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Abstract. We study the notion of small iso-retractable modules. We prove

that a small iso-retractable module is either J-semisimple or iso-retractable
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1. Introduction

One of the significant topics in the module theory is the retractability of mod-

ules. The notion of retractable modules was introduced by Khuri [12] in 1979. He

called an R-module M retractable if for each nonzero submodule N of M , there

exists a nonzero homomorphism θ : M → N . Recently, many people studied and

generalized this notion. In 2016, the second author in [3,4] used the notion of iso-

retractable modules. Such modules are properly contained in the class of retractable

modules. He called a module M iso-retractable if every nonzero submodule of M

is isomorphic to M . In [8], Facchini et al. called nonzero iso-retractable modules

as iso-simple modules and Behboodi et al. [2] called as virtually simple modules.

Recall [15], a submodule N of a module M is called an essential submodule and

denoted by N ≤e M if N ∩K ̸= 0 for any nonzero submodule K of M . In 2021,

we and Prakash [7] introduced the notion of essentially iso-retractable modules

as a generalization of iso-retractable modules to describe the iso-retractability of

modules in terms of their essential submodules. They called a module M essentially

iso-retractable if every essential submodule of M is isomorphic to M .

A submodule N of a module M is called a complement submodule and denoted

by N ≤c M if there exists a submodule K for which N is maximal with respect

to the property that N ∩ K = 0. Further in 2022, we [5] study the notion of

iso-c-retractable modules as a generalization of iso-retractable modules to describe
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the iso-retractability of modules in terms of their complement submodules. We

called a module M iso-c-retractable if every nonzero complement submodule of M

is isomorphic to M .

For a notion dual to essential submodule, we recall [15], a submodule N of a

module M is a small submodule and denoted by N ≤s M if N +K ̸= M for any

proper submodule of M .

The above facts motivate us to study the iso-retractability of modules in terms

of their small submodules. For this purpose, we introduce two notions, one is the

class of small iso-retractable modules (Definition 2.1) which generalizes the notion

of iso-retractable modules. The second notion is the class of small iso-coretractable

modules (Definition 4.1) which is dual to the notion of essentially iso-retractable.

Throughout the paper, all modules are unital and all rings are associative rings

with identity. We denote the Jacobson radical of a module M by Rad(M). We

refer the readers to [1,15] for all undefined terminologies and notions.

2. Examples and properties of small iso-retractable modules

Definition 2.1. We call a module M small iso-retractable if each nonzero small

submodule of M is isomorphic to M .

We call a ring R left (resp., right) small iso-retractable if RR (resp., RR) is small

iso-retractable; and we call a ring R small iso-retractable if R is both left and right

small iso-retractable.

Example 2.2. Every iso-retractable module is small iso-retractable. However, its

converse need not be true. For example, Z6 is a small iso-retractable Z-module but

not iso-retractable.

Remark 2.3. Recall [15, pp. 351] that a module M whose all proper submodules

are small is called as a hollow module. In [7, Proposition 4], it has been proved

that a module M is iso-retractable if and only if M is essentially iso-retractable and

uniform. One may think a dual characterization that a module M is iso-retractable

if and only if M is small iso-retractable and hollow. But this does not hold as Z is

an iso-retractable module which is not hollow. However, we observe that a hollow

module is small iso-retractable if and only if it is iso-retractable.

Example 2.4. Recall [6], a module having unique nonzero small submodule is

called as us-module. We observe that a us-module cannot be small iso-retractable.

To prove it, let M be a us-module. Then Rad(M) is a small and simple submodule

of M by [6, Proposition 3.1]. If possible, assume that M is small iso-retractable.
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Then Rad(M) ∼= M . This implies that M is also simple. But then Rad(M) = 0 or

Rad(M) = M which contradicts the fact that Rad(M) is small and simple. Thus,

M cannot be small iso-retractable.

Recall [15, pp. 180], a module M is J-semisimple if and only if it’s all small

submodules are zero. In the following, we observe a very interesting classification

of the class of small iso-retractable modules in two classes of J-semisimple and

iso-retractable modules. Thus the study of small iso-retractable modules explores

many new properties of aforesaid two important classes.

Proposition 2.5. A small iso-retractable module is either J-semisimple or iso-

retractable.

Proof. Let M be a small iso-retractable module. Suppose that M is not J-

semisimple. Then, M has a nonzero small submodule, say, N . Let 0 ̸= L ≤ N .

It follows by [15, 19.3(2)] that 0 ̸= L ≤s M . Then L ∼= M as M is small iso-

retractable. This implies that L ∼= M ∼= N . This proves that N is iso-retractable.

Therefore, M is iso-retractable. □

A homomorphic image (quotient) of a small iso-retractable module need not be

small iso-retractable. For example, Z is small iso-retractable but Z/4Z is not small

iso-retractable. However, in the following, we find a sufficient condition for the

quotient to be a small iso-retractable.

Proposition 2.6. Let N be a small submodule of a small iso-retractable module

M such that f(N) + f−1(N) ⊆ N for every injective endomorphism of M . Then,

M/N is small iso-retractable.

Proof. Let 0̄ ̸= L/N ≤s M/N . Then 0 ̸= L ≤s M as N ≤s M . Since M is small

iso-retractable, there exists an isomorphism f : M → L which can be extended

to a monomorphism f : M → M . Hence, by assumption, f(N) + f−1(N) ⊆ N .

Therefore, the map f̄ : M/N → L/N given by f̄(m + N) = f(m) + N is a well-

defined isomorphism. □

In the following, small iso-retractable modules are preserved under isomorphisms

and being (small) submodules.

Proposition 2.7. The following properties hold for small iso-retractable modules:

(1) The isomorphic copy of a small iso-retractable module is small iso-retractable.

(2) A submodule of a small iso-retractable module is small iso-retractable.

(3) A small submodule of a small iso-retractable module is iso-retractable.
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(4) The radical of a small iso-retractable module is a small submodule.

(5) Being small iso-retractable is a Morita invariant property.

Proof. (1) Let M be a small iso-retractable module and M ′ is a module isomorphic

to M . Let f : M → M ′ be an isomorphism and let 0 ̸= N ′ ≤s M ′. Then, 0 ̸=
N := f−1(N ′) ≤s M . Since M is small iso-retractable, there exists an isomorphism

g : M → N . Since f and g are isomorphisms, fogof−1(M ′) = f(g(f−1(M ′))) =

f(g(M)) = f(N) = f(f−1(N ′)) = N ′. It follows that h = fogof−1 : M ′ → N ′ is

an isomorphism. Thus, M ′ is small iso-retractable.

(2) Let N be a submodule of a small iso-retractable module M . If N has no

nonzero small submodule, then obviously, N is small iso-retractable. Suppose that

N has a nonzero small submodule, say K. Then K is a nonzero small submodule

of M . Hence M is not J-semisimple and so M is iso-retractable by Proposition 2.5.

Therefore N is iso-retractable and so small iso-retractable.

(3) Let N be a small submodule of a small iso-retractable module M . In case

N = 0, the proof is clear. If N ̸= 0, then N is iso-retractable by using the same

argument as in case of (2).

(4) Let M be a small iso-retractable module. If Rad(M) = 0, we have nothing

to prove. If Rad(M) ̸= 0, then M has a nonzero small submodule. Hence M is

iso-retractable by Proposition 2.5 and so M is cyclic by [4, Theorem 1.12]. Since

the radical of every nonzero finitely generated module is small, Rad(M) ≤s M .

(5) Clear. □

Lemma 2.8. [7, Lemma 1(2)] A nonzero left ideal I of a ring R is R-isomorphic

to R if and only if there exists a left regular element a ∈ R such that I = Ra.

Recall from [2, Definitions 1.4] that an R-module M is called virtually uniserial

if for every finitely generated nonzero submodule K of M , K/Rad(K) is virtually

simple.

Example 2.9. Every J-semisimple module is obviously small iso-retractable. How-

ever, its converse need not be true. For example, let R be a left principal ideal do-

main having more than one but finitely many maximal left ideals. Then by Lemma

2.8, RR is iso-retractable and so small iso-retractable.

If possible, suppose that Rad(RR) = 0. Let I = Ra be a nonzero left ideal of R.

Then Rad(RRa) ≤ Rad(RR) = 0 and so Rad(RRa) = 0. Hence Ra/Rad(RRa) =

Ra/0 ∼= Ra ∼= R is virtually simple (iso-retractable) as RR is iso-retractable. This

implies that RR is virtually uniserial. But by [2, Lemma 2.11], it follows that R
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has either one or infinitely many maximal left ideals which is a contradiction. Thus

Rad(RR) ̸= 0 and so RR is not J-semisimple.

Recall [14], a module M is called a C2-module if every submodule of M which is

isomorphic to a direct summand of M is itself a direct summand of M . Recall [13],

a module M is said to be d-Rickart (or dual Rickart) if for every f ∈ EndR(M),

Im(f) is a direct summand of M .

In the following, we give some sufficient conditions under which small iso-retractable

modules are J-semisimple.

Proposition 2.10. A small iso-retractable module M is J-semisimple if any one

of the following holds:

(1) M is injective.

(2) M is finite.

(3) M is a C2-module.

(4) M is d-Rickart.

Proof. Let M be a small iso-retractable module. If possible, assume that M is not

J-semisimple. Then, M has a nonzero small submodule, say N . Since M is small

iso-retractable, there is an isomorphism g : M → N .

(1) If M is injective, then N is also injective. Since injective submodule of a

module is always a direct summand of the module, N is a direct summand of M

which is a contradiction as N is a nonzero small submodule of M . Thus, our

assumption is wrong and so M is J-semisimple.

(2) If M is finite, then M ∼= N yields that M = N which is a contradiction.

Thus M is J-semisimple.

(3) If M is a C2-module, then N is isomorphic to a direct summand of M , it

follows that N is itself a direct summand of M . Which is a contradiction as N is

a nonzero small submodule of M . Thus M is J-semisimple.

(4) If M is a d-Rickart module, then h = iNof : M → M is a monomorphism

such that h(M) = N , where iN : N → M is the inclusion map. Since M is d-

Rickart, Im(h) = N is a direct summand of M which is a contradiction as N is a

nonzero small submodule of M . Thus M is J-semisimple. □

In the following, we discuss some properties of small iso-retractable modules

related to chain conditions.

Proposition 2.11. Let M be a small iso-retractable module. Then

(1) M satisfies ACC on small submodules.
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(2) If M satisfies DCC on non-small submodules, then M is iso-Artinian.

Proof. (1) If M has no nonzero small submodules, then trivially M satisfies ACC

on small submodules. Suppose that M has a nonzero small submodule. Then M

is iso-retractable by Proposition 2.5 and so M is Noetherian by [4, Theorem 1.12]

and so M satisfies ACC on small submodules.

(2) If M has no nonzero small submodule, by assumption, it follows that M

is Artinian and so iso-Artinian. If M has a nonzero small submodule, then M is

iso-retractable by Proposition 2.5 and so M is iso-Artinian. □

Since iso-retractable modules are cyclic, Noetherian and uniform (see [4, The-

orem 1.12]), small submodules of a small iso-retractable module M are cyclic,

Noetherian and uniform by Proposition 2.7(3). Also if M has a nonzero small

submodule, then M is cyclic, Noetherian and uniform by Proposition 2.5.

Lemma 2.12. Let M be a small iso-retractable module. Then every simple sub-

module of M is a direct summand of M .

Proof. Let S be a simple submodule of M . If S is small, then S ∼= M and so M

is simple. Hence S = M is a direct summand of M . Suppose that S is not small.

Then, there exists a proper submodule K such that M = S+K. Since S is simple,

S ∩K = 0 or S ∩K = S. If S ∩K = S, then S ⊆ K and so M = S+K = K which

is a contraction. Hence S ∩K = 0 and so M = S ⊕K. □

3. Some characterizations

Recall from [9, 7.32A] that a ring R is called a left V -ring if every simple left R-

module is injective. In the following, we give a new characterization of left V -rings

in terms of small iso-retractable modules.

Theorem 3.1. A ring R is a left V -ring if and only if every left R-module is small

iso-retractable.

Proof. Suppose that R is a left V -ring and M is a left R-module. Then Rad(M) =

0 by [9, 7.32A]. This implies that M has no nonzero small submodule and so M is

obviously a small iso-retractable module.

Conversely, suppose that every left R-module is small iso-retractable. Let M be

a simple left R-module and E(M) be the injective hull of M . By hypothesis, E(M)

is small iso-retractable. So by Lemma 2.12, M is a direct summand of E(M) which

implies that M = E(M) is injective. Thus R is a left V -ring. □



190 NIRBHAY KUMAR AND AVANISH KUMAR CHATURVEDI

In [4, Open Problem 2.11], second author raised a problem that “if every R-

module is iso-retractable, then what will be the ring?”. We observe that there is

no such ring as for any nonzero ring R, there is a module M = R[xi : i ∈ N] over
R which is not finitely generated and so not iso-retractable.

We give the following characterization of a right small iso-retractable ring, whose

proof directly follows from Lemma 2.8.

Lemma 3.2. A ring R is right small iso-retractable if and only if for every nonzero

small right ideal I of R, there is a right regular element a ∈ R such that I = aR.

Lemma 3.3. Let N be a nonzero small submodule of a small iso-retractable module

M . Then, ann(N) = ann(M).

Proof. Since N is a subset of M , clearly ann(M) ⊆ ann(N). Since M is small

iso-retractable, there exists an isomorphism f : M → N . Let r ∈ ann(N). Then

rN = 0 and so rM = rf−1(N) = f−1(rN) = 0. This implies that r ∈ ann(M).

Thus, ann(N) ⊆ ann(M). Therefore, ann(N) = ann(M). □

Lemma 3.4. Let M be an iso-retractable module over a commutative ring R. Then,

ann(x) is a prime ideal of R for any nonzero x ∈ M .

Proof. Since R is commutative, clearly ann(x) is an ideal of R. Let a, b ∈ R such

that ab ∈ ann(x). Suppose that b /∈ ann(x). Then bx ̸= 0 and so 0 ̸= Rbx ≤ N .

Therefore, by Lemma 3.3, ann(Rbx) = ann(M) = ann(Rx). Since abx = 0,

a ∈ ann(Rbx) = ann(Rx). Since R is commutative, ann(x) = ann(Rx). So,

a ∈ ann(x). Thus, ann(x) is a prime ideal of R. □

The following result describes a unique property of all small iso-retractable mod-

ules over a PID: Let SI be the set of all small iso-retractable modules over a PID

R up to isomorphisms and SJ be the set of all J-semisimple modules over R up to

isomorphisms. Then, we have SI = SJ ∪ {R}.

Theorem 3.5. Let M be a small iso-retractable module over a commutative ring

R. Then M is either J-semisimple or isomorphic to a PID R/P , where P is some

prime ideal. In particular, if R is also a PID, then M is either J-semisimple or

isomorphic to R.

Proof. If M = 0 or M has no nonzero small submodule, then clearly M is J-

semisimple. Suppose that M is a nonzero small iso-retractable module having a

nonzero small submodule. Then M is not J-semisimple and so M is iso-retractable

by Proposition 2.5. Let 0 ̸= x ∈ M . Then, 0 ̸= Rx ≤ M . Hence M ∼= Rx as M
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is iso-retractable. But we know that Rx ∼= R/ann(x) and so M ∼= R/ann(x). By

Lemma 3.4, P = ann(x) is a prime ideal of R and so R/P is an integral domain. Let

J/P be a nonzero ideal of R/P . Since R/P is iso-retractable being isomorphic toM ,

there exists an R-isomorphism f : R/P → J/P . Hence J/P = f(R/P ) = Rf(1+P )

is a principle ideal of R/P . Thus, M is isomorphic to R/P , where R/P is a PID.

In particular case over a PID R, since by above M ∼= R/P where R/P is a PID,

if possible, suppose that P ̸= 0. Then P is a nonzero prime ideal of R and so

P is a maximal ideal of R. This implies that M ∼= R/P is simple and so M is

J-semisimple which is a contradiction. Thus P = 0 and M ∼= R. □

Corollary 3.6. A small iso-retractable module M over a PID R is either J-

semisimple or free.

Recall from [14], a moduleM is called as aD1-module if for every submoduleN of

M , there is a decomposition M = M1 ⊕M2 such that M1 ⊆ N and N ∩M2 ≤s M .

A module M is a C2-module if every submodule of M which is isomorphic to a

direct summand of M is also a direct summand of M . In the following, we give a

characterization of a semisimple module in terms of a small iso-retractable module.

Theorem 3.7. The following are equivalent for a module M :

(1) M is semisimple

(2) M is a small iso-retractable, D1-module and a C2-module.

(3) M is a J-semisimple and D1-module.

Proof. (1) =⇒ (2) Clear.

(2) =⇒ (3) It follows from Proposition 2.10.

(3) =⇒ (1) Suppose that M is a J-semisimple and D1-module. Let N be a sub-

module of M . Since M is a D1-module, by [14, Proposition 4.8], N can be written

as N = K ⊕ S such that K is a direct summand of M and S ≤s M . But since M

is J-semisimple, so S = 0. Thus N = K is a direct summand of M . □

Proposition 3.8. Let M be an injective module. Then M is semisimple if and

only if M is a small iso-retractable and D1-module.

Proof. Suppose that M is a small iso-retractable and D1-module. Since M is

injective, M is J-semisimple by Proposition 2.10. Thus by Theorem 3.7, M is

semisimple. The converse is clear. □

Theorem 3.9. A torsion-free small iso-retractable module M over any ring R is

either J-semisimple or isomorphic to R.
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Proof. If M = 0 or M has no nonzero small submodule, then clearly M is J-

semisimple. Suppose that M is a nonzero small iso-retractable module having a

small submodule. Then, by Proposition 2.5, M is iso-retractable. Since M ̸= 0,

there existsm ∈ M such thatm ̸= 0. LetN = Rm. ThenN is a nonzero submodule

of M and so there exists an isomorphism f : N → M as M is iso-retractable.

Since M is torsion-free, the map g : R → N , given by g(r) = rm,∀r ∈ R, is an

isomorphism. Thus fog : R → M is an isomorphism. □

Corollary 3.10. A torsion-free small iso-retractable module M over any ring R is

either J-semisimple or free.

Let U , V be two submodules of a module M . The submodule V is called a

supplement of U in M if M = U + V and U ∩ V ≤s V . Recall from [11] that

the submodule V is called an SS-supplement of U in M if M = U + V , U ∩ V ≤s

V and U ∩ V is semisimple. A module M is called supplemented (respectively,

SS-supplemented) if every submodule of M has a supplement (respectively, SS-

supplement) in M .

Proposition 3.11. The following are equivalent for a small iso-retractable module

M :

(1) M is SS-supplemented;

(2) M is supplemented and Rad(M) ⊆ Soc(M);

(3) M is semisimple.

Proof. (1) =⇒ (2) Since M is small iso-retractable, Rad(M) ≤s M by Proposition

2.7(4). The rest of the proof follows from [11, Theorem 20].

(2) =⇒ (3) First assume that Rad(M) = 0. Then M has no nonzero small

submodules. Let K be a submodule of M . Since M is supplemented, K has a

supplement in M , say H. Hence, we have M = K + H and K ∩ H ≤s H. Since

K ∩H ≤s H and H is a submodule of M , K ∩H ≤s M . It follows that K ∩H = 0.

Thus, every submodule of M is a direct summand of M and so M is semisimple.

Next assume that Rad(M) ̸= 0 and let N be a nonzero small submodule of M .

Then N is cyclic and uniform by Proposition 2.7(3). Hence 0 ̸= x ∈ Rad(M) such

that N = Rx. Since 0 ̸= Rad(M) ⊆ Soc(M), x belongs to a simple submodule,

say S, of M . But then N = Rx = S. Since M is small iso-retractable, we have

M ∼= N = S. Thus M is simple and so M is semisimple.

(3) =⇒ (1) Clear. □

Recall [10] that a module M is called Hopfian if every surjective endomorphism is

an isomorphism. A small iso-retractable module need not be Hopfian. For example,
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Z6(= 2Z6 ⊕ 3Z6) is a small iso-retractable Z-module as it has no nonzero small

submodule. But it is not Hopfian as the projection map π : Z6 → 2Z6 is a surjective

map which is not an isomorphism.

Lemma 3.12. Let M be a small iso-retractable module. If f : M → M is an

epimorphism such that kerf ≤s M , then f is an isomorphism.

Proof. Let f : M → M be an epimorphism such that kerf ≤s M . If possible,

suppose that kerf ̸= 0. Then M is not J-semisimple and so M is iso-retractable

by Proposition 2.5. Hence M is Noetherian and so Hopfian. Hence kerf = 0, a

contradiction. Thus, kerf = 0. □

Recall [10] that a module M is called generalized Hopfian if every surjective

endomorphism has small kernel.

Proposition 3.13. Let M be a small iso-retractable module. Then,

(1) M is Hopfian if and only if M is generalized Hopfian.

(2) M is discrete if and only if M is quasi-discrete.

Proof. (1) It follows from Lemma 3.12.

(2) It follows from Lemma 3.12 and [14, Lemma 5.1]. □

4. Small iso-coretractable module

We plan to study a notion dual to the class of essentially iso-retractable modules.

Definition 4.1. A module M is called small iso-coretractable if for every small

submodule N of M , M/N ∼= M .

Remark 4.2. Recall that a module M is called J-semisimple if and only if the only

small submodule of M is the zero submodule. This implies that every J-semisimple

module M is small iso-coretractable. However, its converse need not be true. For

example, the Prüfer group Zp∞ is a small iso-coretractable Z-module as for any

proper submodule K, Zp∞/K ∼= Zp∞ . However, it is not J-semisimple. In fact, its

all proper submodules are small.

Lemma 4.3. Let M = M1 ⊕M2 be a module such that ann(M1) + ann(M2) = R.

Then for any N ≤s M , there exists N1 ≤s M1 and N2 ≤s M2 such that N =

N1 ⊕N2.

Proof. Since ann(M1) + ann(M2) = R, there exist r1 ∈ ann(M1) and r2 ∈
ann(M2) such that r1 + r2 = 1. Let N1 = r2N and N2 = r1N . Then, clearly
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N = N1 + N2. Let x ∈ N1. Then, x = r2n for some n ∈ N . Since N ≤ M ,

n = m1 + m2 for some m1 ∈ M1 and m2 ∈ M2. This implies that x = r2n =

r2(m1 + m2) = r2m1 ∈ M1 as r2 ∈ ann(M2). Hence N1 is a submodule of M1.

By symmetry, N2 is a submodule of M2 and N = N1 ⊕ N2. Let πi : M → Mi

be the projection map for i = 1, 2. Then by [15, 19.3(4)], πi(N) = Ni ≤s Mi for

i = 1, 2. □

Proposition 4.4. Let M1 and M2 be small iso-coretractable R-modules such that

ann(M1) + ann(M2) = R. Then M = M1 ⊕M2 is small iso-coretractable.

Proof. Let N be a small submodule of M . Then, by Lemma 4.3, there exist

N1 ≤s M1 and N2 ≤s M2 such that N = N1 ⊕N2. Since M1 and M2 are small iso-

coretractable, there exist isomorphism f1 : M1/N1 → M1 and f2 : M2/N2 → M2.

Define a map h : M/N → M given by h((m1+m2)+N) = f1(m1+N1)+ f2(m2+

N2), for all (m1 +m2) +N ∈ M/N . Then f is an isomorphism. □

Corollary 4.5. Let {Mi}ni=1 be a family of small iso-coretractable R-modules such

that
∑n

i=1 ann(Mi) = R. Then M = ⊕n
i=1Mi is small iso-coretractable.

Proof. Clear. □

Remark 4.6. Recall from [8] that for a module M , I-Rad(M) =
⋂
{kerh|h ∈

HomR(M, I) for some iso-retractable module I} =
⋂
{N ≤ M |M/N is an iso-

retractable module}. If IM denotes the class of all iso-retractable R-modules, then

following notations from [1, 109], I-Rad(M) = RejM (IM ). Hence from [1, Corol-

lary 8.13], I-Rad(M) = 0 if and only if M is isomorphic to a submodule of a direct

product of iso-retractable (iso-simple) modules.

Since it is well known that a moduleM is J-semisimple if and only if Rad(M) = 0

if and only if M is isomorphic to a submodule of a direct product of simple modules;

and the class of small iso-coretractable modules is a proper generalization of the

class of J-semisimple modules (see Remark 4.2). Hence in view of Remark 4.6, it

is natural to ask the following problem:

Question 4.7. Do the following two equivalent statements provide a characteri-

zation of small iso-coretractable module M? M is isomorphic to a submodule of a

direct product of iso-retractable (iso-simple) modules if and only if I-Rad(M) = 0.
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