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Abstract. A Com-PreLie bialgebra is a commutative bialgebra with an extra

preLie product satisfying some compatibilities with the product and the co-

product. We here give examples of cofree Com-PreLie bialgebras, including all

the ones such that the preLie product is homogeneous of degree ⩾ −1. We also

give a graphical description of free unitary Com-PreLie algebras, explicit their

canonical bialgebra structure and exhibit with the help of a rigidity theorem

certain cofree quotients, including the Connes-Kreimer Hopf algebra of rooted

trees. We finally prove that the dual of these bialgebras are also enveloping

algebras of preLie algebras, combinatorially described.
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1. Introduction

Com-PreLie bialgebras, introduced in [5,6], are commutative bialgebras with an

extra preLie product, compatible with the product and coproduct, see Definition 2.1

below. They appeared in Control Theory, as the Lie algebra of the group of Fliess

operators [7] naturally owns a Com-PreLie bialgebra structure, and its underlying

bialgebra is a shuffle Hopf algebra. Free (non unitary) Com-PreLie bialgebras were

also described, in terms of partitioned rooted trees.

We here give examples of connected cofree Com-PreLie bialgebras. As co-

commutative cofree bialgebras are, up to isomorphism, shuffle algebras Sh(V ) =

(T (V ),�,∆), where V is the space of primitive elements, we firstly character-

ize Com-PreLie bialgebras structures on Sh(V ) in term of operators ϖ : T (V ) ⊗
T (V ) −→ V , satisfying two identities, see Proposition 3.4. In particular, if we

assume that the obtained preLie bracket is homogeneous of degree 0 for the gradu-

ation of Sh(V ) by the length, then ϖ is reduced to a linear map f : V −→ V , and
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Résurgence, Probabilités Libres et Opérades.
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the obtained preLie product is given by (Proposition 3.6):

∀x1, . . . , xm, y1, . . . , yn ∈ V,

x1 . . . xm • y1 . . . yn =

n∑
i=0

x1 . . . xi−1f(xi)(xi+1 . . . xm � y1 . . . yn).

In particular, if V = Vect(x0, x1) and f is defined by f(x0) = 0 and f(x1) = x0,

we obtain the Com-PreLie bialgebra of Fliess operators in dimension 1. If we

assume that the obtained preLie bracket is homogeneous of degree −1, then ϖ is

given by two bilinear products ∗ and {−,−} on V such that ∗ is preLie, {−,−} is

antisymmetric and for all x, y, z ∈ V ,

x ∗ {y, z} = {x ∗ y, z},

{x, y} ∗ z = {x ∗ y, z}+ {x, y ∗ z}+ {{x, y}, z}.

This includes preLie products on V when {−,−} = 0 and nilpotent Lie algebras of

nilpotency order 2 when ∗ = 0, see Proposition 3.9.

We then extend the construction of free Com-PreLie algebras of [5] in terms of

partitioned trees (see Definition 4.1) to free unitary Com-PreLie algebras UCP(D),

with the help of a complementary decoration by integers. We obtain free Com-

PreLie algebras CP(D) as the augmentation ideal of a quotient of UCP(D), the

right action of the unit ∅ on the generators of UCP(D) being arbitrarily chosen

(Proposition 4.8). Recall that partitioned trees are rooted forests with an extra

structure of a partition of its vertices into blocks; forgetting the blocks, we obtain

the Connes-Kreimer Hopf algebraHCK of rooted trees [3], which is given in this way

a natural structure of Com-PreLie bialgebra (Proposition 4.10). Using Livernet’s

rigidity theorem for preLie algebras, we prove that the augmentation ideals of

UCP(D) and CP(D) are free as preLie algebras. Theorem 5.11 is a rigidity theorem

which gives a simple criterion for a connected (as a coalgebra) Com-PreLie bialgebra

to be cofree, in terms of the right action of the unit on its primitive elements.

Applied to CP(D) andHCK , it proves that they are isomorphic to shuffle bialgebras,

which was already known for HCK . We also consider the dual Hopf algebras of

UCP(D) and CP(D): as these Hopf algebras are right-sided combinatorial in the

sense of [11], there dual are enveloping algebras of other preLie algebras, which we

explicitly describe in Theorem 5.14, and then compare to the original Com-PreLie

algebras.

This text is organized as follows: the first section contains reminders and lemmas

on Com-PreLie algebras, including the extension of the Guin-Oudom extension of

the preLie product in the Com-PreLie case. The second section deals with the

characterization of preLie products on shuffle algebras. The next section contains

the description of free unitary Com-PreLie algebras and two families of quotients,
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whereas the fifth and last one contains results on the bialgebraic structures of these

objects: existence of the coproduct, the rigidity theorem 5.11 and its applications,

the dual preLie algebras, and an application to a family of subalgebras, named

Connes-Moscovici subalgebras.

Notations 1.1. (1) Let K be a commutative field of characteristic zero. All

the objects (vector spaces, algebras, coalgebras, preLie algebras, . . .) in this

text will be taken over K.

(2) For all n ∈ N, we denote by [n] the set {1, . . . , n}. In particular, [0] = ∅.

2. Reminders on Com-PreLie algebras

Let V be a vector space.

• We denote by T (V ) the tensor algebra of V . Its unit is the empty word,

which we denote by ∅. The element v1⊗. . .⊗vn ∈ V ⊗n, with v1, . . . , vn ∈ V ,

will be shortly denoted by v1 . . . vn. The deconcatenation coproduct of T (V )

is defined by

∀v1, . . . , vn ∈ V, ∆(v1 . . . vn) =

n∑
i=0

v1 . . . vi ⊗ vi+1 . . . vn.

The shuffle product of T (V ) is denoted by �. Recall that it can be induc-

tively defined by

∀x, y ∈ V, ∀u, v ∈ T (V ), ∅� v = 0, xu� yv = x(u� yv) + y(xu� v).

For example, if v1, v2, v3, v4 ∈ V ,

v1 � v2v3v4 = v1v2v3v4 + v2v1v3v4 + v2v3v1v4 + v2v3v4v1,

v1v2 � v3v4 = v1v2v3v4 + v1v3v2v4 + v1v3v4v2 + v3v1v2v4 + v3v1v4v2 + v3v4v1v2,

v1v2v3 � v4 = v1v2v3v4 + v1v2v4v3 + v1v2v4v3 + v1v4v2v3 + v4v1v2v3.

Sh(V ) = (T (V ),�,∆) is a Hopf algebra, known as the shuffle algebra of

V .

• S(V ) is the symmetric algebra of V . It is a Hopf algebra, with the coproduct

defined by

∀v ∈ V, ∆(v) = v ⊗ ∅+ ∅ ⊗ v.

• coS(V ) is the subalgebra of (T (V ),�) generated by V . It is the greatest

cocommutative Hopf subalgebra of (T (V ),�,∆), and is isomorphic to S(V )

via the algebra morphism

θ :

{
(S(V ),m,∆) −→ (coS(V ),�,∆)

v1 . . . vk −→ v1 � . . .� vk.
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2.1. Definitions.

Definition 2.1. (1) A Com-PreLie algebra [5,6] is a family A = (A, ·, •), where
A is a vector space, · and • are bilinear products on A, such that

∀a, b ∈ A, a · b = b · a,

∀a, b, c ∈ A, (a · b) · c = a · (b · c),

∀a, b, c ∈ A, (a • b) • c− a • (b • c) = (a • c) • b− a • (c • b) (preLie identity),

∀a, b, c ∈ A, (a · b) • c = (a • c) · b+ a · (b • c) (Leibniz identity).

In particular, (A, ·) is an associative, commutative algebra and (A, •) is a

right preLie algebra. We shall say that A is unitary if the algebra (A, ·) is
unitary.

(2) A Com-PreLie bialgebra is a family (A, ·, •,∆), such that

(a) (A, ·, •) is a unitary Com-PreLie algebra.

(b) (A, ·,∆) is a bialgebra.

(c) For all a, b ∈ A, ∆(a • b) = a(1) ⊗ a(2) • b+ a(1) • b(1) ⊗ a(2) · b(2), with
Sweedler’s notation ∆(x) = x(1) ⊗ x(2).

Remark 2.2. If (A, ·, •,∆) is a Com-PreLie bialgebra, then for any λ ∈ K, also is

(A, ·, λ•,∆).

Lemma 2.3. (1) Let (A, ·, •) be a unitary Com-PreLie algebra. Its unit is

denoted by ∅. For all a ∈ A, ∅ • a = 0.

(2) Let A be a Com-PreLie bialgebra, with counit ε. For all a, b ∈ A, ε(a • b) =
0.

Proof. (1) Indeed, ∅ • a = (∅ · ∅) • a = (∅ • a) · ∅+ ∅ · (∅ • a) = 2(∅ • a), so ∅ • a = 0.

(2) For all a, b ∈ A,

ε(a • b) = (ε⊗ ε) ◦∆(a • b)

= ε(a(1))ε(a(2) • b) + ε(a(1) • b(1))ε(a(2) · b(2))

= ε(a(1))ε(a(2) • b) + ε(a(1) • b(1))ε(a(2))ε(b(2))

= ε(a • b) + ε(a • b),

so ε(a • b) = 0. □

Remark 2.4. Let us give a few reminders on the (dual) Hochschild cohomology

for coalgebras, also called Cartier-Quillen cohomology, see [3]. Let (C,∆) be a

coalgebra, and (M,ρL, ρR) be a bicomodule over C, with left coaction ρL and right

coaction ρR. An n-cochain is a map L : M −→ C⊗n. The coboundary d is given
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on any n-cochain n by

d(L) = (Id⊗ L) ◦ ρL +

n∑
i=1

(Id⊗(i−1) ⊗∆⊗ Id⊗(n−i)) ◦ L+ (−1)n−1(L⊗ Id) ◦ ρR.

In particular, if (B,m,∆) is a bialgebra, we can consider the bicomodule (M,ρL, ρR)

defined by M = B, ρR = ∆ and

∀x ∈ B, ρL(x) = 1⊗ x.

A 1-cocycle is then a map L : B −→ B such that for any x ∈ B,

∆ ◦ L(x) = 1⊗ L(x) + (L⊗ Id) ◦∆.

Observe that in any Com-PreLie bialgebra A, if a is primitive, for any b ∈ A,

∆(a • b) = ∅ ⊗ a • b+ a • b(1) ⊗ b(2). (1)

Therefore, the map b 7→ a • b is a 1-cocycle for this cohomology.

2.2. Linear endomorphism on primitive elements.

Notations 2.5. If A is a bialgebra, we denote by Prim(A) the space of its primitive

elements.

Proposition 2.6. Let A be a Com-PreLie bialgebra. Its unit is denoted by ∅.

(1) If x ∈ Prim(A), then x • ∅ ∈ Prim(A). We denote by fA the map

fA :

{
Prim(A) −→ Prim(A)

a −→ a • ∅.

(2) Prim(A) is a preLie subalgebra of (A, •) if and only if fA = 0.

Proof. (1) Indeed, if a is primitive, then

∆(a•∅) = a⊗∅•∅+∅⊗a•∅+a•∅⊗∅ · ∅+∅•∅⊗a · ∅ = 0+∅⊗∅•a+a•∅⊗∅+0,

so a • ∅ is primitive.

(2) Let a, b ∈ Prim(A). Then

∆(a • b) = a⊗ ∅ • b+ ∅ ⊗ a • b+ ∅ • ∅ ⊗ a · b+ a • ∅ ⊗ b+ ∅ • b⊗ a+ a • b⊗ ∅

= ∅ ⊗ a • b+ a • b⊗ ∅+ fA(a)⊗ b.

Hence, Prim(A) is a preLie subalgebra if and only if for any a, b ∈ A, fA(a)⊗b = 0,

that is to say if and only if fA = 0. □
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2.3. Extension of the pre-Lie product. Let A be a Com-PreLie algebra. It is

a Lie algebra, with the bracket defined by

∀x, y ∈ A, [x, y] = x • y − y • x.

We shall use the Oudom-Guin construction of its enveloping algebra [12,13]. In

order to avoid confusions, we shall denote by × the usual product of S(A) and by

1 its unit. We extend the preLie product • into a product from S(A) ⊗ S(A) into

S(A) by

• If a1, . . . , ak ∈ A, (a1 × . . .× ak) • 1 = a1 × . . .× ak.

• If a, a1, . . . , ak ∈ A,

a•(a1×. . .×ak) = (a•(a1×. . .×ak−1))•ak−
k−1∑
i=1

a•(a1×. . .×(ai•ak)×. . .×ak−1).

• If x, y, z ∈ S(A), (x×y)•z = (x•z(1))× (y •z(2)), where ∆(z) = z(1)⊗z(2)

is the usual coproduct of S(A).

Notations 2.7. If c1, . . . , cn ∈ A and I = {i1, . . . , ik} ⊆ [n], we put

×∏
i∈I

ci = ci1 × . . .× cik .

Proposition 2.8. (1) Let A be a Com-PreLie algebra. If a, b, c1, . . . , cn ∈ A,

(a · b) • (c1 × . . .× ck) =
∑
I⊆[n]

(
a •

×∏
i∈I

ci

)
·

(
b •

×∏
i/∈I

ci

)
.

(2) Let A be a Com-PreLie bialgebra. If a, b1, . . . , bn ∈ A,

∆(a • (b1 × . . .× bn)) =
∑
I⊆[n]

a(1) •

( ×∏
i∈I

b
(1)
i

)
⊗

(∏
i∈I

b
(2)
i

)
a(2) •

( ×∏
i/∈I

bi

)
.

Proof. These are proved by direct, but quite long, inductions on n. □

Lemma 2.9. Let A be a Com-PreLie bialgebra. For all a ∈ Prim(A), k ⩾ 0,

b1, . . . , bl ∈ A, a • ∅×k × b1 × . . .× bl = fkA(a) • b1 × . . .× bl.
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Proof. This is obvious if k = 0. Let us prove it for k = 1 by induction on l. It is

obvious if l = 0. Let us assume the result at rank l − 1. Then

a • ∅ × b1 × . . .× bl = (a • ∅ × b1 × . . .× bl−1) • bl + a • (∅ • bl)× b1 × . . .× bl−1

+

l−1∑
i=1

a • ∅ × b1 × . . .× (bi • bl)× . . .× bl−1

= (fA(a) • b1 × . . .× bl−1) • bl + 0

+

l−1∑
i=1

fA(a) • b1 × . . .× (bi • bl)× . . .× bl−1

= fA(a) • b1 × . . .× bl.

The result is proved for k ⩾ 2 by an induction on k. □

3. Examples on shuffle algebras

3.1. Preliminary lemmas. We shall denote by π : T (V ) −→ V the canonical

projection.

Lemma 3.1. Let ϖ : T (V )⊗ T (V ) −→ V be a linear map.

(1) There exists a unique map • : T (V )⊗ T (V ) −→ T (V ) such that

(a) π ◦ • = ϖ.

(b) For all u, v ∈ T (V ),

∆(u • v) = u(1) ⊗ u(2) • v + u(1) • v(1) ⊗ u(2) � v(2). (2)

This product • is given by

∀u, v ∈ T (V ), u • v = u(1)ϖ(u(2) ⊗ v(1))(u(3) � v(2)). (3)

(2) The following conditions are equivalent:

(a) For all u, v, w ∈ T (V ),

(u� v) • w = (u • w)� v + u� (v • w).

(b) For all u, v, w ∈ T (V ),

ϖ((u� v)⊗ w) = ε(u)ϖ(v ⊗ w) + ε(v)ϖ(u⊗ w). (4)

(3) Let N ∈ Z. The following conditions are equivalent:

(a) • is homogeneous of degree N , that is to say

∀k, l ⩾ 0, V ⊗k • V ⊗l ⊆ V ⊗(k+l+N).

(b) For all k, l ⩾ 0, such that k + l +N ̸= 1, ϖ(V ⊗k ⊗ V ⊗l) = (0).

We use the convention V ⊗p = (0) if p < 0.
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Proof. (1) Existence. Let • be the product on T (V ) defined by

∀u, v ∈ T (V ), u • v = u(1)ϖ(u(2) ⊗ v(1))(u(3) � v(2)).

As ϖ takes its values in V , for all u, v ∈ T (V ),

π(u • v) = ε(u(1))ϖ(u(2) ⊗ v(1))ε(u(3) � v(2))

= ε(u(1))ϖ(u(2) ⊗ v(1))ε(u(3))ε(v(2))

= ϖ(u⊗ v).

We denote by m the concatenation product of T (V ). As (T (V ),m,∆) is an infini-

tesimal bialgebra (see [9,10]), for all u, v ∈ T (V ),

∆(u • v) = u(1) ⊗ u(2)ϖ(u(3) ⊗ v(1))(u(4) � v(2)) + u(1)ϖ(u(2) ⊗ v(1))⊗ u(3) � v(2)

+ u(1) ⊗ϖ(u(2) ⊗ v(1))(u(3) � v(2))

+ u(1)ϖ(u(2) ⊗ v(1))(u(3) � v(2))⊗ u(4) � v(3)

− u(1)ϖ(u(2) ⊗ v(1))⊗ u(3) � v(2) − u(1) ⊗ϖ(u(2) ⊗ v(1))(u(3) ⊗ v(2))

= u(1) ⊗ u(2)ϖ(u(3) ⊗ v(1))(u(4) � v(2))

+ u(1)ϖ(u(2) ⊗ v(1))(u(3) � v(2))⊗ u(4) � v(3)

= u(1) ⊗ u(2) • v + u(1) • v(1) ⊗ u(2) � v(2).

Unicity. Let ⋄ be another product satisfying the required properties. Let us

denote that u ⋄ v = u • v for any words u, v of respective lengths k and l. If k = 0,

then we can assume that u = ∅. We proceed by induction on l. If l = 0, then we

can assume that v = ∅. By (2), ∅ • ∅ and ∅ ⋄ ∅ are primitive elements of T (V ), so

belong to V . Hence,

∅ • ∅ = π(∅ • ∅) = ϖ(∅ ⊗ ∅) = π(∅ ⋄ ∅) = ∅ ⋄ ∅.

If l ⩾ 1, then, by (2),

∆(∅ • v) = ∅ ⊗ ∅ • v + ∅ • v ⊗ ∅+ ∅ • ∅ ⊗ v + ∅ • v(1) ⊗ v(2),

∆̃(∅ • v) = ∅ • ∅ ⊗ v + ∅ • v(1) ⊗ v(2).

The same computation for ⋄ and the induction hypothesis on l, applied to (∅, v(1)),
imply that ∆̃(∅ • v − ∅ ⋄ v) = 0, so ∅ • v − ∅ ⋄ v ∈ V . Finally,

∅ • v − ∅ ⋄ v = π(∅ • v − ∅ ⋄ v) = ϖ(∅ ⊗ v − ∅ ⊗ v) = 0.

If k ⩾ 1, we proceed by induction on l. If l = 0, we can assume that v = ∅; (2)
implies that ∆̃(u • ∅ − u ⋄ ∅) = 0, so u • ∅ − u ⋄ ∅ = 0 and, applying π, finally
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u • ∅ = u ⋄ ∅. If l ⩾ 1, by (2), the induction hypothesis on k applied to (u(1), v) and

the induction hypothesis on l applied to (u, ∅) and (u, v(1)) gives

∆̃(u • v) = u(1) ⊗ u(2) • v + u • ∅ ⊗ v + u • v(1) ⊗ v(2)

= u(1) ⊗ u(2) ⋄ v + u ⋄ ∅ ⊗ v + u ⋄ v(1) ⊗ v(2) = ∆̃(u ⋄ v).

As before, u • v = u ⋄ v.
(2) =⇒ As ϖ takes its values in V , we have

ϖ(u� v)⊗ w) = ϖ((u • w)� v + u� (v • w))

= ε(v)ϖ(u⊗ w) + ε(u)ϖ(v ⊗ w).

⇐= For all u, v, w ∈ T (V ),

(u� v) • w = (u(1) � v(1))ϖ((u(2) � v(2))⊗ w(1))(u(3) � v(3) � w(2))

= ε(u(2))(u(1) � v(1))ϖ(v(2) ⊗ w(1))(u(3) � v(3) � w(2))

+ ε(v(2))(u(1) � v(1))ϖ(u(2) ⊗ w(1))(u(3) � v(3) � w(2))

= (u(1) � v(1))ϖ(v(2) ⊗ w(1))(u(2) � v(3) � w(2))

+ (u(1) � v(1))ϖ(u(2) ⊗ w(1))(u(3) � v(2) � w(2))

= u�
(
v(1)ϖ(v(2) ⊗ w(1))(v(3) � w(2))

)
+ v�

(
u(1)ϖ(u(2) ⊗ w(1))(u(3) � w(2))

)
= u� (v • w) + (u • w)� v.

So the compatibility between � and • is satisfied.

(3) (a) =⇒ (b) immediately implied by ϖ = π ◦ •. (b) =⇒ (a) comes from

(3). □

Remark 3.2. If (4) is satisfied, for u = v = ∅, we obtain

∀w ∈ T (V ), ϖ(∅ ⊗ w) = 0.

Lemma 3.3. Let ϖ : T (V )⊗ T (V ) −→ V , satisfying (4), and let • be the product

associated to ϖ in Lemma 3.1. Then (T (V ),�, •,∆) is a Com-PreLie bialgebra if

and only if

∀u, v, w ∈ T (V ),

ϖ(u • v ⊗ w)−ϖ(u⊗ v • w) = ϖ(u • w ⊗ v)−ϖ(u⊗ w • v). (5)

Proof. =⇒ This is immediately obtained by applying π to the preLie identity, as

ϖ = π ◦ •.
⇐= By Lemma 3.1, it remains to prove that • is preLie. For any u, v, w ∈ T (V ),

we put PL(u, v, w) = (u•v)•w−u• (v •w)− (u•w)•v+u• (w •v). By hypothesis,
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π ◦ PL(u, v, w) = 0 for any u, v, w ∈ T (V ). Let us prove that PL(u, v, w) = 0 for

any u, v, w ∈ T (V ). A direct computation using (2) shows that

∆(PL(u, v, w)) = u(1) ⊗ PL(u(2), v, w)⊗ u(1)

+ PL(u(1), v(1), w(1))⊗ u(2) � v(2) � w(2). (6)

Let v ∈ T (V ). Then

∅ • v = (∅� ∅) • v = (∅ • v)� ∅+ ∅� (∅ • v) = 2∅ • v,

so ∅ • v = 0 for any v ∈ T (V ). Hence, for any v, w ∈ T (V ), PL(∅, v, w) = 0: by

trilinearity of PL, we can assume that ε(u) = 0. In this case, (6) becomes

∆(PL(u, v, w)) = ∅ ⊗ PL(u, v, w) + PL(u, v(1), w(1))⊗ v(2) � w(2)

+ PL(u(1), v(1), w(1))⊗ u(2) � v(2) � w(2).

We assume that u, v, w are words of respective lengths k, l and n, with k ⩾ 1. Let

us first prove that PL(u, v, w) = 0 if l = 0, or equivalently if v = ∅, by induction

on n. If n = 0, then we can take w = ∅ and, obviously, PL(u, ∅, ∅) = 0. If n ⩾ 1,

(6) becomes

∆(PL(u, ∅, w)) = ∅ ⊗ PL(u, v, w) + PL(u, ∅, w(1))⊗ w(2)

= ∅ ⊗ PL(u, v, w) + PL(u, ∅, w)⊗ ∅+ PL(u, ∅, w(1))⊗ w(2).

By the induction hypothesis on n, PL(u, ∅, w(1)) = 0, so PL(u, ∅, w) is primitive,

so belongs to V . As π ◦ PL = 0, PL(u, ∅, w) = 0.

Therefore, we can now assume that l ⩾ 1. By symmetry in v and w, we can

also assume that n ⩾ 1. Let us now prove that PL(u, v, w) = 0 by induction on

k. If k = 0, there is nothing more to prove. If k ⩾ 1, we proceed by induction on

l+n. If l+n ⩽ 1, there is nothing more to prove. Otherwise, using both induction

hypotheses, (6) becomes

∆(PL(u, v, w)) = PL(u, v, w)⊗ ∅+ ∅ ⊗ PL(u, v, w).

So PL(u, v, w) ∈ V . As π ◦ PL = 0, PL(u, v, w) = 0. □

Consequently:

Proposition 3.4. Let ϖ : T (V )⊗ T (V ) −→ V be a linear map such that (4) and

(5) are satisfied. The product • defined by (2) makes (T (V ),�, •,∆) a Com-PreLie

bialgebra. We obtain in this way all the preLie products • such that (T (V ),�, •,∆)

a Com-PreLie bialgebra. Moreover, for any N ∈ Z, • is homogeneous of degree N

if and only if

∀k, l ∈ N, k + l +N ̸= 1 =⇒ ϖ(V ⊗k ⊗ V ⊗l) = (0). (7)
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Remark 3.5. Let ϖ : T (V )⊗T (V ) −→ V , satisfying (7) for a given N ∈ Z. Then

(1) (4) is satisfied if and only if for all k, l, n ∈ N such that k + l + n = 1−N ,

∀u ∈ V ⊗k, ∀v ∈ V ⊗l, ∀w ∈ V ⊗n, ϖ((u� v)⊗ w) = ε(u)ϖ(v ⊗ w) + ε(v)ϖ(u⊗ w).

(2) (5) is satisfied if and only if for all k, l, n ∈ N such that k+ l+n = 1− 2N ,

∀ ∈ V ⊗k, ∀v ∈ V ⊗l, ∀w ∈ V ⊗n, ϖ(u • v ⊗ w)−ϖ(u⊗ v • w)

= ϖ(u • w ⊗ v)−ϖ(u⊗ w • v).

Note that (4) is always satisfied if u = ∅ or v = ∅, that is to say if k = 0 or l = 0.

In the next paragraphs, we shall look at N ⩾ 0 and N = −1.

3.2. PreLie products of positive degree.

Proposition 3.6. Let f be a linear endomorphism of V . We define a product •
on T (V ) by

∀x1, . . . , xm, y1, . . . , yn ∈ V,

x1 . . . xm • y1 . . . yn =

n∑
i=0

x1 . . . xi−1f(xi)(xi+1 . . . xm � y1 . . . yn). (8)

Then (T (V ),�, •,∆) is a Com-PreLie bialgebra denoted by T (V, f). Conversely,

if • is a product on T (V ), homogeneous of degree N ⩾ 0, there exists a unique

f : V −→ V such that (T (V ),�, •,∆) = T (V, f).

Proof. We look for all possible ϖ, homogeneous of a certain degree N ⩾ 0, such

that (4) and (5) are satisfied. Let us consider such a ϖ. For any k, l ∈ N, we denote
by ϖk,l the restriction of ϖ to V ⊗k ⊗ V ⊗l. By (7), ϖk,l = 0 if k + l ̸= 1. As (4)

implies that ϖ0,1 = 0, the only possibly nonzero ϖk,l is ϖ1,0 : V −→ V , which we

denote by f . Then (2) gives (8).

Let us consider any linear endomorphism f of V and consider ϖ such that the

only nonzero component of ϖ is ϖ1,0 = f . Let us prove (4) for u ∈ V ⊗k, v ∈ V ⊗l,

w ∈ V ⊗n, with k+ l+ n = 1−N . For all the possibilities for (k, l, n), 0 ∈ {k, l, n},
and the result is then obvious.

Let us prove (4) for u ∈ V ⊗k, v ∈ V ⊗l, w ∈ V ⊗n, with k + l + n = 1− 2N . We

obtain two possibilities:

• (k, l, n) = (0, 1, 0) or (0, 0, 1). We can assume that u = ∅. As ∅ • x = 0 for

any x ∈ T (V ), the result is obvious.

• (k, l, n) = (1, 0, 0). We can assume that v = w = ∅, and the result is then

obvious.

This concludes the proof. □
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Remark 3.7. (1) If N ⩾ 1, necessarily f = 0, so • = 0.

(2) With the notation of Proposition 2.6, fT (V,f) = f .

We obtain in this way the family of Com-PreLie bialgebras of [5], coming from

a problem of composition of Fliess operators in Control Theory. So we have from

[5]:

Corollary 3.8. Let k, l ⩾ 0. We denote by Sh(k, l) the set of (k, l)-shuffles, that

is to say permutations σ ∈ Sk+l such that

σ(1) < . . . < σ(k), σ(k + 1) < . . . < σ(k + l).

If σ ∈ Sh(k, l), we put

mk(σ) = max{i ∈ [k] | σ(1) = 1, . . . , σ(i) = i},

with the convention mk(σ) = 0 if σ(1) ̸= 1. Then, in T (V, f), if v1, . . . , vk+l ∈ V ,

v1 . . . vk • vk+1 . . . vk+l

=
∑

σ∈Sh(k,l)

mk(σ)∑
i=1

(Id⊗(i−1) ⊗ f ⊗ Id⊗(k+l−i))(vσ−1(1) . . . vσ−1(k+l)). (9)

3.3. PreLie products of degree −1.

Proposition 3.9. Let ∗ and {−,−} be two bilinear products on V such that

∀x, y, z ∈ V, (x ∗ y) ∗ z − x ∗ (y ∗ z) = (x ∗ z) ∗ y − x ∗ (z ∗ y), (10)

{x, y} = −{y, x},

x ∗ {y, z} = {x ∗ y, z},

{x, y} ∗ z = {x ∗ z, y}+ {x, y ∗ z}+ {{x, y}, z}.

We define a product • on T (V ) in the following way: for all x1, . . . , xm, y1, . . . , yn ∈
V ,

x1 . . . xm • y1 . . . yn =

n∑
i=1

x1 . . . xi−1(xi ∗ y1)(xi+1 . . . xm � y2 . . . yn) (11)

+

k−1∑
i=1

x1 . . . xi−1{xi, xi+1}(xi+2 . . . xm � y1 . . . yn).

Then (T (V ),�, •,∆) is a Com-PreLie bialgebra, and we obtain in this way all the

possible preLie products •, homogeneous of degree −1, such that (T (V ),�, •,∆) is

a Com-PreLie bialgebra.
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Proof. Let us consider a linear map ϖ : T (V ) ⊗ T (V ) −→ V , satisfying (7) for

N = −1. Denoting by ϖk,l = ϖ|V ⊗k⊗V ⊗l for any k, l, the only possibly nonzero

ϖk,l are for (k, l) = (2, 0), (1, 1) and (0, 2). For all x, y ∈ V , we put

x ∗ y = ϖ1,1(x⊗ y), {x, y} = ϖ2,0(xy ⊗ ∅).

(4) is equivalent to

∀w ∈ V ⊗2, ϖ0,2(∅ ⊗ w) = 0,

∀x, y ∈ V, ϖ2,0((xy + yx)⊗ ∅) = 0.

Hence, we now assume that ϖ0,2 = 0, and we obtain that (4) is equivalent to (10)-2.

The nullity of ϖ0,2 and (2) give (11).

Let us now consider (5), with u ∈ V ⊗k, v ∈ V ⊗l, w ∈ V ⊗n, k+l+n = 1−2N = 3.

By symmetry between v and w, and by nullity of ϖ0,l for all l, we have to consider

two cases:

• k = l = n = 1. We put u = x, v = y, w = z, with x, y, z ∈ V . Then (5) is

equivalent to

(x ∗ y) ∗ z − x ∗ (y ∗ z) = (x ∗ z) ∗ y − x ∗ (z ∗ y),

that is to say to (10)-1.

• k = 1, l = 2, z = 0. We put u = x, v = yz, w = ∅, with x, y, z ∈ V . Then

(5) is equivalent to

{x ∗ y, z} − x ∗ {y, z} = 0,

that is to say to (10)-3.

• k = 2, l = 1, z = 0. We put u = xy, v = z, w = ∅, with x, y, z ∈ V . Then

(5) is equivalent to

{x ∗ z, y}+ {x, y ∗ z}+ {{x, y}, z} = {x, y} ∗ z,

that is to say to (10)-4.

We conclude with Proposition 3.4. □

Remark 3.10. (1) In particular, ∗ is a preLie product on V , and for all x, y ∈
V , x • y = x ∗ y.

(2) If x1, . . . , xm ∈ V ,

x1 . . . xm • ∅ =

m−1∑
i=1

x1 . . . xi−1{xi, xi+1}xi+2 . . . xm.

Example 3.11. (1) If ∗ is a preLie product on V , we can take {−,−} = 0,

and (10) is satisfied. Using the classification of preLie algebras of dimension
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2 over C of [1], it is not difficult to show that if the dimension of V is 1 or

2, then necessarily {−,−} is zero.

(2) If ∗ = 0, then (10) becomes

∀x, y ∈ V, {x, y} = −{y, x},

∀x, y, z ∈ V, {{x, y}, z} = 0,

that is to say (V, {−,−}) is a nilpotent Lie algebra, which nilpotency order

is (2).

(3) Here is a family of examples where both ∗ and {−,−} are nonzero. Let V

be 3-dimensional space, with basis (x, y, z), and let a, b, c be scalars. We

consider the products given by the following arrays:

• x y z

x x y z

y 0 0 0

z 0 0 0

{−,−} x y z

x 0 ay + bz cy + (1− a)z

y −ay − bz 0 0

z (a− 1)z − cy 0 0

Then (V, •, {−,−}) satisfies (10) if and only if a2−a+bc = 0, or equivalently,

(2a− 1)2 + (b+ c)2 − (b− c)2 = 1.

This equation defines a hyperboloid of one sheet.

4. Free Com-PreLie algebras and quotients

4.1. Description of free Com-PreLie algebras. We described in [5] free Com-

PreLie algebras in terms of decorated rooted partitioned trees. We now work with

free unitary Com-PreLie algebras.

Definition 4.1. (1) A partitioned forest is a pair (F, I) such that

(a) F is a rooted forest (the edges of F being oriented from the roots to

the leaves). The set of its vertices is denoted by V (F ).

(b) I is a partition of the vertices of F with the following condition: if x, y

are two vertices of F which are in the same part of I, then either they

are both roots, or they have the same direct ascendant.

The parts of the partition are called blocks.

(2) We shall say that a partitioned forest F is a partitioned tree if all the roots

are in the same block. Note that in this case, one of the blocks of F is

the set of roots of F . By convention, the empty forest ∅ is considered as a

partitioned tree.

(3) Let D be a set. A partitioned tree decorated by D is a triple (T, I, d), where

(T, I) is a partitioned tree and d is a map from the set of vertices of T into

D. For any vertex x of T , d(x) is called the decoration of x.
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(4) The set of isoclasses of partitioned trees, included the empty tree, will

be denoted by PT . For any set D, the set of isoclasses of partitioned

trees decorated by D will be denoted by PT (D); the set of isoclasses of

partitioned trees decorated by N×D will be denoted by UPT (D) = PT (N×
D).

Example 4.2. We represent partitioned trees by the underlying rooted forest, the

blocks of cardinality ⩾ 2 being represented by horizontal edges of different colors.

Here are the partitioned trees with ⩽ 4 vertices:

∅; q ; qq , q q ; q qq∨ , q∨qq , qqq , qq q = qqq , q q q ; q qq q∨ , q q∨q q = qq∨qq , q∨qq q , q qqq∨ = q qq q∨ , qq∨qq = q q∨qq , q qq q∨ ,
qq∨qq , qqqq ,

qq
∨ qq =

qq
∨q q , qqq q = qqq q , ∨q qqq = ∨qq qq

,
q qq q , qq q q = qq q q =

qq q q , q q q q .
Let us fix a set D.

Definition 4.3. Let T = (T, I, d) and T ′ = (T ′, J, d′) ∈ UPT (D).

(1) The partitioned tree T · T ′ is defined as follows.

(a) As a rooted forest, T · T ′ is TT ′.

(b) We put I = {I1, . . . , Ik} and J = {J1, . . . , Jl} and we assume that

the block of roots of T is I1 and the block of roots of T ′ is J1. The

partition of the vertices of T · T ′ is {I1 ⊔ J1, I2, . . . , Ik, J2, . . . , Jl}.
(UPT (D), ·) is a commutative monoid, of unit ∅.

(2) Let s be a vertex of T ′.

(a) We denote by Bl(s) the set of blocks of T , children of s.

(b) Let b ∈ Bl(s)⊔{∗}. We denote by T •s,bT ′ the partitioned tree obtained

in this way:

• Graft T ′ on s, that is to say add edges from s to any root of T ′.

• If b ∈ Bl(s), join the block b and the block of roots of T ′.

(c) Let k ∈ Z. The decoration of s is denoted by (i, d). The element

T [k]s ∈ UPT (D) ⊔ {0} is defined by the following:

• If i+ k ⩾ 0, replace the decoration of s by (i+ k, d).

• If i+ k < 0, T [k]s = 0.

Example 4.4. Let T = qq , T ′ = q . We denote by r the root of T and by l the leaf

of T . Then

qq •r,∗ q = q qq∨ , qq •r,{l} q = q∨qq , qq •l,∗ q = qqq .
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Lemma 4.5. Let A+ = (A+, ·, •) be a Com-PreLie algebra, and f : A+ −→ A+ be

a linear map such that

∀x, y ∈ A+, f(x · y) = f(x) · y + x · f(y),

f(x • y) = f(x) • y + x • f(y).

We put A = A+⊕Vect(∅). Then A is given a unitary Com-PreLie algebra structure,

extending the one of A+, by

∅ · ∅ = ∅, ∅ • ∅ = 0,

∀x ∈ A+, x · ∅ = x, ∅ · x = x,

x • ∅ = f(x), ∅ • x = 0.

Proof. Obviously, (A, ·) is a commutative, unitary associative algebra. Let us

prove the PreLie identity for x, y, z ∈ A+ ⊔ {∅}.

• If x = ∅, then x • (y • z) = (x • y) • z = x • (z • y) = (x • z) • y = 0. We now

assume that x ∈ A+.

• If y = z = ∅, then obviously the PreLie identity is satisfied.

• If y = ∅ and z ∈ A+, then

x • (y • z) = 0, (x • y) • z = f(x) • z,

x • (z • y) = x • f(z), (x • z) • y = f(x • z).

As f is a derivation for •, the PreLie identity is satisfied. By symmetry, it

is also true if y ∈ A+ and z = ∅.

Let us now prove the Leibniz identity for x, y, z ∈ A+⊔{∅}. It is obviously satisfied

if x = ∅ or y = ∅; we assume that x, y ∈ A+. If z = ∅, then

(x · y) • z = f(x · y), (x • z) · y = f(x) · y, x · (y • z) = x · f(y).

As f is a derivation for ·, the Leibniz identity is satisfied. □

Proposition 4.6. Let UCP(D) be the vector space generated by UPT (D). We

extend · by bilinearity and the PreLie product • is defined by

∀T, T ′ ∈ UPT (D), T • T ′ =


∑

s∈V (t)

T •s,∗ T ′ if t ̸= ∅,∑
s∈V (t)

T [+1]s if t = ∅.

Then UCP(D) is the free unitary Com-PreLie algebra generated by the elementsq (0, d), d ∈ D.
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Proof. We denote by UCP+(D) the subspace of UCP(D) generated by nonempty

trees. By [5, Proposition 18], this is the free Com-PreLie algebra generated by the

elements q (k, d), k ∈ N, d ∈ D. We define a map f : UCP+(D) −→ UCP+(D) by

∀T ∈ UPT (D) \ {∅}, f(T ) =
∑

s∈V (t)

T [+1]s.

This is a derivation for both · and •; by Lemma 4.5, UCP(D) is a unitary Com-

PreLie algebra.

Observe that for all d ∈ D, k ∈ N,q (0, d) • ∅×k = q (k, d).
Let A be a unitary Com-PreLie algebra and, for all d ∈ D, let ad ∈ A. By [5,

Proposition 18], we define a unique Com-PreLie algebra morphism by

θ :

{
UCP+(D) −→ Aq (k, d) −→ ad × 1×k

A .

We extend it to UCP(D) by sending ∅ to 1A, and we obtain in this way a unitary

Com-PreLie algebra from UCP(D) to A, sending q (0, d) to ad for any d ∈ D. This

morphism is clearly unique. □

Example 4.7. Let i, j, k ∈ N and d, e, f ∈ D.q (i, d) • q (j, e) = qq (i, d)(j, e) ,q (i, d) • q q(j, e) (k, f)= q∨(i, d)
(k, f)(j, e) qq

q (i, d) • qq (j, e)(k, f) = qqq (i, d)(j, e)
(k, f)

,

qq (i, d)(j, e) • q (k, f)= qqq (i, d)(j, e)
(k, f)

+ q qq∨(i, d)
(k, f)(j, e)

,q (i, d) • ∅ = q (i + 1, d),qq (i, d)(j, e) • ∅ = qq (i + 1, d)
(j, e) + qq (i, d)(j + 1, e) ,q qq∨(i, d)

(k, f)(j, e) • ∅ = q qq∨(i + 1, d)
(k, f)(j, e)

+ q qq∨(i, d)
(k, f)(j + 1, e)

+ q qq∨(i, d)
(k + 1, f)(j, e)

.

4.2. Quotients of UCP(D).

Proposition 4.8. We put V0 = Vect( q (0, d), d ∈ D), identified with Vect( qd , d ∈ D).

Let f : V0 −→ V0 be any linear map. We consider the Com-PreLie ideal If of

UCP(D) generated by the elements q (1, d)− f( q (0, d)), d ∈ D.

(1) We denote by UPT ′(D) the set of trees T ∈ UPT (D) such that for any

vertex s of T , the decoration of s is of the form (0, d), with d ∈ D. It is

trivially identified with PT (D). Then the family (T + If )T∈UPT ′(D) is a

basis of UCP(D)/If .

(2) In UCP(D)/If , for any d ∈ D, q (0, d) • ∅ = f( q (0, d)).
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Proof. First step. We fix d ∈ D. Let us first prove that for all k ⩾ 0,q (k, d)+ If = fk( q (0, d)) + If .

It is obvious if k = 0, 1. Let us assume the result at rank k− 1. We put f( q (0, d)) =∑
ae q (0, e). Then q (k, d)+ If = q (1, d) • ∅×(k−1) + If

=
∑

ae q (0, e) • ∅×(k−1) + If

=
∑

aef
k−1( q (0, e)) + If

= fk( q (0, d)) + If ,

so the result holds for all k.

Second step. Let T ∈ UPT (D); let us prove that there exists x ∈ Vect(UPT ′(D)),

such that T + If = x+ If . We proceed by induction on |T |. If |T | = 0, then t = ∅
and we can take x = T . If |T | = 1, then T = q (k, d) and we can take, by the

first step, x = fk( q (0, d)). Let us assume the result at all ranks < |T |. If T has

several roots, we can write T = T1 · T2, with |T1|, |T2| < |T |. Hence, there exists

xi ∈ Vect(UPT ′(D)), such that Ti + If = xi + If for all i ∈ [2], and we take

x = x1 · x2. Otherwise, we can write

T = q (k, d)• T1 × . . .× Tk,

where T1, . . . , Tk ∈ UPT (D). By the induction hypothesis, there exists xi ∈
Vect(UPT ′(D)) such that Ti + If = xi + If for all i ∈ [k]. We then take x =

fk( q (0, d)) • x1 × . . .× xk.

Third step. We give CP+(D) = Vect(PT (D) \ {∅}) a Com-PreLie structure by

∀T, T ′ ∈ PT (D) \ {∅}, T • T ′ =
∑

s∈V (t)

T •s,∗ T ′.

We consider the map

F :


CP+(D) −→ CP+(D)

T −→
∑

s∈V (T )

fs(T ),

where, fs(T ) is the linear span of decorated partitioned trees obtained by replacing

the decoration ds of s by f(ds), the trees being considered as linear in any of their

decorations. This is a derivation for both · and •, so by Lemma 4.5, CP(D) inherits

a unitary Com-PreLie structure such that for any d ∈ D,qd • ∅ = f( qd).
By the universal property of UCP(D), there exists a unique unitary Com-PreLie

algebra morphism ϕ : UCP(D) −→ CP(D), such that ϕ( q (0, d)) = qd for any d ∈ D.
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Then ϕ( q (1, d)) = f( qd)) = ϕ(f( q (0, d)) for any d ∈ D, so ϕ induces a morphism

ϕ : UCP(D)/If −→ CP(D). It is not difficult to prove that for any T ∈ UPT ′(D),

ϕ(T ) = T . As the family PT (D) is a basis of CP(D), the family (T +If )T∈UPT ′(D)

is linearly independent in UCP(D)/If . By the second step, it is a basis. □

Example 4.9. We choose f = IdV0 . The product in UCP(D)/IIdV0
is the one of

Definition 4.3. If T, T ′ ∈ PT (D) and T ′ ̸= ∅, then T • T ′ is the sum of all graftings

of T ′ over T . Moreover,

T • ∅ = |T |T.

Hence, we now consider CP(D), augmented by an unit ∅, as a unitary Com-PreLie

algebra.

Proposition 4.10. Let J be the Com-PreLie ideal of CP(D) generated by the

elements qd • (F1 × F2)− qd • (F1 · F2),

with d ∈ D and F1, F2 ∈ PT (D).

(1) Let T and T ′ be two elements of PT (D) which are equal as decorated rooted

forests. Then T + J = T ′ + J . Consequently, if F is a decorated rooted

forest, the element T ′ + I does not depend of the choice of T ′ ∈ UPT (D)

such that T ′ = F as a decorated rooted forest. This element is identified

with F .

(2) The set of decorated rooted forests is a basis of UCP(D)/J .

CP(D)/J is then, as an algebra, identified with the Connes-Kreimer algebra HD
CK

of decorated rooted trees [3], which is in this way a unitary Com-PreLie algebra.

Proof. (1) First step. Let us show that for any x1, . . . , xn ∈ UCP(D), qd • (x1 ×
. . .× xn) + J = qd • (x1 · . . . · xn) + J by induction on n. It is obvious if n = 1, and

it comes from the definition of J if n = 2. Let us assume the result at rank n− 1.qd • (x1 × . . .× xn) + J

= ( qd • (x1 × . . .× xn−1)) • xn −
n−1∑
i=1

qd • (x1 × . . .× (xi • xn)× . . .× xn−1) + J

= ( qd • (x1 · . . . · xn−1)) • xn −
n−1∑
i=1

qd • (x1 · . . . · (xi • xn) · . . . · xn−1) + J

= ( qd • (x1 · . . . · xn−1)) • xn − qd • ((x1 · . . . · xn−1) • xn) + J

= qd • ((x1 · . . . · xn−1)× xn) + J

= qd • (x1 · . . . xn−1 · xn) + J.

So the result holds for all n.
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Second step. Let F,G ∈ PT (D), such that the underlying rooted decorated

forests are equal. Let us prove that F + J = G+ J by induction on n = |F | = |G|.
If n = 0, then F = G = 1 and it is obvious. If n = 1, then F = G = qd and it is

obvious. Let us assume the result at all ranks < n.

First case. If F has k ⩾ 2 roots, we can write F = T1 · . . . ·Tk and G = T ′
1 · . . . ·T ′

k,

such that, for all i ∈ [k], Ti and T
′
i have the same underlying decorated rooted forest;

By the induction hypothesis, Ti + J = T ′
i + J for all i, so F + J = G+ J .

Second case. Let us assume that F has only one root. We can write F =qd •(F1×. . .×Fk) and G = qd •(G1×. . .×Gl). Then F1 ·. . .·Fk and G1 ·. . .·Gl have

the same underlying decorated forest; by the induction hypothesis, F1 · . . . ·Fk+J =

G1 · . . . ·Gl + J , so qd • (F1 · . . . ·Fk) + J = qd • (G1 · . . . ·Gl) + J . By the first step,

F + J = qd • (F1 · . . . · Fk) + J = qd • (G1 · . . . ·Gl) + J = G+ J.

(2) The set RF(D) of rooted forests linearly spans CP(D)/J by the first point.

Let J ′ be the subspace of CP(D) generated by the differences of elements of PT (D)

with the same underlying decorated forest. It is clearly a Com-PreLie ideal, and

RF(D) is a basis of CP(D)/J ′. Moreover, for all F1, F2 ∈ PT (D), qd • (F1×F2)+

J ′ = qs • (F1 ·F2)+ J ′, as the underlying forests of qd • (F1 ×F2) and qs • (F1 ·F2)

are equal. Consequently, there exists a Com-PreLie morphism from CP(D)/J to

CP(D)/J ′, sending any element of RF(D) over itself. As the elements of RF (D)

are linearly independent in CP(D)/J ′, they also are in CP(D)/J . □

4.3. PreLie structure of UCP(D) and CP(D). Let us now consider UCP(D)

and CP(D) as preLie algebras. Their augmentation ideals are respectively denoted

by UCP+(D) and CP+(D). Note that, as a preLie algebra,

UCP+(D) = CP+(N×D).

Let D be any set, and let T ∈ PT (D). Then T can be written as

T = ( qd1 • (T1,1 × . . .× Ti,s1)) · . . . · ( qdk • (Tk,1 × . . .× Tk,sk)) ,

where d1, . . . , dk ∈ D and the Ti,j ’s are nonempty elements of PT (D). We shortly

denote this as

T = Bd1,...,dk
(T1,1 . . . T1,s1 ; . . . ;Tk,1 . . . Tk,sk).

The set of partitioned subtrees Ti,j of T is denoted by St(T ).

Proposition 4.11. Let D be any set. One defines a coproduct δ on CP+(D) by

∀T ∈ PT (D), δ(T ) =
∑

T ′∈St(T )

T \ T ′ ⊗ T.

Then, as a preLie algebra, CP+(D) is freely generated by Ker(δ).
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Proof. In other words, for any T ∈ PT (D), writing

T = Bd1,...,dk
(T1,1 . . . T1,s1 ; . . . ;Tk,1 . . . Tk,sk).

we can rewrite

δ(T ) =

s∑
i=1

si∑
j=1

Bd1,...,dk
(T1,1 . . . T1,s1 ; . . . ;Ti,1 . . . T̂i,j . . . Ti,si ; . . . ;Tk,1 . . . Tk,sk)⊗Ti,j .

This immediately implies that δ is permutative [8]:

(δ ⊗ Id) ◦ δ = (23).(δ ⊗ Id) ◦ δ.

Moreover, for any x, y ∈ PT +(D), using Sweedler’s notation δ(x) = x(1) ⊗ x(2), we

obtain

δ(x · y) = x(1) · y ⊗ x(2) + x · y(1) ⊗ y(2).

For any partitioned tree T ∈ PT (D), we denote by r(T ) the number of roots of T

and we put d(T ) = r(T )T . The map d is linearly extended as an endomorphism of

PT (D). As the product · is homogeneous for the number of roots, d is a derivation

of the algebra (CP(D), ·). Let us prove that for any x, y ∈ CP+(D),

δ(x • y) = d(x)⊗ y + x(1) • y ⊗ x(2) + x(1) ⊗ x(2) • y.

We denote by A the set of elements of x ∈ CP+(D), such that for any y ∈ CP+(D),

the preceding equality holds. If x1, x2 ∈ A, then for any y ∈ CP+(D),

δ((x1 · x2) • y) = δ((x1 • y) · x2) + δ(x1 · (x2 • y))

= (x1 • y)(1) · x2 ⊗ (x1 • y)(2) + (x1 • y) · x(1)2 ⊗ x
(2)
2

+ x
(1)
1 · (x2 • y)⊗ x

(2)
1 + x1 · (x2 • y)(1) ⊗ (x2 • y)(2)

= d(x1) · x2 ⊗ y + (x
(1)
1 • y) · x2 ⊗ x

(1)
1 + x

(1)
1 · x2 ⊗ x

(2)
1 • y

+ (x1 • y) · x(1)2 ⊗ x
(2)
2 + x

(1)
1 · (x2 • y)⊗ x

(2)
1

+ x1 · d(x2)⊗ y + x1 · (x(1)2 • y)⊗ x
(2)
2 + x1 · x(1)2 ⊗ x

(2)
2 • y

= d(x1 · x2)⊗ y + (x
(1)
1 · x2) • y ⊗ x

(2)
1 + (x1 · x(1)2 ) • y ⊗ x

(2)
2

+ (x1 · x2)(1) ⊗ (x1 · x2)(2) • y

= d(x1 · x2)⊗ y + (x1 · x2)(1) • y ⊗ (x1 · x2)(2)

+ (x1 · x2)(1) ⊗ (x1 · x2)(2) • y.

So x1 · x2 ∈ A.

Let d ∈ D. Note that δ( qd) = 0. Moreover, for any y ∈ CP+(D),

δ( qd • y) = δ(Bd(y)) = qd ⊗ y,
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so qd ∈ A. Let T1, . . . , Tk ∈ PT (D), nonempty. We consider x = Bd(T1 . . . Tk).

For any y ∈ CP+(D),

δ(x • y) = δ(Bd(T1 . . . Tky)) +

k∑
j=1

δ(Bd(T1 . . . (Tj • y) . . . Tk)

= Bd(T1 . . . Tk)⊗ y +

k∑
i=1

Bd(T1 . . . T̂i . . . Tky)⊗ Ti

+

k∑
i=1

∑
j ̸=i

Bd(T1 . . . T̂i . . . (Tj • y) . . . Tk)⊗ Ti +

k∑
i=1

Bd(T1 . . . T̂i . . . Tk)⊗ Ti • y

= d(x)⊗ y +

k∑
i=1

Bd(T1 . . . T̂i . . . Tk) • y ⊗ Ti +

k∑
i=1

Bd(T1 . . . T̂i . . . Tk)⊗ Ti • y

= d(x)⊗ y + x(1) • y ⊗ x(2) + x(1) ⊗ x(2) • y.

Hence, x ∈ A. As A is stable under · and contains any partitioned tree with one

root, A = CP+(D).

For any nonempty partitioned tree T ∈ PT (D), we put δ′(T ) =
1

r(T )
δ(T ). Then

(δ′ ⊗ Id) ◦ δ′(T ) = 1

r(T )2
(δ ⊗ Id) ◦ δ(T ),

so δ′ is also permutative; moreover, for any x, y ∈ CP+(D),

δ′(x • y) = x⊗ y + x(1) • y ⊗ x(2) + x(1) ⊗ x(2) • y.

By Livernet’s rigidity theorem [8], the preLie algebra CP+(D) is freely generated by

Ker(δ′). For any integer n, we denote by CPn(D) the subspace of CP(D) generated

by trees T such that r(T ) = n. Then, for all n, δ(CPn(D)) ⊆ CPn(D)⊗ CP+(D),

and δ|CPn(D) = nδ′|CPn(D). This implies that Ker(δ) = Ker(δ′). □

Lemma 4.12. In CP+(D) or UCP+(D), Ker(δ) • ∅ ⊆ Ker(δ).

Proof. Let us work in UCP+(D). Let us prove that for any x ∈ UCP+(D),

δ(x • ∅) = x(1) • ∅ ⊗ x(2) + x(1) ⊗ x(2) • ∅.
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We denote by A the subspace of elements x ∈ UCP+(D) such that this holds. If

x1, x2 ∈ A, then

δ((x1 · x2) • ∅) = δ((x1 • ∅) · x2) + δ(x1 · (x2 • ∅))

= (x
(1)
1 • ∅) · x2 ⊗ x(1) + x

(1)
1 · x2 ⊗ x

(2)
1 • ∅+ (x1 • ∅) · x(1)2 ⊗ x

(2)
2

+ x1 · (x(1)2 • ∅)⊗ x
(2)
2 + x1 · x(1)2 ⊗ x

(2)
2 • ∅+ x

(1)
1 · (x2 • ∅)⊗ x

(2)
1

= (x
(1)
1 · x2) • ∅ ⊗ x

(2)
1 + x

(1)
1 · x2 ⊗ x

(2)
1 • ∅

+ (x1 · x(1)2 ) • ∅ ⊗ x
(1)
2 + x1 · x(1)2 ⊗ x

(2)
2 • ∅

= (x1 · x2)(1) • ∅ ⊗ (x1 · x2)(2) + (x1 · x2)(1) ⊗ (x1 · x2)(2) • ∅,

so x1 · x2 ∈ A. If d ∈ D and T1, . . . , Tk ∈ UPT (D), nonempty, if x = Bd(T1 . . . Tk),

δ(x • ∅) = δ(Bd+1(T1 . . . Tk)) +

k∑
i=1

δ(Bd(T1 . . . (Ti • ∅) . . . Tk)

=

k∑
i=1

Bd+1(T1 . . . T̂i . . . Tk)⊗ Ti +

k∑
j=1

∑
i̸=j

Bd(T1 . . . (Tj • ∅) . . . T̂i . . . Tk)⊗ Ti

+

k∑
i=1

Bd(T1 . . . T̂i . . . Tk)⊗ Ti • ∅

=

k∑
i=1

Bd(T1 . . . T̂i . . . Tk) • ∅ ⊗ Ti +

k∑
i=1

Bd(T1 . . . T̂i . . . Tk)⊗ Ti • ∅

= x(1) • ∅ ⊗ x(2) + x(1) ⊗ x(2) • ∅,

so x ∈ A. Hence, A = UCP+(D). Consequently, if x ∈ Ker(δ), then x • ∅ ∈ Ker(δ).

The proof is immediate for CP+(D), as for any tree T ∈ PT (D), T • ∅ = |T |T . □

Notations 4.13. We denote by ϕ the endomorphism of Ker(δ) defined by ϕ(x) =

x • ∅.

Corollary 4.14. The preLie algebra UCP(D), respectively CP(D), is generated by

Ker(δ)⊕ (∅), with the relations

∅ • ∅ = 0,

∀x ∈ Ker(δ), ∅ • x = 0, x • ∅ = ϕ(x).

Remark 4.15. We give CP(D) a graduation by putting the elements of D homo-

geneous of degree 1, and we put |D| = d. For any n ⩾ 1, we denote by tn(d) the

number of partitioned trees decorated by D with n vertices and by fn(d) the num-

ber of partitioned forests decorated by D with n vertices. We consider the formal
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series

F (d,X) =

∞∑
n=0

fn(d)X
n, T (d,X) =

∞∑
n=0

tn(d)X
n.

As any partitioned forest is a monomial of partitioned trees, we obtain

F (d,X) =

∞∏
n=1

1

(1−Xn)tn(d)
.

As any partitioned tree can be seen as a monomial of pairs (e, F ), where e ∈ D and

F a partitioned forest, we obtain that

T (d,X) =

∞∏
n=1

1

(1−Xn)dfn−1(d)
.

These two formulas allow to compute tn(d) by induction on n, see Table 4.15

(see also [5]). For d = 1, this gives Entry A035052 of the OEIS [14]; for d = 2,

Entry A226269. Moreover, the sequence of the coefficients of
(
d
n

)
in tn(d) is Entry

A052888.

We denote by kn(d) the dimension of Ker(∆̃)n in CP(D). As the preLie algebra

CP(D) is freely generated by Ker(∆̃), we obtain that

T (d) =

( ∞∑
n=1

kn(d)X
n

) ∞∏
n=1

1

(1−Xn)tn(d)
.

This allows to compute the first values of kn(d), see Table 4.15.

5. Bialgebra structures on free Com-PreLie algebras

5.1. Tensor product of Com-PreLie algebras.

Lemma 5.1. Let A1, A2 be two Com-PreLie algebras and let ε : A1 −→ K such

that

∀a, b ∈ A1, ε(a • b) = ε(b • a).

Then A1 ⊗A2 is a Com-PreLie algebra, with the products defined by

(a1 ⊗ a2)(b1 ⊗ b2) = a1b1 ⊗ a2b2,

(a1 ⊗ a2) •ε (b1 ⊗ b2) = a1 • b1 ⊗ a2b2 + ε(b1)a1 ⊗ a2 • b2.

Proof. A1 ⊗ A2 is obviously an associative and commutative algebra, with unit

1 ⊗ 1. We take α = a1 ⊗ a2, β = b1 ⊗ b2, γ = c1 ⊗ c2 ∈ A1 ⊗ A2. Let us prove the

PreLie identity.

https://oeis.org/A035052
https://oeis.org/A226269
https://oeis.org/A052888
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t1(d) = d

=

(
d

1

)
,

t2(d) =
(3d+ 1)d

2

= 2

(
d

1

)
+ 3

(
d

2

)
,

t3(d) =
(19d2 + 9d+ 2)d

6

= 5

(
d

1

)
+ 22

(
d

2

)
+ 19

(
d

3

)
,

t4(d) =
(63d3 + 34d2 + 13d+ 2)d

8

= 14

(
d

1

)
+ 139

(
d

2

)
+ 309

(
d

3

)
+ 189

(
d

4

)
,

t5(d) =
(644d4 + 400d3 + 175d2 + 35d+ 6)d

30

= 42

(
d

1

)
+ 868

(
d

2

)
+ 3735

(
d

3

)
+ 5472

(
d

4

)
+ 2576

(
d

5

)
,

t6(d) =
(44683d5 + 31695d4 + 14635d3 + 4185d2 + 1162d+ 120)d

720

= 134

(
d

1

)
+ 5491

(
d

2

)
+ 40882

(
d

3

)
+ 107866

(
d

4

)
+ 116990

(
d

5

)
+ 44683

(
d

6

)
,

t7(d) =
(941977d6 + 754131d5 + 375235d4 + 125265d3 + 35308d2 + 5124d+ 720)d

5040

= 444

(
d

1

)
+ 35452

(
d

2

)
+ 430446

(
d

3

)
+ 1821848

(
d

4

)
+ 3418190

(
d

5

)
+ 2933664

(
d

6

)
+ 941977

(
d

7

)
.

Table 1. First values of tn(d)

(α •ε β) •ε γ − α •ε (β •ε γ) = (a1 • b1) • c1 ⊗ a2b2c2 + ε(c1)a1 • b1 ⊗ (a2b2) • c2
+ ε(b1)a1 • c1 ⊗ (a2 • b2)c2 + ε(b1)ε(c1)a1 ⊗ (a2b•2) • c2
− a1 • (b1 • c1)⊗ a2b2c2 − ε(c1)a1 • b1 ⊗ a2(b2 • c2)

− ε(c1)ε(b1)a1 ⊗ a2 • (b2 • c2)− ε(b1 • c1)a1 ⊗ a2 • (b2c2)

= ((a1 • b1) • c1 − a1 • (b1 • c1))⊗ a2b2c2

+ ε(b1)ε(c1)a1 ⊗ ((a2 • b2) • c2 − a2 • (b2 • c2))

+ ε(c1)a1 • b1 ⊗ (a2 • c2)b2 + ε(b1)a1 • c1 ⊗ (a2 • b2)c2
− ε(b1 • c1)a1 ⊗ a2 • (b2c2).
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k1(d) = d

=

(
d

1

)
,

k2(d) =
(d+ 1)d

2

=

(
d

1

)
+

(
d

2

)
,

k3(d) =
(2d2 + 1)d

3

=

(
d

1

)
+ 4

(
d

2

)
+ 4

(
d

3

)
,

k4(d) =
(11d3 + 2d2 + d+ 2)d

8

= 2

(
d

1

)
+ 21

(
d

2

)
+ 51

(
d

3

)
+ 33

(
d

4

)
,

k5(d) =
(203d4 + 60d3 − 5d2 − 30d+ 12)d

60

= 4

(
d

1

)
+ 114

(
d

2

)
+ 543

(
d

3

)
+ 836

(
d

4

)
+ 406

(
d

5

)
,

k6(d) =
(220d5 + 89d4 + 16d3 + 3d2 + 4d+ 4)d

24

= 14

(
d

1

)
+ 690

(
d

2

)
+ 5531

(
d

3

)
+ 15206

(
d

4

)
+ 16945

(
d

5

)
+ 6600

(
d

6

)
,

k7(d) =
(66518d6 + 33831d5 + 9170d4 − 735d3 − 1708d2 − 1596d+ 360)d

2520

= 42

(
d

1

)
+ 4258

(
d

2

)
+ 55452

(
d

3

)
+ 243536

(
d

4

)
+ 468055

(
d

5

)
+ 408774

(
d

6

)
+ 133036

(
d

7

)
.

Table 2. First values of kn(d)

As A1 and A2 are PreLie, the first and second lines of the last equality are symmetric

in β and γ; the third line is obviously symmetric in β and γ; as m is commutative

and by the hypothesis on ε, the last line also is. So •ε is PreLie.

(αβ) •ε γ = (a1b1) • c1 ⊗ a2b2c2 + ε(c1)a1b1 ⊗ (a2b2) • c2
= ((a1 • c1)b1 + a1(b1 • c1))⊗ a2b2c2

+ ε(c1)a1b1 ⊗ ((a2 • c2)b2 + a2(b2 • c2))
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= (a1 • c1 ⊗ a2c2 + ε(c1)a1 ⊗ a2 • c2)(b1 ⊗ b2)

+ (a1 ⊗ a2)(b1 • c1 ⊗ b2c2 + ε(c1)b1 ⊗ b2 • c2)

= (α •ε γ)β + α(β •ε γ).

So A1 ⊗A2 is Com-PreLie. □

Remark 5.2. Consequently, if (A,m, •,∆) is a Com-PreLie bialgebra, with counit

ε, then ∆ is a morphism of Com-PreLie algebras from (A,m, •) to (A⊗ A,m, •ε).
Indeed, for all a, b ∈ A, ε(a • b) = ε(b • a) = 0 and

∆(a) •ε ∆(b) = a(1) • b(1) ⊗ a(2)b(2) + ε(b(1))a(1) ⊗ a(2) • b(2)

= a(1) • b(1) ⊗ a(2)b(2) + a(1) ⊗ a(2) • b

= ∆(a • b).

Lemma 5.3. (1) Let A,B,C be three Com-PreLie algebras, εA : A −→ K and

εB : B −→ K with the condition of Lemma 5.1. Then εA ⊗ εB : A⊗B −→
K also satisfies the condition of Lemma 5.1. Moreover, the Com-PreLie

algebras (A⊗B)⊗ C and A⊗ (B ⊗ C) are equal.

(2) Let A,B be two Com-PreLie algebras, and ε : A −→ K such that

∀a, b ∈ A, ε(ab) = ε(a)ε(b), ε(a • b) = 0.

Then ε⊗ Id : A⊗B −→ B is a morphism of Com-PreLie algebras.

(3) Let A,A′, B,B′ be Com-PreLie algebras, ε : A −→ K and ε′ : A′ −→ K
satisfying the condition of Lemma 5.1. Let f : A −→ A′, g : B −→ B′ be

Com-PreLie algebra morphisms such that ε′◦f = ε. Then f⊗g : A⊗B −→
A′ ⊗B′ is a Com-PreLie algebra morphism.

Proof. (1) Indeed, if a1, a2 ∈ A and b1, b2 ∈ B,

εA ⊗ εB((a1 ⊗ b1) • (a2 ⊗ b2)) = εA(a1 • a2)εB(b1b2) + εA(a1)εA(a2)εB(b1 • b2)

= εA(a2 • a1)εB(b2b1) + εA(a2)εA(a1)εB(b2 • b1)

= εA ⊗ εB((a2 ⊗ b2) • (a1 ⊗ b1)).

Let a1, a2 ∈ A, b1, b2 ∈ B, c1, c2 ∈ C. In (A⊗B)⊗ C,

(a1 ⊗ b1 ⊗ c1) • (a2 ⊗ b2 ⊗ c2)

= ((a1 ⊗ b1) • (a2 ⊗ b2))⊗ c1c2 + εA ⊗ εB(a2 ⊗ b2)a1 ⊗ b1 ⊗ c1 • c2
= a1 • a2 ⊗ b1b2 ⊗ c1c2 + εA(a2)a1 ⊗ b1 • b2 ⊗ c1c2 + εA(a2)εB(b2)a1 ⊗ b1 ⊗ c1 • c2.
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In A⊗ (B ⊗ C),

(a1 ⊗ b1 ⊗ c1) • (a2 ⊗ b2 ⊗ c2)

= a1 • a2 ⊗ b1b2 ⊗ c1c2 + εA(a2)a1 ⊗ ((b1 ⊗ c1) • (b2 ⊗ c2))

= a1 • a2 ⊗ b1b2 ⊗ c1c2 + εA(a2)a1 ⊗ b1 • b2 ⊗ c1c2 + εA(a2)εB(b2)a1 ⊗ b1 ⊗ c1 • c2.

So (A⊗B)⊗ C = A⊗ (B ⊗ C).

(2) Let a1, a2 ∈ A, b1, b2 ∈ B.

ε⊗ Id((a1 ⊗ b1)(a2 ⊗ b2)) ε⊗ Id((a1 ⊗ b1) • (a2 ⊗ b2))

= ε(a1a2)b1b2 = ε(a1 • a2)b1b2 + ε(a1)ε(a2)b1 • b2
= ε(a1)ε(a2)b1b2 = ε(a1)ε(a2)b1 • b2
= ε⊗ Id((a1 ⊗ b1)ε⊗ Id(a2 ⊗ b2), = ε⊗ Id((a1 ⊗ b1) • ε⊗ Id(a2 ⊗ b2).

So ε⊗ Id is a morphism.

(3) f ⊗ g is obviously an algebra morphism. If a1, a2 ∈ A, b1, b2 ∈ B,

(f ⊗ g)((a1 ⊗ b1) • (a2 ⊗ b2))

= (f ⊗ g)(a1 • a2 ⊗ b1b2 + ε(a2)a1 ⊗ b1 • b2)

= f(a1) • f(a2)⊗ g(b1)g(b2) + ε(f(a2))f(a1)⊗ g(b1) • g(b2)

= (f(a1)⊗ g(b1)) • (f(a2)⊗ g(b2)).

So f ⊗ g is a Com-PreLie algebra morphism. □

Lemma 5.4. Let A be a unital associative commutative bialgebra, and V a subspace

of A which generates A. Let • be a product on A such that

∀a, b, c ∈ A, (ab) • c = (a • c)b+ a(b • c).

Then A is a Com-PreLie bialgebra if and only if for all x ∈ V , and for all b, c ∈ A,

(x • b) • c− x • (b • c) = (x • c) • b− x • (c • b),

∆(x • b) = x(1) ⊗ x(2) • b+ x(1) • b(1) ⊗ x(2)b(2).

Proof. =⇒ Obvious, by definition of a Com-PreLie algebra.

⇐= We consider

B = {a ∈ A | ∀b, c ∈ A, (a • b) • c− a • (b • c) = (a • c) • b− a • (c • b)}.

We denote by 1A the unit of A. Copying the proof of Lemma 2.3-1, we obtain that

1A.b = 0 for all b ∈ A. This easily implies that 1A ∈ B. By hypothesis, V ⊆ B.
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Let a1, a2 ∈ B. For all b, c ∈ A,

((a1a2) • b) • c− (a1a2) • (b • c)

= ((a1 • b) • c)a2 + (a1 • b)(a2 • c) + (a1 • c)(a2 • b) + a1((a2 • b) • c)

− (a1 • (b • c))a2 − a1(a2 • (b • c))

= ((a1 • b) • c− a1 • (b • c))a2 + a1((a2 • b) • c− a2 • (b • c))

+ (a1 • b)(a2 • c) + (a1 • c)(a2 • b).

As a1, a2 ∈ B, this is symmetric in b, c, so a1a2 ∈ B. Hence, B is a unitary

subalgebra of A which contains V , so is equal to A: A is a Com-PreLie algebra.

Let us now consider

C = {a ∈ A | ∀b ∈ A,∆(a • b) = a(1) ⊗ a(2) • b+ a(1) • b(1) ⊗ a(2)b(2)}.

By hypothesis, V ⊆ C. Let b ∈ B.

1A ⊗ 1A • b+ 1A • b(1) ⊗ 1b(2) = 0 = ∆(1A • b),

so 1A ∈ C. Let a1, a2 ∈ C. For all b ∈ A,

∆((a1a2) • b) = ∆((a1 • b)a2 + a1(a2 • b))

= a
(1)
1 a

(1)
2 ⊗ (a

(2)
1 • b)a(2)2 + (a

(1)
1 • b(1))a(1)2 ⊗ a

(2)
1 b(2)a

(2)
2

a
(1)
1 a

(1)
2 ⊗ a

(2)
1 (a

(2)
2 • b) + a

(1)
1 (a

(1)
2 • b(1))⊗ a

(2)
1 a

(2)
2 b(2)

= a
(1)
1 a

(1)
2 ⊗ (a

(2)
1 a

(2)
2 ) • b+ (a

(1)
1 a

(1)
2 ) • b(1) ⊗ a

(2)
1 a

(2)
2 b(2)

= (a1a2)
(1) ⊗ (a1a2)

(2) • b+ (a1a2)
(1) • b(1) ⊗ (a1a2)

(2)b(2).

Hence, a1a2 ∈ C, and C is a unitary subalgebra of A. As it contains V , C = A and

A is a Com-PreLie bialgebra. □

5.2. Coproduct on UCP(D).

Definition 5.5. (1) Let T be a partitioned tree and I ⊆ V (T ). We shall say

that I is an ideal of T if for any vertex v ∈ I and any vertex w ∈ V (T )

such that there exists an edge from v to w, then w ∈ I. The set of ideals

of T is denoted by Id(T ).
(2) Let T be partitioned forest decorated by N× I, and I ∈ Id(T ).

• By restriction, I is a partitioned decorated forest. The product · of
the trees of I is denoted by P I(F ).

• By restriction, T \ I is a partitioned decorated tree. For any vertex

v ∈ T \ I, if we denote by (i, d) the decoration of v in T , we replace it

by (i+ ιI(v), d), where ιI(v) is the number of blocks C of T , included
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in I, such that there exists an edge from v to any vertex of C. The

partitioned decorated tree obtained in this way is denoted by RI(F ).

Theorem 5.6. We define a coproduct on UCP(D) by

∀T ∈ PT (N×D), ∆(T ) =
∑

I∈Id(T )

RI(T )⊗ P I(T ).

Then UCP(D) is a Com-PreLie bialgebra. Moreover, CP(D) and HD
CK are Com-

PreLie bialgebra quotients of UCP(D), and HD
CK is the Connes-Kreimer Hopf al-

gebra of decorated rooted trees [3,4].

Proof. We consider

ε :

{
UCP(D) −→ K

F −→ δF,1.

By Lemma 5.3-1, UCP(D) ⊗ε UCP(D) is a Com-PreLie algebra. It is unitary,

the unit being ∅ ⊗ ∅. Hence, there exists a unique Com-PreLie algebra morphism

∆′ : UCP(D) −→ UCP(D)⊗ε UCP(D), sending q (0, d) over q (0, d)⊗∅+ ∅⊗ q (0, d) for
all d ∈ D. By Lemma 5.3-2, (UCP(D)⊗εUCP(D))⊗ε⊗εUPC(D) and UCP(D)⊗ε

(UCP(D)⊗ε UCP(D)) are equal, and as both (Id⊗∆′) ◦∆′ and (∆′ ⊗ Id) ◦∆′ are

Com-PreLie algebra morphisms sending q (0, d) over q (0, d)⊗∅⊗∅+∅⊗ q (0, d)⊗∅+∅⊗
∅ ⊗ q (0, d) for all d ∈ D, they are equal: ∆′ is coassociative. Moreover, (Id⊗ ε) ◦∆′

and (ε ⊗ Id) ◦ ∆′ are Com-PreLie endomorphisms of UCP(D) sending q (0, d) over
itself for all d ∈ D, so they are both equal to Id: ε is the counit of ∆′. Hence, with

this coproduct ∆′, UCP(D) is a Com-PreLie bialgebra.

Let us now prove that ∆(T ) = ∆′(T ) for all T ∈ PT (N × D). We proceed by

induction on the number of vertices n of T . If n = 0 or n = 1, it is obvious. Let

us assume the result at all ranks < n. If T has strictly more than one root, we

can write T = T ′ · T ′′, where T ′ and T ′′ has strictly less that n vertices. It is easy

to see that the ideals of T are the parts of T ′ ⊔ T ′′ of the form I ′ ⊔ I ′′, such that

I ′ ∈ Id(T ′) and I ′′ ∈ Id(T ′′). Moreover, for such an ideal of T ,

RI′⊔I′′
(T ′ · T ′′) = RI′

(T ′) ·RI′′
(T ′′), P I′⊔I′′

(T ′ · T ′′) = P I′
(T ′) · P I′′

(T ′′).

Hence,

∆(T ) =
∑

I′∈Id(T ′), I′′∈Id(T ′′)

RI′
(T ′) ·RI′′

(T ′′)⊗RI′
(T ′)RI′′

(T ′′)

= ∆(T ) ·∆(T ′′)

= ∆′(T ′) ·∆′(T ′′)

= ∆′(T · T ′′)

= ∆(T ).
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If T has only one root, we can write T = q (i, d) • (T1 × . . .×Tk), where T1, . . . , Tk ∈
PT (N×D). The induction hypothesis holds for T1, . . . , TN . The ideals of T are

• T itself: for this ideal I, P I(T ) = T and RI(T ) = ∅.
• Ideals I1 ⊔ . . . ⊔ Ik, where Ij is an ideal of Tj for all j. For such an ideal I,

P I(T ) = P I1(T1) · . . . · P Ik(Tk). Let J = {i1, . . . , ip} be the set of indices i

such that Ii = Ti, that is to say the number of blocks C of I such that is

an edge from the root of T to any vertex of C. Then

RI(T ) = q (i + p, d)•
×∏

j /∈J

RIj (Tj)

= f lUCP(D)( q (i, d)) • ×∏
j /∈J

RIj (Tj)

= q (i, d) • ∅×p × t

×∏
j /∈J

RIj (Tj)

= q (i, d) •RI1(T1)× . . .×RIk(Tk).

We used Lemma 2.9 for the third equality.

By Proposition 2.8, with a = q (i, d) and b1 × . . .× bn = T1 × . . .× Tk,

∆′(T ) =
∑
I⊆[k]

q (i, d) •( ×∏
i∈I

T
(1)
i

)
⊗

(∏
i∈I

T
(2)
i

)
∅ •

( ×∏
i/∈I

Ti

)

+
∑
I⊆[k]

∅ •

( ×∏
i∈I

T
(1)
i

)
⊗

(∏
i∈I

T
(2)
i

) q (i, d) •( ×∏
i/∈I

Ti

)

= q (i, d) • T (1)
1 × . . .× T

(1)
k ⊗ T

(2)
1 · . . . · T (2)

k + 0

+ ∅ ⊗ q (i, d) • T1 × . . .× Tk

=
∑

Ij∈Id(Tj)

q (i, d) •RI1(T1)× . . .×RIk(Tk)⊗ P I1(T1) · . . . · P Ik(Tk) + ∅ ⊗ T

=
∑

I∈Id(T ), I ̸=T

RI(T )⊗ P I(T ) + ∅ ⊗ T

=
∑

I∈Id(T )

RI(T )⊗ P I(T )

= ∆(T ).

Hence, ∆′ = ∆.

For all d ∈ D, q (0, d) − q (1, d) is primitive, so ∆( q (0, d) − q (1, d)) ∈ I ⊗ UCP(D) +

UCP(D)⊗ I. Consequently, I is a coideal, and the quotient UCP(D)/I = CP(D)

is a Com-PreLie bialgebra.
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Let x, y ∈ CP(D). By Proposition 2.8, as qd is primitive,

∆( qd • (x× y)) = qd • (x(1) × y(1))⊗ x(2) · y(2) + 1⊗ qd • (x× y),

whereas, by the 1-cocycle property,

∆( qd • (x · y)) = qd • (x(1) · y(1))⊗ x(2) · y(2) +⊗ qd • (x · y).

Hence,

∆( qd • (x× y)− qd • (x · y)) = ( qd • (x(1) × y(1))− qd • (x(1) · y(1)))︸ ︷︷ ︸
∈J

⊗x(2) · y(2)

+ 1⊗ ( qd • (x× y)− qd • (x · y))︸ ︷︷ ︸
∈J

∈ J ⊗ CP(D) + CP(D)⊗ J,

so J is a coideal and CP(D)/J = HD
CK is a Com-PreLie bialgebra.

Let us consider

Bd :

{
HD

CK −→ HD
CK

T1 . . . Tk −→ qd • T1 × . . .× Tk,

where T1, . . . , Tk are rooted trees decorated by D. In other terms, Bd(T1 . . . Tk) is

the tree obtained by grafting the forest T1 . . . Tk on a common root decorated by

d. By Proposition 2.8 and Lemma 2.9, for all forest F = T1 . . . Tk ∈ HD
CK ,

∆ ◦Bd(F ) = qd • T (1)
1 × . . .× T

(1)
k ⊗ T

(2)
1 . . . T

(2)
k + 0 + ∅ ⊗ qd • T1 × . . .× Tk

= Bd(F
(1))⊗ F (2) + ∅ ⊗Bd(F ).

We recognize the 1-cocycle property which characterizes the Connes-Kreimer co-

product of rooted trees, so HD
CK is indeed the Connes-Kreimer Hopf algebra. □

Example 5.7. Let i, j, k ∈ N and d, e, f ∈ D. In UCP(D),

∆ q (i, d) = q (i, d) ⊗ ∅+ ∅ ⊗ q (i, d),
∆ qq (i, d)(j, e) = qq (i, d)(j, e) ⊗ ∅+ ∅ ⊗ qq (i, d)(j, e) + q (i + 1, d) ⊗ q (j, e),

∆ q qq∨(i, d)
(k, f)(j, e)

= q qq∨(i, d)
(k, f)(j, e) ⊗ ∅+ ∅ ⊗ q qq∨(i, d)

(k, f)(j, e)

+ qq (i + 1, d)
(j, e) ⊗ q (k, f) + qq (i + 1, d)

(k, f) ⊗ q (j, e) + q (i + 2, d) ⊗ q q(j, e) (k, f),

∆ q∨(i, d)
(k, f)(j, e) qq

= q∨(i, d)
(k, f)(j, e) qq

⊗ ∅+ ∅ ⊗ q∨(i, d)
(k, f)(j, e) qq

+ qq (i, d)(j, e) ⊗ q (k, f) + qq (i, d)(k, f) ⊗ q (j, e) + q (i + 1, d) ⊗ q q(j, e) (k, f),

∆ qqq (i, d)(j, e)
(k, f)

= qqq (i, d)(j, e)
(k, f)

⊗ ∅+ ∅ ⊗ qqq (i, d)(j, e)
(k, f)

+ qq (i, d)(j + 1, e) ⊗ q (k, f)+ q (i + 1, d) ⊗ qq (j, e)(k, f).
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In CP(D),

∆ qd = qd ⊗ ∅+ ∅ ⊗ qd ,
∆ qqde = qqde ⊗ ∅+ ∅ ⊗ qqde + qd ⊗ qe ,

∆ q qq∨d
fe
= q qq∨d

fe ⊗ ∅+ ∅ ⊗ q qq∨d
fe
+ qqde ⊗ qf + qqdf ⊗ qe + qd ⊗ q qe f,

∆ q∨d
fe qq
= q∨d

fe qq
⊗ ∅+ ∅ ⊗ q∨d

fe qq
+ qqde ⊗ qf + qqdf ⊗ qe + qd ⊗ q qe f,

∆ qqqdef = qqqdef ⊗ ∅+ ∅ ⊗ qqqdef + qqde ⊗ qf + qd ⊗ qqef .
In HD

CK ,

∆ qd = qd ⊗ ∅+ ∅ ⊗ qd ,
∆ qqde = qqde ⊗ ∅+ ∅ ⊗ qqde + qd ⊗ qe ,

∆ q qq∨d
fe
= q qq∨d

fe ⊗ ∅+ ∅ ⊗ q qq∨d
fe
+ qqde ⊗ qf + qqdf ⊗ qe + qd ⊗ qe qf ,

∆ qqqdef = qqqdef ⊗ ∅+ ∅ ⊗ qqqdef + qqde ⊗ qf + qd ⊗ qqef .
5.3. An application: Connes-Moscovici subalgebras. Let us fix a set D of

decorations. For any d ∈ D, we define an operator Nd : HD
CK −→ HD

CK by

∀x ∈ HD
CK , Nd(x) = x • qd .

In other words, if F is a rooted forest, Nd(F ) is the sum of all forests obtained by

grafting a leaf decorated by d on a vertex of F : when D is reduced to a singleton,

this is the growth operator N of [3].

For all k ⩾ 1, i1, . . . , ik ∈ D, we put

Xi1,...,ik = Nik ◦ . . . ◦Ni2( q i1).
When |D| = 1, these are the generators of the Connes-Moscovici subalgebra of [3].

Proposition 5.8. Let HD
CM be the subalgebra of HD

CK generated by all the elements

Xi1,...,ik . Then HD
CM is a Hopf subalgebra.

Proof. Note thatNd is a derivation; asNd(Xi1,...,ik) = Xi1,...,ik,d for all i1, . . . , ik, d ∈
D, HD

CM is stable under Nd for any d ∈ D. As the Xi1,...,ik are homogeneous of

degree k,

Xi1,...,ik • 1 = kXi1,...,ik .

Hence, HD
CM is stable under the derivation D : x 7→ x • 1. We obtain

∆(Xi1,...,ik) = ∆(Xi1,...,ik−1
• q ik) (12)

= X
(1)
i1,...,ik−1

⊗X
(2)
i1,...,ik−1

• q ik
+X

(1)
i1,...,ik−1

• q ik ⊗X
(2)
i1,...,ik−1

+X
(1)
i1,...,ik−1

• ∅ ⊗X
(2)
i1,...,ik−1

q ik.
An easy induction on k proves that ∆(Xi1,...,k) belongs to HD

CM ⊗HD
CM . □
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Proposition 5.9. We assume that D is finite.Then HD
CM is the graded dual of the

enveloping algebra of the augmentation ideal of the Com-PreLie algebra T (V, f),

where V = Vect(D) and f = IdV .

Proof. We put W = Vect(Xi1,...,ik | k ⩾ 1, i1, . . . , ik ∈ D). As this is the case for

HD
CK , for any x ∈W ,

∆(x)− x⊗ 1 + 1⊗ x ∈W ⊗HD
CM .

This implies that the graded dual ofHD
CM is the enveloping of a graded algebra g; as

a vector space, g is identified with W ∗ and its preLie product is dual of the bracket

δ defined onW by (πW ⊗πW )◦∆, where πW is the canonical projection onW which

vanishes on (1) + (HD
CM )2+. By (12), using Sweedler’s notation δ(x) = x(1) ⊗ x(2),

we obtain

δ(Xi1,...,ik+1
) = X

(1)
i1,...,ik

⊗X
(2)
i1,...,ik

•Xik+1
+X

(1)
i1,...,ik

•Xik+1
⊗X

(2)
i1,...,ik

+ kXi1,...,ik ⊗Xik+1
.

We shall use the following notations. If I ⊆ [k], we put

• m(I) = max(i | [i] ⊆ I), with the convention m(I) = 0 if 1 /∈ I.

• XiI = Xip1 ,...ipl
if I = {p1 < . . . < pl}.

An easy induction proves that

∀i1, . . . , ik ∈ D, δ(Xi1,...,ik) =
∑

∅⊊I⊆[k]

m(I)XiI ⊗Xi[k]\I .

We identify W ∗ and T (V )+ via the pairing given by

∀i1, . . . , ik, j1, . . . , jl ∈ D, ⟨Xi1,...,ik , j1 . . . jl⟩ = δ(i1,...,ik),(j1,...,jl).

The preLie product on T (V )+ induced by δ is then given by

i1 . . . ik • ik+1 . . . ik+l =
∑

σ∈Sh(k,l)

mk(σ)iσ−1(1) . . . iσ−1(k+l).

By (9), this is precisely the preLie product of T (V, f). □

Remark 5.10. The following map is a bijection:

θk,l :

{
Sh(k, l) −→ Sh(l, k)

σ −→ (k + l k + l − 1 . . . 1) ◦ σ ◦ (k + l k + l − 1 . . . 1).

Moreover, for any σ ∈ Sh(k, l),

ml(θk,l(σ)) = min{i ∈ {k+1, . . . , k+ l} | σ(i) = i, . . . , σ(k+ l) = σ(k+ l)} = m′
l(σ),
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with the convention m′
l(σ) = 0 if σ(k+ l) ̸= k+ l. Then the Lie bracket associated

to • is given by

∀i1, . . . , ik+l ∈ D,

[i1 . . . ik, ik+1 . . . ik+l] =
∑

σ∈Sh(k,l)

(mk(σ)−m′
l(σ))iσ−1(1) . . . iσ−1(k+l).

5.4. A rigidity theorem for Com-PreLie bialgebras.

Theorem 5.11. Let (A,m, •,∆) be a connected Com-PreLie bialgebra. If fA (de-

fined in Proposition 2.6) is surjective, then (A,m,∆) and (T (Prim(A)),�,∆) are

isomorphic Hopf algebras.

Proof. We put V = Prim(A).

First step. As fA is surjective, there exists g : V −→ V such that fA ◦ g = IdV .

For all x ∈ V , we put

Lx :

{
A −→ A

y −→ g(x) • y.
For all y ∈ A,

∆ ◦ Lx(y) = ∅ ⊗ g(x) • y + g(x) • y(1) ⊗ y(2) = ∅ ⊗ Lx(y) + (Id⊗ Lx) ◦∆(y).

Hence, Lx is a 1-cocycle of A. Moreover, Lx(1) = g(x) • 1 = fA ◦ g(x) = x. For all

x1, . . . , xn ∈ V , we define ω(x1, . . . , xn) inductively on n by

ω(x1, . . . , xn) =

∅ if n = 0,

Lx1(ω(x2, . . . , xn−1)) if n ⩾ 1.

In particular, ω(v) = v for all v ∈ V . An easy induction proves that

∆(ω(x1, . . . , xn)) =

n∑
i=0

ω(x1, . . . , xi)⊗ ω(xi+1, . . . , xn).

Hence, the following map is a coalgebra morphism:

ω :

{
T (V ) −→ A

x1 . . . xn −→ ω(x1, . . . , xn).

It is injective: if Ker(ω) is nonzero, then it is a nonzero coideal of T (V ), so it

contains nonzero primitive elements of T (V ), that is to say nonzero elements of V .

For all v ∈ V , ω(v) = Lv(1) = v: contradiction. Let us prove that ω is surjective.

As A is connected, for any x ∈ A+, there exists n ⩾ 1 such that ∆̃(n)(x) = 0. Let us

prove that x ∈ Im(ω) by induction on n. If n = 1, then x ∈ V , so x = ω(x). Let us

assume the result at all ranks < n. By coassociativity of ∆̃, ∆̃(n−1)(x) ∈ V ⊗n. We

put ∆̃(n−1)(x) = x1 ⊗ . . . ⊗ xn ∈ V ⊗n. Then ∆̃(n−1)(x) = ∆̃(n−1)(ω(x1, . . . , xn)).

By the induction hypothesis, x− ω(x1, . . . , xn) ∈ Im(ω), so x ∈ Im(ω).
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We proved that the coalgebras A and T (V ) are isomorphic. We now assume that

A = T (V ) as a coalgebra.

Second step. We denote by π the canonical projection on V in T (V ). Let

ϖ : T+(V ) −→ V be any linear map. We define

Fϖ :


T (V ) −→ T (V )

x1 . . . xn −→
n∑

k=1

∑
i1+...+ik=n

ϖ(x1 . . . xi1) . . . ϖ(xi1+...+ik−1+1 . . . xn).

Let us prove that Fϖ is the unique coalgebra endomorphism such that π ◦Fϖ = ϖ.

Firstly,

∆(Fϖ(x1 . . . xn)) =
∑

i1+...+ik=n

∆(ϖ(x1 . . . xi1) . . . ϖ(xi1+...+ik−1+1 . . . xn))

=
∑

i1+...+ik=n

k∑
j=0

ϖ(x1 . . . xi1) . . . ϖ(xi1+...+ij−1+1 . . . xi1+...+ij )

⊗ϖ(xi1+...+ij+1 . . . xi1+...ij+1) . . . ϖ(xi1+...+ik−1+1 . . . xn))

=

n∑
i=0

Fϖ(x1 . . . xi)⊗ Fϖ(xi+1 . . . xn)

= (Fϖ ⊗ Fϖ) ◦∆(x1 . . . xn).

Moreover,

π ◦ Fϖ(x1 . . . xn) =

n∑
k=1

∑
i1+...+ik=n

π(ϖ(x1 . . . xi1) . . . ϖ(xi1+...+ik−1+1 . . . xn))

= π ◦ϖ(x1 . . . xn) + 0

= ϖ(x1 . . . xn).

Let us now prove the unicity. Let F,G be two coalgebra endomorphisms such

that π ◦ F = π ◦ G = ϖ. If F ̸= G, let x1 . . . xn be a word of T (V ), such that

F (x1 . . . xn)−G(x1 . . . xn) ̸= 0, of minimal length. By minimality of n,

∆̃(F (x1 . . . xn)) = (F⊗F )◦∆̃(x1 . . . xn) = (G⊗G)◦∆̃(x1 . . . xn) = ∆̃(G(x1 . . . xn)).

Hence, F (x1 . . . xn)−G(x1 . . . xn) ∈ Prim(T (V )) = V , so

F (x1 . . . xn)−G(x1 . . . xn) = π(F (x1 . . . xn)−G(x1 . . . xn))

= ϖ(x1 . . . xn)−ϖ(x1 . . . xn)

= 0.

This is a contradiction, so F = G.
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Third step. Let ϖ1, ϖ2 : T+(V ) −→ V and let F1 = Fϖ1
, F2 = Fϖ2

be the

associated coalgebra morphisms. Then

π ◦ F2 ◦ F1(x1 . . . xn) =
∑

i1+...+ik=n

ϖ2(ϖ1(x1 . . . xi1) . . . ϖ1(xi1+...+ik−1+1 . . . xn)).

We denote this map by ϖ2 ⋄ ϖ1. By the unicity in the second step, F2 ◦ F1 =

Fϖ2⋄ϖ1 . It is not difficult to prove that for any ϖ : T+(V ) −→ V , there exists

ϖ′ : T+(V ) −→ V , such that ϖ′ ⋄ϖ = ϖ ⋄ϖ′ = π if and only if ϖ|V is invertible.

If this holds, then Fϖ ◦ Fϖ′ = Fϖ′ ◦ Fϖ = Fπ = Id, by the unicity in the second

step. So, if ϖ|V is invertible, then Fϖ is invertible.

Fourth step. We denote by ∗ the product of T (V ). Let us choose ϖ : T+(V ) −→
V such that ϖ(T+(V ) ∗ T+(V )) = (0). Let F = Fϖ be the associated coalgebra

morphism. As ∅ is the unique group-like element of T (V ), the unit of ∗ is ∅. Let

us prove that for all x, y ∈ T (V ), F (x ∗ y) = F (x) ·F (y). We proceed by induction

on length(x) + length(y) = n. As ∅ is the unit for both ∗ and · and F (∅) = ∅, it
is obvious if x or y is equal to ∅: this observation covers the case n = 0. Let us

assume the result at all rank < n. By the preceding observation on the unit, we

can assume that x, y ∈ T+(V ). We put G = F ◦ ∗ and H = · ◦ (F ⊗ F ). They are

both coalgebra morphisms from T (V )⊗ T (V ) to T (V ). Moreover,

π ◦G(x⊗ y) = π ◦ F (x ∗ y) = ϖ(x ∗ y) = 0.

As the shuffle product is graded for the length, π ◦H(x⊗ y) = 0. By the induction

hypothesis,

∆̃ ◦G(x⊗ y) = (G⊗G) ◦ ∆̃(x⊗ y) = (F ⊗ F ) ◦ ∆̃(x⊗ y) = ∆̃ ◦ F (x⊗ y).

Hence, G(x⊗ y)− F (x⊗ y) is primitive, so belongs to V . This implies

G(x⊗ y)− F (x⊗ y) = π(G(x⊗ y)− F (x⊗ y)) = 0− 0 = 0.

So F (x ∗ y) = G(x ⊗ y) = F (x ⊗ y) = F (x) � F (y). Hence, F is a bialgebra

morphism from (T (V ), ∗,∆) to (T (V ),�,∆).

By the third and fourth steps, in order to prove that (T (V ), ∗,∆) and (T (V ),�,∆)

are isomorphic, it is enough to find ϖ : T+(V ) −→ V , such that ϖ|V is invertible

and ϖ(T+(V )∗T+(V )) = (0); hence, it is enough to prove that V ∩(A+∗A+) = (0).

Last step. We define ∆ : End(A) −→ End(A ⊗ A,A) by ∆(f)(x ⊗ y) = f(x ∗
y). We denote by ⋆ the convolution product of End(A) induced by the bialgebra

(A, ∗,∆). Let f, g ∈ End(A). We assume that we can write ∆(f) = f (1) ⊗ f (2) and

∆(g) = g(1) ⊗ g(2), that is to say, for all x, y ∈ A,

f(xy) = f (1)(x) ∗ f (2)(y), g(xy) = g(1)(x) ∗ g(2)(y).
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Then, as ∗ is commutative,

f ⋆ g(x ∗ y) = f(x(1) ∗ y(1)) ∗ g(x(2) ∗ y(2))

= f (1)(x(1)) ∗ f (2)(y(1)) ∗ g(1)(x(2)) ∗ g(2)(y(2))

= f (1)(x(1)) ∗ g(1)(x(2)) ∗ f (2)(y(1)) ∗ g(2)(y(2))

= f (1) ⋆ g(1)(x) ∗ f (1) ⋆ g(2)(y).

Hence, ∆(f ⋆ g) = ∆(f) ⋆∆(g).

Let ρ be the canonical projection on A+ and 1 be the unit of the convolution

algebra End(V ). Then 1+ ρ = Id. As ∆(Id) = Id⊗ Id and ∆(1) = 1⊗ 1, this gives

∆(ρ) = ρ⊗ 1 + 1⊗ ρ+ ρ⊗ ρ.

We consider

ψ = ln(1 + ρ) =

∞∑
n=1

(−1)n+1

n
ρ⋆n.

As A is connected, for all x ∈ A, ρ⋆n(x) = 0 if n is great enough, so ψ exists.

Moreover, as ∆ is compatible with the convolution product,

∆(ψ) = ln(1⊗ 1 + ρ⊗ 1 + 1⊗ ρ+ ρ⊗ ρ)

= ln((1 + ρ)⊗ (1 + ρ))

= ln(1 + ρ)⊗ 1) + ln(1⊗ (1 + ρ))

= ln(1 + ρ)⊗ 1 + 1⊗ ln(1 + ρ)

= ψ ⊗ 1 + 1⊗ ψ.

We used ((1+ρ)⊗ 1) ⋆ (1⊗ (1+ρ)) = (1⊗ (1+ρ)) ⋆ ((1+ρ)⊗ 1) = (1+ρ)⊗ (1+ρ)

for the third equality. Hence, for all x, y ∈ A,

ψ(x ∗ y) = ψ(x)ε(y) + ε(x)ψ(y).

In particular, if x, y ∈ A+, ψ(x ∗ y) = 0. If x ∈ V , then ρ1(x) = x and if n ⩾ 2,

ρ∗n(x) =

n∑
i=1

ρ(1) ∗ . . . ∗ ρ(1) ∗ ρ(x) ∗ ρ(1) ∗ . . . ∗ ρ(1) = 0.

So ψ(x) = x. Finally, if x ∈ V ∩ (A+ ∗ A+), ψ(x) = x = 0. So V ∩ (A+ ∗ A+) =

(0). □

The following result is proved for HD
CK in [2] and in [4]:

Corollary 5.12. The Hopf algebras CP(D) and HD
CK are isomorphic to shuffle

algebras.
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Proof. CP(D) is a connected Com-PreLie bialgebra. Moreover, if x ∈ CP(D),

homogeneous of degree n, x • ∅ = nx. Hence, as the homogeneous component of

degree 0 of Prim(CP(D)) is zero, fCP(D) is invertible. By the rigidity theorem,

CP(D) is, as a Hopf algebra, isomorphic to a shuffle algebra. The proof is similar

for HD
CK . □

Remark 5.13. (1) This is not the case for UCP(D). For example, if d, e are

two distinct elements of D, it is not difficult to prove that there is no element

x ∈ UCP(D) such that

∆(x) = x⊗ 1 + 1⊗ x+ q (0, d) ⊗ q (0, e).
So UCP(D) is not cofree.

(2) CP(D) and HD
CK are not isomorphic, as Com-PreLie bialgebras, to any

T (V, f). Indeed, in T (V, f), for any x ∈ V such that f(x) = x, x� x =

2x • x = 2xx. In CP(D) or HD
CK , for any d ∈ D, with x = qd , f(x) = x

but x · x ̸= 2x • x.

5.5. Dual of UCP(D) and CP(D). We identify UCP(D) and its graded dual by

considering the basis of partitioned trees as orthonormal. Similarly, we identify

CP(D) and HD
CK with their graded dual.

Let us consider the Hopf algebra (UCP(D), ·,∆). As a commutative algebra, it

is freely generated by the set UPT 1(D) of partitioned trees decorated by N × D
with one root. Moreover, if T ∈ UPT 1(D),

∆(T )− 1⊗ T ∈ Vect(UPT 1(D))⊗UCP(D).

Consequently, this is a right-sided combinatorial bialgebra in the sense of [11], and

its graded dual is the enveloping algebra of a preLie algebra gUCP (D). Direct

computations prove the following result:

Theorem 5.14. The preLie algebra gUCP (D) is the linear span of UPT 1(D). For

any T, T ′ ∈ UPT 1(D), the PreLie product is given by

T ⋄ T ′ =
∑

s∈V (T ),
b∈Bl(s)⊔{∗}

(T •s,b T ′)[−1]s.

Example 5.15. If D = {1}, forgetting the second decoration of the vertices, in

gUCP (D),

q i ⋄ q j = (1− δi,0) qq i − 1
j ,

qq ij ⋄ qk = (1− δj,0) qqq ij − 1
k

+ (1− δi,0)
( q qq∨i − 1

kj
+ q∨i − 1

kj qq )
.
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Similarly, the Hopf algebra (CP(D), ·,∆) is, as a commutative algebra, freely

generated by the set PT 1(D) of partitioned trees decorated by D with one root.

Moreover, if T ∈ PT 1(D),

∆(T )− 1⊗ T ∈ Vect(PT 1(D))⊗ CP(D).

Consequently, its graded dual is the enveloping algebra of a preLie algebra gCP (D),

described by the following theorem:

Theorem 5.16. The preLie algebra gCP (D) is the linear span of PT 1(D). For

any T, T ′ ∈ PT 1(D), the PreLie product is given by

T ⋄ T ′ =
∑

s∈V (T ),
b∈Bl(s)⊔{∗}

T •s,b T ′.

Example 5.17. If D = {1}, forgetting the decorations, in gCP (D),

q ⋄ q = qq , qq ⋄ q = qqq + q qq∨ + q∨qq .
Notations 5.18. Let T ∈ PT 1(D). We can write T = qd • (T1 × . . . × Tk) =

Bd(T1 . . . Tk), where T1, . . . , Tk ∈ PT (D). Up to a change of indexation, we will

always assume that T1, . . . , Tp ∈ PT 1(D) and Tp+1, . . . , Tk /∈ PT 1(D). The integer

p is denoted by ς(T ).

Proposition 5.19. As a preLie algebra, gCP (D) is freely generated by the set of

trees T ∈ PT 1(D) such that ς(T ) = 0.

Proof. We define a coproduct on gCP (D) by

∀T = Bd(T1 . . . Tk) ∈ PT 1(D), δ(T ) =

ς(T )∑
i=1

Bd(T1 . . . T̂i . . . Tk)⊗ Ti.

This coproduct is permutative: indeed,

(δ ⊗ Id) ◦ δ(T ) =
∑

1⩽i ̸=j⩽ς(T )

Bd(T1 . . . T̂i . . . T̂j . . . Tk)⊗ Ti ⊗ Tj ,

so (δ ⊗ Id) ◦ δ = (23).(δ ⊗ Id) ◦ δ. Let T = Bd(T1 . . . Tk), T
′ ∈ PT 1(D). Then

T⋄T ′ = Bd(T
′T1 . . . Tk)+

k∑
i=1

Bd(T1 . . . (Ti⋄T ′) . . . Tk)+

k∑
i=1

Bd(T1 . . . (Ti�T
′) . . . Tk).
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Hence,

δ(T ⊗ T ′)

= Bd(T1 . . . Tk)⊗ T ′ +

ς(T )∑
i=1

Bd(T
′T1 . . . T̂i . . . Tk)⊗ Ti

+

k∑
i=1

ς(T )∑
j=1
j ̸=i

Bd(T1 . . . T̂j . . . (Ti ⋄ T ′) . . . Tk)⊗ Tj +

ς(T )∑
i=1

Bd(T1 . . . T̂i . . . Tk)⊗ Ti ⋄ T ′

+

k∑
i=1

ς(T )∑
j=1
j ̸=i

Bd(T1 . . . T̂j . . . (Ti � T ′) . . . Tk)⊗ Tj

=

ς(T )∑
j=1

Bd(T
′T1 . . . T̂j . . . Tk) +

k∑
i=1
i̸=j

Bd(T1 . . . T̂j . . . (Ti ⋄ T ′ + Ti � T ′) . . . Tk)

⊗ Tj

+

ς(T )∑
i=1

Bd(T1 . . . T̂i . . . Tk)⊗ Ti ⋄ T ′ + T ⊗ T ′

=

ς(T )∑
j=1

Bd(T1 . . . T̂j . . . Tk) • T ′ ⊗ Tj +

ς(T )∑
i=1

Bd(T1 . . . T̂i . . . Tk)⊗ Ti ⋄ T ′ + T ⊗ T ′

= T (1) ⋄ T ′ ⊗ T (2) + T (1) ⊗ T (2) ⋄ T ′ + T ⊗ T ′.

By Livernet’s rigidity theorem [8], gCP (D) is freely generated, as a preLie algebra,

by Ker(δ).

We define

Υ :

{
gCP (D)⊗ gCP (D) −→ gCP (D)

T ⊗ T ′ −→ T •r(T ),∗ T
′,

where r(T ) is the root of T . In other words, Υ(Bd(T1 . . . Tk)⊗T ′) = Bd(T
′T1 . . . Tk);

this implies that for any T ∈ PT 1(D), Υ ◦ δ(T ) = ς(T )T . Hence, if x =
∑
aTT ∈

Ker(δ), Υ ◦ δ(x) =
∑
aT ς(T )T = 0, so x is a linear span of trees T such that

ς(T ) = 0. The converse is trivial. □

We denote by PT
(0)
1 (D) the set of partitioned trees T ∈ PT 1(D) with ς(T ) =

0. The preceding Proposition implies that the Hopf algebras (CP(D), ·,∆) and(
HPT (0)

1 (D)
CK ,m,∆

)
are isomorphic. We obtain an explicit isomorphism between

them:

Definition 5.20. Let T ∈ PT (D) and π = {P1, . . . , Pk} be a partition of V (T ).

We shall write π ◁ T if the following condition holds:
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• For all i ∈ [k], the partitioned rooted forest T|Pi
, denoted by Ti, belongs to

PT (0)
1 (D).

If π ◁ T , the contracted graph T/π is a rooted forest (one forgets about the blocks

of T ). The vertex of T/π corresponding to Pi is decorated by Ti, making T/π an

element of T (PT (0)
1 (D)).

Corollary 5.21. The following map is a Hopf algebra isomorphism:

Θ :


(CP(D), ·,∆) −→

(
HPT (0)

1 (D)
CK , ·,∆

)
T ∈ PT (D) −→

∑
π◁T

T/π.

Example 5.22. If D = {1}, forgetting the decorations, with a = q and b = q∨qq ,

Θ( q) = qa , Θ( qq ) = qqaa , Θ( q qq∨ ) = q qq∨a
aa
, Θ( q∨qq ) = q qq∨a

aa
+ q b .

5.6. Extension of the preLie product ⋄ to all partitioned trees. We now

extend the preLie product ⋄ to the whole CP(D):

Proposition 5.23. We define a product on CP(D) by

∀T, T ′ ∈ PT (D), T ⋄ T ′ =
∑

s∈V (T ),
b∈Bl(s)⊔{∗}

T •s,b T ′.

Then (CP(D), ⋄, ·) is a Com-PreLie algebra.

Proof. Obviously, for any x, y, z ∈ PT (D), (x · y) ⋄ z = (x ⋄ z) · x+ x · (y ⋄ z). Let
T1, T2, T3 ∈ PT (D). Then

(T1 ⋄ T2) ⋄ T3 =
∑

s1∈V (T1),
b1∈Bl(s1)⊔{∗}

∑
s2∈V (T1),

b2∈Bl(s2)⊔{∗}

(T1 •s1,b1 T2) •s2,b2 T3

+
∑

s1∈V (T1),
b1∈Bl(s1)⊔{∗}

∑
s2∈V (T2),

b2∈Bl(s2)⊔{∗}

(T1 •s1,b1 T2) •s2,b2 T3

=
∑

s1∈V (T1),
b1∈Bl(s1)⊔{∗}

∑
s2∈V (T1),

b2∈Bl(s2)⊔{∗}

(T1 •s1,b1 T2) •s2,b2 T3

+
∑

s1∈V (T1),
b1∈Bl(s1)⊔{∗}

∑
s2∈V (T2),

b2∈Bl(s2)⊔{∗}

T1 •s1,b1 (T2 •s2,b2 T3)

=
∑

s1∈V (T1),
b1∈Bl(s1)⊔{∗}

∑
s2∈V (T1),

b2∈Bl(s2)⊔{∗}

(T1 •s1,b1 T2) •s2,b2 T3 + T1 ⋄ (T2 ⋄ T3).
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Hence,

(T1 ⋄ T2) ⋄ T3 − T1 ⋄ (T2 ⋄ T3) =
∑

s1∈V (T1),
b1∈Bl(s1)⊔{∗}

∑
s2∈V (T1),

b2∈Bl(s2)⊔{∗}

(T1 •s1,b1 T2) •s2,b2 T3

=
∑

s1 ̸=s2∈V (T1)
b1∈Bl(s1)⊔{∗},
b2∈Bl(s2)⊔{∗}

(T1 •s1,b1 T2) •s2,b2 T3

+
∑

s∈V (T1),
b1 ̸=b2∈Bl(s)⊔{∗}

(T1 •s,b1 T2) •s,b2 T3

+
∑

s∈V (T1),
b∈Bl(s)⊔{∗}

(T1 •s,b T2) •s,b T3.

The three terms of this sum are symmetric in T2, T3, so

(T1 ⋄ T2) ⋄ T3 − T1 ⋄ (T2 ⋄ T3) = (T1 ⋄ T3) ⋄ T2 − T1 ⋄ (T3 ⋄ T2).

Finally, (CP(D), ⋄, ·) is a Com-PreLie algebra. □

Definition 5.24. Let T = (t, I, d) and T ′ = (t, I ′, d) be two elements of PT (D)

with the same underlying decorated rooted trees. We shall say that T ⩽ T ′ is I ′ is

a refinement of I. This defines a partial order on PT (D).

Example 5.25. If a, b, c, d ∈ D, q∨qq qadc
b

⩽ q q∨q qadc
b

, q q∨q qadb
c

, q q∨q qacb
d

⩽ q qq q∨a
d

c
b

.

Theorem 5.26. The following map is an isomorphism of Com-PreLie algebras:

Ψ :

 (CP(D), ◦, ·) −→ (CP(D), ⋄, ·)
T ∈ PT (D) −→

∑
T ′⩽T

T ′.

Proof. As ⩽ is a partial order, Ψ is bijective. Let T1, T2 ∈ PT (D).

(1) If T ′ ⩽ T1 · T2, let us put T ′
1 = T1 ∩ T ′ and T ′

2 = T2 ∩ T ′. Then, obviously,

T ′
1 ⩽ T1 and T ′

2 ⩽ T2. Moreover, T ′ = T ′
1 ⩽ T ′

2. Conversely, if T
′
1 ⩽ T1 and T ′

2 ⩽ T2,

then T ′
1 · T ′

2 ⩽ T1 · T2. Hence,

Ψ(T1 · T2) =
∑

T ′⩽T1·T2

T ′ =
∑

T ′
1⩽T1, T ′

2⩽T2

T ′
1 · T ′

2 = Ψ(T1) ·Ψ(T2).

(2) Let s ∈ V (T1) and T
′ ⩽ T1 •s,∗ T2. We put T ′

1 = T ′ ∩ T1 and T ′
2 = T ′ ∩ T2.

Then, obviously, T ′
1 ⩽ T1 and T ′

2 ⩽ T2. If the block of roots of T2 is also a block

of T ′, then T ′ = T ′
1 •s,∗ T ′

2. Otherwise, there exists a unique b ∈ Bl(s) such that

T ′ = T ′
1 •s,b T ′

2. Conversely, if T ′
1 ⩽ T1, T

′
2 ⩽ T2, s ∈ V (T ′

1) and b ∈ Bl(s) ⊔ {∗},
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then T ′
1 •s,b T ′

2 ⩽ T1 •s,∗ T2. Hence,

Ψ(T1 ◦ T2) =
∑

s∈V (T1)

∑
T ′⩽T1•s,∗T2

T ′

=
∑

T ′
1⩽T1, T ′

2⩽T2

∑
s∈V (T ′

1),b∈Bl(s)⊔{∗}

T ′
1 •s,b T ′

2

= Ψ(T1) ⋄ ψ(T2).

So Ψ is a Com-PreLie algebra isomorphism. □

Example 5.27. In the non-decorated case,

Ψ( q) = q , Ψ( qqq) = qqq ,
Ψ( qq ) = qq , Ψ( q qq q∨ ) = q qq q∨ + 3 q q∨q q + q∨qq q ,

Ψ( q qq∨ ) = q qq∨ + q∨qq , Ψ( q q∨q q ) = q q∨q q + q∨qq q ,
Ψ( q∨qq ) = q∨qq , Ψ( q∨qq q ) = q∨qq q .
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mathématiques à la mémoire de Jean Leray, Soc. Math. France, Paris, Sémin.
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