d) (=⇒) Let a ∈ L be an essential atom. Since L is semi-projective, Theorem
3.17, parts (b) and (g), gives that HomLM(L, a/0L) is a simple and essential right
ideal of S. It follows that any nonzero element of HomLM(L, a/0L) belongs to
every non-trivial right ideal of S.

(⇐=) There exists 0 ̸= g ∈ S such that g belongs to every non-trivial right ideal
of S. For each 0L ̸= x ∈ L, L being retractable, g ∈ HomLM(L, x/0L), so that
0L ̸= g(1L) ≤ x. This shows that g(1L) is an essential atom of L.

(e) Let {xa}a∈A ⊆ L be such that
∧

a∈A

xa = 0L. Then, the family{
HomLM(L, xa/0L)

}
a∈A

of right ideals of S satisfies that⋂
a∈A

HomLM

(
L, xa/0L

)
= HomLM

(
L, (

∧
a∈A

xa)/0L

)
= HomLM

(
L, 0

)
= {0}.

Thus, since S is finitely cogenerated, there exists a finite subset F of A such that⋂
a∈F

HomLM(L, xa/0L) = {0}.

Moreover, as

HomLM(L, (
∧

a∈F

xa)/0L) =
⋂

a∈F

HomLM(L, xa/0L) = {0},

and L is retractable, it follows that
∧

a∈F

xa = 0L. Therefore, L is finitely cogenerated.
□

Definition 3.50. We say a lattice L ∈ LM is directly finite if it is not isomorphic
to any initial interval a/0L, where a < 1L and a has a complement in L.

Lemma 3.51. Let L ∈ LM and suppose that f, g ∈ EndLM(L) are such that
f ◦ g = IdL. Then, f is an epimorphism, g is a monomorphism, and g(1L) and kf

are complements of each other in L.

Proof. Since f(g(1L)) = IdL(1L) = 1L, f is an epimorphism. Further, since

kg = IdL(kg) = f(g(kg)) = f(0L) = 0L,

g is a monomorphism.
Now, as f

(
g(1L) ∨ kf

)
= f(g(1L)) = 1L = f(1L), injectivity of 1L/kf

f−→ L

gives that g(1L) ∨ kf = 1L. Moreover, surjectivity of L g−→ g(1L)/0L gives y ∈ L

such that g(y) = g(1L) ∧ kf , so that
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y = IdL(y) = f(g(y)) = f(g(1) ∧ kf ) = 0L.

Therefore, g(1L) ∧ kf = g(0L) = 0L. □

Lemma 3.52. A lattice L ∈ LM is directly finite if and only if, for any f, g ∈
EndLM(L),

f ◦ g = IdL ⇒ g ◦ f = IdL.

Proof. (=⇒) If f ◦g = IdL, then, by Lemma 3.51, g is a monomorphism and g(1L)
has a complement in L. Now, as g induces a lattice isomorphism g : L −→ g(1L)/0L,
the hypothesis of L being directly finite implies that g(1L) = 1L. Therefore, g is a
lattice isomorphism. It now follows easily that f and g are inverse isomorphisms.

(⇐=) Suppose that L is not directly finite, that is, there exists an isomorphism
α : L → a/0L where a ̸= 1L has a complement c ∈ L . By modularity, a ∧ (−) :
1L/c → a/0L is an isomorphism with inverse c ∨ (−) : a/0L → 1L/c. Denote by
ι : a/0L → L the inclusion mapping. Consider the following diagram:

L a/0L L

a/0L 1L/c

α ι

c∨(−)α−1

a∧(−)

Set f = α−1 ◦ (a ∧ (−)) ◦ (c ∨ (−)) : L → L and g = ι ◦ α : L −→ L. Then,
clearly, f ◦ g = IdL, but (g ◦ f)(c) = (ι ◦α ◦α−1)(0L) = 0L ̸= c, so g ◦ f ̸= IdL. □

Definition 3.53. A lattice L ∈ LM is Hopfian if every linear epimorphism3 f :
L −→ L is a linear monomorphism.

Proposition 3.54. If L ∈ LM is semi-projective and co-Hopfian, then L is Hop-
fian.

Proof. Let f : L −→ L be a linear epimorphism. Since L is semi-projective, there
exists a linear morphism g : L −→ L that makes the diagram

L

L L 0

g
IdL

f

commutative, that is, f ◦ g = IdL. By Lemma 3.51, g is a monomorphism. Since L
is co-Hopfian, g is also an epimorphism and hence an isomorphism. It now follows
easily that f and g are inverse isomorphisms. In particular, f is a monomorphism,
which shows that L is Hopfian. □

3Let us call a linear morphism that is an epimorphism in the category LM a linear epimorphism.
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Proposition 3.55. If L ∈ LM is Hopfian, then L is directly finite.

Proof. If L is not directly finite, there exists an isomorphism γ : L −→ a/0L,
where a ̸= 1L has a complement c ∈ L \ {0}. By modularity, we also have an
isomorphism a ∧ (−) : 1L/c −→ a/0L. Set as f : L → L the composite

L
c∨(−)−→ 1L/c

a∧(−)−→∼= a/0L
γ−1

−→∼= L.

Observe that f is surjective but not injective, as f(c) = 0L = f(0L) and c ̸= 0L.
This implies that L is not Hopfian. □

According to [9, Proposition 3.5], in the context of a semi-projective module, the
attributes of being co-Hopfian, Hopfian, and directly finite are equivalent. Never-
theless, this equivalence does not hold for linear modular lattices, as demonstrated
by the following example.

Example 3.56. Consider the lattice L = {1/n}n∈N ∪ {0}, with the order induced
by R. We claim that L is a semi-projective lattice. Let 1/n/0 be a non-trivial initial
interval of L, and let L f−→ 1/n/0 be a linear epimorphism. Observe that, due to the
definition of L, each non-trivial initial interval is an infinite lattice, whereas each
quotient interval, apart from L itself, is a finite lattice. With this in mind, since f
induces a lattice isomorphism f̄ : 1/kf −→ 1/n/0, the only option for kf is kf = 0.
Furthermore,

f(1/x) = 1/x + (n − 1),

for all x ≥ 1.
The above argument applies to any non-trivial linear morphism g : L −→ 1/n/0:

g induces ḡ : 1/kg → g(1)/0, so that kg = 0, and, putting g(1) = 1/m (with m ≥ n),
it holds that

g(1/x) = 1L/x + (m − 1),

for all x ≥ 1. Therefore, the linear morphism L
h−→ L, given by h(0) = 0 and

h(1/x) = 1/x + (m − n), satisfies that f ◦ h = g. Therefore, L is semi-projective.
Let us now note that the lattice L is directly finite. This follows from the fact that

L is totally ordered, and therefore only 0 and 1 are complemented in L. Moreover,
L is not co-Hopfian since the linear morphism k : L −→ L such that k(0) = 0 and
k(1/n) = 1/(n+ 1) for n ≥ 1 is an injective mapping which is not surjective.

Lemma 3.57. Let L f−→ L be a linear epimorphism, and let a ∈ L. Then, the
mapping 1L/a

f |−→ 1L/f(a) is a linear morphism with kernel kf ∨ a.

Proof. For each x ∈ 1L/a,
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f |
(
(kf ∨ a) ∨ x

)
= f(kf ∨ a ∨ x) = f(kf ∨ x) = f(x) = f |(x).

Furthermore, the mapping f | : 1L/kf ∨ a −→ 1L/f(a) is a lattice isomorphism, as it
coincides with the restriction and corestriction of the lattice isomorphism f̄ induced
by f . □

Recall that an element a ∈ L is called superfluous in L if a ∨ b ̸= 1L holds for
every b ∈ L\{1L}.

Proposition 3.58. Let L ∈ LM be semi-projective, and let a ∈ L be superfluous
and strongly invariant in L. Then, L is Hopfian if and only if 1L/a is Hopfian.

Proof. (⇐=) Let f : L −→ L be a linear epimorphism. As L is semi-projective,
there exists a linear morphism g : L −→ L such that the following diagram is
commutative:

L

L L 0.

IdL
g

f

Thus, f ◦ g = IdL, so that, by Lemma 3.51, g is a monomorphism and the elements
g(1L) and kf are complements of each other.

Now, by Lemma 3.57, the mapping 1L/a
f |−→ 1L/f(a) is a linear morphism with

kernel kf ∨ a. Note that f(a) ≤ a because a is strongly invariant in L. Then,
the composition f ′ = ( ∨ a) ◦ f | : 1L/a −→ 1L/a produces a linear epimorphism.
Moreover, as 1L/a is Hopfian, f ′ is an isomorphism. Hence,

f ′(kf ∨ a) =
(
( ∨ a) ◦ f |

)
(kf ∨ a) = f(a) ∨ a = a = f ′(a).

Therefore, kf ∨ a = a, that is, kf ≤ a. Since a is superfluous in L, so is kf . Then,
since g(1L) ∨ kf = 1L, one has that g(1L) = 1L. Thus,

kf = 1L ∧ kf = g(1L) ∧ kf = 0L.

Consequently, f is a monomorphism, showing that L is Hopfian.
(=⇒) Let 1L/a

f−→ 1L/a be a linear epimorphism. Since L is semi-projective,
there exists a linear morphism g : L −→ L that makes the diagram

L

1L/a

L 1L/a 0

g

∨a

f

∨a
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commutative. Hence, ( ∨a) ◦ g is a linear epimorphism, and thus, g(1L)
∨
a = 1L.

Since a is superfluous in L, it follows that g(1L) = 1L, that is, g is an epimorphism.
Then, L being Hopfian implies that g is an isomorphism. Now, due to the com-
mutativity of the above diagram, we have that g(kf ) ∨ a = a. Thus, g(kf ) ≤ a, so
that

kf ≤ g−1(a) ≤ a ≤ kf ,

because of the strong invariance of a. Thus, kf = a, indicating that f is a lattice
monomorphism. Therefore, the lattice 1L/a is Hopfian. □

We say that a lattice L ∈ LM is coatomic if for every a ∈ L\{1L}, the quotient
interval 1L/a contains maximal proper elements. These maximal proper elements
are called coatoms, and the set of all coatoms of L is denoted by CL.

Corollary 3.59. Let L ∈ LM be semi-projective and coatomic. Then, L is Hopfian
if and only if 1L/

∧
c∈CL

c is Hopfian.

Proof. By Proposition 3.58, it suffices to show that the element Jac(L) =
∧

c∈CL

c is

superfluous and strongly invariant in L. Now, since L is coatomic, [3, Proposition
4.4](3) ensures that Jac(L) is a superfluous element in L and that

Jac(L) = Rad(L) =
∨

c∈S(L)
c,

where S(L) denotes the set of all superfluous elements of L. (Bear in mind that,
throughout [3], coatomicity is called “condition (KL)” — see the definition before
[3, Remark 4.2].) Lastly, it follows from [2, Proposition 2.2] that Rad(L) is strongly
invariant in L. □

Definition 3.60. For a lattice L ∈ LM, we introduce the following conditions:

D1: For each a ∈ L, there exists a complement c ∈ L such that c ≤ a and a is
superfluous in 1L/c.

D2: If a ∈ L is such that 1L/a ∼= c/0L, with c a complement in L, then a is a
complement.

D3: Given two complements k and c in L with k ∨ c = 1L, the element k ∧ c is
a complement.

Lemma 3.61. Let L ∈ LM be a D2 lattice, and let k, c ∈ L be two complements.
If k/0L

f−→ c/0L is a linear epimorphism, then the kernel kf is a complement in
L.
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Proof. As f is a linear epimorphism, k/kf
∼= c/0L. Further, if k∗ denotes a

complement of k in L, it holds, by modularity, that

k/kf = k/kf ∨ (k
∗ ∧ k) = k/(kf ∨ k

∗) ∧ k ∼= k ∨ (k
∗ ∨ kf )/kf ∨ k

∗ = 1L/kf ∨ k
∗.

Hence, as L satisfies condition D2, kf ∨ k∗ is a complement in L. Let w ∈ L be a
complement of kf ∨ k∗. We claim that k∗ ∨ w is a complement of kf in L. Indeed,
on one end,

kf ∨ (k∗ ∨ w) = (kf ∨ k∗) ∨ w = 1L.

On the other end, by modularity,

k∗ ∨ (kf ∧ (k∗ ∨ w)) = (k∗ ∨ kf ) ∧ (w ∨ k∗) =
(
(k∗ ∨ kf ) ∧ w

)
∨ k∗ = k∗.

Thus, kf ∧ (k∗ ∨ w) ≤ k∗. Also, kf ∧ (k∗ ∨ w) ≤ kf ≤ k, so that

kf ∧ (k∗ ∨ w) ≤ k∗ ∧ k = 0L. □

Proposition 3.62. Let L ∈ LM. If L is a D2 lattice, then L is a D3 lattice.

Proof. Let k and c be two complements in L with k∨c = 1L. If k∗ is a complement
of k in L, then, by modularity,

k∗/0L
∼= 1L/k = c ∨ k/k ∼= c/k ∧ c.

Then, there is a lattice isomorphism c/k ∧ c
h−→ k∗/0L. Thus, writing c/0L

ρ−→
c/(k∧c) for the canonical epimorphism, the composition f = h◦ρ : c/0L −→ k∗/0L

yields a linear epimorphism. Hence, by Lemma 3.61, we have that k ∧ c = kf is a
complement in L. □

Lemma 3.63. Any semi-projective lattice L ∈ LM is a D2 lattice.

Proof. Let a, c ∈ L such that 1L/a
β∼= c/0L, with c a complement in L. Then, there

exists a linear epimorphism f = β ◦ ( ∨a) : L −→ c/0L. Let c′ be a complement of
c in L, so that, by modularity, 1L/c

′
γ∼= c/0L. Then, there is a linear epimorphism

g = γ◦( ∨c′) : L −→ c/0L. As L is semi-projective, there exists a linear morphism
h : L −→ L such that the diagram

L

L c/0L 0

h g

f

is commutative. We claim that h(c) is a complement of a in L. On the one hand,
observe that
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f(h(c) ∨ a) = f(h(c)) = g(c) = g(c ∨ c′) = g(1L) = c.

Since f : 1L/a −→ c/0L is a lattice isomorphism, it follows that h(c)
∨
a = 1L.

On the other hand, as the restriction g| : c/0L −→ c/0L is a lattice isomorphism,
so is (f ◦ h)| : c/0L −→ c/0L. Thus, the restriction of h to c/0L is an injective
linear morphism, so it induces a lattice isomorphism from c/0L to h(c)/0L. Let then
y ∈ c/0L such that h(y) = h(c) ∧ a. Then,

0L = f(h(c) ∧ a) = f(h(y)) = g(y).

Therefore, y = 0L, and thence, h(c) ∧ a = 0L. □

Definition 3.64. Let L ∈ LM. We say that L is lifting if it satisfies condition D1.
Moreover, we say that L is discrete if it is lifting and satisfies condition D2 and
that it is quasi-discrete if it is lifting and satisfies condition D3.

Theorem 3.65. Let L ∈ LM be semi-projective. Then, the following statements
are equivalent:

(1) L is discrete.
(2) L is quasi-discrete.
(3) L is lifting.

Proof. (1) =⇒ (2) By Proposition 3.62.
(2) =⇒ (3) By definition.
(3) =⇒ (1) By Lemma 3.63, seeing as L is semi-projective. □

Definition 3.66. A lattice L ∈ LM is hollow if each proper element of L is
superfluous in L.

Definition 3.67. We say that a lattice L ∈ LM is indecomposable if the only
complements in L are 0L and 1L.

Proposition 3.68. Let L ∈ LM be indecomposable and semi-projective. Then, L
is discrete if and only if L is hollow.

Proof. (=⇒) As L is discrete, it is lifting. Then, for proper x ∈ L, there exists a
complement c ≤ x such that x is superfluous in 1L/c. Since L is indecomposable,
necessarily c = 0L, so that x is superfluous in L. Hence, L is hollow.

(⇐=) Note first that, trivially, 1L is superfluous in 1L/1L. For proper x ∈ L,
x is superfluous in L = 1L/0L, because L is hollow. Since 0L and 1L are always
complements in L, it follows that L is lifting. Now, as L is semi-projective, Lemma
3.63 provides that L satisfies condition D2. Therefore, L is discrete. □
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Definition 3.69. We say that a lattice L ∈ LM is pseudo semi-projective if for
any two linear morphisms f, g ∈ EndLM(L) with f(1L) = g(1L), there exists
h ∈ EndLM(L) such that f ◦ h = g.

Remark 3.70. Any semi-projective lattice is pseudo semi-projective.

Next, we show a lattice that is not pseudo semi-projective, and a lattice that is
pseudo semi-projective but not semi-projective.

Example 3.71. Consider the lattice L = {1}∪{1−1/n}n∈N with the order induced
by R. Observe that the only infinite initial interval of L is L. Further, the quotient
interval 1L/kf is infinite for any 0 ̸= f ∈ EndLM(L). Thus, the induced lattice
isomorphism f : 1/kf −→ f(1)/0 shows that any nonzero endomorphism must be a
linear epimorphism.

Now, let us define the linear epimorphism g : L −→ L such that g(1) = 1,
g(0) = 0, g(1/2) = 0 and g(1 − 1/n) = 1 − 1/n − 1 for all n ≥ 3. Then, for the
diagram

L

L L 0,

IdL

g

there is no h ∈ EndLM(L) such that g ◦ h = IdL. Indeed, if such an epimorphism
existed, there would be x, y ∈ L such that h(x) = 0 and h(y) = 1/2. Then

x = IdL(x) = (g ◦ h)(x) = 0 = (g ◦ h)(y) = IdL(y) = y,

so that h(x) = h(y), a contradiction. Hence, L is not a pseudo semi-projective
lattice.

Example 3.72. Let us denote by L the following lattice:
5

4

3a 3b

2

1

0
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We claim that L is not semi-projective. Indeed, consider the linear morphisms f :
L −→ 2/0 and g : L −→ 2/0, with induced lattice isomorphisms f : 5/3a −→ 2/0
and g : 5/4 −→ 1/0, respectively. Then, if h ∈ EndLM(L) were such that f ◦h = g,
we would have that f(h(5)) = g(5) = 1, so that h(5) = 4 or h(5) = 3b. However,
both options are not possible since L has no quotient intervals isomorphic to 4/0
nor to 3b/0.

Let us now show that L is pseudo semi-projective. We have already observed
that only the initial intervals 0/0, 1/0, 2/0 and L itself are isomorphic to a quotient
interval of L. Thus, the kernel of any linear endomorphism of L lies in the set
{5, 4, 3a, 3b, 0}. Let f, g ∈ EndLM(L) be such that f(5) = g(5). As

5/kf
∼= f(5)/0 = g(5)/0 ∼= 5/kg,

either kf = kg or kf and kg are different and non-comparable.
Suppose first that kf ̸= kg. Then, either kf = 3a and kg = 3b, or kf = 3b

and kg = 3a. As these two cases are symmetric, we will assume that kf = 3a

and kg = 3b. Thus, since 5/3a
f̄∼= f(5)/0 and 5/3b

ḡ∼= g(5)/0, it follows that f(5) =
2 = g(5) and f(4) = 1 = g(4). Also, f(3a/0) = f(kf/0L) = {0} = g(3b/0) and
f(3b) = f(kf ∨ 3b) = f(3a ∨ 3b) = f(4) = 1 = g(3a). Set h : L → L such that
h(3a) = 3b, h(3b) = 3a and h(x) = x for every other x ∈ L. Then, clearly, h is a
lattice isomorphism and f ◦ h = g.

Similar arguments show that f = g whenever kf = kg = 3a, kf = kg = 3b,
kf = kg = 4 or kf = kg = 5. Therefore, in these four cases f ◦ IdL = g.

Lastly, if kf = kg = 0, then f and g are linear monomorphisms, and thus, L
being finite, lattice isomorphisms. Hence, f ◦ (f−1 ◦ g) = g.

Therefore, L is a pseudo semi-projective lattice.

The reasoning behind Proposition 3.6 may also be used to obtain

Lemma 3.73. A lattice L ∈ LM is pseudo semi-projective if and only if for any
f, g ∈ EndLM(L) with f(1L) = g(1L), one has that f ◦EndLM(L) = g◦EndLM(L).

Remark 3.74. In the proof of Lemma 3.63, it holds that f(1L) = g(1L). Thus,
we can strengthen that lemma by saying that every pseudo semi-projective lattice
is a D2 lattice.

Remark 3.75. For pseudo semi-projective L ∈ LM, if f, g ∈ EndLM(L) are such
that f(1L) = g(1L) and kf is superfluous in L, then the linear morphism h that
makes the diagram
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L

L f(1L)/0L 0

h g

f

commutative is an epimorphism. Indeed,

f(h(1L) ∨ kf ) = f(h(1L)) = g(1L) = f(1L).

Since f̄ : 1L/kf −→ f(1L)/0L is a lattice isomorphism, h(1L) ∨ kf = 1L. Then,
h(1L) = 1L, so that h is a linear epimorphism.

Proposition 3.76. If L ∈ LM is pseudo semi-projective and hollow, then L is
Hopfian.

Proof. Note that the zero lattice is Hopfian. Assume then that L is non-trivial. Let
f ∈ EndLM(L) be an epimorphism, and let us consider the following commutative
diagram:

L

L L 0

h IdL

f

Since L is hollow, the element kf is superfluous in L, so, by Remark 3.75, h is an
epimorphism. Let y ∈ L be such that h(y) = kf . Then,

y = IdL(y) = f(h(y)) = f(kf ) = 0L.

So that kf = h(0L) = 0L. Therefore, L is Hopfian. □

Proposition 3.55 directly provides

Corollary 3.77. If L ∈ LM is pseudo semi-projective and hollow, then L is directly
finite.
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